Published as a conference paper at ICLR 2023

Z1C0O: ZERO-SHOT NAS VIA INVERSE COEFFICIENT
OF VARIATION ON GRADIENTS

Guihong Li', Yuedong Yang!, Kartikeya Bhardwaj?; Radu Marculescu'

1The University of Texas at Austin, 2Qualcomm
{1lgh, albertyoung, radum}@utexas.edu, kbhardwa@qgti.qualcomm.com

ABSTRACT

Neural Architecture Search (NAS) is widely used to automatically obtain the neu-
ral network with the best performance among a large number of candidate archi-
tectures. To reduce the search time, zero-shot NAS aims at designing training-free
proxies that can predict the test performance of a given architecture. However, as
shown recently, none of the zero-shot proxies proposed to date can actually work
consistently better than a naive proxy, namely, the number of network parameters
(#Params). To improve this state of affairs, as the main theoretical contribution, we
first reveal how some specific gradient properties across different samples impact
the convergence rate and generalization capacity of neural networks. Based on
this theoretical analysis, we propose a new zero-shot proxy, ZiCo, the first proxy
that works consistently better than #Params. We demonstrate that ZiCo works bet-
ter than State-Of-The-Art (SOTA) proxies on several popular NAS-Benchmarks
(NASBench101, NATSBench-SSS/TSS, TransNASBench-101) for multiple ap-
plications (e.g., image classification/reconstruction and pixel-level prediction). Fi-
nally, we demonstrate that the optimal architectures found via ZiCo are as compet-
itive as the ones found by one-shot and multi-shot NAS methods, but with much
less search time. For example, ZiCo-based NAS can find optimal architectures
with 78.1%, 79.4%, and 80.4% test accuracy under inference budgets of 450M,
600M, and 1000M FLOPs, respectively, on ImageNet within 0.4 GPU days. Our
code is available at https://github.com/SLDGroup/ZiCo.

1 INTRODUCTION

During the last decade, deep learning has achieved great success in many areas, such as computer
vision and natural language modeling Krizhevsky et al. (2012); Liu & Deng (2015); Huang et al.
(2017); He et al. (2016); Dosovitskiy et al. (2021); Brown et al. (2020); Vaswani et al. (2017). In
recent years, neural architecture search (NAS) has been proposed to search for optimal architectures,
while reducing the trial-and-error (manual) network design efforts Baker et al. (2017); Zoph & Le
(2017); Elsken et al. (2019). Moreover, the neural architectures found via NAS show better perfor-
mance than the manually-designed networks in many mainstream applications Real et al. (2017);
Gong et al. (2019); Xie et al. (2019); Wu et al. (2019); Wan et al. (2020); Li & Talwalkar (2020);
Kandasamy et al. (2018); Yu et al. (2020b); Liu et al. (2018b); Cai et al. (2018); Zhang et al. (2019a);
Zhou et al. (2019); Howard et al. (2019); Li et al. (2021b).

Despite these advantages, many existing NAS approaches involve a time-consuming and resource-
intensive search process. For example, multi-shot NAS uses a controller or an accuracy predictor
to conduct the search process and it requires training of multiple networks; thus, multi-shot NAS
is extremely time-consuming Real et al. (2019); Chiang et al. (2019). Alternatively, one-shot NAS
merges all possible networks from the search space into a supernet and thus only needs to train
the supernet once Dong & Yang (2019); Zela et al. (2020); Chen et al. (2019); Cai et al. (2019);
Stamoulis et al. (2019); Chu et al. (2021); Guo et al. (2020); Li et al. (2020); this enables one-
shot NAS to find a good architecture with much less search time. Though the one-shot NAS has
significantly improved the time efficiency of NAS, training is still required during the search process.

*Work done while Kartikeya Bhardwaj was at Arm, Inc.

https://github.com/SLDGroup/ZiCo

Published as a conference paper at ICLR 2023

Recently, the zero-shot approaches have been proposed to liberate NAS from training entirely Wu
et al. (2021); Zhou et al. (2022; 2020); Ingolfsson et al. (2022); Tran & Bae (2021); Do & Luong
(2021); Tran et al. (2021); Shu et al. (2022b); Li et al. (2022). Essentially, the zero-shot NAS utilizes
some proxy that can predict the test performance of a given network without training. Moreover, the
design of the proxy in zero-shot NAS is usually based on some theoretical analysis of deep networks.
Hence, zero-shot approaches can not only significantly improve the time efficiency of NAS, but
also deepen the theoretical understanding on why certain networks work well. Nonetheless, as
revealed in Ning et al. (2021); White et al. (2022), the zero-shot proxies proposed to date cannot
work consistently better than a naive proxy, namely, the number of parameters (#Params); in fact,
#Params often achieves the best performance on most of popular NAS benchmarks. These results
may undermine the effectiveness of zero-shot NAS approaches.

To address the limitations of existing zero-shot proxies, we target the following key questions:

1. How do some specific gradient properties, i.e., mean value and standard deviation across
different samples, impact the training convergence of neural networks?

2. Can we use these two gradient properties to design a new theoretically-grounded proxy that
works better than #Params consistently?

To this end, we first analyze how the mean value and standard deviation of gradients across dif-
ferent training batches impact the training convergence of neural networks. Based on our analysis,
we propose ZiCo, a new proxy for zero-shot NAS. We demonstrate that, compared to all exist-
ing proxies (including #Params), ZiCo has either a higher or at least on-par correlation with the
test accuracy on popular NAS-Benchmarks (NASBench101, NATS-Bench-SSS/TSS) for multiple
datasets (CIFAR10/100, ImageNet16-120). Finally, we demonstrate that ZiCo enables a zero-shot
NAS framework that can efficiently find the network architectures with the highest test accuracy
compared to other zero-shot baselines. In fact, our zero-shot NAS framework achieves competitive
FLOPs-accuracy tradeoffs compared to multiple one-shot and multi-shot NAS, but with much lower
time costs. To summarize, we make the following major contributions:

* We theoretically reveal how the mean value and variance of gradients across multiple sam-
ples impact the training convergence and generalization capacity of neural networks.

* We propose a new zero-shot proxy, ZiCo, that works better than existing proxies on popu-
lar NAS-Benchmarks (NASBench101, NATS-Bench-SSS/TSS, TransNASBench-101) for
multiple applications (image classification/reconstruction and pixel-level prediction).

* We demonstrate that our proposed zero-shot NAS achieves competitive test accuracy with
representative one-shot and multi-shot NAS with much less search time.

The rest of the paper is organized as follows. We discuss related work in Section 2. In Section 3, we
introduce our theoretical analysis. We introduce our proposed zero-shot proxy (ZiCo) and the NAS
framework in Section 3.4. Section 4 validates our analysis and presents our results with the proposed
zero-shot NAS. We conclude the paper in Section 5 with remarks on our main contribution.

2 RELATED WORK
2.1 ZERO-SHOT NAS

The goal of zero-shot NAS is to rank the accuracy of various candidate network architectures without
training, such that we can replace the expensive training process in NAS with some computation-
efficient proxies Xiang et al. (2021a); Javaheripi et al. (2022); Bhardwaj et al. (2021); Li et al.
(2021a). Hence, the quality of the proxy determines the effectiveness of zero-shot NAS. Several
works use the number of linear regions to approximately measure the expressivity of a deep neural
network Mellor et al. (2021); Chen et al. (2021b); Bhardwaj et al. (2022). Alternatively, most of
the existing proxies are derived from the gradient of deep networks. For example, Synflow, SNIP,
and GraSP rely on the gradient w.r.t the parameters of neural networks; they are proved to be the
different approximations of Taylor expansion of deep neural networks Abdelfattah et al. (2021); Lee
et al. (2019b); Tanaka et al. (2020); Wang et al. (2020). Moreover, the Zen-score approximates the
gradient w.r.t featuremaps and measures the complexity of neural networks Lin et al. (2021); Sun
et al. (2021). Furthermore, Jacob_cov leverages the Jacobian matrix between the loss and multi-
ple input samples to quantify the capacity of modeling the complex functions Lopes et al. (2021).
Though zero-shot NAS can significantly accelerate the NAS process, it has been revealed that the
naive proxy #Params generally works better than all the proxies proposed to date Ning et al. (2021);
White et al. (2022). These limitations of existing proxies motivate us to look for a new proxy that

Published as a conference paper at ICLR 2023

can consistently work better than #Params and address the limitations of existing zero-shot NAS
approaches.

2.2 KERNEL METHODS IN NEURAL NETWORKS

Kernel methods are widely explored to analyze the convergence property and generalization capacity
of networks trained with gradient descent Neal (1996); Williams (1996); Du et al. (2019a); Lu et al.
(2020); Allen-Zhu et al. (2019); Hanin & Nica (2020); Golikov et al. (2022). For example, the
training of wide neural networks is proved to be equivalent to the optimization of a specific kernel
function Arora et al. (2019a); Lee et al. (2019a); Chizat et al. (2019); Arora et al. (2019b); Cho
& Saul (2009). Moreover, given the networks with specific width constraints, researchers proved
that the training convergence and generalization capacity of networks can be described by some
corresponding kernels Mei et al. (2019); Zhang et al. (2019b); Garriga-Alonso et al. (2019); Du et al.
(2019b). In our work, we extend such kernel-based analysis to reveal the relationships between the
gradient properties and the training convergence and generalization capacity of neural networks.

3 CONVERGENCE AND GENERALIZATION VIA GRADIENT ANALYSIS

We consider the mean value and standard deviation of gradients across different samples and first
explore how these two metrics impact the training convergence of linear regression tasks.

3.1 LINEAR REGRESSION
Inspired by Du et al. (2019b), we use the training set S with M samples as follows:

S={(®i,)i =1,... M, z; €R?, y; €R, ||m;|| =1, |ys| < R, M > 1} (1)
where R is a positive constant and || - || denotes the L2-norm of a given vector; ¢; € R is the !
input sample and normalized by its L2-norm (i.e., ||x;|| = 1), and y; is the corresponding label. We

define the following linear model f = a™

ming » Ly, f(%i; @) = ming %(GT%’ —yi)? 2)

9

x optimized with an MSE-based loss function L:

where a € R? is the initial weight vector of f. We denote the gradient of L w.r.t to @ as g(z;) when
taking (x;,y;) as the training sample:

olay) = 2T 20)) &)

We denote the j' element of g(z;) as g;(z;). We compute the mean value (x;) and standard
deviation (o) of g;(x;) across all training samples as follows:

1 & 1
Wi = M Zg](a:z) 0 = M Z(gj(x'L) - :uj)2 (4)

Theorem 3.1. We denote the updated weight vector as a and denote [9;(z:)]> = G. Assume
we use the accumulated gradient of all training samples and learning rate n to update the initial
weight vector a, i.e., & = a —n)_, g(x;). If the learning rate 0 < n < 2, then the total training
loss is bounded as follows:

. G 1.,)
In particular, if the learning rate n = ﬁ, then L(&) is bounded by:
R M
ZL(yi,f(-’Bi;a)) < ?ZUJQ (6)
g j

We provide the proof in Appendix A and the experimental results to validate this theorem in Sec 4.2.

Remark 3.1 Intuitively, Theorem. 3.1 tells us that the higher the gradient absolute mean across
different training samples, the lower the training loss the model converges to; i.e., the network
converges at a faster rate. Similarly, if nM < 1, the smaller the gradient standard deviation across
different training samples/batches, the lower the training loss the model can achieve.

