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ABSTRACT

The application of machine learning and computer vision in microtomography provides new opportunities to
directly analyze the microstructural evolutions of strain-hardening cementitious composites (SHCC) under ten-
sile load, especially the strain-hardening process. For the first time, a state-of-the-art machine-learning pipeline
combined with digital volume correlation for automated microtomography segmentation analysis (MSA) was
developed to separate different components and quantify the in-situ 3D morphological properties of the fibers
and pore networks imaged with in-situ synchrotron X-ray computed microtomography. Strain localization and
crack initiation were observed around the interconnected pores where strain localized instead of the weakest
cross-section defined by the fiber distribution and porosity. Fibers reinforced the crack planes through fiber
debonding, bridging, bending, stretching, and orientation redistribution, which contributed to the crack width
control and ductility of SHCC in the experiment. This work is essential to understand the progressive damage
mechanisms of SHCC and help refine the characterization, modeling, and design of the composite using a bottom-
up approach.

1. Introduction

controlling crack width and improving ductility [4-7]. The tensile
behavior of SHCC has been extensively studied using conventional me-

Controlling the crack size in concrete has been one of the greatest
challenges in increasing the life cycle of the modern concrete infra-
structure [1]. The existing concrete infrastructure is not as durable as
desired, although concrete is the most consumed engineered material in
the world by mass [2] and is the second most consumed material in the
world by mass after water [3]. Cracking is mainly caused by deformation
under restraint, mechanical loading and aggressive environmental
condition, and crack widths can increase over time with continued
loading and environmental exposure.

To improve crack resistance, strain-hardening cementitious com-
posites (SHCC) are being widely studied and show promise for

chanical tests over the past decades [8-10]. However, these tests only
provide overall material properties (stress/strain) and macro-scale
response (fracture pattern) of the material under loading. It is well-
known that the microstructural evolution, mainly due to the presence
of fibers and fiber orientation, is critical in understanding the tensile
behavior of SHCC [11]. In addition, various analytical models have been
developed for predicting crack opening and cracking behaviors of SHCC
under tension [7,12,13]. These models rely on the morphological and
statistical features at the micro-scale, such as statistical assessments of
the orientation and distribution of the fibers [14-17].

The traditional methods for assessing the above morphological and

* Correspondence to: K. Xu, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.

** Corresponding author.
E-mail addresses: ke_xu@berkeley.edu (K. Xu), billjin@egr.msu.edu (Q. Jin).

https://doi.org/10.1016/j.cemconres.2023.107164

Received 1 September 2022; Received in revised form 25 January 2023; Accepted 28 March 2023

Available online 11 April 2023
0008-8846/© 2023 Elsevier Ltd. All rights reserved.


mailto:ke_xu@berkeley.edu
mailto:billjin@egr.msu.edu
www.sciencedirect.com/science/journal/00088846
https://www.elsevier.com/locate/cemconres
https://doi.org/10.1016/j.cemconres.2023.107164
https://doi.org/10.1016/j.cemconres.2023.107164
https://doi.org/10.1016/j.cemconres.2023.107164
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cemconres.2023.107164&domain=pdf

K. Xu et al.

statistical features are either global or ex-situ [18-22]. State-of-the-art
high-resolution X-ray microtomographic (pCT) techniques, and the
ability to conduct in-situ mechanical tests, have been used to charac-
terize the evolution of composition and microstructure of various
cementitious composites and concretes under load [23-25]. To deter-
mine the morphological and statistical features from the volumetric
representation, there is a critical need to process the three-dimensional
raw microtomography (LCT) image data, classify different components
(phases), characterize the morphological properties, and conduct a
statistical analysis. As one of the most critical steps, accurate and high-
speed pCT segmentation methods are required to enable accurate phase
segmentation of fiber, pore, and matrix from the reconstructed pCT to-
mograms [23,26,27]. However, non-metallic fiber phases (e.g., PVA
fiber) share pronounced overlaps of gray value spectra with the pore
phase, which restricts the application of traditional segmentation
methods [19,26,28].

Machine learning (ML) algorithms combined to computer vision
methods have been largely applied to segment different phases in
microtomography even when the gray value spectra are mixed [29-31].
Recent studies [25,26,32] have shown that ML algorithms, containing
both traditional machine learning and deep learning (DL) can be suc-
cessfully applied to the segmentation of structures of pCT images of
concrete and SHCC. However, DL models require thousands of hours of
computation time with the help of high-performance and large-storage
graphics processing units (GPUs), to finish the model training and pre-
diction [26,33,34]. In addition, the in-situ pCT with a terabyte (TB) scale
of raw images further boosts the computation time. Therefore, no in-situ
3D quantification analysis was conducted in the prior research described
above. In comparison, classical ML algorithms require less computation
time while achieving moderate segmentation accuracy for an SHCC
dataset.

The present paper reports an in-situ microtomography segmentation
analysis (MSA) using machine learning algorithms. The main advantage
of performing an in-situ microtomography segmentation analysis (MSA)
is that, in addition to the direct observation and examination of micro-
structural evolutions (e.g., pore connectivity, fiber behavior, and crack
opening) in strain-hardening cementitious composites (SHCC), the sta-
tistical information for pore structure, crack opening, fiber distribution
and the fiber orientations can also be extracted from the MSA. Such
information can be used to investigate the relationship between me-
chanical responses (e.g., stress/strain and fracture pattern) and micro-
structural phase information, especially useful for generating
correlations between failure patterns and the pore and fiber phases.

There is a consensus that pore structures and fiber behavior influence
the tensile properties of SHCC. Researchers [35,36] have observed that
the tensile properties of SHCC, in terms of strain capacity and average
crack width, are primarily affected by fiber properties, such as fiber
orientation, distribution, number of bridging fibers, and fracture ratio,
in addition to the fiber/matrix interfacial properties. At the same time,
pore structures such as pore volume, pore size distribution, and pore
connectivity, influenced by the matrix, aggregates, and fibers in the
SHCC, are considered in determining the weakest location (region of
crack initiation) and failure mechanism [37-39]. However, above
macro-scale or ex-situ micro-scale experiments only provided a limited
understanding of the failure mechanism. SHCC samples with the same
mixture design can have varied tensile properties due to their hetero-
geneous nature (e.g., fiber dispersion and orientation, matrix micro-
structure, and variation of fiber/matrix interface properties).

This paper provides non-destructive in-situ 3D observation and
quantitative analysis provided by in-situ MSA at a microstructural scale.
3D pore structures (e.g., porosity, pore connectivity, and pore size dis-
tribution) and 3D fiber behavior (e.g., fiber bridging, fiber pull-out, fiber
fracture, fiber distribution, and fiber orientation) were characterized
and analyzed at different load stages for SHCC sample. Understanding
the mechanical responses and failure mechanisms from the micro-
structural scale can also contribute to the further development of SHCC.
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Table 1
Mixture proportion of SHCC (mass ratio).

