
1

CANNON: Communication-Aware Sparse
Neural Network Optimization

A. Alper Goksoy1, Guihong Li2, Sumit K. Mandal3, Umit Y. Ogras1, Radu Marculescu2

Abstract—Sparse deep neural networks (DNNs) have the potential to deliver compelling performance and energy efficiency without
significant accuracy loss. However, their benefits can quickly diminish if their training is oblivious to the target hardware. For example,
fewer critical connections can have a significant overhead if they translate into long-distance communication on the target hardware.
Therefore, hardware-aware sparse training is needed to leverage the full potential of sparse DNNs. To this end, we propose a novel
and comprehensive communication-aware sparse DNN optimization framework for tile-based in-memory computing (IMC)
architectures. The proposed technique, CANNON first maps the DNN layers onto the tiles of the target architecture. Then, it replaces
the fully connected and convolutional layers with communication-aware sparse connections. After that, CANNON optimizes the
communication cost with minimal impact on the DNN accuracy. Extensive experimental evaluations with a wide range of DNNs and
datasets show up to 3.0× lower communication energy, 3.1× lower communication latency, and 6.8× lower energy-delay product
compared to state-of-the-art pruning approaches with a negligible impact on the classification accuracy on IMC-based machine
learning accelerators.

Index Terms—Hardware-aware pruning, communication-aware pruning, mapping, sparse neural networks.

✦

1 INTRODUCTION

Deep neural networks (DNNs) exhibit a high degree of re-
dundancy due to dense interconnections between successive
layers. Besides posing overfitting risks, redundant connec-
tions increase the communication cost and implementation
overhead, thus leading to lower performance and energy
efficiency when implemented in hardware. Indeed, many
pruning techniques aim at removing DNN connections with
minimal impact on their accuracy [1], [2], [3]. Sparse neu-
ral networks are preferred since they can enable minimal
communication and implementation overhead, thus signifi-
cantly reducing the computation and memory requirements.

Sparse inter-layer connections enable significantly faster
and more energy-efficient DNNs. However, sparsity alone
is not sufficient since good algorithmic performance does
not necessarily translate into real performance on hardware.
For instance, some inter-layer connections can lead to long
paths when mapped on hardware. Consequently, they can
undermine the overall hardware performance due to high
communication latency and energy costs. For example, the
sparse evolutionary training (SET) approach [4] drastically
decreases the training time using sparse graphs instead of
pruning a trained network; this makes the training scalable,

1A. Alper Goksoy, and Umit Y. Ogras are with the Department of Electri-
cal and Computer Engineering, University of Wisconsin-Madison, Madison
53706, WI;

2Guihong Li and Radu Marculescu are with the Department of Electrical
and Computer Engineering, The University of Texas at Austin, Austin 78712,
TX.

3Sumit K. Mandal is with the Department of Computer Science and
Automation, Indian Institute of Science, Bangalore 560012, Karnataka.

This work was supported in part by the US National Science Founda-
tion (NSF) grant CNS-2007284, and in part by Semiconductor Research
Corporation (SRC) grants GRC 2939.001 and 3012.001. E-mail: {agoksoy,
uogras}@wisc.edu, {lgh, radum}@utexas.edu, skmandal@iisc.ac.in

Den
se

Net-
20

1

Den
se

Net-
16

9

Den
se

Net-
16

1

Res
Net-

15
2

Res
Net-

10
1

Res
Net-

50

Res
Net-

18
0

20

40

60

80

100

C
on

tri
bu

tio
n

to
In

fe
re

nc
e

La
te

nc
y

(%
) Computation Communication

Tiny-ImageNet CIFAR-100

Fig. 1. Percentage contribution to inference latency for various networks
on two datasets. The communication latency can take up to 43% of the
total inference latency.

while improving the test accuracy on a wide range of
datasets, including multi-layer perceptron (MLP) and con-
volutional neural networks (CNNs) for unsupervised and
supervised learning. Although it can achieve higher accu-
racies, the networks remain oblivious to the real hardware.
The performance of DNNs on real hardware is critical since
it determines the inference latency and power consumption.
For example, a DNN targeting real-time applications, such
as autonomous driving, may become impractical if the in-
ference latency violates the timing constraints. To analyze
the inference latency, we perform experiments using an in-
memory computing (IMC)-based DNN accelerator where
the inter-layer communication for activation data movement
is implemented via a network-on-chip (NoC). We use a
state-of-the-art reinforcement learning based mapping al-
gorithm [5] with unpruned networks using two different
datasets. Our evaluations show that the communication be-
tween the DNN layers alone can take up to 43% of the total
inference latency for a wide range of DNNs, as depicted in

2

Figure 1.
Although sparse training can achieve a higher accuracy

than a network with no pruned links [6], if the network
remains oblivious to the target hardware while pruning and
adding links, then, this can lead to unacceptable latency and
power overheads. Therefore, there is a strong need for hard-
ware and communication-aware sparse training methodologies
that can lead to shorter communication distances when the
DNN layers are mapped onto hardware resources.

Starting from these observations, this paper presents
CANNON, a novel communication-aware sparse neural
network optimization technique applicable to both fully
connected and convolutional layers. The first step of the
proposed technique maps the DNN layers on the target
hardware resources, e.g., to the processing tiles of an NoC.
Our proposed mapping technique minimizes the distance
the packets between two consecutive DNN layers need to
travel in the NoC which helps reducing the overall com-
munication latency. The second step performs hardware-
aware dynamic sparse training. Suppose two nodes in the
DNN are connected by links with non-zero weights. If
these DNN nodes are mapped onto different tiles on the
NoC, the activations generated between these nodes will
incur communication costs during inference. The proposed
technique prunes the p−percent of the weights based on
the significance of weight columns (called the z-index) to-
wards any inference decision per unit communication cost.
Finally, we maintain the target sparsity throughout the
training process by choosing an equal number of weight
columns (p−percent) with the smallest communication cost
and adding them back to the network at the end of each
epoch.

We evaluate CANNON exhaustively using well-
established simulators (NeuroSim [7], BookSim [8]), pop-
ular DNN structures (ResNet [9], DenseNet [10], VGG-
16 [11], MLP), and datasets (Tiny-ImageNet [12], CIFAR-
100, CIFAR-10 [13], MNIST [14]). The hardware perfor-
mance of the sparse neural networks with our proposed
technique is also compared against state-of-the-art pruning
techniques [4], [6]. Our hardware-optimized sparse neural
networks result in up to 6.8× improvement in the energy-
delay product (with respect to the neural networks with
pruning and state-of-the-art mapping techniques), without
any significant accuracy degradation.

The major contributions of this work are as follows:

• A latency-aware mapping technique which mini-
mizes the distance packets between DNN layers
travel between processing elements using an NoC;

• A hardware-aware pruning technique using a newly
proposed z-index that guarantees sparsity while fur-
ther reducing the communication latency;

• Extensive experimental evaluations showing 1.6×–
3.1× latency and 2.7×–6.8× energy-delay product
improvements compared to state-of-the-art pruning
techniques without a significant accuracy loss.

The rest of the paper is organized as follows. Prior
work related to DNN pruning and hardware mapping are
discussed in Section 2. The proposed technique is described
in detail in Section 3. The experimental results are presented
in Section 4. Finally, Section 5 concludes the paper.

TABLE 1
Comparison of various mapping and pruning approaches

Method FC
Pruning

Conv
Pruning

HW-Aware
Training Mapping

Wu et al. [5] no no no yes
Mocanu et al. [4] yes no no no

Frankle & Carbin [6] yes yes no no
Karimzadeh et al. [19] yes yes no yes

Chu et al. [20] yes yes no yes
Meng et al. [21] yes yes no yes

CANNON yes yes yes yes

2 RELATED WORK AND NOVEL CONTRIBUTIONS

Network pruning is a widely studied approach to reducing
network sizes by eliminating redundant parameters. Op-
timal Brain Damage [15] and Optimal Brain Surgeon [16]
are early works in this domain. Authors in [17] prune the
network weights with an absolute value closest to zero and
a little to no contribution to the output. More recent pruning
methods incorporate training to retain a similar accuracy as
the original network [18]. For example, the Lottery Ticket
Hypothesis (LTH) finds a subnetwork, referred to as the
winning ticket, that can achieve the same test accuracy
as the unpruned network if trained in isolation [6]. The
authors train a network with randomly initialized weights
for a predefined number of epochs. Then, p-percentage of
the weights with the smallest absolute value is pruned to
obtain the winning ticket. After that, the unpruned weights
are reset to their initial values before repeating the training.
Then, the pruned network, referred to as the winning ticket
subnetwork, is trained for the same number of epochs.
By iteratively repeating this process, the authors generate
winning tickets that have 80%–90% fewer weights while
keeping a similar accuracy. Table 1 shows the comparison
of CANNON against LTH and other the state-of-the-art
pruning and mapping methods.