Published as a conference paper at ICLR 2023

3.2 MLPs wiTH RELU

In this section, we generalize the linear model to a network with ReLU activation functions. We
primarily consider the standard deviation of gradients in the Gaussian kernel space. We still focus
on the regression task on the training set S defined in Eq. 1. We consider a neural network in the
same form as Du et al. (2019b):

h(x;s, W) stTReLU wlx) (7)

where m is the number of output neurons of the first layer; s,. is the " element in the output weight
vector s; W € R™* is the input weight matrix, and w, € R? is the r*" row weight vector in W.

For training on the dataset S with M samples defined in Eq. 1, we minimize the following loss

function: M

1
L(s,W) =Y —(h(zi;s, W) —y;)? 8
(0.W) =3 5 (h@ia. W) ~p) ®)
Following the common practice Du et al. (2019b), we fix the second layer (s) and use gradient
descent to optimize the first layer (W) with a learning rate 7:

Z@LsWt—l))

wp(t) = wp(t — 1) dwn (1)

)

where W (¢ — 1) denote the input weight matrix after t — 1 training steps; wy(t) denote the 7" row
weight vector after ¢ training steps.

Definition 1. (Gram Matrix) A Gram Matrix H(t) € RM*M on the training set {(xi,y;),i =
1, ..., M} after t training steps is deﬁned as follows:

H;j(t) = :c T ZH{QZ wy(t) > 0, x ~(t) > 0} (10)

where I is the indicator function and I{.A} = 1 if and only if event .A happens. We denote the
Amin(H) as the minimal eigenvalue of a given matrix H. We denote the A\g = Ay (H (00)).

3.2.1 CONVERGENCE RATE

Theorem 3.2. Given a neural network with ReLU activation function optimized by minimizing Eq. 8,
we assume that each initial weight vector {w,.(0),r = 1,...,n} is i.i.d. generated from N (0, I) and
the gradient for each weight follows i.i.d. N'(0, c), where the o is measured across different training
)\oﬁ(s
2M2\2®(1—¢)to’
then with with probability at least (1 — 6)(1 — €), the following holds true: for any r € [m],

[|lwr(0) — wy(t)|| < C = ntor/®(1 — €), and at training step t the Gram matrix H(t) satisfies:

Amin () > A (H(0)) MMZ”’%W -0 an

®(-) is the inverse cumulative distribution function for a d-degree chi-squared distribution x> (d).

steps. For some positive constants § and e, if the learning rate 1 satisfies n <

We provide the proof in Appendix B. We now introduce the following result from Du et al. (2019b)
to further help our analysis.
Lemma 1. Du et al. (2019b) Assume we set the number of output neurons of the first layer m =
Q(A%d) and we i.i.d. initialize w, ~ N(0,I) and s, ~ uniform[{—1,1}], for r € [m]|. When
minimizing the loss function in Eq. 8 on the training set S in Eq. 1, with probability at least 1 — §
over the initialization, the training loss after t training steps is bounded by:

L(s,(W(1)) < e WO L(s, (W (t - 1) (12)
Theorem 3.3. Under the assumptions of Theorem 3.2 and Lemma 1, with probability at least (1 —
8)(1 — €), the following inequality holds true:

2v2M2nto/®(1—c)
L(s, (W(t)) < e AmnHO) e ™% (s, (W(t — 1)) (13)

Published as a conference paper at ICLR 2023

The proof consists of replacing A, (H (t)) in Eq. 12 with its lower bound given by Theorem 3.2.

Remark 3.4 Theorem. 3.3 shows that after some training steps ¢, the network with a smaller standard
deviation (o) of gradients will have a smaller training loss; i.e., the network has a faster convergence
rate at each training step. We further validate this theorem in Sec. 4.2.

3.2.2 GENERALIZATION CAPACITY

Several prior works show that the generalization capacity of a neural network is highly correlated
with its sharpness of the loss function Keskar et al. (2017b;a); Li et al. (2018); Liang et al. (2019).
Usually, a flatter loss landscape leads to a better generalization capacity. Moreover, it has also been
shown that the largest eigenvalue of the Gram matrix of loss can be used to describe the sharpness
of the loss landscape Sagun et al. (2018); more precisely:

Proposition 3.4. The lower the largest eigenvalue of the Gram matrix, the higher the generalization
capacity of the network. [Lewkowycz et al. (2020); Sagun et al. (2016)]

Next, we analyze how the gradient of a neural network impacts the largest eigenvalues of the Gram
matrix and its generalization capacity.
Theorem 3.5. Under the assumptions of Theorem 3.2, for some positive constants 0 and e, if the

learning rate 1 satisfies) < %, then with with probability at least (1 — §)(1 — €), for

wy(0) — wy(t)|| < C = nto\/P(1 — €), and at training step t, the Gram matrix

any r € [m),
H(t) satisfies:

M () < Amaa(1(0) + 2= (19

®(-) is the inverse cumulative distribution function for a d-degree chi-squared distribution x> (d).

We provide the proof in Appendix C.

Remark 3.5 Theorem. 3.5 shows that after some training steps ¢, the network with a smaller standard
deviation (o) of gradients will have a lower largest eigenvalues of the Gram matrix; i.e., the network
has a flatter loss landscape rate at each training step. Therefore, based on Proposition 3.4, the model
will generalize better. We further validate this theorem in the following section.

3.3 SUMMARY OF OUR THEORETICAL ANALYSIS

Theorem 3.1, Theorem 3.3 and Theorem 3.5 tell us that the network with a high training convergence
speed and generalization capacity should have high absolute mean values and low standard deviation
values for the gradient, w.r.t the parameters across different training samples/batches.

3.4 NEW ZERO-SHOT PROXY

Inspired by the above theoretical insights, we next propose a proxy (ZiCo) that jointly considers
both absolute mean and standard deviation values. Following the standard practice, we consider
convolutional neural networks (CNNs) as candidate networks.

Definition 2. Given a neural network with D layers and loss function L, the Zero-shot inverse
Coefficient of Variation (ZiCo) is defined as follows:

ZiCo = log(), i€{l,..,N} (15)
Z u;z \/V@r ‘V L(Xi,9:;0)])

where © denote the initial parameters of a given network; 6; denote the parameters of the I*" layer
of the network, and w represents each element in 6;; X; and y; are the ith input batch and corre-
sponding labels from the training set; N is number of training batches used to compute ZiCo. We
incorporate log to stabilize the computation by regularizing the extremely large or small values.

Of note, our metric is applicable to general CNNs; i.e., there’s no restriction w.r.t. the neural ar-
chitecture when calculating ZiCo. As discussed in Section 3.3, the networks with higher ZiCo tend

Published as a conference paper at ICLR 2023

Loss vs. Mean value

Loss vs. Variance

0.450 =, :
@ w151
o * [e]
3 0.425] 2
2 2
£ 0.400 £ 101
© ©
£ £
T 0.375 T
Q R 5
0.350|

0.9900 0.9905 0.5 1.0 1.5

Square Sum of Mean Value (JZ) Square Sum of Variance (Zojz)
) J

(a) Loss vs. Mean (linear) (b) Loss vs. variance (linear)

Figure 1: Training loss vs. square sum of mean gradients and the sum of gradients variances for
linear networks on MNIST after one epoch. Clearly, larger mean gradient values lead to lower loss
values; also, networks with smaller > j 0]2- have lower loss values.

Loss vs. Standard Deviation Loss vs. Standard Deviation

- 35] .
*
0.8 301 * W
w0 * | *
So6 g 2> . .
. 1 * *
> S 204 A P e
z n | * * *
® 0.4 @ 15 oy s W ..""':
= 104 .« g* bRt T Y a«.*:ﬁ’,'.f: H
*
| i
gl

ol T TOTTRRRRT
0.000 0.005 0.010 0.015 0.020 0.025 0.0000.0050.0100.0150.0200.0250.030
Standard Deviation (o) e

Standard Deviation (o)

(a) Training Loss vs. std. dev (ReLU) (b) Test Loss vs. std. dev (ReLU)

Figure 2: Training loss and Test loss vs. standard deviation of gradients for two-layer MLPs with
ReLU on MNIST after one training epoch. Networks with smaller o tend to have lower training loss
and test loss values. We provide more results in Appendix C.1.

to have better convergence rates and higher generalization capacity. Hence, the architectures with
higher ZiCo are better architectures.

We remark that the loss values in Eq. 15 are all computed with the initial parameters ©; that is,
we never update the value of the parameters when computing ZiCo for a given network (hence it
follows the basic principle of zero-shot NAS, i.e., never train, only use the initial parameters). In
practice, two batches are enough to make ZiCo achieve the SOTA performance among all previously
proposed accuracy proxies (see Sec. 4.5). Hence, we use only two input batches (/N = 2) to compute
ZiCo; this makes ZiCo very time efficient for a given network.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We conduct the following types of experiments: (i) Empirical validation of Theorem 3.1, The-
orem 3.3 and Theorem 3.5; (ii) Evaluation of the proposed ZiCo on multiple NAS benchmarks;
(iii) Mlustration of ZiCo-based zero-shot NAS on ImageNet.

For the experiments (i), to validate Theorem 3.1, we optimize a linear model as in Eq. 2 on the
MNIST dataset, the mean gradient values and the standard deviation vs. the total training loss.
Moreover, we also optimize the model defined by Eq. 7 on MNIST and report the training loss vs.
the standard deviation in order to validate Theorem 3.2 and Theorem 3.5.

For experiments (ii), we compare our proposed ZiCo against existing proxies on three mainstream
NAS benchmarks: NATSBench is a popular cell-based search space with two different search
spaces: (1) NATSBench-TSS consisting of 15625 total architectures with different cell structures
trained on CIFAR10, CIFAR100, and ImageNet16-120 (Img16-120) datasets, which is just renamed

Published as a conference paper at ICLR 2023

Table 1: The correlation coefficients between various zero-cost proxies and two naive proxies
(#Params and FLOPs) vs. test accuracy on NATSBench-TSS (KT and SPR represent Kendall’s
7 and Spearman’s p, respectively). The best results are shown with bold fonts. Clearly, ZiCo is the
only proxy that works consistently better than #Params and is generally the best proxy. We provide
more results in Table 3 and Table 4 in Appendix E.1.

NATSBench-TSS (NASBench201)
Dataset CIFARIO | CIFARIO0 | Tmgl6-120
Proxy Correlation KT \ SPR \ KT \ SPR \ KT \ SPR
Grad_norm Abdelfattah et al. (2021) || 0.46 | 0.63 || 0.47 | 0.63 || 0.43 | 0.58
SNIP Lee et al. (2019b) 046 | 0.63 || 046 | 0.63 || 0.43 | 0.58
GraSP Wang et al. (2020) 037 | 0.54 || 036 | 0.51 || 0.40 | 0.56
Fisher Liu et al. (2021) 040 | 055 || 0.41 | 0.55 || 0.37 | 0.50
Synflow Tanaka et al. (2020) 054 | 0.73 [057 | 0.76 || 0.56 | 0.75
Zen-score Lin et al. (2021) 0.29 | 0.38 || 0.28 | 0.36 || 0.29 | 0.40
FLOPs 054 | 0.73 || 0.51 | 0.71 || 0.49 | 0.67
#Params 057 | 0.75 || 0.55 [0.73 || 0.52 | 0.69
ZiCo (Ours) 0.61 | 0.80 || 0.61 | 0.81 || 0.60 | 0.79

from NASBench-201 Dong & Yang (2020); (2) NATSBench-SSS contains includes 32768 architec-
tures (which differ only in the width values of each layer) and is also trained on the same three above
datasets Dong et al. (2021). NASBenchl101 provides users with 423k neural architectures with their
test accuracy on CIFAR10 dataset; the architectures are built by stacking the same cell multiple
times Ying et al. (2019). TransNASBench- 101-Mirco contains 4096 networks with different cell
structures on various downstream applications (see Appendix E.2) Duan et al. (2021).