Cement Fly ash Silica sand w/s PVA fiber (vol%)
1 1.2 0.8 0.2 2
Table 2
Fiber properties.

Fibers Diameter Length Strength Young’s modulus Elongation

PVA 39 pm 8 mm 1600 MPa 42.8 GPa 6%

Table 3

Chemical composition of OPC and FA.
Oxide (%) OPC FA
NayO 0.09 1.01
MgO 3.27 3.20
Al,03 4.56 20.48
SiOy 20.92 41.78
P,0s 0.07 0.96
SO3 2.62 1.66
K20 0.44 1.14
CaO 63.06 15.00
TiO, 0.22 1.14
Mn,03 0.03 0.00
Fey03 3.14 12.32
BaO 0 0.42
SrO 0.04 0.23
Sum 98.46 99.34

Also, this work shows that once microstructural data is obtained, it is
possible to reduce the variability of fiber behavior in SHCC, especially
when the composite undergoes cracking stages, and enhances the pre-
dictability of existing micromechanics-based models. In recent decades,
models have been developed to capture the strain capacity and average
crack width of SHCC [8-10], but the stochastic nature of the properties
of the matrix, fiber, and fiber/matrix interface is assumed based on
given probabilistic distributions due to the limited ability to access and
characterize the heterogeneous microstructure of SHCC under load [15].
For example, Li et al. [14] have shown that using a stochastic approach
by assigning random values of micromechanical parameters to each
section of SHCC can help reduce the variability of the composite’s tensile
behavior. However, it is difficult to capture the sequential nature of the
fiber behavior based on the pre-assumed distribution in probabilistic
approaches. Therefore, in-situ MSA can provide more precise and time-
dependent information on pore structure, fiber distribution, and fiber
orientation, enhancing the predictive ability of the existing
micromechanics-based model.
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Fig. 1. (a) Specimen details (mm); (b) specimen before in-situ uniaxial tension
test. (Image courtesy of Dr. Wilson Nguyen.)
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(b)

Fig. 2. (a) Global view of in-situ testing apparatus and load chamber installed on the rotation stage of uCT; (b) Interior view of load chamber, showing the tensile

specimen with ball and socket connection.

2. Experiments
2.1. Materials and specimen preparation

The SHCC specimens, with mixture proportions given in Table 1,
were prepared to analyze fiber behavior and mechanical properties
under uniaxial tension. The raw materials used to prepare the SHCC
matrix include ASTM C150 Type I/II ordinary Portland cement (OPC,
Argos), water, ASTM C618 Class F fly ash (FA, Monroe), and silica sand
with D50 of 150 pm. A high-range water reducing admixture (HRWRA,
BASF MasterGlenium 3030) was used. Polyvinyl alcohol (PVA) fibers
were also used to produce the SHCC, and Table 2 lists their mechanical
and geometric properties. The chemical compositions of OPC and FA are
given in Table 3, respectively. A 5-L countercurrent mixer (Hobart) was
used to mix the SHCC. The fresh SHCC was cast into a 3D-printed mold
with a tapered configuration (Fig. 1). The tapered configuration of the
SHCC specimen was selected to ensure that a cracked region would
develop within the specimen’s midheight (the microtomography’s field
of view) in the uniaxial tension test. A circular cross-section was used to
ensure a uniform rotational thickness about the specimen’s longitudinal
axis and, hence, high-quality microtomography images [40].

After curing for 24 h in the mold while covered with plastic sheeting,
the specimens were demolded and cured at 23 + 2 °C for 28 days before
testing. In this study, preliminary tension tests were performed on three
samples to assess the mechanical response of the SHCC mix. Another

2D SEM
images

Reconstructed Image ML .
CT images pre-processing segmentation
. (supervised)

sample was characterized in the in-situ uniaxial tensile tests to study the
in-situ microstructural evolutions during the tensioning process. Further
details on the sequence of loading and imaging are provided in the
Results and discussion section.

2.2. In-situ microtomography (uCT)

The in-situ synchrotron X-ray computed microtomography (pCT)
experiments were conducted at the Beamline 8.3.2 of the Advanced
Light Source (ALS), Lawrence Berkeley National Laboratory. A white
beam with a limited high-penetration X-ray frequency range was used.
The beam energy was set to 35 keV with a constant beam current of 500
mA, which is adequate for the penetration of the specimen. For each
scan, the specimen was rotated about an axis perpendicular to the hor-
izontal plane over 180° and 1969 2D projections were acquired on a
2560px CCD camera (PCO .edge sCMOS). The exposure time was set at
20 ms to achieve enough contrast.

To characterize the PVA fibers and micro-cracks while achieving an
adequate field of view (FOV), a 2x Mitutoyo magnification optical
objective lens with a FOV of 4 mm was used. The FOV is constrained by
the configuration of the load chamber and testing specimen simulta-
neously. The regions where the specimen was above the aluminum wall
of the light-transparent chamber (Fig. 2b) were not appropriately
imaged, limiting the tensile specimen’s design length and ROL. The pixel
resolution (voxel size) under these conditions was 3.2 pm.
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Fig. 3. A schematic diagram showing the stages of machine learning derived in-situ pCT segmentation and analysis.



K. Xu et al.

Reconstructed slices (tomograms) were computed using the filtered back
projection algorithm on Tomopy [41,42] at the ALS. After reconstruc-
tion, a tomogram of 1200 slices with 2560 x 2560 pixels was obtained
for each scan.

The uniaxial tensile loading of the SHCC specimen was done with an
existing testing apparatus and load chamber that accommodated the in-
situ pCT at ALS (Fig. 2) [23]. Before the experiment, the extremities of
the specimen were encased within stainless steel loading heads. The
brass spheres attached to the loading heads allowed the specimen to be
compatible with the testing apparatus ball and socket connection. Note
that this testing setup may produce mechanical slip between compo-
nents once the load is applied. Therefore, the initial non-linear response
of the strain-stress curves was adjusted. The stepper motor applied the
tensile load, while the displacement was measured by a linear variable
differential transformer (LVDT). The gauge length was 12 mm. The
controlled displacement rate in the uniaxial tension experiments was 1
pm/s.

2.3. Scanning electron microscope (SEM) analysis

To understand the fiber bridging behaviors in the SHCC under
loading conditions, the fractured cross-sections of the SHCC specimen
were studied using a scanning electron microscope (SEM) after the in-
situ tensile experiment. The fractured surface of the specimen was
gold sputtered. All SEM images were taken under backscattered mode
using a Zeiss EVO MA10 microscope. The accelerating voltage and the
beam current were 15 kV and 1 nA, respectively. The working distance
of the measurements was set to 13.5 - 15 mm.