Similar to network pruning, a sparse evolutionary train-
ing approach, called SET, can guarantee built-in sparse
structures during training [4]. SET achieves higher test
accuracies compared to unpruned networks. However, it
uses sparse connections only for the fully connected layers,
leaving the convolutional layers intact.

None of the mentioned approaches considers the hard-
ware resources and accounts for the communication cost
during pruning. Hence, these approaches cannot exploit the
full potential of the target hardware. Recent studies started
considering hardware-aware techniques due to the impor-
tance of the target hardware. Wu et al. [5] use Reinforcement
Learning (RL) for mapping DNNs to hardware, but they
do not perform pruning. Wang et al. [22] quantize DNNs
to reduce the model size using a hardware-aware quanti-
zation method. A Linear Feedback Shift Register is used
to decide which weights to prune (or not) in [19]. Lately,
structural pruning gained popularity due to its pruning
in regular shapes. Structural pruning prunes the network
such that a significant chunk of memory elements can
be removed. Structural pruning techniques for CPUs are
proposed in [23], [24]. Similarly, the Scalpel technique [25]
prunes networks to match the network size to SIMD units.
3PXNet [26] combines binarization and pruning for edge

3

Target DNNTarget Architecture

Datasets

Optimization Parameters
Accuracy & sparsity targets, communication latency

Mapping
(Section 3.2)

…

Hardware-Aware Training

Replace the layers with
a sparse graph (Eqn. 4)

Execute next
training epoch

Prune links based on
weight and distance
(Section 3.3.1)

Add new links based on distance
and sparsity target
(Section 3.3.2)

Optimized Sparse
Network

NoC router

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Inputs

Fig. 2. Overview of the proposed approach, CANNON. It consists of mapping the target DNN onto the target architecture using the latency-aware
mapping and hardware-aware dynamic sparse training. The training process first replaces the DNN layers with sparse graphs; then, at the end of
each epoch, employs hardware-aware pruning and link addition. Each circle in the target DNN represents the feature map of DNNs; each link in
the target DNN represents the weights of DNNs. The weights are mapped onto the in-memory computing (IMC) tiles with the same color as the
corresponding links. The circles and the rectangles in the target architecture denote the NoC routers and IMC tiles, respectively.

machine learning. Technique in [2] proposes to remove a
complete channel filter of a convolutional network instead
of randomly selecting the weights in a channel to prune on
embedded GPUs. However, the authors show that existing
GPU libraries do not perform channel pruning efficiently.
The methods proposed in [3], [20], [21], [27], [28], [29], [30],
[31] use resistive-RAM (RRAM) based hardware acceler-
ators for structured pruning and propose crossbar-aware
structural pruning to prune the network. Authors in [20],
[21], [27], [29], [30] employ crossbar-aware column and row
pruning, which necessitates an indexing unit to handle mi-
grating weight columns. This hardware unit results in extra
overhead. Authors in [28] do not use indexing units but
reduce the number of bits required for the ADC. Authors
in [3], [31] use operation units that divide the crossbar arrays
into small matrices to utilize each crossbar column with
multiple weight columns. This approach utilizes the time
division principle (i.e., activates some part of a crossbar col-
umn at a particular time instance) for the weight columns,
resulting in an extra time overhead. However, any of the
mentioned approaches do not consider the overhead of the
communication of activations on the system while utilizing
structured pruning.

The unique aspects of our work are highlighted in Ta-
ble 1 where we compare CANNON against the state-of-
the-art network pruning and mapping methods. In contrast
to prior techniques, we account for the communication
cost to enable hardware-aware training. We first map the
target network onto the target hardware to minimize the
communication latency and then perform hardware-aware
dynamic sparse training. Our proposed methodology can
work with any pruning technique. We chose SET [4] as
the baseline since it guarantees sparse connections between
each DNN layers by construction. However, different than
SET, our approach also prunes convolutional (in addition
to the fully connected) layers. Our systematic approach
introduces sparse graphs that can enable structured sparsity
where blocks of zeros can be obtained. Hence, our proposed
technique complements efficient sparse representations like
Compressed Sparse Block (CSB) [32], Compressed Sparse
Row (CSR) [33], Compressed Sparse Fiber (CSF) [34] to
minimize data communication overheads. To the best of our
knowledge, CANNON is the first hardware-aware training
technique that combines all the features listed in Table 1.

3 METHODOLOGY

In this section, we first overview the proposed ap-
proach. Then, we present our latency-aware mapping and
hardware-aware dynamic sparse training in detail. Finally,
we illustrate the evolution of the z-index.

3.1 Overview of CANNON

The inputs to our framework are the target DNN, the
datasets, and the hardware architecture, as shown in Fig-
ure 2. Our goal is to prune the DNN to meet a given sparsity
target which maintains the accuracy of the DNN, while
minimizing communication latency on the target hardware.
To this end, we first map the DNN nodes to the target
hardware as described in Section 3.2. Then, we perform the
newly proposed hardware-aware training. At the beginning
of training, we replace the layers of the DNN with a sparse
graph. Then, we perform hardware-aware pruning, as well
as hardware-aware link addition during each epoch as de-
scribed in sections 3.3.1 and 3.3.2, respectively. At the end
of the training process, we obtain a hardware-aware sparse
network and its mapping onto a mesh NoC.

3.2 Latency-Aware Mapping

The first step of CANNON is to map the nodes of the target
DNN onto the target hardware, which we assume is an
in-memory computing (IMC)-based DNN accelerator. We
consider IMC-based DNN accelerators since they integrate
computation with memory, and decrease the latency and
energy cost of memory accesses. Several recent research
have proposed energy-efficient DNN accelerators with IMC
technology [35], [36], [37], [38]. IMC accelerators integrate
multiple processing elements (known as tiles) into the sys-
tem, as shown in Figure 3. The number of tiles in the system
is a function of neural network parameters, as well as the
hardware parameters. In this work, the workload is divided
into tiles following the technique described in [7]. Each
tile, placed on a grid, consists of memory elements that
store the DNN weights and perform computations. Finally,
the tiles are connected to NoC routers which facilitate the
data exchanges between different neural network layers.
The CANNON framework maps the DNN into the IMC
accelerator layer-by-layer. To this end, we analyze the traffic

4

(a) Target DNN (b) Sequential Mapping (c) Latency-Aware Mapping

Map layer-2 Find the reference tile Map layer-3 (Eq. 3)

Layer-1
Layer-2

Layer-3

𝒔𝒍𝟏 𝒔𝒍𝟏

𝒔𝒍𝟐𝒔𝒍𝟐

IMC Tiles NoC Routers

Fig. 3. Illustration of latency-aware mapping algorithm. (a) the target DNN to be mapped, (b) sequential mapping [37] maps the layers of the target
DNN to the tiles of NoC sequentially using the number of tiles required for each layer, (c) latency-aware mapping algorithm in CANNON first finds
the reference tiles (s1l , s2l) of previously mapped layers and then maps the next layer by minimizing the total distance to the reference tiles. All
rectangular boxes in (b) and (c) represent IMC tiles that contain processing elements while the small circles represent NoC routers.

between any two consecutive layers of the neural network
to map their nodes. We note that the communication la-
tency between two consecutive network layers is mainly
determined by the position of tiles the nodes in these layers
are mapped to. Figure 3 shows an illustrative example
of mapping a target DNN (Figure 3(a)) onto tiles. The
sequential mapping places the DNN nodes onto the IMC
tiles in order, from left to right and from top to bottom [37].
With this mapping style, some of the packets may need to
travel long distances. For example, in Figure 3(b), there is
communication between the tile in the top right corner to
the tile in the bottom left corner.

