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Abstract

Despite its importance for federated learning, continu-
ous learning and many other applications, on-device train-
ing remains an open problem for EdgeAI. The problem
stems from the large number of operations (e.g., floating
point multiplications and additions) and memory consump-
tion required during training by the back-propagation al-
gorithm. Consequently, in this paper, we propose a new
gradient filtering approach which enables on-device CNN
model training. More precisely, our approach creates a
special structure with fewer unique elements in the gradi-
ent map, thus significantly reducing the computational com-
plexity and memory consumption of back propagation dur-
ing training. Extensive experiments on image classification
and semantic segmentation with multiple CNN models (e.g.,
MobileNet, DeepLabV3, UPerNet) and devices (e.g., Rasp-
berry Pi and Jetson Nano) demonstrate the effectiveness
and wide applicability of our approach. For example, com-
pared to SOTA, we achieve up to 19× speedup and 77.1%
memory savings on ImageNet classification with only 0.1%
accuracy loss. Finally, our method is easy to implement and
deploy; over 20× speedup and 90% energy savings have
been observed compared to highly optimized baselines in
MKLDNN and CUDNN on NVIDIA Jetson Nano. Conse-
quently, our approach opens up a new direction of research
with a huge potential for on-device training.1

1. Introduction

Existing approaches for on-device training are neither
efficient nor practical enough to satisfy the resource con-
straints of edge devices (Figure 1). This is because these
methods do not properly address a fundamental problem in
on-device training, namely the computational and memory
complexity of the back-propagation (BP) algorithm. More
precisely, although the architecture modification [6] and
layer freezing [18, 20] can help skipping the BP for some
layers, for other layers, the complexity remains high. Gra-

1Code: https://github.com/SLDGroup/GradientFilter-CVPR23

dient quantization [4, 7] can reduce the cost of arithmetic
operations but cannot reduce the number of operations (e.g.,
multiplications); thus, the speedup in training remains lim-
ited. Moreover, gradient quantization is not supported
by existing deep-learning frameworks (e.g., CUDNN [9],
MKLDNN [1], PyTorch [25] and Tensorflow [2]). To en-
able on-device training, there are two important questions
must be addressed:

• How can we reduce the computational complexity of
back propagation through the convolution layers?

• How can we reduce the data required by the gradient
computation during back propagation?

In this paper, we propose gradient filtering, a new research
direction, to address both questions. By addressing the first
question, we reduce the computational complexity of train-
ing; by addressing the second question, we reduce the mem-
ory consumption.

In general, the gradient propagation through a convolu-
tion layer involves multiplying the gradient of the output
variable with a Jacobian matrix constructed with data from
either the input feature map or the convolution kernel. We
aim at simplifying this process with the new gradient filter-
ing approach proposed in Section 3. Intuitively, if the gradi-
ent map w.r.t. the output has the same value for all entries,
then the computation-intensive matrix multiplication can be
greatly simplified, and the data required to construct the Ja-
cobian matrix can be significantly reduced. Thus, our gra-
dient filtering can approximate the gradient w.r.t. the output
by creating a new gradient map with a special (i.e., spatial)
structure and fewer unique elements. By doing so, the gra-
dient propagation through the convolution layers reduces to
cheaper operations, while the data required (hence memory)
for the forward propagation also lessens. Through this fil-
tering process, we trade off the gradient precision against
the computation complexity during BP. We note that gradi-
ent filtering does not necessarily lead to a worse precision,
i.e., models sometimes perform better with filtered gradi-
ents when compared against models trained with vanilla BP.

In summary, our contributions are as follows:

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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• We propose gradient filtering, which reduces the com-
putation and memory required for BP by more than
two orders of magnitude compared to the exact gradi-
ent calculation.

• We provide a rigorous error analysis which shows that
the errors introduced by the gradient filtering have only
a limited influence on model accuracy.

• Our experiments with multiple CNN models and com-
puter vision tasks show that we can train a neural net-
work with significantly less computation and memory
costs, with only a marginal accuracy loss compared to
baseline methods. Side-by-side comparisons against
other training acceleration techniques also suggest the
effectiveness of our method.

• Our method is easy to deploy with highly optimized
deep learning frameworks (e.g., MKLDNN [1] and
CUDNN [9]). Evaluations on resource-constrained
edge (Raspberry Pi and Jetson Nano) and high-
performance devices (CPU/GPU) show that our
method is highly suitable for real life deployment.