For experiments (iii), we use ZiCo to conduct the zero-shot NAS (see Algorithm 1) on ImageNet.
We first use Algorithm 1 to find the networks with the highest ZiCo under various FLOPs budgets.
We conduct the search for 100k steps; this takes 10 hours on a single NVIDIA 3090 GPU (i.e., 0.4
GPU days). Then, we train the obtained network with the exact same training setup as Lin et al.
(2021). Specifically, we train the neural network for 480 epochs with the batch size 512 and input
resolution 224. We also use the distillation-based training loss functions by taking Efficient-B3 as
the teacher. Finally, we set the initial learning rate as 0.1 with a cosine annealing scheduling scheme.

4.2 VALIDATION OF THEOREMS 3.1&3.3&3.5

To empirically validate Theorem 3.1, we first randomly sample 1000 training images in MNIST;
we then normalize these images with their L2-norm to create the training set S . We compute the
gradient w.r.t. the network parameters for each individual training sample. Next, as discussed in
Theorem 3.1, we use the accumulated gradient over these samples to update the network parameters
with learning rate = 1. Then, we calculate the square sum of mean gradients and the total
training loss. We repeat the above process 1000 times on the same S. As shown in Fig. 1(a),
we plot the total training loss vs. square sum of mean gradients as defined in Eq. 5. Clearly, the
networks with the higher square sum of mean gradients values tend to have lower training loss. In
comparison, Fig. 1(b) shows that networks with a lower square sum of variance value tend to have
lower training loss values, which coincides with the conclusion drawn from Eq. 6. These results
empirically validate our Theorem 3.1.

Moreover, to optimize a two-layer MLP with ReLU activation functions as defined in Eq. 7, we use
the entire training set of MNIST and apply the gradient descent (Eq. 9) to update the weights. We
set the batch size as 256 and measure the standard deviation of gradients (o) w.r.t. parameters across
different training batches. We set a very small learning rate 7 = 10~% to satisfy the assumption in
Theorem 3.2 and Theorem 3.5. We plot the training loss and test loss after one training epoch vs.
standard deviation of gradients (o) in Fig. 2(a). Clearly, the results show that if a network has a
lower gradient standard deviation, then it tends to have lower training loss values, and thus, a faster
convergence rate. These results empirically prove our claims in Theorem 3.3. Similarly, Fig. 2(a)
shows that if a network has a lower gradient standard deviation, then it tends to have lower test loss
values, which empirically validates Theorem 3.5.

4.3 Z1CO VS. OTHER PROXIES ON NAS BENCHMARKS

We first calculate the correlation coefficients between various proxies and the test accuracy on CI-
FAR10, CIFAR100, and ImageNet16-120 datasets for NATSBench-TSS. As shown in Table. 1, ZiCo
achieves the highest correlation with the real rest accuracy. We provide more results in Appendix E.

Published as a conference paper at ICLR 2023

Correlation Coefficients between Proxies and Test Accuracy
0.63 0.63

HEl Spearman's p

Kendall's T 035 0.46 0.44 0.43 0.46
0.29 . 0.31 0.31
'n . |
017888 0.17 02

0. -0.28
Grad_norm SNIP GraSP Fisher Synflow Zen-score FLOPs #Params ZiCo

Figure 3: Correlation coefficients of various proxies vs. test accuracy on NASBench101 search
space. ZiCo has significantly higher correlation scores than other proxies, except for Zen-score.

o
U

©
o

Correlation

Table 2: Comparison of Top-1 accuracy of our ZiCo-based NAS against SOTA NAS methods on
ImageNet under various FLOP budgets (averages over three runs). For the ‘Method’ column, ‘MS’
means multi-shot NAS; ‘OS’ is short for one-shot NAS; Scaling represents network scaling methods;
“ZS’ is short for zero-shot NAS. OFA is trained from scratch and reported in Moons et al. (2021).

[Budget (maximal #FLOPs) | Approach | FLOPs | Top-1 [%] | Method | Costs [GPU Days] |
EfficientNet-BO Tan & Le (2019) | 390M 77.1 Scaling 3800
MnasNet-A3 Tan et al. (2019) 403M 76.7 MS -
OFAT Cai et al. (2020) 406M 71.7 oS 50
BN-NAS Chen et al. (2021a) 470M 75.7 MS 0.8
450M NASNet-B Zoph et al. (2018) 488M 72.8 MS 1800
CARS-D Yang et al. (2020) 496M 73.3 MS 04
DONNA Moons et al. (2021) 50IM 78.0 [} 25
#Params 451M 63.5 ZS 0.02
ZiCo (Ours) 448M | 78.1+0.3 7S 0.4
DARTS Liu et al. (2019) 574M 73.3 0S 4
PC-DARTS Xu et al. (2019) 586M 75.8 [} 38
BigNAS-L Yu et al. (2020a) 586M 79.5 [} 2304 (TPU days)
CARS-I Yang et al. (2020) 591IM 75.2 MS 04
EnTranNAS Yang et al. (2021) 594M 76.2 oS 2.1
600M MAGIC-AT Xu et al. (2022) 598M 76.8 oS 2
SemiNAS Luo et al. (2020) 599M 76.5 MS 4
DONNA Moons et al. (2021) 599M 78.4 oS 25
Zen-score Lin et al. (2021) 611M 79.1 ZS 0.5
OFAT Cai et al. (2020) 662M 78.7 oS 50
EfficientNet-B1 Tan & Le (2019) | 700M 79.1 Scaling 3800
ZiCo (Ours) 603M | 79.4+0.3 ZS 0.4
sharpDARTS Hundt et al. (2019) | 950M 76.0 oS -
1000M Zen-score Lin et al. (2021) 934M 80.8 7S 0.5
EfficientNet-B2 Tan & Le (2019) | 1000M 80.1 Scaling 3800
ZiCo (Ours) 1005M | 80.5+0.2 7S 0.4

For NASBench101, as shown in Fig. 3, ZiCo has a significantly higher correlation score with the real
test accuracy than all the other proxies, except Zen-score. For example, ZiCo has a 0.46 Kendall’s 7
score, while #Params is only 0.31. In general, ZiCo has the highest correlation coefficients among
all existing proxies for various search spaces and datasets of NATSBench and NASBench101. To
our best knowledge, ZiCo is the first proxy that shows a consistently higher correlation coefficient
compared to #Params.

The above results validate the effectiveness of our proposed ZiCo; thus, ZiCo can be directly used
to search for optimal networks for various budgets. Next, we describe the search results in detail.

4.4 7Z1CO ON IMAGENET

Search Space We use the commonly used MobileNetv2-based search space where the candidate
networks are built by stacking multiple Inverted Bottleneck Blocks (IBNs) with SE modules Sandler
et al. (2018); Pham et al. (2018); Lin et al. (2021). As for each IBN, the kernel size of the depth-
wise convolutional layer is sampled from {3, 5, 7} and the expansion ratio is randomly selected from
{1,2,4,6}. We consider ReLU as the activation function. We use standard Kaiming_Init to initialize
all linear and convolution layers for every candidate networks He et al. (2015). More details of the
search space are given in Appendix D.

We use Algorithm 1 (see Appendix D.2) to search networks under various FLOPs budgets (450M,
600M, and 1000M) within the above search space. As shown in Table 2, ZiCo outperforms most
previous NAS approaches by a large margin. For example, when the FLOPs budget is around 450M,
ZiCo achieves 78.1% Top-1 accuracy, which is competitive with one of the SOTA NAS methods

Published as a conference paper at ICLR 2023

Correlation Coefficients vs. #Batch 0.8 Correlation Coefficients vs. Batch Size
c 0.8 c —+— Kendall's T
o R Spearman's p
-~ -
$0.7 507
5 —~— Kendall's T 5
o 06 —— Spearman's p © 0.6

2 4 6 8 10 0 20 40 60 80 100 120
The Number of Training Batches Batch Size
(a) Correlation vs. #Batch (b) Correlation vs. Batch Size

Figure 4: Ablation study. The correlation coefficients between: (a) ZiCo under varying number of
batches and real test accuracy; (b) ZiCo under varying batch size and real test accuracy.

(DONNA), but with fewer FLOPs and 648 x faster search speed Moons et al. (2021). Moreover,
if the FLOPs is 600M, ZiCo achieves 2.6% higher Top-1 Accuracy than the latest one-shot NAS
method (MAGIC-AT) with a 3 x reduction in terms of search time Xu et al. (2022).

To make further comparison with #Params, we also use #Params as the proxy and Algorithm 1
to conduct the search under a 450M FLOPs budget. As shown in Table 2, the obtained network
by #Params has a 14.6% lower accuracy than ours (63.5% vs. 78.1%). Hence, even though the
correlations for ZiCo and #Params in Table 1 and the optimal networks in Table 4 are similar for
small-scale datasets, ZiCo significantly outperforms naive baselines like #Params for large datasets
like ImageMet. To conclude, ZiCo achieves SOTA results for Zero-Shot NAS and outperforms naive
methods, existing zero-shot proxies, as well as several one-shot and multi-shot methods.

We remark that these results demonstrate two benefits of our proposed ZiCo: (i) Lightweight com-
putation costs. As discussed in Sec 3, during the search process, to evaluate a given architecture, we
only need to conduct the backward propagation twice (only takes 0.3s on an NVIDIA 3090 GPU).
The computation efficiency and exemption of training enable ZiCo to significantly reduce the search
time of NAS. (ii) High correlation with the real test accuracy. As demonstrated in Sec 4.3, ZiCo
has a very high correlation score with real accuracy for architectures from various search spaces and
datasets. Hence, ZiCo can accurately predict the test accuracy of diverse neural architectures, thus
helping find the optimal architectures with the best test performance.

4.5 ABLATION STUDY

Number of batches We randomly select 2000 networks from NATSBench-TSS on CIFAR100
dataset and compute ZiCo under varying number of training batches (/V in Eq. 15) from {2,...,10}.
We then calculate the correlation between ZiCo with the real test accuracy. Fig. 4(a) shows that
using two batches to compute ZiCo generates the highest score. Hence, in our work, we always use
two batches (N = 2) to compute ZiCo since it is both accurate and time-efficient.

Batch size We compute ZiCo with two batches under varying batch size {1, 2, 4, 8, 16, 32, 64, 128}
for the same 2000 networks as above; we then calculate the correlation between ZiCo with the test
accuracy. Fig. 4(b) shows that batch size 64 is enough to stabilize the coefficient. Hence, we set
the batch size as 128 and use two batches to compute ZiCo. We provide more ablation studies in
Appendix F.

5 CONCLUSION

In this work, we have proposed ZiCo, a new SOTA proxy for zero-shot NAS. As the main theoretical
contribution, we first reveal how the mean value and standard deviation of gradients impact the train-
ing convergence of a given architecture. Based on this theoretical analysis, we have shown that ZiCo
works better than all zero-shot NAS proxies proposed so far on multiple popular NAS-Benchmarks
(NASBench101, NATSBench-SSS/TSS) for multiple datasets (CIFAR10/100, ImageNet16-120). In
particular, we have demonstrated that ZiCo is consistently better than (#Params) and existing zero-
shot proxies. Moreover, ZiCo enables us to find architectures with competitive test performance to
representative one-shot and multi-shot NAS methods, but with much lower search costs. For exam-
ple, ZiCo-based NAS can find the architectures with 78.1%, 79.4%, and 80.4% test accuracies under
450M, 600M, and 1000M FLOPs budgets, respectively, on ImageNet within 0.4 GPU days.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foundation (NSF) grant CNS-2007284.