In contrast to prior work [37], we compute the distance
between any s (source) and d (destination) tiles before
mapping as M(s, d):

M(s, d) = |xs − xd|+ |ys − yd| (1)

where xs (or xd) denotes the physical x-coordinate of the
tile-s (or tile-d) and ys (or yd) denotes the physical y-
coordinate of the tile-s (or tile-d). Then, to ensure that the
DNN nodes in two consecutive layers are not physically far
apart from each other, we minimize the maximum distance
between the tiles. Hence, Equation 2 represents the objective
of our mapping technique:

minimize max
i,j

M(si, dj), 1 ≤ i ≤ Tl, 1 ≤ j ≤ Tl+1, (2)

where, Tl denotes the number of tiles in the lth layer.
For a system with K tiles, the complexity to solve Equa-

tion 2 is O(Tl+1(K − Tl+1)). To reduce this complexity, we
consider a pair of source tiles (s1l , s

2
l) that are physically far-

thest from each other, instead of considering all the source
tiles (tiles corresponding to the lth layer in Equation 2).

Figure 3(c) illustrates the proposed latency-aware map-
ping used in CANNON. Assume that there are K IMC
tiles, and each tile is connected to an NoC router. At the
beginning of the mapping process, we map the first layer of
the neural network to the IMC tiles closest to the input of the
accelerator (the blue tiles in Figure 3(c)). Since Tl denotes the
number of tiles required for lth layer, the remaining layers
that are mapped after lth layer are Rl = K −

∑L
i=l+1 Ti,

where L is the total number of DNN layers. To map the
(l + 1)th layer, we calculate the total distance from each of
the remaining tiles (Rl) to s1l and s2l (highlighted with solid

arrows in Figure 3(c)) following Equation 1. Then, the tile
that minimizes the sum of the distance to the reference tiles
is selected. Specifically, the position of this tile is:

argmin
j

(M(s1l , dj) +M(s2l , dj)), 1 ≤ j ≤ Rl (3)

The above process is repeated for each layer until all the
layers are mapped. We note that our mapping algorithm
always finds a solution if

∑L
l=1 Tl ≤ K .

We note that our proposed mapping technique is inde-
pendent of the traffic volume exchanged between different
DNN layers. Specifically, we consider only two consecutive
layers at a time. We also note that the proposed mapping
technique takes care of all existing types of connections in a
neural network, namely linear, skip, and dense connections.
Therefore, our proposed mapping technique is applicable
to any DNN, irrespective of traffic volume and connection
pattern. The detailed discussion on how the proposed map-
ping technique is applied to a neural network with skip and
dense connections is presented in Appendix A.

3.3 Hardware-Aware Dynamic Sparse Training
3.3.1 Hardware-Aware Pruning
Our hardware-aware pruning approach uses the Sparse
Evolutionary Training, i.e., SET, technique as a baseline to
guarantee sparse connections between each layer in the
training process [4]. It follows a phenomenon observed in
complex real-world networks such as protein interaction
networks. This phenomenon shows that starting with an
Erdös–Rényi random graph [39] and following its natural
evolution, the network reaches a point that has a more
structured connectivity resembling scale-free [40] or small-
world [41] networks. Inspired by this phenomenon, at the
beginning of the training process, the fully connected layers
in the DNN are replaced by sparsely connected layers fol-
lowing Erdös–Rényi random sparse graphs as in Equation 4:

r(Wi) =
ϵ(ni + ni−1)

nini−1
(4)

where Wi represents the set of weights in layer-i, where
1 ≤ i ≤ L and L represents the number of layers in the
target DNN. ni and ni−1 represent the number of weights
in layer-i and layer-(i−1), respectively. ϵ ∈ R+ is a tunable
parameter used to adjust for the target sparsity level [4],

5

Target DNN

(a) Hardware-Aware Pruning

Weight matrix 𝑾𝒊
Communication
cost matrix 𝑪(w𝒊,𝒏) 𝒛 − 𝐢𝐧𝐝𝐞𝐱 =

∑ |𝒘𝒊,𝒏|
𝑪 𝒘𝒊,𝒏

0.50.4

1.2-0.3

-1.20.9

0.1-0.1

21 1.51.7

Target Architecture
with Proposed Mapping

Pruned weight
columns

132

Communication cost
matrix 𝑪(𝒘𝒊,𝒏

$)

(b) Hardware-Aware Link Addition

Added Link columns

Target Architecture
with Proposed Mapping

!𝒘𝒊,𝒏1.7 3.0

Hardware-Aware Sparse
Neural Network

Layer-1
Layer-2

Layer-3

Fig. 4. Proposed hardware-aware pruning and link-addition. (a) In hardware-aware pruning, z-index of each weight column is computed based on the
absolute value and the communication cost. Then, the p-percentage of weight columns with the lowest z-index is removed. (b) The communication
cost of already pruned weight columns is calculated in the hardware-aware link addition step. Then, the p-percentage of weight columns with the
lowest communication cost is added back. This procedure is repeated every epoch for each layer. The numbers in weight and communication cost
matrices are shown for illustration purposes.

while r(Wi) represents the probability that each weight in
the set is retained. Our hardware-aware pruning approach
is very general, as it works for both fully connected (FC)
and convolutional (Conv) layers. For layer-i, we define the
depth of the input feature channels as Di, the kernel depth
as Ni, and the kernel size as Ki. We can organize the weights
of the FC and Conv layers as matrices of sizes Di × Ni

and Ki × Ki × Di × Ni, respectively. Therefore, we can
represent the nth weight column of layer-i as wi,n ∈ Wi

where 1 ≤ n ≤ Ni. Each column of the weight matrix
(Di × 1 for FC, Ki ×Ki ×Di × 1 for Conv layer) is mapped
to a corresponding column of the crossbar array. During
execution, each input feature map block (the same size as
the weight matrix column) is multiplied with each crossbar
column, generating output feature map blocks (1 ×Ni). By
working at the level of individual columns in the weight
matrix, our approach results in pruned columns rather than
producing an unstructured sparse weight matrix.

Our goal at the end of each training epoch is to prune
the DNN weights that incur a significant communication
latency without losing significant accuracy, as illustrated
in Figure 4. Each weight column of the DNN generates
activation(s) communicated between any two DNN layers.
Therefore, pruning weights implicitly leads to removing
some communication between any two DNN layers.

Definition 3.1 (Communication Cost). The contribution of a
weight column n for layer-i (wi,n ∈ Wi) to the communi-
cation can be quantified by the average Manhattan distance
(M(s, d)) between the source tile (s) and the destination
tile (d) of the corresponding activations:

C(wi,n) =

∑Ai,n

j=1 M(sji , d
j
i)

Ai,n
(5)

where Ai,n is the number of activations generated by the
corresponding weight column wi,n and M(s, d) is given in
Equation 1. However, the significance of weights also de-
pends on their total absolute value. Thus, pruning weights
should be based on both weights’ absolute value and corre-
sponding communication cost due to their activation.

Definition 3.2 (z-index). z-index is the ratio between the
total absolute value of a weight column and its com-
munication cost:

z(wi,n) =

∑
(|wi,n|)

C(wi,n)
(6)

The z-index reflects the importance of a weight column in
terms of both absolute value and the communication cost,
as defined in Equation 6. Note that, a weight column with
a higher total absolute value will have a higher z-index,
while a weight column with higher communication cost will
have a lower z-index. Hence, the z-index can be interpreted
as the weight’s significance per unit of communication cost.
Therefore, we use the z-index of each weight column to
determine whether to prune it. Specifically, we sort all
weight columns in layer-i based on their z-index values and
prune the smallest p-percentage of weight columns, where
p represents the target pruning ratio.

3.3.2 Hardware-Aware Link Addition
After pruning weights during each epoch, an equal number
of weights are added to the DNN to maintain the initial
pruning ratio. In SET [4], these weights are added randomly.
In contrast, we add new weights considering the communication
cost (C(w′

i,n)), where w′
i,n ∈ W ′

i,n and W ′
i,n denotes the set

of already pruned weight columns from layer-i. Then, we
sort C(w′

i,n) and add p-percentage of weights in W ′
i,n with

the lowest communication cost as shown in Figure 4(b). This
way, the performance gains from latency-aware mapping
and hardware-aware pruning are preserved by considering
the communication cost in the link addition process. As a
result, we retain the same number of weights throughout
the training process.

3.4 Evolution of the Average z-Index
In this section, we analyze the evolution of the average
z-index of all weights in the DNN during training. This
analysis provides invaluable insights into how the proposed
hardware-aware pruning and hardware-aware link addition
techniques work. We use the ResNet-50 network on the

6

0 50 100 150 200
0

20

40

60

80
Te

st
 A

cc
ur

ac
y

(%
)

Epochs (#)

 Accuracy Average z-index

(b)
0 50 100 150 200

10

20

30

40

Av
er

ag
e

z-
in

de
x

Epochs (#)(a)

Fig. 5. Illustration of the evolution of the (a) test accuracy and (b) the
average z-index of all weight columns during training for ResNet-50
on the CIFAR-100 dataset. The accuracy, as well as the average z-
index, increases throughout the training. Increasing z-index denotes a
DNN with larger weights and lower communication latency due to our
hardware-aware dynamic sparse training approach.