The paper is organized as follows. Section 2 reviews rel-
evant work. Section 3 presents our method in detail. Sec-
tion 4 discusses error analysis, computation and memory
consumption. Experimental results are presented in Section
5. Finally, Section 6 summarizes our main contributions.

2. Related Work
Architecture Modification: Authors of [6] propose to at-
tach small branches to the original neural network. Dur-
ing training, the attached branches and biases in the orig-
inal model are updated. Though memory consumption is
reduced, updating these branches still needs gradient prop-
agation through the entire network; moreover, a large com-
putational overhead for inference is introduced.
Layer Freezing: Authors of [18, 20] propose to only train
parts of the model. [18] makes layer selection based on layer
importance metrics, while [20] uses evolutionary search.
However, the layers selected by all these methods are typ-
ically computationally heavy layers (e.g., the last few lay-
ers in ResNet [14]) which consume most of the resources.
Thus, the speedup achieved by these approaches is limited.
Gradient Quantization: [3,5] quantize gradient after back-
propagation, which means these methods cannot accelerate
the training on a single device. Work in [4, 7, 15, 17, 28,
29, 33] accelerates training by reducing the cost for every
arithmetic operation. However, these methods do not re-
duce the number of operations, which is typically huge for
SOTA CNNs, so their achievable speedup is limited. Also,
all these methods are not supported by the popular deep
learning frameworks [1, 2, 9, 25].

Arch. Modification
Example: [6]

Drawbacks:
Large overhead

Limited to specific model

Layer/Channel Freezing
Example: [18, 20]
Drawbacks:

High search cost
Limited to simple models

Gradient Quantization
Example: [4, 7, 17]
Drawbacks:

Not supported by 
existing DL frameworks

Gradient Filtering [Ours]
Advantages:

Very fast and accurate
Well supported by 

existing DL frameworks
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Orthogonal Research Directions for On-device Training

Figure 1. Matrix of orthogonal directions for on-device training.
“Arch” is short for “architecture”. Our approach opens up a new
direction of research for on-device training for EdgeAI.

In contrast to the prior work, our method opens up a new
research direction. More precisely, we reduce the number of
computations and memory consumption required for train-
ing a single layer via gradient filtering. Thus, our method
can be combined with any of the methods mentioned above.
For example, in Section H in the Supplementary, we illus-
trate how our method can work together with the gradient
quantization methods to enable a higher speedup.

3. Proposed Method

In this section, we introduce our gradient filtering ap-
proach to accelerate BP. To this end, we target the most
computation and memory heavy operation, i.e., convolution
(Figure 2(a)). Table 1 lists some symbols we use.

Cx Number of channels of x
Wx, Hx Width and height of x

θ Convolution kernel
θ′ Rotated θ, i.e., θ′ = rot180(θ)
r Patch size (r × r )

gx, gy, gθ Gradients w.r.t. x, y, θ
g̃y Approximated gradient gy

x̃, θ̃′
Sum of x and θ′ over

spatial dimensions (height and width)

x[n, ci, h, w]
Element for feature map x

at batch n, channel ci, pixel (h,w)

θ[co, ci, u, v]
Element for convolution kernel θ

at output channel co, input channel ci,
position (u, v)

Table 1. Table of symbols we use.
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Figure 2. (a) Computation procedures for vanilla training method (upper) and our method (lower). (b) Example of gradient propagation
with gradient filtering. Numbers in this example are chosen randomly for illustration purposes. In this case, the patch size selected for the
gradient filter is 2 × 2. Thus, the 4 × 4 gradient map gy is approximated by g̃y , which has four 2 × 2 patches with one unique value for
each patch. Also, input feature map x and mirrored convolution kernel θ′ are spatial summed to x̃ and θ̃′. Since x̃ has fewer unique values
than x, memory consumption is reduced. Finally, with g̃y, x̃ and θ̃, we compute the gradient w.r.t. kernel and input feature map with much
fewer operations than the standard back propagation method.