Published as a conference paper at ICLR 2023

REFERENCES

Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas Donald Lane. Zero-
cost proxies for lightweight NAS. In International Conference on Learning Representations
(ICLR), 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning (ICML), 2019.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems (NeurlPS), 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning (ICML), 2019b.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations
(ICLR), 2017.

Friedrich L Bauer and Charles T Fike. Norms and exclusion theorems. Numerische Mathematik, 2
(1):137-141, 1960.

Kartikeya Bhardwaj, Guihong Li, and Radu Marculescu. How does topology influence gradient
propagation and model performance of deep networks with densenet-type skip connections? In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Kartikeya Bhardwaj, James Ward, Caleb Tung, Dibakar Gope, Lingchuan Meng, Igor Fedorov,
Alex Chalfin, Paul Whatmough, and Danny Loh. Restructurable activation networks. CoRR,
abs/2208.08562, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations (ICLR), 2019.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations (ICLR), 2020.

Boyu Chen, Peixia Li, Baopu Li, Chen Lin, Chuming Li, Ming Sun, Junjie Yan, and Wanli Ouyang.
BN-NAS: neural architecture search with batch normalization. In Proceedings of the IEEFE Inter-
national Conference on Computer Vision (ICCV), 2021a.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four GPU hours: A theoretically inspired perspective. In International Conference on Learning
Representations (ICLR), 2021b.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In International Conference on Machine Learning (ICML), 2020.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

10

Published as a conference paper at ICLR 2023

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 257266, 2019.

Lénaic Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2009.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight shar-
ing neural architecture search. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2021.

Tu Do and Ngoc Hoang Luong. Training-free multi-objective evolutionary neural architecture search
via neural tangent kernel and number of linear regions. In International Conference on Neural
Information Processing, pp. 335-347. Springer, 2021.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking nas
algorithms for architecture topology and size. IEEE transactions on pattern analysis and machine
intelligence, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations (ICLR), 2021.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning (ICML),
2019a.

Simon S. Du, Xiyu Zhai, Barnabas Péczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations
(ICLR), 2019b.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li.
Transnas-bench-101: Improving transferability and generalizability of cross-task neural architec-
ture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Stanley C Eisenstat and Ilse CF Ipsen. Three absolute perturbation bounds for matrix eigenvalues
imply relative bounds. SIAM Journal on Matrix Analysis and Applications, 20(1):149-158, 1998.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 2019.

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional net-
works as shallow gaussian processes. In International Conference on Learning Representations
(ICLR), 2019.

Eugene Golikov, Eduard Pokonechnyy, and Vladimir Korviakov. Neural tangent kernel: A survey.
CoRR, abs/2208.13614, 2022.

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture search
for generative adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019.

11

Published as a conference paper at ICLR 2023

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations (ICLR), 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun
Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Search-
ing for mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely Connected
Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Andrew Hundt, Varun Jain, and Gregory D. Hager. sharpdarts: Faster and more accurate differen-
tiable architecture search. CoRR, abs/1903.09900, 2019.

Thorir Mar Ingolfsson, Mark Vero, Xiaying Wang, Lorenzo Lamberti, Luca Benini, and Matteo
Spallanzani. Reducing neural architecture search spaces with training-free statistics and compu-
tational graph clustering. In 19th ACM International Conference on Computing Frontiers. ACM,
2022.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems (NeurlPS),
2018.

Mojan Javaheripi, Shital Shah, Subhabrata Mukherjee, Tomasz L. Religa, Caio C. T. Mendes, Gus-
tavo H. de Rosa, Sébastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey. Litetransform-
ersearch: Training-free on-device search for efficient autoregressive language models. CoRR,
abs/2203.02094, 2022.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabds Péczos, and Eric P. Xing.
Neural architecture search with bayesian optimisation and optimal transport. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017a.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems (NeurlPS),
2012.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems (NeurIPS),2019a.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations (ICLR),
2019b.

12

Published as a conference paper at ICLR 2023

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. CoRR, abs/2003.02218, 2020.

Guihong Li, Sumit K. Mandal, Umit Y. Ogras, and Radu Marculescu. FLASH: fast neural architec-
ture search with hardware optimization. ACM Trans. Embed. Comput. Syst., 20(5s):63:1-63:26,
2021a.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, 2020.

Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and
Deming Chen. Edd: Efficient differentiable dnn architecture and implementation co-search for
embedded ai solutions. In 57th ACM/IEEE Design Automation Conference (DAC), 2020.

Yuhong Li, Cong Hao, Pan Li, Jinjun Xiong, and Deming Chen. Generic neural architecture search
via regression. In Advances in Neural Information Processing Systems (NeurIPS), 2021b.

Yuhong Li, Jiajie Li, Cong Han, Pan Li, Jinjun Xiong, and Deming Chen. Extensible proxy for
efficient nas. CoRR, abs/2210.09459, 2022.

Tengyuan Liang, Tomaso A. Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
ometry, and complexity of neural networks. In International Conference on Artificial Intelligence
and Statistics, 2019.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2021.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. Progressive Neural Architecture Search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. In International Conference on Learning
Representations (ICLR), 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning (ICML), 2021.

Shuying Liu and Weihong Deng. Very deep convolutional neural network based image classification
using small training sample size. In 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
pp. 730-734, 2015.

Vasco Lopes, Saeid Alirezazadeh, and Luis A Alexandre. Epe-nas: Efficient performance estimation
without training for neural architecture search. In International Conference on Artificial Neural
Networks, pp. 552-563. Springer, 2021.

Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean-field analysis of deep
resnet and beyond: Towards provable optimization via overparameterization from depth. CoRR,
abs/2003.05508, 2020.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised neural
architecture search. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

13

Published as a conference paper at ICLR 2023

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, 2019.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J] Crowley. Neural architecture search without
training. In International Conference on Machine Learning (ICML), 2021.

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott, and
Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2021.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pp. 29-53.
Springer, 1996.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating efficient performance estimators of neural architectures. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International Conference on Machine Learning (ICML), 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka I. Leon-Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale Evolution of Image Classifiers. In International
Conference on Machine Learning (ICML), 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. CoRR, abs/1611.07476, 2016.

Levent Sagun, Utku Evci, V. Ugur Giiney, Yann N. Dauphin, and Léon Bottou. Empirical analysis
of the hessian of over-parametrized neural networks. In International Conference on Learning
Representations (ICLR), 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. NASI:
label- and data-agnostic neural architecture search at initialization. In International Conference
on Learning Representations (ICLR), 2022a.

Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan Kian Hsiang Low. Unifying and boosting
gradient-based training-free neural architecture search. CoRR, abs/2201.09785, 2022b.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path NAS: designing hardware-efficient convnets in less than 4
hours. In Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2019, 2019.

Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, and Rong Jin. Revisiting efficient object detection
backbones from zero-shot neural architecture search. CoRR, abs/2111.13336, 2021.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (ICML), 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. In Advances in Neural
Information Processing Systems (NeurlPS), 2020.

14

Published as a conference paper at ICLR 2023

Linh Tam Tran and Sung-Ho Bae. Training-free hardware-aware neural architecture search with
reinforcement learning. Journal of Broadcast Engineering, 26(7):855-861, 2021.

Linh-Tam Tran, Muhammad Salman Ali, and Sung-Ho Bae. A feature fusion based indicator for
training-free neural architecture search. IEEE Access, 9:133914—-133923, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR), 2020.

Colin White, Mikhail Khodak, Renbo Tu, Shital Shah, Sébastien Bubeck, and Debadeepta Dey. A
deeper look at zero-cost proxies for lightweight nas. In ICLR Blog Track, 2022. URL https:
//iclr-blog-track.github.i0/2022/03/25/zero-cost—-proxies/.

Christopher K. I. Williams. Computing with infinite networks. In Advances in Neural Information
Processing Systems (NeurIPS), 1996.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Meng-Ting Wu, Hung-I Lin, and Chun-Wei Tsai. A training-free genetic neural architecture search.
In ACM International Conference on Intelligent Computing and its Emerging Applications, 2021.

Lichuan Xiang, Lukasz Dudziak, Mohamed S. Abdelfattah, Thomas Chau, Nicholas D. Lane, and
Hongkai Wen. Zero-cost proxies meet differentiable architecture search. CoRR, abs/2106.06799,
2021a.

Lichuan Xiang, Lukasz Dudziak, Mohamed S. Abdelfattah, Thomas Chau, Nicholas D. Lane, and
Hongkai Wen. Zero-cost proxies meet differentiable architecture search. CoRR, abs/2106.06799,
2021b.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations (ICLR), 2019.

Jin Xu, Xu Tan, Kaitao Song, Rengian Luo, Yichong Leng, Tao Qin, Tie-Yan Liu, and Jian Li.
Analyzing and mitigating interference in neural architecture search. In International Conference
on Machine Learning (ICML), 2022.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: green
neural architecture search. In International Conference on Machine Learning (ICML), 2021.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. Pc-darts: Partial channel connections for memory-efficient architecture search. CoRR,
abs/1907.05737, 2019.

Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian, and Zhouchen Lin. Towards improving
the consistency, efficiency, and flexibility of differentiable neural architecture search. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang
Xu. CARS: continuous evolution for efficient neural architecture search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

15

https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

Published as a conference paper at ICLR 2023

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning (ICML), 2019.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural ar-
chitecture search with big single-stage models. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020a.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. In International Conference on Learning Repre-
sentations (ICLR), 2020b.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In International Conference
on Learning Representations (ICLR), 2020.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. In International Conference on Learning Representations (ICLR), 2019a.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu net-
works via gradient descent. In International Conference on Artificial Intelligence and Statistics,
2019b.

Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian Sun. Neural architecture search with ran-
dom labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Zhihao Zhang and Zhihao Jia. Gradsign: Model performance inference with theoretical insights. In
International Conference on Learning Representations (ICLR), 2022.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for
neural architecture search. In International Conference on Machine Learning (ICML), 2019.

Qingin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and Ron-
grong Ji. Training-free transformer architecture search. CoRR, abs/2203.12217, 2022.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations (ICLR), 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning Transferable Archi-
tectures for Scalable Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

16

Published as a conference paper at ICLR 2023

A PROOF OF THEOREM 3.1

Theorem 3.1 We denote the updated weight vector as a and } _,;[g; (x;:))? = G. Assume we use the
accumulated gradient of all training samples and learning rate 1 to update the initial weight vector
a,ie,a=a—n), g(x;). If the learning rate 0 < n < 2, then the total training loss is bounded
as follows:

S L flasa) < § - T2 - Y 48 (16)

J

L, then L(a) is bounded by:

In particular, if the learning rate n = 7,

ZL(yi,f(wi;a)) < %Zoﬁ (17)
[J

Proof. Given each training sample (x;, y;) the gradient of L w.r.t to a when taking (x;, y;) as the
input is as follows:

g(@s) = %@im“)) R - (18)

We note that:

(a— Q(UUi))TCCi —yi=a'm; — aTﬂﬂiﬂﬂiTwi + yzszﬁﬂz —Yi

=alz; — (aTac,)(:BzT:cl)

(19)
= G,T:I}i — aTa:i
=0 = yi=(a—g(z) 2
Then the total training loss among all training samples is given by:
Moy
Z §(dTwi —yi)? (20)
i=1
By using Eq. 19, we can rewrite Eq. 20 as follows:
1 M
AT 2 _ (aTx: — (a — .)2
> 5@Ta =) =3 57w~ (a - g(e0))
- @)
1.
=> (@ —a+g(@)) =)’
i=1
Recall the assumption that @ = a — 1), g(x;); we rewrite Eq. 21 as follows:
Moy Moy
Z §(dT$i —)’ = Z 5(9(93@') - Zg($i))T$i)2 (22)
i=1 i=1 i

17

Published as a conference paper at ICLR 2023

According to the Cauchy—Schwarz inequality and ||x;|| = 1, the total training loss is bounded by:

M
S d@ta - < LY 0w 1 Y ot el
i=1 i=1 i
1 M
52”(9(%)—7729(%)”

M d
= % Z Z((gj(wz) —nMp;)?

i=1j=1

[\')n—l
\/\

5 DD (g @)l — 20Msyg5(s) +0*M2p2)
i=1 j=1 (23)

LS e+ Y 2 My Y g)

;Z [g; ()] + Zn2M2 — 2 (M p; M)
ij

J

§G + (P M3 — 2pM?p3)
7

1
= 3G —nM*(2 =)y 4

J

Since Zfil %(aTocz y;)? is always non-negative, the above upper bound of training loss satisfies:
1
5G nM?(2 —n) Zu7>z (@Tx; —) >0 (24)

Note that, if 0 < n < 2, then (2 — 1) > 0. Therefore, the larger > y ,uj term would make the
upper bound of training loss in Eq. 23 closer to 0. In other words, the higher the gradient absolute
mean values across different training samples/batches, the lower the training loss values the model
converges to; i.e., the network converges at a faster rate.