3. Machine learning-derived image segmentation and
quantification analysis

A special data processing pipeline [23,27] (Fig. 3) was developed to
systematically investigate the fiber behavior and mechanical properties
of tensile SHCC specimens for the autonomous and accurate in-situ pCT
image analysis. This pipeline contains two parts: computer vision and
statistical analysis. In the computer vision analysis, preprocessed pCT
images were segmented into different phases using machine learning
(ML) algorithms. The use of edge-preserving filters, mathematical
morphology, and an assortment of supervised machine learning algo-
rithms improved the segmentation accuracy. The performances of
different ML models were also evaluated. Morphological and statistical
analysis was then performed on the in-situ 3D-segmented phase (fiber
and pore) images to analyze the time series fiber behavior, pore
network, and mechanical properties. The statistical data describing fiber
orientation and distribution were examined in the context of mechanical
performance using existing micro-mechanic modeling. In addition,
advanced digital volume correlation (DVC) algorithms were performed
on the preprocessed pCT images of the 00 (reference) scan and 01
(deformed) scan to calculate the 3D kinematic field (displacement and
strain field) before fracture. The 3D segmented microstructure and 3D
kinematic field were integrated to analyze the local failure mechanisms
of tensile SHCC specimens.

3.1. Preprocessing and visualization

Image preprocessing involves: a) transforming the slice images from
32-bit to 8-bit, b) removing the overlapped images between image stacks
(an overlap of 20 voxels was set during the tile mode scans) [43], c)
volume registration to preserve the same coordinate of 6 tomograms, d)
Extracting the sub-volumes of 2240 x 2240 x 1200 voxels from the
rotation center of the SHCC specimens to avoid edge effects and un-
necessary background, e) eliminating noise and ring artifacts from the
images through the 3D bilateral filtering [44] and 3D median filter with
a small radius of 1 voxel, f) improving the contrast with a saturated pixel
of 0.35, and e) slicing the 3D tomogram from left to right. All the above
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Fig. 4. Grayscale histogram of annotated voxels corresponding to fiber, pore,
and matrix.

procedures were performed using Fiji open-source image processing
[45]. After preprocessing, six 8-bit tiff tomograms were ready for
analysis.

For 3D rendering and visualization, Tomviz (an open-source appli-
cation for visualization of tomographic data) [46] was used to visualize
the reconstructed 3D pCT images, segmented 3D pCT images of different
phases, and 3D kinematic field from DVC. Dragonfly® analysis and
visualization software (Object Research Systems (ORS) Inc.) was used to
visualize the 3D fiber orientation and connectivity of pore networks
[23,47].

3.2. Machine learning-based segmentation

Pixel-based image segmentation is one of the most crucial steps for
the quantitative analysis of pCT. Traditional segmentation methods
utilize only a few features (i.e., grayscale), which limit the accuracy and
generalization capacity of the methods. As shown in Fig. 4, it is hard to
distinguish and classify the pixels from fibers and pores based only on
their grayscale.

In comparison, machine learning (ML) based 2D tomography seg-
mentation methods (supervised learning classifiers) have been shown to
be more robust, and have the advantage of automation and include
multi-features [48-50]. In this study, six supervised ML models were
built, trained, and evaluated based on the training and validation
dataset. The ML model that achieved the best performance (segmenta-
tion accuracy and efficiency) was used to segment the whole pre-
processed tomograms.

3.2.1. Dataset preparation

As the first step, manual annotations were conducted on every 200
slices to build the training and validation dataset to increase the vari-
ance and representativeness of the dataset because the adjacent slices
are likely to be more similar to each other. For each selected 2D image,
different regions (the most obvious objects corresponding to the target
phases) were annotated as the corresponding phases (classes). In the
manual annotations, three phases (classes) were separated from each
other in images of SHCC specimens: fiber, matrix, and pore. Note that
the pore phase contained voxels corresponding to voids, cracks, and
background during the annotation and training of ML models. Since the
image analysis was conducted on the entire SHCC specimen, the images
must include the background voxels during the segmentation due to the
specimen’s external curvature and circular cross-section. The back-
ground voxels were separated from the void and crack voxels before the
quantification analysis of the pore network. The manual annotation was
performed with Fiji [45]. After annotations, 820,377 voxels were
labeled, including 89,538 fiber voxels, 411,449 pore voxels, and
319,390 matrix voxels.

For feature engineering, grayscale, mean, median, minimum,
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Table 4
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Evaluation of ML models. (The scores here are weighted average scores of Fiber, Pore, and Matrix phases based on the validation set).

Model Precision Sensitivity F1 MCC ROC area Training time (s)
Naive Bayes 0.890 0.816 0.840 0.772 0.960 30
Bayes Net 0.909 0.872 0.885 0.832 0.975 683
ANN - multiplayer perceptron (MLP) 0.977 0.977 0.977 0.993 0.965 33,930
Random decision tree 0.954 0.954 0.954 0.929 0.965 42
Logistic model tree 0.938 0.939 0.938 0.903 0.987 3,188
Random forest 0.980 0.981 0.980 0.970 0.999 303

maximum, Gaussian blur, Hessian, Sobel filter, membrane projections,
bilateral filter, anisotropic diffusion, and difference of Gaussians were
selected as the image features for the training of ML classifiers consid-
ering both segmentation accuracy and computing time [51]. Multiple
2D filters/convolutions with the default parameter combinations cor-
responding to the selected feature were applied to the training images
for each selected feature. For instance, in feature engineering, multiple
individual filters/convolutions of Gaussian kernels with the default
sigma parameters were performed as the Gaussian blur features. The full
dimensionality of the input feature vector is 170 (listed in Table S1, SI),
which was the same for each image and model.

3.2.2. Model building and training

Six representative ML models were selected to classify the specimens:
Naive Bayes [52-54], BayesNet [55-57], multiplayer perceptron (MLP)
[58,59], decision tree [60,61], logistic model tree (LMT) [62,63], and
random forest [64,65], which were trained using the manual annota-
tions described in the previous section. Detailed information about each
model was listed in the Table S2, SI.

Categorical cross-entropy loss between annotation and segmentation
results was used as a loss function for model training. The stratified 10-
fold cross-validation was used during the training to reduce overfitting
and fit the imbalanced datasets. A two-stage strategy was also used for
hyperparameter tuning, comprising of (i) Building the basic structure;
and (ii) Optimizing parameter settings. During the optimizing stage, a
manual grid search was utilized for hyperparameter tunning of all six
models. Final hyperparameters for each model were also listed in the
Table S2, SI.