3.1. Problem Setup

The computations for both forward and backward paths
are shown in Figure 2(a). For the standard (vanilla) ap-
proach (upper Figure 2(a)), starting with input x, the for-
ward propagation convolves the input feature map x with
kernel θ and returns output y, which is further processed
by the other layers in the neural network (dotted arrow) un-
til the loss value l is calculated. As shown in Figure 2(a),
the BP of the convolution layer starts with the gradient map
w.r.t. output y (gy). The gradient w.r.t. input (gx) is calcu-
lated by convolving gy with the rotated convolution kernel
θ′, i.e., gx = gy ⊛ rot180(θ) = gy ⊛ θ′. The gradient w.r.t.
convolution kernel, namely gθ, is calculated with the Frobe-
nius inner product [16] between x and gy , i.e., gθ = gy F x.

The lower half of Figure 2(a) shows our method, where
several changes are made: We introduce the gradient filter
“ A ” after gy to generate the approximate gradient for BP.
Also, instead of using the accurate x and θ′ values for gra-
dient computation, we sum over spatial dimensions (height
and width dimensions), i.e., x̃ and θ̃′, respectively. Finally,
the convolution layer now multiplies the approximate gra-
dient g̃y with spatial kernel θ̃′ instead of convolving with it
to calculate g̃x. Figure 2(b) shows an example of gradient
propagation with our gradient filter.

3.2. Preliminary Analysis

Consider the vanilla BP for convolution in Figure 2(a).
Equation (1) shows the number of computations (#FLOPs)
required to calculate gx given gy:

#FLOPs = 2CxCy ·WyHy ·WθHθ (1)

The computation requirements in Equation (1) belong to
three categories: number of channels, number of unique el-
ements per channel in the gradient map, and kernel size. Our
method focuses on the last two categories.

i. Unique elements: (WyHy) represents the number of
unique elements per channel in the gradient w.r.t. output
variable y (gy). Given the high-resolution images we use,
this term is huge, so if we manage to reduce the number
of unique elements in the spatial dimensions (height and
width), the computations required are greatly reduced too.

ii. Kernel size: (WθHθ) represents the number of
unique elements in the convolution kernel. If the gradient gy
has some special structure, for example gy = 1Hy×Wy

· v
(i.e., every element in gy has the same value v), then the
convolution can be simplified to (

∑
θ′)v1Hy×Wy (with

boundary elements ignored). With such a special structure,
only one multiplication and (WθHθ − 1) additions are re-
quired. Moreover,

∑
θ′ is independent of data so the result

can be shared across multiple images until θ gets updated.

3.3. Gradient Filtering

To reduce the number of unique elements and create the
special structure in the gradient map, we apply the gradi-
ent filter after the gradient w.r.t. output (gy) is provided.
During the backward propagation, the gradient filter A ap-
proximates the gradient gy by spatially cutting the gradient
map into r×r-pixel patches and then replacing all elements
in each patch with their average value (Figure 2(b)):

g̃y[n, co, h, w] =
1

r2

⌈h/r⌉r∑
i=⌊h/r⌋r

⌈w/r⌉r∑
j=⌊w/r⌋r

gy[n, co, i, j] (2)
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For instance in Figure 2(b), we replace the 16 distinct values
in the gradient map gy with 4 average values in g̃y . So given
a gradient map gy with N images per batch, C channels,
and H × W pixels per channel, the gradient filter returns
a structured approximation of the gradient map containing
only N × C × ⌈H

r ⌉ × ⌈W
r ⌉ blocks, with one unique value

per patch. We use this matrix of unique values to represent
the approximate gradient map g̃y , as shown in Figure 2(b).

3.4. Back Propagation with Gradient Filtering

We describe now the computation procedure used after
applying the gradient filter. Detailed derivations are pro-
vided in Supplementary Section B.
Gradient w.r.t. input: The gradient w.r.t. input is cal-
culated by convolving θ′ with gy (Figure 2(a)). With the
approximate gradient g̃y , this convolution simplifies to:

g̃x[n, ci, h, w] =
∑
co

g̃y[n, co, h, w]⊙ θ̃′[co, ci] (3)

where θ̃′[co, ci] =
∑

u,v θ
′[co, ci, u, v] is the spatial sum of

convolution kernel θ, as shown in Figure 2(b).
Gradient w.r.t. kernel: The gradient w.r.t. the kernel is
calculated by taking the Frobenius inner product between x
and gy , i.e., gθ[co, ci, u, v] = x F gy , namely:

gθ[co, ci, u, v] =
∑
n,i,j

x[n, ci, i+u, j+v]gy[n, co, i, j] (4)

With the approximate gradient g̃y , the operation can be sim-
plified to:

g̃θ[co, ci, u, v] =
∑
n,i,j

x̃[n, ci, i, j]g̃y[n, co, i, j] (5)

with x̃[n, ci, i, j] =
∑⌈i/r⌉r

h=⌊i/r⌋r
∑⌈j/r⌉r

w=⌊j/r⌋r x[n, ci, h, w].
As shown in Figure 2(b), x̃[n, ci, i, j] is the spatial sum of
x elements in the same patch containing pixel (i, j).