In particular, if n = ﬁ, the Eq. 23 can be rewritten as:

1 1 M d
Z* a Ty — ’L S §ZZ<(9](£L.1) _N‘J)Q

2 — <
i=1 i=1 j=1
1
=3 > Mo? (25)
J
M 2
9 Z 9j
J

This completes our proof. O

B PROOF OF THEOREM 3.2

Theorem 3.2 Given a neural network with ReLU activation function optimized by minimizing Eq. 8,
we assume that each initial weight vector {w,.(0),r = 1, ...,n} is i.i.d. generated from N'(0,I) and
the gradient for each weight follows an i.i.d. N'(0,0). For some positive constants § and e, if the

learning rate 1) satisfies n < %, then with with probability at least (1 — §)(1 — ¢), the

following holds true: for any r € [m)], ||w,(0) — w,(t)|| < C = nto+/®(1 — ¢), and at training
step t the Gram matrix H (t) satisfies:

18

Published as a conference paper at ICLR 2023

Amin (H(®)) > Ain (H(0)) — MM%%M ~s ©6)

®(-) is the inverse cumulative distribution function for a d-degree chi-squared distribution x*(d).

Proof. We first compute the probability of ||w,(0) — w,(t)|| < C. Based on the assumption
w;(0),7 = 1,...,n} follows i.i.d. A(0,I) and the gradient for each weight follows i.i.d. N'(0,0),
considering the weight updating rule defined in Eq. 9, each element in w,.(0) — w,.(¢) follows a i.i.d.

N(0,nto). Therefore, ”"”758272;’5’”2 follows the chi-squared distribution with d degrees of freedom

X*(d).
P(||wr(0) — wy|| < C) = P([Jw,(0) — w,(t)|]> < C?)

[|wr (0) —wr()[* _ _C*

= P(2202 = 772t202)
o (0) — w, (1) 7
=P(pevER < ®(1—¢))
=1—¢
Given an input sample x; and a weight vector w,.(t) from W (t), we define the following event:
Air = {[lwr(t) — wr (0)]| < C} N {I{z7 wr(0) 2 0} # K wy(t) > 0}} (28)
If ||wy(t) — w,(0)|| < C holds true,
ac?wr (t)= w?(wr(t) —w,(0)) + w?wr(O)
. (29)

= sign(z; (wy(t) — w,(0)))||wy (t) — wr(0)]] + sign(@; w,(0))||wr (0|
Eq. 29 tells us that if ||w,.(0)]| is larger than ||w.,.(t) — w,(0)||, T4,.(0) determines the sign
value of =] w,.(t); in other words, x w,.(t) always has the same sign values with =} w,.(0); i.e.,
Hzlw,(0) > 0} = {zlw,(t) > 0}. Thatis, if [|wy(t) — w,(0)|| < C and I{z} w,.(0) > 0} #
{zTw,(t) > 0} hold true, then ||w,(0)|| < C. Therefore, the probability of event A;,.:

P(Air) < P({|Jwr(0)]| < C}) (30)
By anti-concentration inequality of Gaussian distribution Du et al. (2019b), we have:
C
P < PUlln0)] < 0 < Y% a1

Therefore, if any weight vector wy, ..., w, satisfies ||w,(0) — w,(t)|| < C, we can bound the
entry-wise deviation on the Gram matrix H (¢) at training step ¢: for any (4, j) € [n] x [n]:

E[|H;;(0) — Hyj(t)]]

m

ZE[%\%T% > (zfwe(0) > 0,07 w(0) > 0} — I{zf wn(t) > 0,7 wy(t) > 0})]]
r=1

B[ol 2, 3 (1 w,(0) > 0}{aT wn(0) > 0} ~ HaTwn () > 0}1{aT w, (1) > 0]
r=1

<rt i (A UA;)] € P(A) + P(A)
_/2C :
-
(32)

where the expectation is summing over the initial weight w(0). Hence, considering all the elements
in H, we have:

M, M

B[S |Hy(0) - o) < Y20

(33)
i=1,j=1 e

19

Published as a conference paper at ICLR 2023

Therefore, by Markov’s inequality, given the probability 1 — §, we get:

M,M
: 2M?\/2C
> [Hi(0) — Hy(t)] < 2 (34)
= N
i=1,7=1
In Du et al. (2019b), the authors prove that, given a small perturbation K:
lf[E |HU(O) — Hin S K, thCIl)\mzn(H) Z A"H‘"(H(O)) — K (35)
ij

In our case, K in Eq. 35 is given by W}#. Therefore,

2M?\/2C 2v/2M?nto/®(1 — €)
Amin(H(t)) > Amin(H(0)) — ——=— = Anin(H(0)) — 36
(H() 2 Amin (H(0)) — =22 (H(0)) o (36)
We replace the term 7 in Eq.36 with n’s upper bound given in the assumption of Theorem 3.2, i.e.,
N < %, we can get that A, (H (¢)) is always larger than 0; that is:
2V2M?*nto\/®(1 —
Amin(H (1)) > Amin(H(0)) — 22O VEA =) (37)
N
This completes our proof. O

C PROOF OF THEOREM 3.5

Theorem 3.5 Given a neural network with ReLU activation function optimized by minimizing Eq. §,
we assume that each initial weight vector {w,(0),r = 1,...,n} is i.i.d. generated from N (0,1)
and the gradient for each weight follows an i.i.d. distribution N'(0, o). For some positive constants

0 and €, if the learning rate n satisfies n < m, then with with probability at least

(1—0)(1—e¢), the following holds true: for any r € [m], ||w,(0) —w,(¢)|| < C = nto/P(1 —¢€),
and at training step t, the Gram matrix H (t) satisfies:

M (H0) < A ((0)) + 222 39

®(-) is the inverse cumulative distribution function for a d-degree chi-squared distribution x2(d).

The proof is similar to the proof of Theorem 3.2 (see Appendix B). We provide the entire proof
below.

Proof. 'We first compute the probability of ||w,.(0) — w,(t)|| < C. Based on the assumption that
{w;(0),7 = 1,...,n} follow i.i.d. N'(0,I) and the gradient of each weight follows i.i.d. A (0,0),
considering the weight updating rule defined in Eq. 9 with learning rate 7, each element in w,.(0) —

w,-(t) follows ani.i.d. N'(0, nto). Therefore, Wizjﬁw follows a chi-distribution with d degrees
of freedom 2 (d):

P(|lwy(0) — wy|| < C) = P(||w,(0) — wr(t)[|* < C?)

P(| (07;21902 » 77225202) 39)
w,(0) — w,

P(Ty < P(1—¢))

=1—c¢€

Given an input sample x; and a weight vector w,.(¢) from W (t), we define the following event:

Air = {|Jwy(t) = w,(0)|| < C} N {I{xLw,(0) > 0} # {zlw,(t) > 0}} (40)

20

Published as a conference paper at ICLR 2023

If ||w,(t) — w,(0)|| < C holds true, then:
xi we(t) = @] (wp(t) — wr(0) + 2] w,(0)

T . (41)
= sign(a; (w () — wy(0)))[|wr(t) — wr(0)|] + sign(x; wr(0))]w, (0)]|

Eq. 41 implies that if ||w,.(0)|| is larger than ||w,.(t) — w,(0)]|, then =} w,.(0) determines the sign

value of] w,.(t). In other words, =} w,.(t) always has the same sign values as x} w,.(0); that is,
{xFw,(0) > 0} = [{xTw,(t) > 0}. Hence, if ||w,(t) — w,(0)|| < C and I{zx] w,(0) > 0} #
{xFw,(t) > 0} hold true, then ||w,(0)|| < C. Therefore, the probability of event A;,:

P(Air) < P({[Jwr(0)]| < C}) (42)
By the anti-concentration inequality of a Gaussian distribution Du et al. (2019b), we have:
2C
P(A,) < P({llw,(0)] < C}) < VX @)
LS

Therefore, if any weight vector wy, ..., w,, satisfies ||w,(0) — w,(t)|| < C, we can bound the
entry-wise deviation on the Gram matrix H (¢) at the training step ¢: for any (¢, j) € [n] X [n]:

E[|H;;(0) — Hyj(t)]]

:E[%\mfﬂ:j i(ﬂ{az?wr(O) > O,xjrwr(()) >0} — H{a}iTwT(t) >0, z]T'wr(t) > 0]
r=1

:E[%\ﬁ% > (2] w,(0) = 0}{z w,(0) 2 0} — o w,(t) = 0}{z] wy(t) > 0})]

(44)
We note that all the samples in the training set S (Eq. 1) are normalized with their L2-norm. Hence,
we have both ||z;|| = 1 and ||z,|| = 1. Therefore, using the Cauchy—Schwarz inequality, the above
equation is bounded as follows:

1 X 2v/2C
-]IAZ'TUA'T SPA’LT PAr S - =
i 2 U A)] < PAR) + PAR < 52
where the expectation is over the initial weight w,.(0),r = {1,...,m}. Hence, considering all the
elements in H, we have:

E[|H:;(0) — Hi;(1)[] <E[(45)

M, M
: 2M2\/2C
E[) [|Hy(0) - Hy(t)]] < —=— (46)
i=1,j=1 a
Therefore, by the Markov’s inequality, given the probability 1 — J, we get:
M,M
: 2M2\/2C
ST Hi(0) - Hi(n)] < =X @)
i=1,j=1 Vo

Based on the matrix perturbation theory Bauer & Fike (1960); Eisenstat & Ipsen (1998), given a
small perturbation K:

if > [Hij(0) — Hij(t)|] < K, then Aoz (H () < Amaz(H(0)) + K (48)

In our case, K in Eq. 48 is given by %; that is:

Amaz (H(t)) < Amaz (H(0)) + 2\/§M2nf%6q)(1 = (49)

This completes our proof. O

21

Published as a conference paper at ICLR 2023

Test Loss
H o= NN
o U o un o u

0.0000.0050.0100.0150.0200.0250.030

Loss vs. Standard Deviation

Loss vs. Standard Deviation

Test Loss
- =N N w w
o un o v o uv o w

Standard Deviation (o)

(a) Batch size=64

0.0000.0050.0100.0150.0200.0250.0300.035

Standard Deviation (o)

(b) Batch size=128

40
35
30

2
825

L
=15

10
5

0.0000.0050.0100.0150.0200.0250.0300.035

Loss vs. Standard Deviation

7201 4

Standard Deviation (o)

(c) Batch size=256

Figure 5: Test loss vs. standard deviation of gradients (o in Eq. 13) for randomly sampled 500 two-
layer MLPs with ReLLU on MNIST after one training epoch. We train these networks by minimizing
the MSE loss between the output of networks and the real labels. As shown, the Networks with
smaller o tend to have lower test loss values and thus have a better generalization capacity.