CIFAR-100 dataset for illustration, but we note that all mod-
els and datasets considered in our experimental evaluations
show similar trends.

The accuracy and z-index variations for each epoch in
the training are shown in Figure 5(a) and Figure 5(b), respec-
tively. The average z-index grows similar to the accuracy
for two reasons. First, the weights (the numerator of the z-
index) that are preserved are larger than those pruned in
each epoch. Second, hardware-aware pruning and weight
addition favor smaller communication costs (the denomi-
nator of the z-index). Indeed, Figure 5(b) confirms that the
average z-index grows rapidly during training and follows
a similar trend to the classification accuracy. Specifically, the
average z-index is small at the beginning of the training.
Our proposed hardware-aware pruning process removes
the weights with lower absolute value and that causes
higher communication costs during training. Therefore, the
average z-index increases over time. At the end of Epoch-
200 (when the accuracy stabilizes), the average z-index is
3.2× larger than the average z-index in the beginning. The
growth seen in the average z-index indicates a DNN with
lower communication latency. Hence, it improves the hard-
ware performance, as discussed in the following section.

4 EXPERIMENTAL EVALUATION

This section first introduces our experimental setup to
enable reproducible results. Next, we demonstrate the ef-
fectiveness of our proposed latency-aware mapping and
hardware-aware dynamic sparse training approaches in
terms of the number of hops distribution in NoC. Then,
we compare the hardware performance of CANNON in
terms of latency, energy, energy-delay product (EDP), and
accuracy against state-of-the-art techniques. After that, we
perform an ablation study of CANNON. Finally, we com-
pare our results against Lottery Ticket Hypothesis using
networks from ResNet family on the CIFAR-10 dataset.

4.1 Experimental Setup

Network Models and Datasets: We evaluate CAN-
NON with 14 well-known network models and four

TABLE 2
Summary of circuit level and NoC parameters

Circuit NoC

PE array size 256× 256 Bus width 32

Cell levels 2 bit/cell Routing algorithm X–Y

Flash ADC resolution 8 bits Number of router ports 5

Technology used RRAM Topology Mesh

datasets. Specifically, we use DenseNet-201, DenseNet-
169, and DenseNet-161 from the DenseNet family with
the Tiny-ImageNet dataset. Similarly, we employ ResNet-
152, ResNet-101, ResNet-50, ResNet-18 and VGG-16 with
CIFAR-100 and CIFAR-10 datasets. DenseNet, ResNet, and
VGG-16 networks consist of convolutional and fully con-
nected layers. We also discuss performance results using
an MLP-based network on the MNIST dataset. We use the
same MLP-based network structure used in SET [4] which
consists of three hidden layers with 1000 neurons.
Simulation Setup: The experiments run on a machine that
uses 6 Intel Xeon Gold 6242R cores and 1 Nvidia 3090 GPU
on Python using the PyTorch library. All CNNs are trained
for 200 epochs with the SGD optimizer and a momentum
of 0.9. We set the initial learning rate as 0.1 and use the
Cosine Annealing scheduling as the learning rate scheduler.
The communication performance is evaluated using a cycle-
accurate NoC simulator, BookSim [8]. To this end, we use
a customized version of BookSim that supports simulation
with workload traces. As different networks show different
structures, we generate traces for each network and dataset
pairs. Each trace consists of three entries: source router, des-
tination router, and timestamp for the generated packet. We
generate a trace file for each layer and feed this to BookSim
to measure the communication performance. The number
of IMC tiles required for each layer of the neural network is
evaluated through NeuroSim [7]. In the IMC tile structure,
adopted from [37], there are 16 PEs; each PE consists of a
256×256 IMC crossbar. We design separate accelerators to
show the effectiveness of our hardware-aware mapping and
training approaches on each dataset and network model and
assume that the accelerator is big enough to accommodate
the network as in [28]. In this work, we do not consider
a pipelined architecture since such architectures may result
in pipeline stalls [42]. Moreover, pipelining incurs an extra
area overhead due to the extra control logic required. There-
fore, our experimental evaluations report the overall end-
to-end communication latency and energy when there is no
layer-to-layer pipelining. Table 2 shows different hardware
parameters incorporated in our evaluations.
Baseline Approaches: We compare CANNON against mul-
tiple baseline approaches summarized in Table 3. The first
baseline technique is a RL-based mapping algorithm [5]
working on an unpruned network (Mapping Only in Table 3).
This baseline is added to the comparison set to assess the
impact of the mapping algorithm alone. SET [4] is utilized
in two baselines. The first one uses SET with a widely-used
mapping algorithm [37] (SET in Table 3). In contrast, the
second one uses SET with our proposed latency-aware map-
ping to show the performance of our proposed mapping

7

TABLE 3
Properties of different approaches with respect to the mapping method,

Fully Connected (FC) layer pruning, and Convolutional (CONV) layer
pruning.

Approach Mapping FC
Pruning

CONV
Pruning

Mapping Only [5] RL X X
SET [4] sequential [37] weight-based X

SET [4] + Mapping latency-aware weight-based X
CANNON (FC Layers) latency-aware hardware-aware X

CANNON
(FC+CONV Layers) latency-aware hardware-aware hardware-aware

method (SET + Mapping in Table 3). Two variants of the
CANNON framework are evaluated in these experiments.
We selected SET technique as the baseline pruning approach
in the training. However, we emphasize that CANNON can
be used in conjunction with any other pruning technique
including state-of-the-art structured pruning techniques [3],
[20], [21], [30]. We first show the results of our proposed dy-
namic sparse training when applied to the fully connected
layers of neural networks (CANNON (FC Layers) in Table 3)
since the approach proposed in SET prunes FC layers only.

Finally, we compare all the baselines against CANNON
applied to both fully connected and convolutional layers
(last row in Table 3). The pruning ratios in these exper-
iments are 50% for the convolutional layers and 80% for
the fully connected layers for ResNet, DenseNet, and VGG-
16 networks selected based on the highest pruning value
without seeing an important accuracy drop. For MLP-based
networks, we use a pruning ratio of 95% to have a fair
comparison against SET. The pruning and addition ratios
in the hardware-aware dynamic sparse training are selected
as 30% of the remaining weights. To quantify the overhead
of the z-index calculations during training, we also com-
pare CANNON against a random pruning scheme using
identical pruning ratios. Our measurements indicate that
CANNON has only 7% higher training time per epoch
for the ResNet-18 model on the CIFAR-100 dataset. Once
the training completes, CANNON does not introduce any
additional inference overhead.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0

0.1

0.2

0.3

0.4

 RL-based Mapping CANNON

Pr
ob

ab
ilit

y

Number of hops

Fig. 6. Comparison of hop distribution between RL-based mapping [5]
and CANNON. Latency-aware mapping minimizes number of hops prob-
ability toward smaller values.

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

0 3 6 9 12 15 18 21 24 27
0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

0 3 6 9 12 15 18 21 24 27
0.0

0.1

0.2

0.3

0.4

 Epoch-0 Epoch-100 Epoch-200

(a) (b)
0 5 10 15 20 25 30 35 40

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Number of hops
0 3 6 9 12 15 18 21 24 27

0.0

0.1

0.2

0.3

0.4

Number of hops

Fig. 7. Comparison of hop distribution for hardware-aware training
before Epoch-0, at Epoch-100, and at the end of Epoch-200 for (a)
ResNet-152 on the CIFAR-100 and (b) for DenseNet-201 on the Tiny-
ImageNet dataset. The distribution of the number of hops shifts toward
smaller numbers as we move forward during the training. There are
still weights with higher hops at the end of Epoch-200 because the
hardware-aware pruning considers communication cost and whether or
not the weight is significant.

4.2 Number of Hops Distribution

CANNON aims at minimizing the communication latency
by minimizing the maximum Manhattan distance the pack-
ets travel between two consecutive DNN layers (see Eqn. 2).
Therefore, CANNON decreases the number of hops the
packets travel compared to the state-of-the-art mapping
technique [5]. Figure 6 compares the probability distribution
of the number of hops the packets travel in the NoC for
the DenseNet-201 model on Tiny-ImageNet in our proposed
mapping technique and the technique described in [5]. Us-
ing the probability distributions, we observe that 86% of the
packets need to traverse more than 3 hops in the NoC with
the RL-based mapping approach. In contrast, the portion of
the packets with more than 3 hops reduces to 45% with our
proposed mapping technique.