3.2.3. Model evaluation

After training, the performance of each ML model was evaluated by
comparing the annotation and predicted segmentation results of the
validation data. F; score (Dice similarity coefficient), Matthews corre-
lation coefficient (MCC), and receiver operating characteristic (ROC)
area were calculated for each model because the dataset is unbalanced
[66]. The F; score is the harmonic average of the precision and sensi-
tivity (recall), with a maximum score of 1 indicating perfect precision
and sensitivity and 0 as the worst [67]. MCC is used as a balanced
measure of the quality of classifications even if the classes are of
different size [68], which reflects the correlation between the prediction
and ground truth. A maximum score of 1 indicates perfect matching
between the segmented voxels and its ground-truth [69]. The ROC area,
also known as AUC (area under the ROC curve), is also used to evaluate
the segmentation method [70]. In addition, Precision, Sensitivity
(Recall), and time taken to build the model are used to evaluate the
segmentation models. The above evaluation metrics are defined as:

TP

Precision = ———— 3.1
TP + FP
TP
Sensitivity = ———— (3.2)
TP + FN
F = 2 X Precision x Recall 3.3)

Precision + Recall

TP x TN — FP x FN
MCC = - a (3.4)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN are defined per labeled voxel to represent the
number of true positive, true negative, false positive, and false negative
detections, respectively. A confusion matrix is used to derive all these
parameters.

Notice that feature engineering, model training, and evaluation were
performed with the Trainable Weka Segmentation plugin in Fiji and
Weka® machine learning libraries [45,50,71]. The tests for calculation
time were performed on Windows 10 Pro 64-bit Operating System, with
one six-core Intel Xeon processor, CPU (E5-2643, 3.40 GHz), and
installed memory (RAM) of 256 GB.

As a measure of segmentation performance, annotated voxels in the
validation dataset are correctly segmented and calculated the corre-
sponding precision, recall, F;, MCC, and ROC. Meanwhile, lesser time
taken to build the ML model represents greater efficiency.

The performances of different ML segmentation models are quanti-
tatively shown in Table 4. The random forest model and the MLP model
achieved the best performance related to segmentation accuracy, with
the weighted average scores of F1 exceeding 0.97, MCC exceeding 0.97,
and ROC exceeding 0.96. Compared with the random forest model, the
time taken to build the MLP model was orders of magnitude larger due to
the massive number of parameters needed in an artificial neural network
(ANN). Although the Weka training platform only provided training
time under the local CPU settings, the average classification time spend
for each image was 37.5 s for the selected random forest model based on
the segmentation of one tomogram. Considering the calculation effi-
ciency, a random forest model was selected to segment the whole pre-
processed in-situ tomograms.

Typical 2D segmentation results containing each of the three
respective phases are given in Fig. 5, and the confusion matrix that
highlights the accuracy in pixel classification results from the random
forest model is shown in Table 5. The fine-tuned random forest model
was utilized to segment the rest of the in-situ 3D images because high
accuracies were achieved in the segmentations of different phases. The
only small drawback is the sensitivity (89%) of the fiber phase, where
around 5% of fiber pixels were predicted as pore pixels, and another 5%
of fiber pixels were expected as matrix pixels.

3.3. Morphological and statistical analysis

3D morphological information of fiber objects and pore networks is
essential to understand how the microfiber bridging helps form SHCC
tensile ductility and crack width control and how the microfibers play a
role during the SHCC loading and deformation processes. 3D morpho-
logical and statistical analyses were conducted on segmented fiber and
pore phase images (binary images). More accurately, spatial distribu-
tions of fiber and pore, area distributions of fiber and pore along the Z-
axis (height), fiber orientation (Phi and Theta angle), and pore con-
nectivity were characterized based on 3D segmented images of the fiber
and pore phases.

The spatial distribution of a specific phase (class) was characterized
by three 2D density maps. A 3D segmented tomogram of the corre-
sponding phase was projected into three orthographic 2D planes (OXY,
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Fig. 5. (a) Reconstructed 2D pCT image; (b) Segmented image (green phase: matrix, red phase: pore, purple phase: fiber) of the random forest model. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Confusion matrix for the random forest model.
Phase Predicted label
Fiber Pore Matrix
Actual label Fiber 89.21% 5.28% 5.50%
Pore 0.41% 99.07% 0.52%
Matrix 0.40% 0.38% 99.22%

OYZ, and OXZ). The density value at each plane pixel is defined as the
number of voxels segmented as the corresponding phase divided by the
total number of voxels along the projection line. For the area distribu-
tion along the height, the cross-section areas of a specific phase along the
height (Z-axis) were calculated from 3D binary images of the corre-
sponding phase.

The fiber orientation and pore connectivity calculations are based on
individual fiber and pore objects. As the first step, voxel connectivity
analysis was performed based on a 6-connected voxel criterion, which
means that the voxels are connected to form the “cluster/object” when
the voxels share a familiar face. Note that the pore objects are usually
made of at least two voxels, while fiber objects should be composed of at
least 100 voxels (the diameter of PVA fiber is around ten voxel size).
Therefore, the calculated objects (clusters) were refined by removing the
connected components whose voxel count is smaller than the minimum
value. Then, the refined objects were used to characterize the fiber
orientation and pore connectivity.

To describe the morphology of fiber objects in 3D, each fiber’s
orientation (Phi and Theta angle) is defined as the orientation of the
longest axis, which corresponds to the shortest eigenvalue of the inertia
tensor of the 3D fiber object. As shown in Fig. 6, the value of Phi is the
angle from the X axis of the projection on the XZ plane of the orientation,
while the value of Theta is the angle from the X axis of the projection on
the XY plane of the orientation.

Pore connectivity (expressed in %) is defined as the number of void
voxels in the largest percolating pore object (cluster) divided by the total
number of voxels attributed to pores in the volume of interest (VOI)
[72,73]; it is a fraction of porosity, and equal to 100% when all the pores
in the system are percolating. The calculations of 3D fiber orientation

(05010) \~~‘~~

Fig. 6. Schematic representation of fiber orientation (Phi and Theta).

and pore connectivity were performed in Dragonfly®.

3.4. Digital volume correlation

Digital volume correlation (DVC) [74] is a powerful image process-
ing method to measure the 3D kinematical fields (displacement and
strain field) from the time series pCT images, especially the in-situ data
set. DVC techniques calculate the displacement field by minimizing the
correlation residuals (i.e., the sum of squared grayscale differences be-
tween the reference volume and the deformed volume corrected by the
calculated displacement field [75]) under the hypothesis of conservation
of the grayscale of the analyzed microstructure of images. Then, the
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strain fields can be calculated from the displacement fields, and the 3D
strain localization and local failure processes can be visualized and
quantified [74,76].