C.1 SUPPLEMENTARY RESULTS: VALIDATION OF THEOREM 3.5

To empirically validate Theorem 3.5, we first create the training set S by normalizing the training
samples in MNIST with their L2-norm. Next, we optimize a two-layer MLP with ReLU activation
functions as defined in Eq. 7. We use the entire training set of MNIST and apply the gradient descent
(Eq. 9) to update the weights. We vary the batch size as {64, 128, 256} and measure the standard
deviation of gradients (o) w.r.t. parameters across different training batches. A very small learning
rate of n = 1078 is set to satisfy the assumption in Theorem 3.5. Fig. 5 demonstrates the training
loss after one epoch vs. standard deviation of gradients (o). Clearly, the results show that if a
network has a lower gradient standard deviation, then it tends to have lower test loss values, and
thus, a better generalization capacity. These results empirically prove our claims in Theorem 3.5.

D EXPERIMENTAL SETUP OF Z1ICO ON IMAGENET

D.1 SEARCH SPACE

We use the commonly used MobileNetv2-based search space where the candidate networks are built
by stacking multiple Inverted Bottleneck Blocks (IBNs) with SE modules Sandler et al. (2018);
Pham et al. (2018); Lin et al. (2021); all the SE modules share the same se_ratio as 0.25. For each
IBN, we vary the kernel size of the depth-wise convolutional layer from {3, 5, 7} and sample the
expansion ratio from {1, 2, 4, 6}. We consider ReLU as the activation function. For each point-
wise convolutional layer, the range of the number of channels is from 8 to 1024 with a step size of
8. We use standard Kaiming_Init to initialize all linear and convolution layers for every candidate
networks He et al. (2015).

D.2 SEARCH ALGORITHM

We use an Evolutionary Algorithm (EA) to conduct the zero-shot NAS because it is concise and easy
to implement' As shown in Algorithm 1, we search for the neural architectures with the highest ZiCo
within the search space, given a specific budget B (e.g., FLOPs). We repeat the search 7' times; at
each search step, we randomly select a structure from the candidate set IF and mutate its architectures
(e.g., kernel size, block type, number of blocks, and layer width) to generate a new network F; € S.
If the generated network F; meets the inference budget B, we calculate its ZiCo on Z and add F;
to the candidate set [F. We remove the network with the smallest ZiCo from F, if the number of
architectures in I exceeds the threshold F. After T steps, we select the network with the largest
ZiCo as the final (optimal) architecture F'p.

'One can also use other methods to perform the search; see Appendix F.2.

22

Published as a conference paper at ICLR 2023

Algorithm 1 ZiCo-based zero-shot NAS framework

INPUT: Number of search steps 7"
Inference budget B, Search space S
Set of input batch Z = {(X;,y;),t = 1,2}
Population size F, Initial network Fy € S
OUTPUT: Optimal network Fp
SEARCH:
Initialize F = {Fp}
fori =1to 7 do
Randomly sample network F; from F
F; = randomly mutated architecture based on F}; from S
if F; meets the inference budget B then
Compute ZiCo for F; on Z by Eq. 15
Add F; to F
if [F| > E then
Remove network with the smallest ZiCo from [F
end if
end if
end for
F'p=the network of the highest ZiCo in F.

Specifically, we repeat the search 10° times (i.e., T = 10°) with the population size E = 512. For
each of the candidate architectures, we compute ZiCo with two batches randomly sampled from the
training set of ImageNet with batch size 128. In total, it takes 10 hours on a single NVIDIA 3090
GPU for 10° search steps.

D.3 TRAINING DETAILS

We use the same data augmentations configurations as in Pham et al. (2018): mix-up, label-
smoothing, random erasing, random crop/resize/flip/lighting, and AutoAugment. We use the SGD
optimizer with momentum 0.9 and weight decay 4e-5. We take EfficientNet-B3 as a teacher network
and use the knowledge distillation method to train the network. We set the initial learning rate as
0.1 and used the cosine annealing scheme to adjust the learning rate during training. We train the
obtained network 480 epochs, which takes 83 hours on a 40-core Intel Xeon CPU and 8§ NVIDIA
3090 GPU-powered server.

E SUPPLEMENTARY RESULTS ON NAS BENCHMARKS

E.1 COMPARISON WITH MORE PROXIES

In this section, we further provide the comparison between our proposed ZiCo and more proxies
proposed recently: KNAS (Xu et al. (2021)), NASWOT (Lopes et al. (2021)), GradSign (Zhang
& Jia (2022)), and NTK (TE-NAS Chen et al. (2021b), NASI Shu et al. (2022a)). To compute the
correlations, we use the official code released by the authors of the above papers to obtain the values
of these proxies. As shown in Table 3, our proposed ZiCo performs better than all these proxies. For
example, NASWOT and GradSign achieve a similar correlation score as ZiCo on NATSBench-TSS;
however, ZiCo has a significantly higher correlation score than these two proxies on NATSBench-
SSS.

Beside the correlation coefficients, we also report the optimal architectures found with various prox-
ies. As shown in Table 4, the architectures found via ZiCo have the highest test accuracy on all these
three datasets.

2NASI uses NTK to build their own search algorithms. Here, we directly compute the correlation between
NTK and the real test accuracy.

23

Published as a conference paper at ICLR 2023

Table 3: The correlation coefficients between various zero-cost proxies and two naive proxies
(#Params and FLOPs) vs. test accuracy on NATSBench-SSS and NATSBench-TSS (KT and SPR
represent Kendall’s 7 and Spearman’s p, respectively). The results in italics represent the values
of #Params’ correlation coefficients. The results better than #Params are shown with bold fonts.
Clearly, our proposed ZiCo is the only proxy that works consistently better than #Params and is gen-
erally the best among all these proxies. Both TE-NASI (Chen et al. (2021b)) and NASI{ (Chen et al.
(2021b)) use NTK (Jacot et al. (2018)) as the accuracy proxy to build their own search algorithms.

NATSBench-TSS (NASBench201)
Dataset CIFARIO CIFARI00 || Imgl6-120
Proxy Correlation KT \ SPR || KT \ SPR || KT \ SPR
Grad_norm Abdelfattah et al. (2021) 046 | 0.63 || 0.47 | 0.63 || 0.43 | 0.58
SNIP Lee et al. (2019b) 046 | 0.63 || 0.46 | 0.63 || 0.43 | 0.58
GraSP Wang et al. (2020) 037 | 054 || 0.36 | 0.51 || 0.40 | 0.56
Fisher Liu et al. (2021) 040 | 055 || 0.41 | 0.55 || 0.37 | 0.50
Synflow Tanaka et al. (2020) 0.54 | 0.73 || 057 | 0.76 || 0.56 | 0.75
KNAS Xu et al. (2021) 0.14 | 020 || 0.24 | 0.35 || 0.30 | 0.42
NASWOT Mellor et al. (2021) 0.58 | 0.77 || 0.62 | 0.80 || 0.60 | 0.78
NTK [TE-NAS Chen et al. (2021b), NASI Shu et al. (2022a)]1 || 0.33 | 0.44 || 0.33 | 0.43 || 0.46 | 0.63
GradSign Zhang & Jia (2022) 0.58 | 0.77 || 0.59 | 0.79 || 0.59 | 0.78
Zen-score Lin et al. (2021) 029 | 038 || 0.28 | 0.36 || 0.29 | 0.40
FLOPs 054 | 073 || 051 | 0.71 || 049 | 0.67
#Params 057 | 0.75 || 0.55 | 0.73 || 0.52 | 0.69
ZiCo 0.61 | 0.80 || 0.61 | 0.81 || 0.60 | 0.79

NATSBench-SSS

Dataset CIFARIO CIFARIO00 || Imgl6-120
Proxy Correlation KT | SPR || KT | SPR || KT | SPR
Grad_norm Abdelfattah et al. (2021) 0.35 | 051 |[034 [049 |[0.49 | 0.67
SNIP Lee et al. (2019b) 042 [0359 | 046 | 0.62 || 057 | 0.76
GraSP Wang et al. (2020) -0.09 | -0.13 |[0.0I | 0.01 || 0.29 | 0.42
Fisher Liu et al. (2021) 030 | 044 [[041 | 055 || 0.33 | 0.47
Synflow Tanaka et al. (2020) 0.61 | 0.81 || 0.60 | 0.80 || 0.39 | 0.57
KNAS Xu et al. (2021) 025 | 037 || 0.12 | 0.18 || 0.32 | 0.46
NASWOT Mellor et al. (2021) 045 | 0.63 || 043 | 0.59 || 0.42 | 0.59
NTK [TE-NAS Chen et al. (2021b), NASI Shu et al. (2022a)]f || 0.17 | 0.26 || 0.04 | 0.06 || 0.20 | 0.30
GradSign Zhang & Jia (2022) 021 | 030 || 0.16 | 0.27 || 0.04 | 0.05
Zen-score Lin et al. (2021) 050 | 0.69 || 0.52 | 0.71 || 0.69 | 0.87
FLOPs 0.19 | 0.28 || 0.21 | 0.30 || 0.38 | 0.53
#Params 053 | 0.72 || 054 | 0.73 || 0.65 | 0.84
ZiCo 0.54 [0.73 || 0.55 | 0.75 || 0.70 | 0.88

Table 4: The test accuracy of optimal architectures obtained by various zero-shot proxies (averaged
over 5 runs) on NATSBench-TSS search space. The best results are shown with bold fonts.

CIFAR100 [Groud Truth [Gradnorm | SNIP [GraSP | Fisher [Jacob_cov [Synflow | Zen-score | #Params | FLOPs [ZiCo |

[735 || 600 [600] 600 | 600 | 689 | 711 | 681 | 7LI | 7L1 | 711503

Imel6-120 [Groud Truth [Gradnorm | SNIP [GraSP | Fisher [Jacob_cov [Synflow | Zen-score | #Params | FLOPs [ZiCo |
e [%73 293 | 293 | 55 | 293 | 251 a2 3038 a4 | 414 | 418103 |

0 [Groud Truth [Gradnorm | SNIP [GraSP | Fisher [Jacob_cov [Synflow | Zen-score | #Params | FLOPs [ZiCo |
[945 || 895 | 895] 895 | 895 | 884 | 904 | 906 | 937 | 937 | 940L04

‘ CIFAR1

E.2 COMPARISON ON TRANSNAS-BENCH-101-MICRO

In this section, we compare our proposed ZiCo against existing proxies on more diverse tasks. We
compare our proposed ZiCo against existing proxies on one mainstream NAS benchmark TransNAS-
Bench-101 Duan et al. (2021). We pick the largest search space TransNAS-Bench-101-Micro which
contains 4096 total architectures with different cell structures. We compare ZiCo with various prox-
ies under the following four tasks:

* Scene Classification. Scene classification is a 47-class classification task that predicts the
room type in the image.