The probability distribution for the number of hops for
ResNet-152 model on CIFAR-100 and DenseNet-201 model
on Tiny-ImageNet are shown in Figure 7(a) and Figure 7(b),
respectively. These figures compare the distributions at the

8

DenseNet-201

DenseNet-169

DenseNet-161

ResNet-152

ResNet-101

ResNet-50

ResNet-18
VGG-16

ResNet-152

ResNet-101

ResNet-50

ResNet-18
VGG-16

0

1

2

3

4

5
 Mapping Only SET SET + Mapping CANNON (FC Layers) CANNON (FC+Conv Layers)

C
om

m
un

ic
at

io
n

La
te

nc
y

(m
s)

CIFAR-100 CIFAR-10

2.6x

1.8x
1.6x

1.6x 2.1x

1.7x

2.0x
2.5x

Tiny-ImageNet

2.0x

2.6x

1.9x
2.0x 3.1x

Fig. 8. Comparison of communication latency across different DNNs and datasets. CANNON consistently improves the latency for all network
models and datasets.

beginning of the training (Epoch-0), at the end of Epoch-
100, and at the end of training (Epoch-200). We observe
that the probability of achieving a smaller number of hops
increases with the number of epochs for the ResNet-152
model on CIFAR-100. Many long-range communications
disappear as the training progresses due to our proposed
hardware-aware pruning technique. We also analyze the
percentage of weights distributed among different num-
bers of hops using probability distributions. Specifically,
44% of the packets need to traverse less than six hops at
the beginning of Epoch-0; with our proposed hardware-
aware dynamic sparse training, at the end of Epoch-200,
71% of the packets need to traverse less than six hops, as
shown in Figure 7(a). However, we note that some long-
range connections still remain because our hardware-aware
pruning considers not only the communication cost but also
the weight value. If there are weights with large values,
we tend not to prune them even if they produce higher
communication cost. Overall, the average number of hops
decreases by 28% by the end of Epoch-100 and 42% by the
end of Epoch-200 compared to Epoch-0. We observe a sim-
ilar trend for the DenseNet-201 model on Tiny-ImageNet,
where the probability of lower number of hops increases as
the training progresses, as shown in Figure 7(b). The average
number of hops decreases by 25% at the end of Epoch-100
and 70% at the end of Epoch-200. This is important because
it translates into improved latency and energy efficiency.

4.3 Latency Analysis
This section compares the communication latency of CAN-
NON against the four baseline techniques introduced ear-
lier. The properties of each baseline are presented in Ta-
ble 3. We use 14 widely-known network models listed in
Section 4.1.

Experiments for convolutional neural networks are per-
formed using DenseNet models on the Tiny-ImageNet
dataset, ResNet and VGG-16 models using the CIFAR-100
and CIFAR-10 datasets, and an MLP using the MNIST
dataset (Figure 8). The plot highlights the improvements
of CANNON over the SET approach since a comparison
against a pruned network is more appropriate.
DenseNet Network Results: Reinforcement Learning (RL)-
based mapping approach using an unpruned DenseNet-

201 network model on the Tiny-ImageNet dataset shows
3.55ms communication latency. Using SET [4] with the
mapping in [37], the communication latency is improved
to 3.16ms. The decrease is mainly due to the lack of
some weight columns because of high pruning ratio. Our
proposed latency-aware mapping employed with SET im-
proves the communication latency by 20% compared to the
RL mapping approach on an unpruned network for the
DenseNet-201 model. The only difference between SET and
SET+Mapping approaches is due to the mapping algorithm.
Thus, the direct comparison between them demonstrates
the effectiveness of our proposed latency-aware mapping.
The improvement of SET+Mapping compared to SET ranges
between 3% to 12% for the DenseNet models. CANNON
(FC Layers) shows a speedup between 1.1×–1.4× compared
to SET. Finally, CANNON (FC+Conv Layers) shows a higher
speedup varying between 1.8× to 2.6× and 2.0× to 3.0×
compared to SET and Mapping Only approaches for all
networks in the DenseNet family, respectively. Considering
the savings of computation, the improvements for total
inference latency are up to 57% for DenseNet.

ResNet Network Results: The number of output channels
of the convolutional layers of ResNet DNNs is higher than
that of DenseNet DNNs. Therefore, the communication la-
tency of ResNet DNNs is higher than DenseNet DNNs. The
Mapping Only approach, which uses RL-based mapping on
an unpruned network, shows the highest communication
latency in most ResNet networks using the CIFAR-100 and
CIFAR-10 datasets. The RL-based mapping performs better
than the SET approach with ResNet-50 and ResNet-18 net-
works on CIFAR-100 and ResNet-50 on CIFAR-10 datasets.
The SET + Mapping approach, which uses our proposed
latency-aware mapping but pruning as proposed in SET,
consistently outperforms SET and Mapping Only techniques.
CANNON (FC Layers) further improves the latency between
1.1× to 1.2× compared to the SET + Mapping approach
on the CIFAR-100 dataset. Finally, our proposed CANNON
(FC+Conv Layers) shows a speedup between 1.6× to 2.6×
compared to SET on CIFAR-100, as illustrated in Figure 8.
On the CIFAR-10 dataset, the improvements are in the
range of 1.7× to 2.2× compared against the Mapping Only
approach. Communication latency improvements result in a
23%–51% drop in total inference latency for ResNet DNNs.

9

D e n s
e N et-

2 0 1

D e n s
e N et-

1 6 9

D e n s
e N et-

1 6 1

R e s
N et-

1 5 2

R e s
N et-

1 0 1

R e s
N et-

5 0

R e s
N et-

1 8

V G G- 1 6

R e s
N et-

1 5 2

R e s
N et-

1 0 1

R e s
N et-

5 0

R e s
N et-

1 8

V G G- 1 6

0. 2 5

1

4

1 6

6 4

 M a p pi n g O nl y S E T S E T + M a p pi n g C A N N O N (F C L a y er s) C A N N O N (F C + C o n v L a y er s)
C
o

m
m
u
ni

c
ati

o
n

E
n
er

gy
 (

µ
J)

2. 3 x
2. 0 x

2. 6 x

1. 7 x

1. 8 x

2. 1 x

2. 1 x

2. 0 x

Ti n y-I m a g e N et CI F A R- 1 0CI F A R- 1 0 0

1. 9 x

3. 0 x

2. 4 x

1. 9 x 2. 0 x

Fi g. 9. C o m p ari s o n of c o m m u ni c ati o n e n er g y (l o g s c al e) a cr o s s diff er e nt D N N s a n d d at a s et s. C A N N O N c o n si st e ntl y i m pr o v e s t h e c o m m u ni c ati o n
e n er g y f or all n et w or k m o d el s a n d d at a s et s.

V G G- 1 6 a n d M L P R e s ult s: We al s o s h o w t h e r e s ult s wit h
V G G- 1 6 n et w o r k wit h CI F A R- 1 0 0 a n d CI F A R- 1 0 d at a s et s
i n Fi g u r e 8. C A N N O N (F C + C o n v L a yers) s h o w s a s p e e d u p
of u p t o 3 .1 × f o r V G G- 1 6 wit h n e gli gi bl e a c c u r a c y i m p a ct.
Fi n all y, e x p e ri m e nt s wit h a n M L P o n M NI S T d at a s et o bt ai n
2 .4 × l o w e r c o m m u ni c ati o n l at e n c y t h a n S E T (6. 6 µ s v s 3. 7
µ s) wit h si mil a r a c c u r a c y. T h e s e r e s ult s a r e e x cl u d e d f r o m
Fi g u r e 8 f o r r e a d a bilit y si n c e t h e l at e n c y f o r M L P i s t h r e e
o r d e r s of m a g nit u d e s m all e r t h a n ot h e r n et w o r k s.