4. Analyses of Proposed Approach
In this section, we analyze our method from three per-

spectives: gradient filtering approximation error, computa-
tion reduction, and memory cost reduction.

4.1. Error Analysis of Gradient Filtering

We prove that the approximation error introduced by our
gradient filtering is bounded during the gradient propaga-
tion. Without losing generality, we consider that all vari-
ables have only one channel, i.e., Cx0 = Cx1 = 1.
Proposition 1: For any input-output channel pair (co, ci)
in the convolution kernel θ, assuming the DC component
has the largest energy value compared to all components in

the spectrum2, then the signal-to-noise-ratio (SNR) of g̃x is
greater than SNR of g̃y .
Proof: We use Gx, Gy and Θ to denote the gradients
gx, gy and the convolution kernel θ in the frequency domain;
Gx[u, v] is the spectrum value at frequency (u, v) and δ is
the 2D discrete Dirichlet function. To simplify the discus-
sion, we consider only one patch of size r × r.

The gradient returned by the gradient filtering can be
written as:

g̃y =
1

r2
1r×r ⊛ gy (6)

where ⊛ denotes convolution. By applying the discrete
Fourier transformation, Equation (6) can be rewritten in the
frequency domain as:

G̃y[u, v] =
1

r2
δ[u, v]Gy[u, v] (7)

g̃y is the approximation of gy (i.e., the ground truth for g̃y
is gy), and the SNR of g̃y equals to:

SNRg̃y =

∑
(u,v) G

2
y[u, v]∑

(u,v)(Gy[u, v]− 1
r2 δ[u, v]Gy[u, v])2

= (1− 2r2 − 1

r4
G2

y[0, 0]∑
(u,v) G

2
y[u, v]

)−1

(8)

For the convolution layer, the gradient w.r.t. the approxi-
mate variable x̃ in the frequency domain is3:

G̃x[u, v] = Θ[−u,−v]G̃y[u, v]

=
1

r2
Θ[−u,−v]δ[u, v]Gy[u, v]

(9)

and its ground truth is:

Gx[u, v] = Θ[−u,−v]Gy[u, v] (10)

Similar to Equation (8), the SNR of gx̃ is:

SNRg̃x = (1− 2r2 − 1

r4
(Θ[0, 0]Gy[0, 0])

2∑
(u,v) (Θ[u, v]Gy[u, v])2

)−1

(11)
Equation (11) can be rewritten as:

r4(1− SNR−1
g̃x

)

2r2 − 1
=

(Θ[0, 0]Gy[0, 0])
2∑

(u,v)(Θ[−u,−v]Gy[u, v])2

=
G2

y[0, 0]∑
(u,v)(

Θ[−u,−v]
Θ[0,0] Gy[u, v])2

(12)

Furthermore, the main assumption (i.e., the DC component
dominates the frequency spectrum of Θ) can be written as:

Θ2[0, 0]/max(u,v)̸=(0,0)Θ
2[u, v] ≥ 1 (13)

2As a reminder, the energy of a signal is the sum of energy of the DC
component and the energy of its AC components.

3Because gy is convolved with the rotated kernel θ′, in the frequency
domain, we use Θ[−u,−v] instead of Θ[u, v].
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Figure 3. Computation analysis for a specific convolution layer4.
Minimum achievable computation is given in Equation (16). By
reducing the number of unique elements, computations required
by our approach drop to about 1/r2 compared with the standard
BP method. By combining it with structured gradient map, com-
putations required by our approach drop further, getting very close
to the theoretical limit.

that is, ∀(u, v), Θ2[−u,−v]
Θ2[0,0] ≤ 1; thus, by combining Equa-

tion (12) and Equation (13), we have:

G2
y[0, 0]∑

(u,v)(
Θ[−u,−v]
Θ[0,0] Gy[u, v])2

≥
G2

y[0, 0]∑
(u,v)(Gy[u, v])2

⇔
r4(1− SNR−1

g̃x
)

2r2 − 1
≥

r4(1− SNR−1
g̃y

)

2r2 − 1

(14)

which means that: SNRg̃x ≥ SNRg̃y . This completes our
proof for error analysis. ■

In conclusion, as the gradient propagates through the net-
work, the noise introduced by our gradient filter becomes
weaker compared to the real gradient signal. This property
ensures that the error in gradient has only a limited influ-
ence on the quality of BP. We validate Proposition 1 later in
the experimental section.