24

Published as a conference paper at ICLR 2023

Table 5: The correlation coefficients under different proxies vs. test performance on TransNAS-
Bench-101-Mirco. Clearly, our proposed ZiCo is consistently very close to the best score (only
0.01 or 0.02 lower score) except for Autoencoding (still, ZiCo is the second best on Autoencoding).
Though Fisher works better than ZiCo on Autoencoding, ZiCo has a significantly higher score on the
rest of tasks. We note that existing proxies do not achieve a high correlation on all tasks consistently.

Autoencoding Scene Classification

Proxy Kendall’s 7 | Spearman’s p || Kendall’s 7 [Spearman’s p
Grad_norm Abdelfattah et al. (2021) 0.24 0.32 0.47 0.65
SNIP Lee et al. (2019b) 0.20 0.27 0.52 0.71
Grasp Wang et al. (2020) 0.09 0.14 0.19 0.28
Fisher Liu et al. (2021) 0.42 0.59 0.49 0.67
Synflow Tanaka et al. (2020) 0.00 0.00 0.53 0.72
NASWOT Lopes et al. (2021) 0.01 0.02 0.43 0.60
Zen-score Lin et al. (2021) 0.09 0.14 0.52 0.72
GradSign Zhang & Jia (2022) 0.01 0.02 0.32 0.46
Params 0.01 0.01 0.46 0.64
FLOPs 0.02 0.02 0.47 0.65
ZiCo (Ours) 0.24 0.35 0.51 0.71

Jigsaw Surface Normal

Proxy Kendall’s 7 [Spearman’s p [| Kendall’s 7 [Spearman’s p
Grad_norm Abdelfattah et al. (2021) 0.23 0.35 0.24 0.36
SNIP Lee et al. (2019b) 0.27 0.41 0.32 0.49
Grasp Wang et al. (2020) 0.07 0.11 0.01 0.01
Fisher Liu et al. (2021) 0.19 0.30 0.10 0.14
Synflow Wang et al. (2020) 0.32 0.47 0.00 0.00
NASWOT Lopes et al. (2021) 0.29 0.42 0.41 0.57
Zen-score Lin et al. (2021) 0.35 0.50 0.52 0.71
GradSign Zhang & Jia (2022) 0.38 0.53 0.29 0.40
Params 0.29 0.44 0.45 0.63
FLOPs 0.30 0.45 0.46 0.64
ZiCo (Ours) 0.36 0.52 0.50 0.68

* Jigsaw. In the Jigsaw task, the input image is divided into nine patches and shuffled based
on one of 1,000 predefined permutations. The target here is to classify which permutation
is used.

* Autoencoding. Autoencoding is a pixel-level prediction task that encodes an input im-
age into a low-dimension embedding vector and then reconstructs the raw image from the
vector.

* Surface Normal. Similar to autoencoding, surface normal is a pixel-level prediction task
that predicts surface normal statistics.

As shown in Table 5, ZiCo consistently works well on Scene Classification, Jigsaw, and Surface
Normal; ZiCo has only 0.01 or 0.02 lower correlation scores than the highest scores. Though
Fisher works better than ZiCo on Autoencoding, ZiCo has significantly higher correlation scores
than Fisher on the remaining three tasks. One possibility why Fisher works best on Autoencoding
is that Autoencoding is an image-to-image task; Fisher is the only proxy that is built on the gradient
w.r.t. feature maps and thus can better extract the information between the input and output images.
Although Fisher works better than ZiCo on Autoencoding (we are still second best), ZiCo has a
significantly higher score on the remaining tasks. As shown in the main paper, we again note that
existing proxies do not achieve a high correlation on all tasks consistently.

Table 6 demonstrates the test accuracy of the best architectures found using various proxies on each
of the above tasks in TransNAS-Bench-101-Micro. Once again, we see that ZiCo significantly out-
performs existing proxies on all tasks except Autoencoding, where we trail Fisher by only 0.01
SSIM. Nonetheless, ZiCo is second best on the Autoencoding task. Note that, similar to the correla-
tion results in Table 5, other proxies do not consistently achieve high accuracy. For instance, while
methods like Synflow or Zenscore achieve results close to ours on Scene Classification and Surface

25

Published as a conference paper at ICLR 2023

Table 6: The test performance of optimal architectures obtained by various zero-shot proxies (av-
eraged over 5 runs) on TransNAS-Bench-101-Micro search space. The best results are shown with
bold fonts.

Autoencoding Scene Classification Jigsaw Surface Normal
Metric SSIM Accuracy Accuracy SSIM
Ground Truth 0.58 54.9 95.4 0.59
Grad_norm 0.364 0.03 48.7+0.7 80.3+0.3 0.5340.00
SNIP 0.3340.04 48.7+1.1 80.3+0.1 0.5340.01
Grasp 0.3340.06 50.24+1.6 91.1+0.3 0.3840.06
Fisher 0.494-0.01 48.7+0.6 83.5+1.2 0.314+0.03
Synflow 0.4640.07 53.7+1.2 90.94+0.4 0.5740.06
NASWOT 0.4340.02 53.24+0.6 92.34+0.3 0.5340.02
Zen-score 0.461+0.01 53.7+0.2 87.5+0.4 0.55+0.00
GradSign 0.35+0.03 53.6+0.4 93.1+0.4 0.57+0.02
Params 0.46 53.70 85.90 0.55
FLOPs 0.46 53.70 85.90 0.55
| ZiCo (Ours) H 0.484+0.02 H 53.7+0.4 H 93.24+0.4 H 0.5740.01]

Table 7: The correlation coefficients under three different proxies vs. test accuracy on NATSBench-
SSS (KT and SPR represent Kendall’s 7 and Spearman’s p, respectively). Clearly, our proposed
ZiCo works consistently better than using mean only and STD only on all these datasets.

Dataset CIFARI10 CIFAR100 Img16-120
Method KT | SPR KT | SPR KT | SPR
Mean Only 025 | 037 || 039 | 055 0.61 | 0.81
STD only 039 | 0551 042 | 0.6 045 | 0.62
ZiCo (Mean +STD) || 054 | 0.73 || 0.55 | 0.75 || 0.70 | 0.88

Normal, they produce poor results on other tasks like Jigsaw. Therefore, ZiCo consistently performs
well on highly different tasks.

E.3 ILLUSTRATION OF VARIOUS PROXIES VS. REAL TEST ACCURACY

We provide some illustration figures of real test accuracy vs. various proxies on NATSBench-SSS
search space for CIFAR10 (Fig. 6) and ImageNet16-120 datasets(Fig. 7). We also show the same
illustrative results (real test accuracy vs. various proxies) on NASBench101 search space in Fig. 8.

F ABLATION STUDY

F.1 IMPACT OF MEAN AND STD

We randomly select 2000 networks from NATSBench-SSS on CIFAR10, CIFAR100, and Img16-
120 datasets and compute the following proxies: (i) Mean value of gradients only; (ii) Standard
deviation (STD) value of gradients only; (iii) Combination of mean and std value, i.e., our proposed
ZiCo. We then calculate the correlation coefficients between these proxies and the real test accuracy.
As shown in Table. 7, our proposed ZiCo performs better on these three datasets than either using
mean only or STD only. Therefore, our proposed ZiCo is a better-designed proxy than using mean
or STD individually.

F.2 SEARCH ALGORITHMS: ZERO-COST PT

In this section, we demonstrate that our proposed ZiCo can be combined with other search algo-
rithms. We take the Zero-Cost-PT (Zero-PT) as an example Xiang et al. (2021b) because it is
specifically designed for zero-shot proxies and is very time-efficient. Essentially, Zero-PT first
integrates all candidate networks into a supernet and assigns learnable weights to each candidate
operation (same as one-shot NAS). Then Zero-PT uses the zero-cost proxy instead of the training

26

Published as a conference paper at ICLR 2023

Table 8: The test accuracy of optimal architectures obtained by various zero-shot proxies (average
on 5 runs) on NATSBench-TSS search space. The best results are shown with bold fonts.

\ Proxy [[CIFARIO [CIFARIO0 | TImgl6-120 | Costs(GPU hours)]
Zero-PT+SNIP Lee et al. (2019b) 93.524+0.18 | 70.754+0.19 | 44.45+0.14 0.10
Zero-PT+NASWOT Lopes et al. (2021) 93.424+0.07 | 70.77+£0.51 | 45.11+£0.26 0.11
Zero-PT+Synflow Tanaka et al. (2020) 87.68+0.16 | 58.92+0.17 | 32.20+0.00 0.13
Zero-PT+KNAS Xu et al. (2021) 93.95+0.03 | 72.444+0.26 | 46.01+0.12 0.10
Zero-PT+Grad_norm Abdelfattah et al. (2021) || 93.52+0.18 | 70.75+0.30 | 44.48+0.11 0.07
Zero-PT+Zen-score Lin et al. (2021) 93.84+0.05 | 71.63+0.06 | 46.67+0.16 0.02
Zero-PT+GradSign Zhang & Jia (2022) 93.764+0.12 | 71.11+0.23 | 42.95+1.29 0.06
Zero-PT+ZiCo (Ours) 94.154+0.22 | 72.77+0.66 | 46.39+0.23 0.12

Table 9: Comparison of Top-1 accuracy of our ZiCo-based NAS against NAS methods with stan-
dalone training on ImageNet under various FLOP budgets. For the ‘Method’ column, ‘MS’ repre-
sents multi-shot NAS; ‘OS’ is short for one-shot NAS; Scaling represents network scaling methods;
“ZS’ is short for zero-shot NAS. ‘no KD’ means we train the network without Knowledge Distilla-
tion (KD); ‘150E’ means we train the network with 150 epochs, similar for 350E. The results are
averaged over three suns. We note that some NAS methods use knowledge distillation to improve
the test accuracy; hence, we remove those methods from this table. The results are averaged over
three runs.

[Budget (maximal #FLOPs) | Approach [FLOPs | Top-1 | Method | Costs[GPU Days] |
EfficientNet-BO Tan & Le (2019) [350E] 390M 77.1 Scaling 3800
EfficientNet-BO Tan et al. (2019)[150E] 390M 76.0 Scaling 3800
MnasNet-A3 Tan et al. (2019) 403M 76.7 MS -
BN-NAS Chen et al. (2021a) 470M 757 MS 0.8
450M RLNAS Zhang et al. (2021) 473M 75.6 oS -
NASNet-B Zoph et al. (2018) 488M 72.8 MS 1800
CARS-D Yang et al. (2020) 496M 733 MS 0.4
Zen-score Lin et al. (2021) [no KD; I50E] | 410M 75.6 7S 0.5
#Params 451M 63.5 7S 0.02
ZiCo (Ours) [no KD; 150E] 448M | 76.510.2 7S 0.4
DARTS Liu et al. (2019) 574M 733 oS 4
NAO Luo et al. (2018) 584M 75.5 MS 583
PC-DARTS Xu et al. (2019) 586M 75.8 [} 38
PNAS Liu et al. (2018a) 588M 74.2 MS 224
CARS-I Yang et al. (2020) 591IM 75.2 MS 0.4
EnTranNAS Yang et al. (2021) 594M 76.2 oS 2.1
ProxylessNAS Cai et al. (2019) 595M 76.0 [o 8.3
600M RLNAS Zhang et al. (2021) 597 75.9 oS -
MAGIC-AT Xu et al. (2022) 598M 76.8 oS 2
SemiNAS Luo et al. (2020) 599M 76.5 MS 4
EfficientNet-B1 Tan et al. (2019)[350E] 700M 79.1 Scaling 3800
EfficientNet-BT Tan et al. (2019)[150E] 700M 774 Scaling 3800
TE-NAS Chen et al. (2021b) 599M 75.5 7S 0.17
Zen-score Lin et al. (2021) [no KD; I150E] | 61IM 76.1 ZS 0.5
ZiCo (Ours) [no KD; 150E] 603M | 77.1+0.3 VA 04

accuracy to update the weights for each candidate operation. The final architecture is generated by
selecting the operations with the highest weight values.

