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Abstract—When dealing with safety-critical systems, various
regulations, standards, and guidelines stipulate stringent re-
quirements for certification and traceability of artifacts, but
typically lack details with regards to the corresponding software
engineering process. Given the industrial practice of only using
semi-formal notations for describing engineering processes – with
the lack of proper tool mapping – engineers and developers need
to invest a significant amount of time and effort to ensure that all
steps mandated by quality assurance are followed. The sheer size
and complexity of systems and regulations make manual, timely
feedback from Quality Assurance (QA) engineers infeasible. In
order to address these issues, in this paper, we propose a novel
framework for tracking, and “passively” executing processes
in the background, automatically checking QA constraints de-
pending on process progress, and informing the developer of
unfulfilled QA constraints. We evaluate our approach by applying
it to three case studies: a safety-critical open-source community
system, a safety-critical system in the air-traffic control domain,
and a non-safety-critical, web-based system. Results from our
analysis confirm that trace links are often corrected or completed
after the work step has been considered finished, and the engineer
has already moved on to another step. Thus, support for timely
and automated constraint checking has significant potential to
reduce rework as the engineer receives continuous feedback
already during their work step.

Index Terms—software engineering process, traceability, de-
veloper support, quality assurance, process deviation, constraint
checking

I. INTRODUCTION

Software quality assurance (QA) focuses on ensuring and
attesting that the implemented engineering processes result in
appropriate quality of the software. This not only includes
code quality, but also pertains to the quality of the procedures,
documentation, and available artifacts [1]. To this end, vari-
ous regulations, standards, and guidelines stipulate stringent
traceability paths [2], [3] without prescribing a corresponding,
detailed software engineering process. Examples in safety-
critical systems include the FDA principles in the medical do-
main [4], [5], DO-178C/ED-12C for airborne systems [6], ED-
109A [7] for air traffic management systems, and Automotive
SPICE [8] in the automotive industry. To achieve compliance,

QA engineers need to inspect fine-grained constraints related
to properties of engineering artifacts, such as requirements,
models, code, and test cases, as well as trace links at specific
points in time (i.e., in different process steps, such as require-
ment elicitation, specification refinement, coding, or test case
specification). The current practice in industry, however, is to
employ semi-formal descriptions to define processes [9]. As a
result, there exists a crucial gap between the process model and
the tool environment in which engineers (implicitly) enact the
process. As a result, currently little to no automation support
is available for engineers to understand whether they correctly
follow a process, or to what extent they (temporarily) deviate
from it.

In this work, we focus on the problems that Developers and
Quality Assurance Engineers face when dealing with these
processes, as adhering to, and evaluating QA constraints is
complex and can quickly become overwhelming. Typically, de-
velopers work on multiple projects, sometimes simultaneously,
with each project potentially adhering to different quality
standards or guidelines.

We conducted an informal study with our industry partner
Frequentis that applies the V-Model to develop (among other
products) safety-critical air-traffic control software. Developers
reported being stressed about potentially missing important
steps mandated by quality assurance. A sub-problem, the chal-
lenge to correctly provide traces between engineering artifacts,
is also commonly found in the automotive industry [10].
QA Engineers, on the other hand, need to conduct countless,
tedious, often mind-numbing checks that involve (manually)
navigating across diverse artifacts and tools to ensure that
the required constraints are fulfilled at the right process step.
These checks are error-prone and rarely conducted in time
to provide immediate feedback to developers. We observed
that when quality checks are performed in batch for efficiency
reasons towards the end of the development cycle, develop-
ers may only receive feedback as late as 6-12 weeks after
completing their work [11]. Remediating problems late in the
process interrupts developers who may have already moved on



to other steps or projects, causing disruptions and extra effort
as they need to re-understand their past work context.

In this paper, we extend our prior work that was pub-
lished at the International Conference on Software Engineering
(ICSE’21) aimed at reducing the effort required in ensuring
that development activities adhere to the intended process.
Our approach provides automated support to developers and
quality assurance engineers [12], and relies on passive pro-
cess execution, i.e., by tracking process steps via monitoring
engineering artifacts such as requirements, design documents,
issues, change requests, and tests rather than engineers having
to explicitly interact with a process engine. This is com-
plemented by continuous evaluation of the specified quality
constraints. The key novelty is treating (quality) constraints
neither as an implicit part of the engineering process model,
nor as completely disjunct from it. Instead, we propose treating
quality constraint evaluations as first-class citizens: i.e., as
explicit development artifacts that are used to monitor and
determine process progress. This contrasts with existing work
on traceability [3], [13] where links required by regulations
and standards are typically verified by an auditor at the end
of a process stage or prior to shipping the final product [14].
Similarly, work on constraint checking [15], [16] primarily
focuses on consistency among diverse artifacts without ad-
dressing consistency issues between these artifacts and the
underlying process. Compared to past work on process-centric
environments (PCEs) such as PRIME [17], our approach
remains lightweight and requires minimal integration efforts
- such human effort is one of the reasons past approaches
were not readily adopted.