4.2. Computation and Overhead Analysis

In this section, we analyse the computation required to
compute gx, the gradient w.r.t. input x. Figure 3 compares
the computation required to propagate the gradient through
this convolution layer under different patch sizes r × r. A
patch size 1 × 1 means the vanilla BP algorithm which we
use as the baseline. As discussed in the preliminary analysis
section (Section 3.2), two terms contribute to the computa-
tion savings: fewer unique elements in the gradient map and
the structured gradient map.
Fewer unique elements: In vanilla BP, there are HyWy

unique elements in the gradient map. After applying gradi-
ent filtering with a patch size r × r, the number of unique

4The layer is from U-Net [26]. The size of the input is assumed to be
120 × 160 pixels with 192 channels; the output has the same resolution,
but with only 64 channels. The kernel size of the convolution layer is 3×3.
Analysis for ResNet is included in the supplementary material.

elements reduces to only ⌈Hy

r ⌉⌈Wy

r ⌉. This reduction con-
tributes the most to the savings in computation (orange line
in Figure 3).
Structured Gradient Map: By creating the structured gra-
dient map, the convolution over the gradient map g̃y is sim-
plified to the element-wise multiplication and channel-wise
addition. Computation is thus reduced to (HθWθ)

−1 of its
original value. For instance, the example convolution layer
in Figure 3 uses a 3 × 3 convolution kernel so around 89%
computations are removed. The blue line in Figure 3 shows
the #FLOPs after combining both methods. Greater reduc-
tion is expected when applying our method with larger con-
volution kernels. For instance, FastDepth [30] uses 5 × 5
convolution kernel so as much as 96% reduction in compu-
tation can be achieved, in principle.
Minimum Achievable Computation: With the two reduc-
tions mentioned above, the computation required to propa-
gate the gradient through the convolution layer is:

#FLOPs(r) = ⌈Hy

r
⌉⌈Wy

r
⌉Cx(2Cy−1)+o(HyWy) (15)

where o(HyWy) is a constant term which is independent of
r and negligible compared to HyWy . When the patch is as
large as the feature map, our method reaches the minimum
achievable computation (blue dashed line in Figure 3):

minr #FLOPs(r) = 2CxCy − Cx + o(HyWy) (16)

In this case, each channel of the gradient map is represented
with a single value, so the computation is controlled by the
number of input and output channels.
Overhead: The overhead of our approach comes from ap-
proximating the feature map x, gradient gy , and kernel θ.
As the lower part of Figure 2(a) shows, the approximation
for x is considered as part of forward propagation, while
the other two as back propagation. Indeed, with the patch
size r, the ratio of forward propagation overhead is about
1/(2CoWθHθ), while the ratio of backward propagation
overhead is about (r2 − 1)/(2Cx).

Given the large number of channels and spatial dimen-
sions in typical neural networks, both overhead values take
less than 1% computation in the U-Net example above.

4.3. Memory Analysis

As Figure 2(a) shows, the standard back propagation for
a convolution layer relies on the input feature map x, which
needs to be stored in memory during forward propagation.
Since every convolution layer requiring gradient for its ker-
nel needs to save a copy of feature map x, the memory
consumption for storing x is huge. With our method, we
simplify the feature map x to approximated x̃, which has
only ⌈Hx

r ⌉⌈Wx

r ⌉ unique elements for every channel. Thus,
by saving only these unique values, our method achieves
around (1− 1

r2 ) memory savings, overall.
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MobileNetV2 [27] #Layers Accuracy FLOPs Mem ResNet-18 [14] #Layers Accuracy FLOPs Mem
No Finetuning 0 4.2 0 0 No Finetuning 0 4.7 0 0