In this study, the preprocessed pCT tomogram (2240 x 2240 x 1200
voxels®) of 00 (reference) scan and 01 (deformed) scan was cropped to a
VOI (the cubic subvolume) of 1300 x 1300 x 1200 voxels®. The new
VOI consists only of a cubic core of the SHCC specimen, which reduces
the uncertainty and error inherent in the correlation residual caused by
the uncertainty of the background’s grayscale [77]. The regularized C8
element DVC algorithms (C8R) developed on Matlab by Bouterf [78,79]
were selected to conduct the DVC analysis for tensile SHCC tomograms.
The displacement fields were measured when discretized over a finite
element mesh made of 8-noded cubes (C8) [80]. Since the strains before
fracture were minor, a regularized approach was used [81,82]. For the
mesh generation, the element size, which is comparable to the zone of
interest (ZOI) size in classical Digital Image Correlation codes, was
optimized to be 20 x 20 x 20 voxels® to reduce the computational
complexity and uncertainty while still being able to capture complex
displacement field and strain localization [81,82]. The regularized
lengths were set to equal the element size so that the high-frequency
displacement fluctuations, which are not mechanically admissible, are
filtered out.

4. Fiber behavior associated micromechanics-based analysis for
mechanical properties of SHCC

The micromechanics-based analytic modeling allows for systematic
and practical tailoring of SHCC for high ductility and tensile strain
hardening behavior by controlling the mechanical features of the com-
posite matrix, the fiber, and the fiber/matrix interface. By deliberately
allowing cracks to grow from pre-existing flaws, SHCC/ECC exhibits a
high tensile ductility above 3%, 300 times that of regular concrete
[83,84]. The typical cracking pattern under uniaxial tension results in
many closely spaced microcracks of widths less than 100 pm [85,86].
The ductility of SHCC is the total sum of the distributed deformations
resulting from these diffuse microcracks. To attain the multiple cracking
responses in this controlled manner, SHCC must meet both strength and
energy criteria. Brief explanations of strength and energy criteria are
provided in Sections 4.1 and 4.2, respectively. The idealization of
strength and energy criteria provides a systematic design approach for
SHCC with desired tensile ductility, compressive strength, and work-
ability. Detailed information on these criteria can be found in Li 2019
[14].

4.1. Strength criterion

The strength criterion states that the cracking strength (o) required
to initiate a crack from a pre-existing flaw must be less than the bridging
capacity (op) of the fibers crossing that crack (Eq. (4.1)). The satisfaction
of the strength criterion ensures that there will not be a localized frac-
ture on this crack plane. Crack initiation starts at the largest flaw most
favorably oriented for fracture. Subsequently, the cracking progressively
works to the next largest flaws as the tensile load increases. With the rise
of tensile stress, more microcracks are gradually initiated.

6. < Min {0, (already formed multiple cracks) } 4.1)

Once a microcrack forms, the load is transferred by the bridging fi-
bers existing on the crack plane. The load carried by the bridging fibers
is characterized by a ¢(8) relationship. The fiber bridging capacity peak

Cement and Concrete Research 169 (2023) 107164

value is different from one crack plane to another due to the non-
uniform fiber distribution. If the strength criterion is violated on any
existing crack plane, the crack results in a localized fracture, and mul-
tiple cracking processes are terminated. A “crack” with a cracking
strength larger than the lowest bridging capacity of the existing crack
plane will never be activated.

4.2. Energy criterion

The energy criterion is based on steady-state flat cracking (perpen-
dicular to the applied load) so that SHCC can achieve multiple locations
of simultaneously active cracking. To ensure this crack propagation
mode, the crack tip toughness Ji;, must be less than the complementary
energy Jp'. The complementary energy can be calculated according to
the 6(8) relation as shown in Eq. (4.2). The crack tip toughness is the
energy equivalent of the matrix fracture toughness and is defined in Eq.
(4.3).

2
Jip < Godo— / o(8)ds = J, 4.2)
0
K}
In =g 4.3)

where o is the bridging capacity of the fibers corresponding to the
critical crack opening 8p; Ky, is the matrix fracture toughness; and E, is
Young’s modulus of the matrix. Eq. (4.2) employs the concepts of energy
balance among external work (6¢8¢), energy absorption through fiber/
matrix interface debonding and sliding (the integration term), and crack
tip energy absorption through matrix damage (Jiip). This energy crite-
rion determines whether the crack propagation mode is steady-state flat
cracking or Griffith cracking.

4.3. Improvement on information about fiber orientation and crack
opening

Based on the strength and energy criteria, a micromechanics-based
model has been developed to design an engineered cementitious com-
posite (Li 2019 [14]). The fiber orientation has been assumed in random
2D or 3D uniform distribution. However, as mentioned in Section 4.1,
the peak value in the strength criterion, the fiber bridging capacity is
different from one crack plane to another due to the non-uniform fiber
distribution. Therefore, this assumption could result in an under- or
over-estimation of the cracking strength due to the lack of direct
observation of fiber orientation in these strain-hardening cementitious
composites. As mentioned in Section 4.2, theoretically, the observed
crack opening should be smaller than the critical crack opening 8.
However, the actual crack opening is difficult to know without direct
observation. Although specific methods (e.g., measurement of residual
crack opening after unloading [87] or digital image correlation [88])
have been used, it is difficult to identify the crack opening under loading
conditions.

The goal is that the challenges mentioned above can be addressed
using the ML-based in-situ microtomography segmentation method
developed in this study. The fiber orientation and cracking opening are
measured considering the method described in Section 3. With the new
method, the assumed fiber orientation in the model can be replaced by
direct and more accurate measurements of in-situ fiber orientation; the
strength, such as peak value, could be more accurately estimated. Since
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Fig. 7. (a) Schematic fiber behaviors in SHCC with different embedment length and inclination angles; (b) Experimental fiber behavior around the crack plan in
SHCC at 02 scan from Fig. 9(c).
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Fig. 8. Uniaxial tensile test data and sample: (a) the c-¢ relationships of preliminary tension tests, (b) the c-¢ relationship of the in-situ tension test, (c) the specimen
during the in-situ tension test, and (d) the specimen after the in-situ tension test.
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(a) 00 scan

(c) 02 scan

(e) 04 scan
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b) 01 scan

Fig. 9. Selected 2D pCT slices acquired during the in-situ uniaxial tensile test corresponding to the scans shown in Fig. 8b.

the fiber bridging, stress-crack opening (sigma-delta) behavior is an
integration of the pull-out behavior of all individual fibers on the crack
plane, which is not only affected by the fiber properties and fiber/matrix
interactions but also the fiber content and fiber orientation. The
improved information on fiber orientation can help enhance the pre-
diction of the sigma-delta behavior of strain-hardening cementitious
composites. The model used in this study is based on the previously
developed model by Yang 2008 [15], where the information on fiber
orientation has been improved with the introduction of direct mea-
surements from the microtomography segmentation method. The direct
observation of crack opening could also be used to correlate the in-situ
crack opening under the loading condition. Expanding upon prior work,
Section 5.4 presented and discussed the preliminary results of the stress-
crack opening behaviors predicted by both the reference and improved
models. The reference model was based on the uniform distribution
assumption of fiber orientation. In contrast, this study observed the
enhanced model integrated with the in-situ fiber orientation
distribution.