4. 4 E n er g y a n d E D P A n al y si s

I n t hi s s e cti o n, w e c o m p a r e t h e c o m m u ni c ati o n e n e r g y
c o n s u m pti o n of C A N N O N a g ai n st f o u r diff e r e nt a p-
p r o a c h e s. T h e d et ail s of t h e c o m m u ni c ati o n e n e r g y r e s ult s
f o r D e n s e N et, R e s N et, a n d V G G- 1 6 m o d el s o n t h e Ti n y-
I m a g e N et, CI F A R- 1 0 0, a n d CI F A R- 1 0 d at a s et s a r e gi v e n i n
Fi g u r e 9. We p r e s e nt d et ail e d e n e r g y- d el a y p r o d u ct (E D P)
r e s ult s i n Fi g u r e 1 0.
D e n s e N et N et w or k R e s ult s: T h e M a p pi n g O nl y a p p r o a c h
s h o w s t h e hi g h e st c o m m u ni c ati o n e n e r g y f o r D e n s e N et- 2 0 1
a n d D e n s e N et- 1 6 1 n et w o r k s. T h e S E T + M a p pi n g a p p r o a c h,
w h e r e o u r l at e n c y- a w a r e m a p pi n g i s utili z e d t o g et h e r wit h
t h e p r u ni n g t e c h ni q u e i n S E T, p e rf o r m s b ett e r t h a n t h e S E T
a n d M a p pi n g O nl y a p p r o a c h e s. I n t hi s c a s e, t h e g ai n a g ai n st
t h e S E T a p p r o a c h s h o w s t h at o u r l at e n c y- a w a r e m a p pi n g

r e d u c e s e n e r g y c o n s u m pti o n. F u rt h e r m o r e, w e o b s e r v e a
1 0 % – 2 2 % r e d u cti o n i n c o m m u ni c ati o n e n e r g y c o n s u m pti o n
wit h C A N N O N (F C L a yers) a g ai n st S E T + M a p pi n g . Fi n all y,
C A N N O N (F C + C o n v L a yers) c o n si st e ntl y o ut p e rf o r m s all
ot h e r a p p r o a c h e s. S p e ci fi c all y, w e o b s e r v e 4 8 %- 5 8 % r e d u c-
ti o n i n c o m m u ni c ati o n e n e r g y c o m p a r e d t o S E T .

T h e c o m m u ni c ati o n l at e n c y a n d e n e r g y r e d u cti o n al s o
r e s ult i n si g ni fi c a nt E D P i m p r o v e m e nt s. Si n c e t h e M a p pi n g
O nl y a p p r o a c h d o e s n ot c o n si d e r p r u ni n g, it h a s t h e hi g h e st
E D P a m o n g all t e c h ni q u e s f o r all D e n s e N et n et w o r k s o n t h e
Ti n y-I m a g e N et d at a s et. T h e S E T + M a p pi n g a p p r o a c h h a s
7 % – 2 0 % i m p r o v e m e nt wit h r e s p e ct t o t h e S E T a p p r o a c h.
C A N N O N (F C L a yers) f u rt h e r i m p r o v e s t h e E D P b y 9 % – 3 9 %.
F u rt h e r m o r e, C A N N O N (F C + C o n v L a yers) o ut p e rf o r m s all
ot h e r a p p r o a c h e s c o n si st e ntl y a n d s h o w s a n E D P i m p r o v e-
m e nt of 3 .5 × – 6 .2 × c o m p a r e d t o S E T (Fi g u r e 1 0).

R e s N et N et w or k R e s ult s: T h e R e s N et r e s ult s i n cl u d e f o u r
D N N s a n d t w o d at a s et s. T h e M a p pi n g O nl y a p p r o a c h h a s
t h e hi g h e st c o m m u ni c ati o n e n e r g y a m o n g all t e c h ni q u e s e x-
c e pt f o r t h e R e s N et- 5 0 m o d el o n b ot h d at a s et s. T h e i m p r o v e-
m e nt s of S E T + M a p pi n g o v e r M a p pi n g O nl y a r e 4 % – 2 1 %
a n d 5 % – 2 2 % o n CI F A R- 1 0 0 a n d CI F A R- 1 0 d at a s et s, r e s p e c-
ti v el y. C A N N O N c o n s u m e s t h e l e a st c o m m u ni c ati o n e n e r g y
c o m p a r e d t o all ot h e r a p p r o a c h e s. W hil e C A N N O N (F C
L a yers) h a s 1 .2 × – 1 .3 × i m p r o v e m e nt o v e r S E T , C A N N O N

D e n s
e N et-

2 0 1

D e n s
e N et-

1 6 9

D e n s
e N et-

1 6 1

R e s
N et-

1 5 2

R e s
N et-

1 0 1

R e s
N et-

5 0

R e s
N et-

1 8

V G G- 1 6

R e s
N et-

1 5 2

R e s
N et-

1 0 1

R e s
N et-

5 0

R e s
N et-

1 8

V G G- 1 6

0. 0 3

0. 1 3

0. 5 0

2. 0 0

8. 0 0

3 2. 0 0

1 2 8. 0 0

5 1 2. 0 0
 M a p pi n g O nl y S E T S E T + M a p pi n g C A N N O N (F C L a y er s) C A N N O N (F C + C o n v L a y er s)

C
o

m
m
u
ni

c
ati

o
n

E
D

P
(

ms
-

µ
J)

CI F A R- 1 0 0 CI F A R- 1 0

6. 2 x

3. 5 x

4. 0 x 5. 0 x 4. 3 x

6. 2 x

3. 7 x

Ti n y-I m a g e N et

6. 8 x
2. 7 x

2. 9 x
4. 4 x

3. 8 x 6. 1 x

Fi g. 1 0. C o m p ari s o n of c o m m u ni c ati o n E D P (l o g s c al e) a cr o s s diff er e nt D N N s a n d d at a s et s. A s s h o w n, C A N N O N c o n si st e ntl y i m pr o v e s t h e
c o m m u ni c ati o n E D P f or all n et w or k m o d el s a n d d at a s et s.

10

TABLE 4
Accuracy (%) comparison across different models and datasets. DN and RN denote DenseNet and ResNet, respectively.

Dataset Tiny-ImageNet (%) CIFAR-100 (%) CIFAR-10 (%) MNIST (%)
Network DN201 DN169 DN161 RN152 RN101 RN50 RN18 VGG16 RN152 RN101 RN50 RN18 VGG16 MLP

Mapping Only [5] 60.15 60.45 62.04 80.26 79.37 78.52 77.82 75.12 90.74 90.14 89.87 84.16 90.70 98.22
SET [4] 61.40 61.53 62.71 78.98 80.04 79.17 78.01 75.78 90.52 91.10 90.55 88.94 91.37 98.68

CANNON (FC Layers) 60.84 61.22 62.28 78.83 79.54 77.80 77.65 74.81 89.16 90.32 89.77 88.23 90.58 98.34
CANNON (FC+CONV Layers) 59.50 58.74 60.95 78.78 78.06 76.90 76.39 74.58 88.88 88.96 87.98 85.66 89.31 NA
Accuracy Difference from [5] -0.65 -1.71 -1.09 -1.48 -1.31 -1.62 -1.43 -0.54 -1.86 -1.18 -1.89 1.50 -1.39 0.02

(FC+Conv Layers) has an improvement of 1.7×–2.6× with
respect to SET on the CIFAR-100 dataset. On the CIFAR-
10 dataset, CANNON (FC+Conv Layers) further improves
the communication energy up to 3.0× compared to SET,
as shown in Figure 9.

Similar to energy consumption, CANNON achieves sig-
nificant improvements in EDP too with respect to all other
approaches. The improvement varies between 2.7×–6.8×
and 3.7×–6.2× on CIFAR-100 and CIFAR-10 datasets, re-
spectively, when compared to SET, as shown in Figure 10.

VGG-16 and MLP Results: We show the energy and
EDP results with VGG-16 on CIFAR-100 and CIFAR-10
datasets in Figure 9 and Figure 10, respectively. CANNON
(FC+Conv Layers) achieves 1.9× and 2.0× communication
energy savings with respect to SET for VGG-16 on CIFAR-
100 and CIFAR-10 datasets, respectively. EDP improvements
are even higher with 3.8× and 6.1×. Finally, we performed
experiments with MLP using MNIST dataset. CANNON
(FC+Conv Layers) achieves 1.9× lower energy consumption
and 4.4× lower EDP than SET (105.7 nJ vs 195.8 nJ) without
any accuracy impact. MLP results are not shown in Figure 9
and 10 for readability. These savings offer huge advantages
for edge devices as they have limited energy budgets.