Vanilla
BP

All 75.1 1.13G 24.33MB Vanilla
BP

All 73.1 5.42G 8.33MB
2 63.1 113.68M 245.00KB 2 70.4 489.20M 196.00KB
4 62.2 160.00M 459.38KB 4 72.3 1.14G 490.00KB

TinyTL [6] N/A 60.2 663.51M 683.00KB TinyTL [6] N/A 69.2 3.88G 1.76MB

Ours 2 63.1 39.27M 80.00KB Ours 2 68.6 28.32M 64.00KB
4 63.4 53.96M 150.00KB 4 68.5 61.53M 112.00KB

MCUNet [19] #Layers Accuracy FLOPs Mem ResNet-34 [14] #Layers Accuracy FLOPs Mem
No Finetune 0 4.1 0 0 No Finetune 0 0 0

Vanilla
BP

All 68.5 231.67M 9.17MB Vanilla
BP

All 70.8 11.17G 13.11MB
2 62.1 18.80M 220.50KB 2 69.6 489.20M 196.00KB
4 64.9 33.71M 312.38KB 4 72.3 1.21G 392.00KB

TinyTL [6] N/A 53.1 148.01M 571.5KB TinyTL [6] N/A 72.9 8.03G 2.95MB

Ours 2 61.8 6.34M 72.00KB Ours 2 68.6 28.32M 64.00KB
4 64.4 11.01M 102.00KB 4 70.6 64.07M 128.00KB

Table 2. Experimental results for ImageNet classification with four neural networks (MobileNet-V2, ResNet18/34, MCUNet). “#Layers”
is short for “the number of active convolutional layers”. For example, #Layers equals to 2 means that only the last two convolutional layers
are trained. For memory consumption, we only consider the memory for input feature x. Strategy “No Finetuning” shows the accuracy on
new datasets without finetuning the pretrained model. Since TinyTL [6] changes the architecture, “#Layers” is not applicable (N/A).

PSPNet [32] #Layers GFLOPs mIoU mAcc PSPNet-M [32] #Layers GFLOPs mIoU mAcc FCN [21] #Layers GFLOPs mIoU mAcc
Calibration 0 0 12.86 19.74 Calibration 0 0 14.20 20.46 Calibration 0 0 10.95 15.69

Vanilla
BP

All 166.5 55.01 68.02 Vanilla
BP

All 42.4 48.48 61.48 Vanilla
BP

All 170.3 45.22 58.80
5 15.0 39.54 51.86 5 12.22 36.35 47.09 5 59.5 27.41 37.90

10 110.6 53.15 67.10 10 22.46 46.01 58.70 10 100.9 43.87 57.58

Ours 5 0.14 39.34 51.86 Ours 5 0.11 36.14 46.86 Ours 5 0.58 27.42 37.88
10 0.79 50.88 64.73 10 0.76 44.90 57.50 10 0.96 36.30 48.82

DLV3 [8] #Layers GFLOPs mIoU mAcc DLV3-M [8] #Layers GFLOPs mIoU mAcc UPerNet [31] #Layers GFLOPs mIoU mAcc
Calibration 0 0 13.95 20.62 Calibration 0 0 21.96 36.15 Calibration 0 0 14.71 21.82

Vanilla
BP

All 151.2 58.32 71.72 Vanilla
BP

All 54.4 55.66 68.95 Vanilla
BP

All 541.0 64.88 77.13
5 18.0 40.85 53.16 5 14.8 38.21 49.35 5 503.9 47.93 61.67

10 102.0 54.65 68.64 10 33.1 47.95 61.49 10 507.6 48.83 63.02

Ours 5 0.31 33.09 44.33 Ours 5 0.26 35.47 46.35 Ours 5 1.97 47.04 60.44
10 2.96 47.11 60.28 10 1.40 45.53 58.99 10 2.22 48.00 62.07

Table 3. Experimental results for semantic segmentation task on augmented Pascal VOC12 dataset [8]. Model name with postfix “M”
means the model uses MobileNetV2 as backbone, otherwise ResNet18 is used. “#Layers” is short for “the number of active convolutional
layers” that are trained. All models are pretrained on Cityscapes dataset [11]. Strategy “Calibration” shows the accuracy when only the
classifier and normalization statistics are updated to adapt different numbers of classes between augmented Pascal VOC12 and Cityscapes.