Finally, the direct observation of the fiber behaviors in SHCC could
be used to verify the previously proposed illustration of randomly ori-
ented fibers relative to a crack plane (Fig. 7), where the fibers could
undergo debonding, sliding, complete pull-out, or fracture at a given
crack opening.

5. Results and discussion
5.1. Direct observation

Before the in-situ tests with pCT, preliminary mechanical tests were
performed to assess the mechanical response of the SHCC specimen and
estimate the load/displacement at which the displacement should be
held for pCT scanning for the subsequent in-situ experiments. As shown
in Fig. 8a, the SHCC specimens tested at 28 days displayed an ultimate
tensile strength of between 4 and 5 MPa with a high tensile strain ca-
pacity exceeding 7%. The stress-strain curve for in-situ uniaxial tensile
test is shown in Fig. 8b, where both the ultimate tensile strength and the
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Fig. 10. SEM images of a fractured cross-section of SHCC specimen after tensile test. Enlarged PVA fiber tips subjected to (a) fiber fracture corresponding to Fig. of,
and (b) fiber pullout corresponding to Fig. 9e. (Magnification at 2000 under Secondary Electron Mode); PVA fiber/matrix interface in the views of (c) holes with

protruding PVA fibers, and (d) matrix.

strain capacity were very similar to the values in the preliminary tests.
The mechanical displacement caused the high strain during earliest
portion of the small-scale in-situ uniaxial tensile test, and the data have
been adjusted to account for this initial nonlinear response caused by
slippage of testing components.

During the loading process, six pCT scans were made. The 00 scan
was conducted at the initial state, while the 01 scan was made once the
first stress drop was observed. Note that the stress drop at 01 scan could
result from either specimen stress relaxation in tension or micro-crack
propagation outside the FOV. The 02 scan was made once the first
crack was observed in the FOV. From scan 03 to scan 04, each scan was
conducted in sequence during the evolution of the crack network.
Finally, the 05 scan was made when the specimen was fractured in the
uniaxial tensile test. The large stress relaxations during the pCT scans
were inevitable because each high-resolution pCT scan took around 45
min and a constant controlled displacement was held during these
periods.

5.2. Qualitative analysis of reconstructed 2D uCT slices and
corresponding SEM images

The time series 2D slices (Fig. 9) of the same location from the cor-
responding pCT scans provide qualitative observations of major crack
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formation and fiber behavior during the uniaxial tensile loading. Just
after the formation of the first cracking network in the FOV, the crack
widths ranged from 30 pm to 150 pm, as shown in Fig. 9c. Meanwhile,
fiber deformation (as bending) developed around the cracks. Note that
the crack network had already propagated through the cross-section,
and fiber bridging is the primary toughening mechanism after the 02
scan. The crack width grew when the displacement increased from 02
scan to 03 scan. The bend angle of fibers raised, the bend radius of fibers
decreased, and the inclined angle between fiber and matrix increased.
From one side, snubbing at the fiber exit point increases the friction
against fiber pull-out, effectively raising the fiber bridging force. On the
other side, the above morphological changes represent damages to the
bent fibers, including micro-cracks (Figs. 9c and 10), and reduce their
strength, which effectively lower the fiber bridging force [89,90].
Therefore, as the displacement further increased, fiber pullout was
observed around 04, and a fiber shear fracture was observed in the 05
scan. Scans 02-05 also revealed matrix damage by a relatively large
spall involving a group of crack bridging fibers. As the crack opening
increased, the large spall broke into smaller pieces. In summary, with
increasing tensile loading, cracking propagation, fiber bending, fiber
fractured, fiber pull-out, and progressive matrix damage were observed
in sequence. This is the first time the complex evolving processes of
crack bridging fibers were observed in detail during strain-hardening in
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Fig. 11. The 3D rendering of reconstructed tomography (top) and segmented fiber phase (bottom) for ROI of the in-situ tested specimen corresponding to the scans

shown in Fig. 8.

SHCC/ECC.

The observations of 2D pCT images coincide with the observation
from the SEM results (Fig. 10) on the cross-section of a fractured SHCC
specimen, and the higher resolution and magnification of the SEM im-
ages of the post-fractured sample provide further information on the
damage mechanisms. Specifically, tapered fiber tips and adherent
cementitious matrix at the tip, as revealed in Fig. 10a and b, indicate
fiber fracture. The rest of the images suggested that PVA fibers are
subjected to surface abrasion when pulled out from the cementitious
matrix, providing a frictional bond at the fiber/matrix interface. PVA
leftover due to the strong bonding was also observed in Fig. 10c and d.
The existence of protruding fibers may reflect strong bonding and
fracture fibers but may also be associated with the short, embedded
length of the fiber pulled out during the crack opening process.

In summary, considering the 2D pCT and SEM images, it is observed
that with increasing tensile loading, cracking propagation and branch-
ing, fiber bending, fiber surface damage and fracture, and fiber pull-out
were observed in sequence. Changes in the fiber morphology play an
essential role in the toughness mechanism in SHCC.

5.3. ML-based uCT segmentation results

The 3D rendering of selected preprocessed tomograms and
segmented fiber phase from the selected pCT scans are presented in
Fig. 11. The response is typical of an SHCC specimen under uniaxially
tension loading. At the beginning of the loading (before the 02 scan), the
SHCC matrix resisted most of the tensile force. After introducing cracks,
the tensile force at the cracking cross section was resisted by the fibers
that bridged the top and bottom surfaces. Therefore, the fibers around
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the cracking were stretched vertically (along the Z-axis) around the
crack network. Just before failure (05 scan), nearly all the fibers in the
elongate crack opening zone were distributed vertically. In the following
section, the quantitative and statistical analysis of the fiber morphology
will explain the observations of fiber behavior and resistance mecha-
nism in the in-situ pCT images (Figs. 9 and 11).