4.5 Accuracy Analysis
The previous sections show that CANNON significantly
improves the hardware performance and energy consump-
tion efficiency compared to the baseline techniques. In this
section, we discuss the test accuracy results of CANNON
for all DNNs and datasets. All results are shown in Table 4.
DenseNet Network Results: The Mapping Only ap-
proach [5] using an unpruned DenseNet-201 network model
on the Tiny-ImageNet dataset achieves 60.15% test accuracy.
As shown in Table 4, CANNON (FC Layers) improves the
test accuracy by 0.69% with significant hardware efficiency
improvements compared to Mapping Only, as discussed
in previous sections. Moreover, CANNON (FC Layers) has
0.56% decrease from the SET technique [4]. For DenseNet-
169 and DenseNet-161, we also achieve up to 0.77% and
0.24% accuracy improvements over Mapping Only, respec-
tively. Table 4 shows that CANNON (FC Layers) yields 0.65%
decrease from the unpruned network on DenseNet-201.
Similarly, we have only 1.71% and 1.09% accuracy loss over
the unpruned networks of DenseNet-169 and DenseNet-161,
respectively.
ResNet Network Results: SET achieves the highest test
accuracy in most ResNet-based networks using CIFAR-100
and CIFAR-10 datasets. The Mapping Only approach has
an accuracy difference in the range of -1.28% to 0.96%
compared to the SET technique, except for ResNet-18 on

CIFAR-10. The Mapping Only approach has 4.78% lower ac-
curacy than SET for ResNet-18 on CIFAR-10. CANNON (FC
Layers) has an accuracy difference as minimal as between
-1.43% to 0.17% compared to the Mapping Only approach on
unpruned networks on the CIFAR-100 dataset. The accuracy
improvement ranges from -1.58% to 0.18% compared to the
Mapping Only approach on the CIFAR-10 dataset, except
for ResNet-18. For ResNet-18 on CIFAR-10, the accuracy
improvement is up to 4.07%. CANNON (FC+Conv Layers)
shows an accuracy difference between -1.89% to 1.50% com-
pared against the Mapping Only approach on both datasets.

We remark that CANNON yields a significant hardware
efficiency improvement with less than 2% accuracy loss
compared to the unpruned networks. It is then possible to
use CANNON with lower pruning ratios to compensate for
the accuracy loss.
VGG-16 and MLP Results: As shown in Table 4, CANNON
achieves almost the same accuracy as SET for MLP. More-
over, it shows 0.12% accuracy improvement over Mapping
Only. For VGG-16, CANNON shows 0.54% and 1.39% accu-
racy loss for CIFAR-100 and CIFAR-10, respectively.

4.6 Ablation Study
In this section, we conduct a new ablation study to exam-
ine how hardware awareness impacts pruning. We com-
pare two approaches: CANNON (FC+Conv Layers) and a
communication-agnostic Baseline (FC+Conv Layers). CAN-
NON prunes the network by considering both weight
magnitudes and communication costs, whereas Baseline
(FC+Conv Layers) prunes solely based on weight magnitudes
without considering communication costs. Both approaches
use the same pruning ratios for fairness.

Table 5 presents that both approaches achieve compara-
ble accuracy. However, CANNON (FC+Conv Layers) outper-
forms Baseline (FC+Conv Layers) by up to 1.74× higher per-
formance, with a timing improvement from 0.7ms to 0.41ms.

TABLE 5
CANNON (FC+Conv Layers) comparison with respect to Baseline

(FC+Conv Layers). Model and dataset combinations are ResNet-18 on
CIFAR-10, VGG-16 on CIFAR-100, and DenseNet-169 on

Tiny-ImageNet.

Model ResNet-18 VGG-16 DenseNet-169

Metric Acc.
(%)

Lat.
(ms)

EDP
(msµJ)

Acc.
(%)

Lat.
(ms)

EDP
(msµJ)

Acc.
(%)

Lat.
(ms)

EDP
(msµJ)

Baseline
(FC+Conv) 85.42 0.70 2.32 74.88 1.11 19.14 59.21 1.62 22.70

CANNON
(FC+Conv) 85.66 0.41 0.72 74.58 0.66 6.85 58.74 0.93 7.04

Improv. 0.28 1.70× 3.24× -0.40 1.68× 2.79× -0.80 1.74× 3.22×

11

TABLE 6
CANNON comparison with respect to lottery ticket hypothesis [6].

Dataset ResNet-152 ResNet-101 ResNet-50

Metric Accuracy
(%)

Latency
(ms)

Energy
(µJ)

EDP
(ms-µJ)

Accuracy
(%)

Latency
(ms)

Energy
(µJ)

EDP
(ms-µJ)

Accuracy
(%)

Latency
(ms)

Energy
(µJ)

EDP
(ms-µJ)

LTH [6] 91.08 3.48 68.09 237.12 91.82 1.31 42.34 55.55 91.57 1.00 9.08 9.08
LTH + Mapping [6] 91.08 3.45 66.87 230.69 91.82 1.23 38.81 47.82 91.57 0.88 8.44 7.42

CANNON 88.88 2.41 31.30 75.38 88.96 0.90 24.76 22.22 87.98 0.62 5.32 3.28
Improvement over LTH [6] -2.20% 1.45× 2.18× 3.15× -2.86% 1.46× 1.71× 2.50× -3.59% 1.61× 1.70× 2.77×

Additionally, CANNON (FC+Conv Layers) results in up to
a 3.24× reduction in EDP compared to Baseline (FC+Conv
Layers). These results highlight the importance of hardware-
aware training for achieving optimal performance.

4.7 Comparison to Lottery Ticket Hypothesis

This section compares the accuracy and performance of
CANNON with FC and CONV layer pruning against the
Lottery Ticket Hypothesis (i.e., LTH) [6] using the official
implementation of LTH from the GitHub repository [43].
We use three iterations, each pruning 20% of the network
during the training process. In the end, the network of the
winning ticket is approximately 49% pruned. We use an
equal pruning ratio in CANNON to make the comparison
fair. We utilize three networks from the ResNet family
with 152, 101, and 50 layers on the CIFAR-10 dataset. We
incorporate the mapping method used in [37] (LTH) and
our proposed latency-aware mapping (LTH + Mapping) to
evaluate the hardware performance of LTH pruning. The
accuracy, latency, energy, and EDP results are shown in Ta-
ble 6. Since our proposed technique prunes a DNN consider-
ing hardware performance, CANNON consistently outper-
forms LTH in all three hardware performance metrics with
slightly lower accuracy. The latency improvements with
CANNON are 1.45×–1.61× compared against LTH with
the mapping method used in [37]. We observe such an im-
provement due to our proposed latency-aware mapping and
hardware-aware dynamic sparse training methodologies,
which reduces the communication cost without pruning the
significant weights. We also observe that the improvements
in energy consumption vary between 1.70× – 2.18×. The
highest improvements are seen in the energy-delay product
(EDP). CANNON achieves up to 3.15× improvement in
EDP with respect to the Lottery Ticket Hypothesis with the
mapping method used in [37].

As a conclusion, we note that the reduction in network
size and the increase in accuracy due to pruning do not
necessarily translate into better hardware results unless they
consider hardware-aware mapping and pruning methods.
Overall, CANNON provides excellent results compared to
state-of-the-art pruning methods and can work synergisti-
cally with any pruning technique.

5 CONCLUSION

In this paper, we have presented a novel and comprehensive
communication-aware sparse DNN optimization frame-
work called CANNON. CANNON first maps the DNN
layers to the tiles of the NoC on the target hardware; then, it

replaces the fully connected and convolutional layers with
sparse graphs. After that, a novel hardware-aware dynamic
sparse training technique prunes connections based on the
absolute value of their weights and the communication cost
on the target hardware. After hardware-aware pruning, we
insert new weights based on the communication cost. We
maintain the number of parameters throughout the training
by pruning and adding the same percentage of weights.

We evaluated the accuracy and latency impact of CAN-
NON extensively on a wide range of DNNs using pop-
ular datasets. Our results show that CANNON achieves
up to 3.1× lower communication latency and 6.8× lower
energy-delay product compared to state-of-the-art pruning
approaches [4], [6] and offers substantial energy savings
without a significant loss in classification accuracy.

REFERENCES

[1] C. Gamanayake, L. Jayasinghe, B. K. K. Ng, and C. Yuen, “Cluster
Pruning: An Efficient Filter Pruning Method for Edge AI Vision
Applications,” IEEE Journal of Selected Topics in Signal Processing,
vol. 14, no. 4, pp. 802–816, 2020.