The key contributions of our work are as follows:

• A process model that decouples process control and data
flow from QA constraints.

• A passive process engine that explicitly tolerates in-
consistencies [18] and allows engineers to temporarily
deviate from the process while providing them with
timely feedback on QA constraint evaluation results.

• A prototype that helps developers clearly understand
when they have completed a step or what they still need
to provide (e.g., specific content or trace links).

• An evaluation against an open-source system for un-
manned aerial vehicles (UAVs), an industrial air-traffic
control system (ATC), and a web-based recreational
activity system that measures the extent to which the
prescribed process was followed.

The prototype, process models, constraints, and historical
development data used in this paper are available on Figshare1

The additional content, extending our original work, in-
cludes the following three main extensions: (1) an extended
discussion on the background, as well as related work in the
area, (2) an enhanced process model, and (3) significantly
expanded evaluation including another industry evaluation
case study and a preliminary usability study.

1https://doi.org/10.6084/m9.figshare.12840053

The remainder of this paper is structured as follows. Sec-
tion II discusses the background of our work and motivates it
by describing constraint checks for the development of safety-
critical systems. Sections IV and V provide an overview of
our approach and introduce details on modeling the process
and constraints, and Section VI further focuses on constraint
execution. We describe our evaluation method in VII, sup-
ported by three distinct case studies, and introduce our proto-
type implementation in Section VIII and evaluation setup in
Section IX. We report details of the evaluation in Section X,
and conclude with a discussion of results (Section XI), threats
to validity (Section XII), and related work (Section III).

II. BACKGROUND & MOTIVATION

Our work combines the areas of process management,
traceability, and safety-related regulations. In this section, we
provide a brief introduction to each of these areas and describe
the context of our process engine using a motivating example
from our industry collaborator.

Safety-critical software typically is subject to stringent
regulations, where certain artifacts as well as trace links
between the specification, individual requirements, test cases,
and source code need to be thoroughly documented and
provided during the certification process. For example, medical
devices are subject to diverse international regulations, and
software developed for the aerospace industry must comply
with ISO/IEC12207 and DO-178C guidelines.

In the domain of Non-Airborne Systems, the DO-278/ED-
109 standard [19] defines requirements for traceability of arti-
facts, according to different design assurance levels. Creating,
maintaining, and validating these links before certification is
a costly and labor-intensive task that is typically performed
manually, with little to no tool support. However, while DO-
278/ED-109 describes the different types of assurance levels,
ranging from “Catastrophic” to “No Effect”, and the types of
trace links that need to be provided, it does not specify when
these trace links need to be established or which role (i.e.,
who) should perform this task.

A. Motivating Scenario

In this domain, of Non-Airborne Systems, our long-term
industry collaborator Frequentis is a world-leading provider
of voice communication solutions for air-traffic control and
command-control centers. Their product portfolio in the air
traffic domain ranges from aeronautical information manage-
ment solutions, over remote digital towers, to traditional tow-
ers, with reliable voice communication playing a major role.
Monitoring radio channels to obtain situational awareness,
communicating with air traffic participants, and coordinating
with other stakeholders in emergency situations introduce
diverse use cases that all require real-time audio processing
software and hardware, as well as the user interface, to work
exactly as expected.

As part of their requirements engineering and development
process, Frequentis refines high-level requirements and assigns
them to different work packages for engineers to work on. In



Fig. 1: Frequentis’ simplified traceability information model (TIM) excerpt (left) and process model excerpt (right) labeled
with Steps S1 to S8. Full lines depict explicit, bi-directional traces between artifacts, and dotted lines depict exemplary artifact
read and write usage in the various process steps. Colors map to elements in the DO-278/ED-109 standard.

order to meet the prescribed regulations, trace links need to
be established between requirements, work packages, and the
respective test cases. The left-hand side of Figure 1 provides an
overview of the partial traceability information model (TIM)
used. The right-hand side provides excerpts from a simplified
development process representation consisting of a sample set
of process steps (S1 to S8) for one of their products. We
use the described TIM, process, and constraints as a running
example to describe our passive process engine framework.