5.4. Fiber orientation and spatial distribution

To make an in-depth study on the fiber behavior during the uniaxial
tensile test and provide data for micromechanics-based analytic
modeling, the 3D orientation for each fiber object was calculated
(Fig. 12). As stated in Section 3.3, the Phi angle is equal to the rotation of
the X-Y plane towards the Z-axis and the Theta angle is equal to the
rotation of the X-axis towards the Y-axis. For the necking region, an
increase of strain was expected as more fibers are oriented vertically
(around a 90-degree Phi angle, labeled by green color) with the evolu-
tion of the cracking network. This means fibers took an increasing per-
centage of uniaxial tensile loading in the necking region. For the fibers
within the top and bottom uncracked SHCC matrix, there are no
noticeable orientation changes for the Phi angle. In the top and bottom
uncracked regions, multiple connected fibers were incorrectly labeled as
blue (0-degree Phi angle) or red (180-degree Phi angle) because these
connected fibers were incorrectly recognized as one fiber object due to
the limitation of the 6-connected voxel criterion. The longest axis of
these connected fiber objects is oriented horizontally (0/180-degree Phi
angle). Improving the accuracy of voxel connectivity analysis with more
advanced criteria is important, but it is beyond the scope of this paper.

For the Theta angle, it is hard to make a solid conclusion only based
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Fig. 12. The 3D rendering of fiber orientation for Phi angle (top) and Theta angle (bottom) for ROI of the in-situ tested specimen corresponding to the scans shown
in Fig. 8.
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Table 6

Comparing stress-crack opening results from the experiment, improved model in
Section 4.3, and reference model based on statistics of fiber morphology.

Experiment result

Improved model based
on fiber’s orientation
from image analysis

Reference model based
on uniform
distribution of fiber’s

orientation
Scan  Stress Crack Stress Crack Stress Crack
(MPa) opening (MPa) opening (MPa) opening
(um) (um) (um)
02 375 143 + 20 3.78 140 3.06 138
03 3.80 326 + 37 3.82 150

on visual observation. Therefore, further statistical analysis on the fiber
orientation was conducted. To avoid the incorrect orientation angles of
the connected fiber objects, the fiber objects with more than 5 x 10°
voxels (considering the maximum volume of a single fiber) were ignored
during the calculation of the fiber orientation distribution histogram
from the results of Fig. 13.

The fiber orientation distribution histograms for each scan were
calculated (Fig. 13), which are utilized in the fiber behavior analysis and
the associated micromechanics-based analysis for the mechanical
properties of SHCC. For the initial (00 scan) phi angle, the fibers show a
predominant orientation of phi angle ranging from 70° to 110°, which is
a result of the casting technique of the small specimens, as also described
in other works [25,26]. For the time series distribution of phi angle, the
percentage of phi angle ranging from 80° to 100° increased, the per-
centage of phi angle at 70° and 100° kept similar; and the others
decreased. For theta angle, the percentage of theta angle below 30° and
above 150° decreased, while others increased. The distribution of theta
degree tended to be homogeneous. Besides, all the major changes mainly
happened around the 02 step when the major crack network propagated.

Fig. 14 shows the relationship between fiber orientation and tensile
strain. A crucial finding is that when the strain increases from 8% to 12%
(from 04 scan to 05 scan), the volume fraction of vertically oriented fiber
(phi angle ranging 60°-120°) decreases at high tensile strain and stress
values. The above results indicate pull-out and fracture of the vertically
stretched fibers between the 04 scan and 05 scan, which caused the
reduction of the uniaxial tensile strength of the specimen to decrease
(Fig. 8) and the failure of the testing specimen.

Cement and Concrete Research 169 (2023) 107164
5.5. Mechanical properties based on micromechanics and image analysis

The fiber spatial distribution is also an important index for the
quality of SHCC specimen and micromechanics-based analysis. As
shown in Fig. 15, the 2D projected fiber density maps from three axes
were calculated. The results show a homogeneous spatial distribution of
fibers in three directions. In the following micromechanics-based anal-
ysis, a homogeneous distribution of fibers along the height of the spec-
imen was assumed.

Table 6 compares stress-crack opening results among the in-situ
experiment, the micromechanics-based predication improved by the
measured orientation of fibers, and the original micromechanics-based
prediction using the uniform distribution assumption for fiber’s orien-
tation. 02 scan and 03 scan were selected because the first crack in FOV
was observed at the 02 scan, and the specimen almost failed after the 03
scan. For experimental result, the corresponding stress values were
calculated from Fig. 8. The crack opening in the in-situ experiment was
measured by mean and standard deviation at four distributed locations
along the crack plane in Fig. 9. For reference model prediction, an
assumption of uniform distribution for fiber’s orientation was applied
[14]. For improved model prediction, the calculated stress and predicted
crack opening were calculated using micromechanics-base modeling, as
stated in Section 4.

As shown in Table 6, the improved model integrated with the in-situ
fiber orientation provided dynamic prediction results and accurately
predicted stress-crack opening at the 02 scan when the first crack in FOV
was observed. Compared to the experimental results, the stress values
are the same. The calculated crack opening of the improved model was
within one standard deviation from the mean value of the actual
(experimental) crack opening. In comparison, the reference model only
provided a static prediction for the stress-crack opening because of the
uniform distribution assumption of the fiber’s orientation. The predicted
strength was lower than the experimental results, which implies that
previous research underestimated the strength and provided a high
safety factor for the structural design. For the calculated crack opening,
no significant difference was observed between the improved model and
reference model because the fiber’s orientation coupled with other
factors in calculating the crack opening. At the 03 scan, the computed
crack opening of the improved model was below the range of three
standard deviations from the actual crack opening because of the further
expansion of the single crack opening within the FOV. The number of
micro-crack openings in the testing specimen was limited (only three)
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Fig. 16. Area distributions of fiber and pore along the specimen’s Z-axis (the tensile loading direction). The area was normalized using the mid-height cross-section
area of the specimen as the area fraction (The VOIs in Figs. 16 and 17 are the cubic subvolumes with a size of 1300 x 1300 x 1200 voxels® at the center of FOV

in Fig. 11).
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Fig. 17. The 2D projected pore density of segmented pore phase at 00 scan and 02 scan. The red rectangles highlight the 2D regions where the localizations of pores
happened. The VOIs in Figs. 16 and 17 are the cubic subvolumes with a size of 1300 x 1300 x 1200 voxels® at the center of FOV in Fig. 11. (For interpretation of the
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due to the short gauge length (12 mm) of the specimen, which is beyond
the hypothesis (e.g., steady-state flat cracking) for the micromechanics-
based analytic modeling in Section 4. Therefore, the micromechanics-
based model integrated with fiber orientation’s distribution achieved
accurate in-situ calculation results for the fiber bridging stress-crack
opening (sigma-delta) behavior for the steady-state flat cracking. The
model can be further improved by integrating the ratios of fibers that
undergo debonding, sliding out, completely pulled out, or fractured at a
given crack opening.