5. Experiments

Our experimental section consists of theoretical and
practical evaluations. Sections 5.2-5.4 show the theoreti-
cal advantages of our method on image classification and
semantic segmentation tasks with implementation-agnostic
metrics (e.g., accuracy, FLOPs). Then, in Section 5.5, we
show how these theoretical advantages translate into practi-
cal advantages (i.e., speedup and memory savings) on real
edge devices.

5.1. Experimental Setup

Classification: Following [24], we split every dataset into
two highly non-i.i.d. partitions with the same size. Then,
we pretrain our models on the first partition with a vanilla
training strategy, and finetune the model on the other par-
tition with different configurations for the training strat-

egy (i.e., with/without gradient filtering, hyper-parameters,
number of convolution layers to be trained). More details
(e.g., hyper-parameters) are in the Supplementary.
Segmentation: Models are pretrained on Cityscapes [11]
by MMSegmentation [10]. Then, we calibrate and finetune
these models with different training strategies on the aug-
mented Pascal-VOC12 dataset following [8], which is the
combination of Pascal-VOC12 [12] and SBD [13]. More
details are included in the supplementary material.
On-device Performance Evaluation: For CPU per-
formance evaluation, we implement our method with
MKLDNN [1] (a.k.a. OneDNN) v2.6.0 and compare it with
the convolution BP method provided by MKLDNN. We test
on three CPUs, namely Intel 11900KF, Quad-core Cortex-
A72 (Jetson Nano) and Quad-core Cortex-A53 (Raspberry
Pi-3b). For GPU performance evaluation, we implement
our method on CUDNN v8.2 [9] and compare with the BP

3816



method provided by CUDNN. We test on two GPUs, RTX
3090Ti and the edge GPU on Jetson Nano. Since both
MKLDNN and CUDNN only support float32 BP, we test
float32 BP only. Additionally, for the experiments on Jet-
son Nano, we record the energy consumption for CPU and
GPU with the embedded power meter. More details (e.g.,
frequency) are included in the supplementary material.

5.2. ImageNet Classification

Table 2 shows our evaluation results on the ImageNet
classification task. As shown, our method significantly re-
duces the FLOPs and memory required for BP, with very
little accuracy loss. For example, for ResNet34, our method
achieves 18.9× speedup with 1.7% accuracy loss when
training four layers; for MobileNetV2, we get a 1.2% bet-
ter accuracy with 3.0× speedup and 3.1× memory savings.
These results illustrate the effectiveness of our method. On
most networks, TinyTL has a lower accuracy while consum-
ing more resources compared to the baselines methods.

5.3. Semantic Segmentation

Table 3 shows our evaluation results on the augmented
Pascal-VOC12 dataset. On a wide range of networks,
our method constantly achieves significant speedup with
marginal accuracy loss. For the large network UPerNet, our
method achieves 229× speedup with only 1% mIoU loss.
For the small network PSPNet, our method speedups train-
ing by 140× with only 2.27% mIoU loss. This shows the
effectiveness of our method on a dense prediction task.

5.4. Hyper-Parameter Selection

Figure 4 shows our experimental results for ResNets un-
der different hyper-parameter selection, i.e. number of con-
volution layers and patch size of gradient filter r × r. Of
note, the y-axis (MFLOPs) in Figure 4 is log scale. More
results are included in Supplementary Section G. We high-
light three qualitative findings in Figure 4:

a. For a similar accuracy, our method greatly reduces
the number of operations (1 to 2 orders of magni-
tude), while for a similar number of computations, our
method achieves a higher accuracy (2% to 5% better).

This finding proves the effectiveness of our method.

b. Given the number of convolution layers to be trained,
the more accurate method returns a better accuracy.
Baseline (i.e., standard BP) uses the most accurate gra-
dient, Ours-R4 (BP with gradient filter with patch size
4 × 4) uses the least accurate gradient; thus, Baseline
> Ours-R2 > Ours-R4.

This finding is intuitive since the more accurate method
should introduce smaller noise to the BP, e.g., the gradi-
ent filtering with patch size 2× 2 (Ours-R2) introduces less
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FL

OP
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68.3x
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63.6x OPs

Baseline
Ours-R2
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Figure 4. Computation (#MFLOPs, log scale) and model accuracy
[%] under different hyper-parameter selection. “Baseline” means
vanilla BP; “Ours-R2/4” uses gradient filtering with patch size 2×
2/4× 4 during BP.

noise than with patch size 4× 4 (Ours-R4). In Figure 5, we
evaluate the relationship between accuracy and noise level
introduced by gradient filtering. With a higher SNR (i.e., a
lower noise level), a better accuracy is achieved.
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Figure 5. Relationship between accuracy and noise level intro-
duced by the gradient filtering. As shown, accuracy increases as
the SNR increases, i.e., noise level decreases.

c. Given the number of computations, the less accurate
method returns the better accuracy by training more
layers, i.e., Ours-R4 > Ours-R2 > baseline.