[2] V. Radu, K. Kaszyk, Y. Wen, J. Turner, J. Cano, E. J. Crowley,
B. Franke, A. Storkey, and M. O’Boyle, “Performance Aware
Convolutional Neural Network Channel Pruning for Embedded
GPUs,” in 2019 IEEE International Symposium on Workload Charac-
terization (IISWC), 2019, pp. 24–34.

[3] S. Yang, W. Chen, X. Zhang, S. He, Y. Yin, and X.-H. Sun, “Auto-
prune: Automated DNN Pruning and Mapping for ReRAM-based
Accelerator,” in Proceedings of the ACM International Conference on
Supercomputing, 2021, pp. 304–315.

[4] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable Training of Artificial Neural Networks
with Adaptive Sparse Connectivity Inspired by Network Science,”
Nature communications, vol. 9, no. 1, pp. 1–12, 2018.

[5] N. Wu, L. Deng, G. Li, and Y. Xie, “Core placement optimization
for multi-chip many-core neural network systems with reinforce-
ment learning,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 26, no. 2, pp. 1–27, 2020.

[6] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in International Conference on
Learning Representations (ICLR), 2018.

[7] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A Circuit-level Macro
Model for Benchmarking Neuro-Inspired Architectures in Online
Learning,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

[8] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally, “A Detailed and Flexible Cycle-
Accurate Network-on-Chip Simulator,” in IEEE ISPASS, 2013, pp.
86–96.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[10] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor
pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

12

[12] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,”
CS 231N, vol. 7, no. 7, p. 3, 2015.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

[14] Y. LeCun, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

[15] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Ad-
vances in neural information processing systems, vol. 2, 1989.

[16] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon
and general network pruning,” in IEEE international conference on
neural networks. IEEE, 1993, pp. 293–299.

[17] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in neural
information processing systems, vol. 28, 2015.

[18] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout
sparsifies deep neural networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 2498–2507.

[19] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowd-
hury, “Hardware-aware pruning of dnns using lfsr-generated
pseudo-random indices,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[20] C. Chu, Y. Wang, Y. Zhao, X. Ma, S. Ye, Y. Hong, X. Liang, Y. Han,
and L. Jiang, “Pim-prune: Fine-grain dcnn pruning for crossbar-
based process-in-memory architecture,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[21] J. Meng, L. Yang, X. Peng, S. Yu, D. Fan, and J.-S. Seo, “Structured
pruning of rram crossbars for efficient in-memory computing ac-
celeration of deep neural networks,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 68, no. 5, pp. 1576–1580, 2021.

[22] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8612–8620.

[23] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1–18, 2017.

[24] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 806–814.

[25] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware
parallelism,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 2, pp. 548–560, 2017.

[26] W. Romaszkan, T. Li, and P. Gupta, “3pxnet: Pruned-permuted-
packed xnor networks for edge machine learning,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 19, no. 1, pp.
1–23, 2020.

[27] G. Krishnan, X. Du, and Y. Cao, “Structural pruning in
deep neural networks: A small-world approach,” arXiv preprint
arXiv:1911.04453, 2019.

[28] G. Yuan, P. Behnam, Y. Cai, A. Shafiee, J. Fu, Z. Liao, Z. Li, X. Ma,
J. Deng, J. Wang, M. Bojnordi, Y. Wang, and C. Ding, “Tinyadc:
Peripheral Circuit-aware Weight Pruning Framework for Mixed-
signal DNN Accelerators,” in 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 926–931.

[29] J. Lin, Z. Zhu, Y. Wang, and Y. Xie, “Learning the sparsity for
reram: Mapping and pruning sparse neural network for reram
based accelerator,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, 2019, pp. 639–644.

[30] L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and Y. Xie,
“Crossbar-aware neural network pruning,” IEEE Access, vol. 6, pp.
58 324–58 337, 2018.

[31] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse reram engine: Joint exploration of
activation and weight sparsity in compressed neural networks,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 236–249.

[32] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leis-
erson, “Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks,” in Proceedings of
the twenty-first annual symposium on Parallelism in algorithms and
architectures, 2009, pp. 233–244.

[33] Y. Saad, “Sparskit: a basic tool kit for sparse matrix computations-
version 2,” 1994.

[34] S. Smith and G. Karypis, “Tensor-matrix products with a com-
pressed sparse tensor,” in Proceedings of the 5th Workshop on Irregu-
lar Applications: Architectures and Algorithms, 2015, pp. 1–7.

[35] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-s. Seo, U. Y. Ogras,
and Y. Cao, “Interconnect-aware Area and Energy Optimization
for In-Memory Acceleration of DNNs,” IEEE Design & Test, vol. 37,
no. 6, pp. 79–87.

[36] S. K. Mandal, G. Krishnan, C. Chakrabarti, J.-S. Seo, Y. Cao, and
U. Y. Ogras, “A Latency-optimized Reconfigurable NoC for In-
memory Acceleration of DNNs,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 10, no. 3, pp. 362–375,
2020.

[37] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with in-situ Analog
Arithmetic in Crossbars,” ACM/IEEE ISCA, 2016.

[38] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A Pipelined
Reram-based Accelerator for Deep Learning,” in IEEE HPCA,
2017, pp. 541–552.

[39] E. Paul and R. Alfréd, “On random graphs i,” Publicationes Mathe-
maticae (Debrecen), vol. 6, pp. 290–297, 1959.

[40] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[41] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[42] X. Qiao, X. Cao, H. Yang, L. Song, and H. Li, “Atomlayer: A
universal reram-based cnn accelerator with atomic layer com-
putation,” in Proceedings of the 55th Annual Design Automation
Conference, 2018, pp. 1–6.

[43] J. Frankle, “Openlth: A framework for lottery tickets and beyond,”
https://github.com/facebookresearch/open\ lth, 2020.

A. Alper Goksoy (Graduate Student Member,
IEEE) received his B.S. degree in Electrical and
Electronics Engineering from Bogazici Univer-
sity, Istanbul, Turkey. He is currently pursuing
his Ph.D. in Electrical Engineering at University
of Wisconsin-Madison, USA. His research in-
terests include the design of AI hardware, task
scheduling for heterogeneous, domain-specific
SoCs, and graph neural networks. He received
Richard Newton Young Fellowship at DAC 2019,
and Young Fellowship at DAC 2021.

Guihong Li (Graduate Student Member, IEEE)
received the B.S degrees from the Beijing Uni-
versity of Posts and Telecommunications, Be-
jing, China, in 2018. He is currently pursuing
his Ph.D. in Electrical and Computer Engineer-
ing at The University of Texas at Austin, USA.
His research interest includes Neural Architec-
ture Search, hardware-software co-design for
EdgeAI system optimization. He received nu-
merous awards including best paper nomination
from ISWC 2022.

Sumit K. Mandal (Member, IEEE) received the
dual (B.Tech.+M.Tech.) degrees from the In-
dian Institute of Technology, Kharagpur, India, in
2015. He completed his Ph.D. in Electrical En-
gineering with University of Wisconsin-Madison,
USA in 2022. He is currently an Assistant Profes-
sor in the Department of Computer Science and
Automation at Indian Institute of Science, Ban-
galore. His research interest includes analysis
and design of NoC architecture, AI hardware and
power management of multicore processors. He

received numerous awards including best paper award from ACM TO-
DAES in 2021.

13

Umit Y. Ogras received his Ph.D. degree
in Electrical and Computer Engineering from
Carnegie Mellon University, Pittsburgh, PA, in
2007. He is currently an Associate Profes-
sor in the Dept. of Electrical and Computer
Engineering at the University of Wisconsin-
Madison. His research interests include em-
bedded systems, heterogeneous systems-on-
chip, low-power VLSI, wearable computing, and
flexible hybrid electronics. Dr. Ogras received
DARPA Director’s Fellowship Award (2020),

DARPA Young Faculty Award (2018), NSF CAREER Award (2017), Intel
Strategic CAD Lab Research Award (2013), and best paper awards at
2019 CASES, 2017 CODES+ISSS, 2012 IEEE Transactions on CAD,
and 2011 IEEE VLSI Transactions.

Radu Marculescu is the Laura Jennings Turner
Chair in Engineering and Professor in the Elec-
trical and Computer Engineering department at
The University of Texas at Austin. He received
his Ph.D. in Electrical Engineering from the Uni-
versity of Southern California in 1998. Radu’s
current research focuses on developing ML/AI
methods and tools for modeling and optimization
of embedded systems, cyber-physical systems,
and social networks.