We combine different accuracy proxies with Zero-PT under the NASBench-201 and report the op-
timal architectures found with various proxies3. As shown in Table 8, the architectures found via
ZiCo have the highest test accuracy except for Imgl16-120 datasets (ZiCo is the second best on
Img16-120)).

F.3 TRAINING RECIPE: WITHOUT DISTILLATION

In this section, we train the obtained network under various FLOPs budgets with the exact same
training setup as Xu et al. (2022); Cai et al. (2019). Specifically, we train the neural network for 150
epochs with batch size 512 and input resolution 224 x224. We train the network without knowledge

3We implement the code ourselves since the authors have not released the code yet. The difference between
Table 4 and Table 8 comes from the search algorithm: Table 4 uses traversal search among all candidate
networks; Table 8 uses perturbation-based zero-cost PT Xiang et al. (2021b).

27

Published as a conference paper at ICLR 2023

Table 10: Comparison of Top-1 accuracy of our ZiCo-based NAS against NAS methods with stan-
dalone training on CIFAR10 on DARTS search space. For the ‘Method’ column, MS’ represents
multi-shot NAS; ‘OS’ is short for one-shot NAS; ‘ZS’ is short for zero-shot NAS. ‘600E’ means we
train the network with 600 epochs, similar to 800E. The results are averaged over three suns. The

results are averaged over three runs.

| Approach || Test Error (%) | Method | Cost(GPU days) |
AmoebaNet-A Real et al. (2019) 3.3440.06 MS 3150
PNAS Liu et al. (2018a) 3.41+0.09 MS 225
ENAS Tan & Le (2019) 2.89 MS 0.5
NASNet-A Zoph et al. (2018) 2.65 MS 2000
DARTS-v1 Liu et al. (2019) 3.004+0.14 F oS 04
DARTS-v2 Liu et al. (2019) 2.76+0.09 oS 1
SNAS Xie et al. (2019) 2.8540.02 oS 1.5
GDAS Dong & Yang (2019) 2.82 oS 0.17
BayesNAS Zhou et al. (2019) 2.81£0.04 oS 0.2
ProxylessNAS Cai et al. (2019) 2.08 oS 4
P-DARTS Chen et al. (2019) 2.5 oS 0.3
PC-DARTS Xu et al. (2019) 2.57+0.07 oS 0.1
SDARTS-ADV Chen & Hsieh (2020) 2.61+0.02 oS 1.3
Zen-score Lin et al. (2021) 2.554+0.04 7S 0.01
TE-NAS Chen et al. (2021b) 2.6340.064 7S 0.05
ZiCo(ours) 2.45+0.11 7S 0.03

distillation and do not use advanced data augmentation methods (e.g., mixup, RandAugment, etc).
Finally, we set the initial learning rate as 0.4 with a cosine annealing scheduling scheme. Moreover,
we train EfficientNets and the previous SOTA zero-shot NAS approach (Zen-score) under the same
setup.

As shown in Table 9, ZiCo outperforms all of the previous zero-shot NAS approaches. For exam-
ple, when the FLOPs budget is around 600M, ZiCo achieves 77.1% Top-1 accuracy, which is 1.0%
and 1.6% higher than previous SOTA zero-shot NAS methods, i.e., Zen-score, and TE-NAS, re-
spectively. Moreover, ZiCo finds a model with similar accuracy as EfficientNet-B1, but with 100M
fewer FLOPs and much less search cost. Overall, compared to the regular one-shot or multi-shot
NAS methods, ZiCo achieves comparable or higher test accuracy with 5-9500x less search time.

F.4 SEARCH SPACE: DARTS

In this section, we use ZiCo to conduct the zero-shot NAS on the DARTS search space. We first use
Algorithm 1 to find the networks with the highest ZiCo without FLOPs budgets on the CIFAR10
dataset. We conduct the search for 100k steps; this takes 0.7 hours on a single NVIDIA 3090 GPU
(i.e., 0.03 GPU days). Then, we train the obtained network with the exact same training setup as the
original DARTS paper Liu et al. (2019)*; specifically, we train the neural network for 600 epochs
with a batch size of 128. We only use the standard data augmentation (normalization, cropping, and
random flipping) together with the cutout tricks. We don’t use knowledge distillation or any other
advanced data augmentation tricks. Finally, we set the initial learning rate as 0.025 with a cosine
annealing scheduling scheme. We repeat the same experiments for Zen-score.

As shown in Table 10, ZiCo outperforms previous zero-shot NAS approaches, e.g, Zen-score and
TE-NAS. Moreover, compared to the regular one-shot or multi-shot NAS methods, ZiCo achieves
comparable or higher test accuracy with at least 10x less search time.

*Most of the baseline approaches in Table 10 use the same setup as ours.

28

Published as a conference paper at ICLR 2023

Test acc vs. Grad_norm (t=0.36 p=0.51) Test acc vs. SNIP (t=0.42 p=0.59)

Test accuracy
(9,1 [e)] ~
o o o
Test accuracy
19,1 o ~
o o o

IS
o
IS
o

3 4 5 6 25 50 75 100 125 15.0
Grad_norm SNIP
(a) Grad_norm (b) SNIP

Test acc vs. GraSP (t= —0.09 p= —0.13) Test acc vs. Fisher (t=0.30 p=0.44)

o)) ~
o o
o)) ~
o o

Test accuracy
(9,1
o

Test accuracy
w
o

IS
o
IS
o

-02 -01 00 0.1 0.2 0.3 0.00026.00050.00076.00100.00126.00150.00175
GraSP Fisher

(c) GraSP (d) Fisher

Test acc vs. Synflow (t=0.61 p=0.81) Test acc vs. Zen-score (T=0.50 p=0.69)

o)} ~
o o
(o)) ~
o o

Test accuracy
19,1
o

Test accuracy
w
o

I
o
I
o

5.0 7.5 10.0 12.5 15.0 17.5 20.0 25 30 35 40 45 50 55
Synflow Zen-score

(e) Synflow (f) Zen-score

Test acc vs. #Params (t=0.53 p=0.72) Test acc vs. ZiCo (t=0.54 p=0.73)

o)) ~
o o
o)) ~
o o

Test accuracy
(9,1
o

Test accuracy
[9,]
o

IS
o
IS
o

0 200000 400000 600000 200 220 240 260 280 300
#Params ZiCo

(g) #Params (h) ZiCo

Figure 6: Real test accuracy vs. various proxies on NATSBench-SSS search space for CIFAR10
dataset. T and p are short for Kendall’s 7 and Spearman’s p, respectively.

29

Published as a conference paper at ICLR 2023

Test acc vs. Grad_norm (t=0.49 p=0.67)

Test acc vs. SNIP (t=0.57 p=0.76)

45 A 45
5‘ 40 1 3 40
O 354 O 351
3 3
% 301 % 301
@© ©
0 i
@ 251 @ 251
201 201
20 25 30 35 40 45 50 25 50 75 100 125 15.0
Grad_norm SNIP
(a) Grad_norm (b) SNIP
Test acc vs. GraSP (t=0.29 p=0.42) Test acc vs. Fisher (t=0.41 p=0.57)
451 45
L>)‘40— 340’
O 354 O 354
3 3
% 301 % 301
© ®
0 i
@ 251 @ 254
201 204
00 01 02 03 04 05 0.0002 0.0004 0.0006 0.0008
GraSP Fisher
(c) GraSP (d) Fisher
Test acc vs. Synflow (t=0.39 p=0.57) Test acc vs. Zen-score (T=0.69 p=0.87)
45 A 454
5‘ 401 a 40
O 354 O 351
3 3
& 30 & 30
@© ©
I i
@ 251 @ 251
201 20+
100 150 200 25 30 35 40 45 50 55
Synflow Zen-score
(e) Synflow (f) Zen-score
Test acc vs. #Params (T =0.65 p=0.84) Test acc vs. ZiCo (t=0.70 p=0.88)
454 454
a 404 a 40
C35 O 351
=} >
O 2n | 9 20 |
© 30 © 30
0 i
@ 251 @ 251
201 204
0 200000 400000 600000 200 220 240 260 280 300 320
#Params ZiCo
(g) #Params (h) ZiCo

Figure 7: Real test accuracy vs. various proxies on NATSBench-SSS search space for ImageNet16-
120 dataset. 7 and p are short for Kendall’s 7 and Spearman’s p, respectively.

30

Published as a conference paper at ICLR 2023

Test acc vs. Grad_norm (t= —0.17 p= —0.25)

0.8
>
(9]
©
5 0.61
|9
9]
©
%t 0.4
@
0.2
0 200 400 600 800 1000 1200
Grad_norm
(a) Grad_norm
Test acc vs. GraSP (t=0.20 p=0.29)
0.8
>
(0]
©
5 0.61
9]
o
©
% 0.4
Q@
0.2
0 5000 10000 15000 20000 25000
GraSP
(c) GraSP
Test acc vs. Synflow (T =0.23 p=0.35)
0.8
>
o
@©
5 0.61
(9]
19
@
%t 0.4
@
0.2
0 50000 100000 150000
Synflow
(e) Synflow
Test acc vs. #Params (t1=0.31 p=0.43)
0.8
>
(9]
©
5 0.61
|9
o
©
% 0.4
@
0.2
0 1 2 3 4
#Params le7
(g) #Params

Test acc vs. SNIP (T= —0.12 p= - 0.17)

0.8
>
[}
©
5 0.6
(9]
[}
(1]
1t 0.4
i
0.2
0 2000 4000 6000
SNIP
(b) SNIP
Test acc vs. Fisher (t= —0.20 p= —0.28)
0.81
>
[}
©
5 0.6
[0}
[}
(0]
% 0.4
i)
0.21
0 250 500 750 1000 1250
Fisher
(d) Fisher
Test acc vs. Zen-score (T=0.46 p=0.63)
0.8
>
o
o
5 0.6
(8]
[}
©
%3 0.4+
i
0.21
50 75 100 125 150 175
Zen-score
(f) Zen-score
Test acc vs. ZiCo (t1=0.46 p=0.63)
0.81
>
[}
©
5 0.6
[}
[}
©
% 0.4
S
0.21

200 400 600 800 1000 1200
ZiCo
(h) ZiCo

Figure 8: Real test accuracy vs. various proxies on NASBench101 search space for CIFAR10
dataset. T and p are short for Kendall’s 7 and Spearman’s p, respectively.

	Introduction
	Related work
	Zero-shot NAS
	Kernel Methods in Neural Networks

	Convergence and Generalization via Gradient Analysis
	Linear Regression
	MLPs with ReLU
	Convergence Rate
	Generalization Capacity

	Summary of our theoretical analysis
	New zero-shot proxy

	Experimental Results
	Experimental Setup
	Validation of Theorems 3.1&3.3&3.5
	ZiCo vs. other proxies on NAS benchmarks
	ZiCo on ImageNet
	Ablation study

	Conclusion
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.5
	Supplementary results: Validation of Theorem 3.5

	Experimental setup of ZiCo on ImageNet
	Search space
	Search Algorithm
	Training details

	Supplementary results on NAS Benchmarks
	Comparison with more proxies
	Comparison on TransNAS-Bench-101-Micro
	Illustration of Various Proxies vs. Real Test Accuracy

	Ablation study
	Impact of Mean and STD
	Search algorithms: zero-cost PT
	Training recipe: without distillation
	Search space: DARTS