This finding suggests that for neural network training with
relatively low computational resources, training more layers
with less accurate gradients is preferable than training fewer
layers with more accurate gradients.

5.5. On-device Performance Evaluation

Figure 6 and Table 4 show our evaluation results on real
devices. More results are included in the Supplementary
Section I. As Figure 6 shows, on CPU, most convolution
layers achieve speedups over 20× with less than 50% mem-
ory consumption for gradient filtering with patch sizes 2×2;
for gradient filtering with patch size 4× 4, the speedups are
much higher, namely over 60×. On GPU, the speedup is
a little bit lower, but still over 10× and 25×, respectively.
Furthermore, as Table 4 shows, our method saves over 95%
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Figure 6. Speedup and normalized memory consumption results on multiple CPUs and GPUs under different test cases (i.e. different
input sizes, numbers of channels, etc.) Detailed configuration of these test cases are included in the supplementary material. “R2”, “R4”
mean using gradient filtering with 2 × 2 and 4 × 4 patch sizes, respectively. Our method achieves significant speedup with low memory
consumption compared to all baseline methods. For example, on Jetson CPU with patch size 4 × 4 (“Jetson-R4” in left top figure), our
method achieves 114× speedup with only 33% memory consumption for most test cases.

Device Patch Size Normalized Energy Cost [STD]
Edge
CPU

2× 2 4.13% [0.61%]
4× 4 1.15% [0.18%]

Edge
GPU

2× 2 3.80% [0.73%]
4× 4 1.22% [1.10%]

Table 4. Normalized energy consumption for BP with gradient
filtering for different patch sizes. Results are normalized w.r.t. the
energy cost of standard BP methods. For instance, for edge CPU
with a 4 × 4 patch, only 1.15% of energy in standard BP is used.
Standard deviations are shown within brackets.

energy for both CPU and GPU scenarios, which largely re-
solves one of the most important constraints on edge de-
vices. All these experiments on real devices show that our
method is practical for the real deployment of both high-
performance and IoT applications.

Model Ratio Model Ratio

(Wide)ResNet18-152 1.462 VGG(bn)11-19 1.497
DenseNet121-201 2.278 EfficientNet b0-b7 1.240

Table 5. Evaluation of energy ratio defined in Equation (13) on
models published on Torchvision. The ratio greater than 1 empiri-
cally verifies our assumption.

5.6. Main Assumption Verification

We now empirically verify the assumption that the DC
component dominates the frequency spectrum of the convo-
lution kernel (Section 4.1). To this end, we collect the en-

ergy ratio shown in Equation (13) from trained models pub-
lished in Torchvision [23]. As Table 5 shows, for the con-
volution kernels in all these networks, we get a ratio greater
than one, which means that the energy of DC components
is larger than energy of all AC components. Thus, our as-
sumption in Section 4.1 empirically holds true in practice.

6. Conclusions
In this paper, we have addressed the on-device model

training for resource-constrained edge devices. To this end,
a new gradient filtering method has been proposed to sys-
tematically reduce the computation and memory consump-
tion for the back-propagation algorithm, which is the key
bottleneck for efficient model training.

In Section 3, a new gradient filtering approach has been
proposed to reduce the computation required for propagat-
ing gradients through the convolutional layers. The gradient
filtering creates an approximate gradient feature map with
fewer unique elements and a special structure; this reduces
the computation by more than two orders of magnitude.
Furthermore, we proved that the error introduced during
back-propagation by our gradient filter is bounded so the
influence of gradient approximation is limited.

Extensive experiments in Section 5 have demonstrated
the efficiency and wide applicability of our method. Indeed,
models can be finetuned with orders of magnitudes fewer
computations, while having only a marginal accuracy loss
compared to popular baseline methods.
Acknowledgements: This work was supported in part by
the US National Science Foundation (NSF) grant CNS-
2007284.
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