5.6. Failure mechanism analysis based on fiber distribution and
microstructural properties

Fig. 16 presents the evolution of the area distributions along the
tensile loading direction for both fiber and pore phases. At the initial
state (00 scan), the largest pore area fraction (the blue peak) was
observed at the height of around 3.2 mm, and the smallest fiber area
fraction (the black valley) was observed at the height of about 0.9 mm.
From the 00 scan to the 02 scan, the height of the blue peak increased by
0.3 mm while the height of the black valley increased by 0.6 mm at the
same time. Thus, the tensile displacement fields of the pore phase and
fiber phase in this SHCC specimen were different if the cross-section of
the largest pore area fraction and the cross-section of the smallest fiber
area fraction were utilized as the referenced planes. Moreover, as shown
in the 02 scan of Fig. 16, instead of initiating and propagating at the
height with the smallest fiber area fraction or largest pore area fraction,
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the major cracking propagated at the height between the peak of the
pore area fraction and the valley of the fiber area fraction (at the height
around 2-3 mm). Fig. 17 gathers the 2D maps for projected pore density
of segmented pore phase at 00 scan and 02 scan. The major cracking in
the 02-scan propagated through the regions where pore networks
localized at the initial state (00 scan).

Fig. 18 shows the 3D renderings of pore connectivity from the initial
state (00 scan) to the cracked state (02 scan) and strain field just before
cracking (01 scan) to describe the complex pore structures and hetero-
geneous strain fields under uniaxial tension. Comparing Fig. 18 (a) and
(b), almost no change in the pore microstructure has been observed
between the initial specimen and the specimen before cracking. Only in
some weak points/regions (large connective pores) of the testing spec-
imen did the displacement incompatibilities under uniaxial tension led
to stress concentrations, resulting in local strain localization before
cracking. The presence of pores inside the microstructure causes stress
concentrations in the areas surrounding the pores under vertical uni-
axial tension. The strain localizations (Fig. 18(c)) are thus observed
around the connected pores with volume exceeding 0.01 mm® (pore
objects mapped as green, yellow, and red in Fig. 18(a)), even though no
damage is visible in both the 2D pCT slices (Fig. 9) and segmented pore
phase (Fig. 18(b)). When the load increased, the cracking network
(Fig. 18(c)) propagated through the identified regions of localized
strains. Thus, Fig. 18 indicates that the regions with strain localizations
around the connected pore led to the development of the cracking
network in the SHCC specimen under the uniaxial tensile experiment.
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Fig. 18. The 3D rendering of (a) connected pore network in the order of increasing volume at 00 scan (initial state), (b) connected pore network in the order of
increasing volume at 01 scan (before cracking), (c) major principal strain eeq field at 01 scan (before cracking), (d) connected objects for pore phase in the order of

increasing volume at 02 scan (after cracking).
6. Conclusions and future directions

This research work investigated the microstructure evolutions of
strain-hardening cementitious composites (SHCC) under the in-situ
uniaxial tensile test. A state-of-the-art machine learning-derived pipe-
line for automated pCT image processing and analysis was developed to
investigate SHCC’s microstructure systematically. The random forest
model achieved high performances in segmentation accuracy tasks and
efficient calculation in processing the 3D tomograms. The in-situ evo-
lution of segmented microstructures of SHCC during tensile loading,
especially the strain-hardening process, was directly observed, quanti-
fied, and analyzed for the first time. In the in-situ microtomography
segmentation analysis (MSA), the advanced algorithms and prototype
software quantified the structure, distribution, orientation, and con-
nectivity of the pores, cracks, and fibers in SHCC based on the pCT im-
ages. The quantified information and model were then used to develop
more realistic micromechanics-based models for the fracture or dura-
bility of SHCC structures. At the same time, rigorous mathematical
analysis of the strain and stress fields was performed using a digital
volume correlation (DVC) method to provide a broader perspective
about crack initiation and propagation from experimental mechanics.

The experimental results show that fibers reinforced the fracture
planes in the SHCC through fiber debonding, bridging, bending,
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stretching, pulling out, and fracturing in the tension zones during the in-
situ test. The in-situ fiber behavior and pore evolutions contributed to
understanding ductility and toughness in SHCC. For pore phase analysis,
the major cracking propagated through the regions where pore networks
localized at the initial state during the tensile test. The regions with
strain localizations around the connected pore led to the development of
the cracking network. Based on the in-situ analysis of pore size distri-
bution, filling the pores within a specific size range using micro-scale
fine aggregate may further improve the cracking strength of the spec-
imen. For fiber behavior analysis, a homogeneous spatial distribution of
fibers can be observed in three directions. However, the orientation
distributions showed inhomogeneity due to the layer-by-layer casting
method. During the in-situ tests, fibers in the tensile zones were sub-
jected to surface abrasion when pulled out from the cementitious matrix,
which provides a frictional bond at the fiber/matrix interface. The
changes in fiber orientations in the Phi and Theta angles contributed to
the diffusion of multiple microcracks and crack width control. The
micromechanics-based analytic modeling was improved by using the
dynamic information of the fiber behavior (e.g., in-situ distribution of
fiber orientation in this research) in SHCC. Statistical information on the
fiber distribution and the fiber orientation extracted from the in-situ pCT
reduced the variability of fiber behaviors in SHCC, especially when the
composite undergoes cracking stages, and enhanced the predictability of
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existing micromechanics-based models. Accurate calculation results for
the fiber bridging stress-crack opening (sigma-delta) behavior when the
first major crack was observed in SHCC. For local analysis on microscale
ROI, the strain localization was observed around the connected pores
with a volume exceeding 0.01 mm?® and multi-cracks propagated
through these regions during the uniaxial tensile test.

For future directions, this work built a machine learning-based
microtomography image characterization pipeline for cementitious
materials under load. Improvements can be made in the following fields:

e Improve the ML-based segmentation: the recently advanced DNN

models (e.g., U-Net model [26,33,34], visual transformer (ViT)

model) accelerated by the GPU and distributed computation have
improved performance in both accuracy and efficiency significantly.

Improve the accuracy of 3D kinematical fields (displacement and

strain) by using the 3D segmented phase (e.g., aggregates) to

calculate the kinematical fields [91].

Introduce volumetric distribution and morphologies (e.g., length of

each fiber) of segmented phases into the micromechanics-based

modeling of cementitious materials with multiple phases (e.g.,

SHCC, steel reinforced concrete).

e Apply the same pipeline to characterize the multi-crack propagation
in the ECC material.

o Apply the same pipeline to characterize the pore network (e.g., pore
size distribution, pore connectivity) to understand the durability and
transport properties of cementitious materials under environmental
exposure.

In summary, in-situ synchrotron X-ray microtomography with
loading provides the state-of-the-art characterization for the various
micro-scale information of material and composition in concrete. Ma-
chine learning-derived segmentation analysis is a step forward in the
quantitative understanding of each phase in the time series 3D micro-
tomography images.
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