In the example, high-level requirements (HLReq) and the
corresponding high-level design specifications (HLSpec) are
reviewed and subsequently refined into low-level requirements
(LLReq). This, in turn, may require low-level design speci-
fications (LLSpec) to be updated. Therefore, it is advisable
for developers to wait for the outcome of the review before
they start refining LLReq, even though HLReqs and teams are
already assigned to work packages during the development
iteration planning phase. Furthermore, before the implementa-
tion of LLReq can start, the corresponding trace links from
HLReq to LLReq and trace links from LLReq to LLSpec
need to be reviewed. In order to ensure adherence to the
prescribed standards, constraints for the engineering process
are introduced which rely on the properties of an artifact
at a specific process progress. These not only check for the
existence of an artifact or respective trace links, but further
ensure that the correct links are set up between the right
type of artifacts. For example, in the case of Frequentis’
development process, at the end of step S3 (cf. Figure 1) the
respective LLReqs need to be in state “Complete”, and contain
a trace link to a HLReq. Furthermore, upon completion of step
S7, when a LLReq’s verification method is “Demonstration”,

at least one trace link to a respective Test Case must be
established. This is further constrained by the fact that this test
case must be a simulation, demonstration, acceptance test, or
any other form of test, except the type “Software Test Case”.

Engineers who are updating the LLSpec (in S4), for exam-
ple, thus need to be aware of when they can proceed with their
step in order to avoid rework if additional refinements of an
LLReq occur. Similarly, engineers in S7 need timely feedback
when they can claim to have finished implementation and thus
trigger the review in S8.

Knowing the state of the process helps assess the risk of
deviation. Starting prematurely on HLReq refinement (S3)
may be too risky if the requirements have not gone through
review in S1 and S2 but perhaps necessary and expedient when
S2 has only a few requirements left to review.

These constraints are not meant to replace human-in-the-
loop QA measures, such as the trace reviews in S5 and S6, but
to complement manual activities. Such (continuous) automated
checks reduce the effort for reviews by ensuring the traces
under review are syntactically correct and thus the review can
be performed more efficiently.

B. Process definition vs. Process execution

As the scenario above exemplifies, in most software engi-
neering environments, one cannot expect engineers to precisely
follow the prescribed process definition. Various factors such
as time pressure, unclear or missing information, or chang-
ing customer expectations, cause rework and make iterations
necessary. Modeling all such possible “deviations” from an
ideal process is often impractical and hence not done. The
process, however, has an important guiding purpose, while
additional QA constraints define properties of the engineering



artifacts and their relations. The key aspect here is that strictly
following the process is as detrimental to software quality
as largely ignoring it. Hence, we make the case for having
less detailed, but nevertheless, informative processes that are
mapped to tools (in which they are executed), while tolerating
deviations. This, however, should be no motivation to prescribe
a waterfall model.2 Tracking process progress is crucial for
engineers to assess whether an action leads to a deviation, or to
assess who might be affected by a deviation. Tracking progress
in the presence of deviations is crucial to understanding
whether a deviation is critical, acceptable, and repairable. The
next section discusses related work and its shortcomings with
regard to supporting deviations.

III. RELATED WORK

A. Process-centric software development environments

Process-centric software development environments
(PCSDE) have received significant attention in the ’90s.
We discuss an exemplary selection below, for a detailed
review see [21] or [22]. Step-centric modeling and active
execution frameworks such as Process Weaver [23], SPADE
[24], Serendipity [25], EvE [26], or PRIME [17] determine
which steps may be done at any given moment, automatically
executing them where possible. While such research supports
detailed guidance, deviations from the prescribed process
is not well supported. Approaches such as Shamus [27],
PROSYT [28], or Merlin [29] specify for engineering artifacts
which actions and conditions are available, and enforce their
correct order – yet, without prescribing an overall step-
based engineering process. Often the supported artifacts are
limited to files and folders. Systems such as MARVEL [30],
OIKOS [31], or EPOS [32] utilize Event Condition Action
(ECA) rules or pre- and post-conditions, thereby providing
significant freedom of action to the engineer but offering
limited guidance.

The approaches described so far have the implicit assump-
tion that engineers primarily interact with the PCSDE for
executing work. Our aim is to remain in the background,
with engineers staying in their tools except for confirming
QA constraint fulfillment. Provence [33] has a similar goal,
maintaining a process view from artifact change events. It’s,
however, limited to events from the file system, relying on
moving files to dedicated folders to signal process-meaningful
events. It also remains unaware of trace links between artifacts.

More recent work focuses on specific aspects of the en-
gineering life-cycle rather than general-purpose processes.
DevOpsML [34] aims at reducing the effort to describe
continuous integration and deployment processes. Amalfitano
et al. [35] aim to fully automate the execution of the testing
process and to automatically generate appropriate traceability
links. Similarly, Hebig et al. [36] investigate how various
software design and code artifacts dependencies emerge from
MDE activities. When involving human steps, approaches

2Even W. Royce, the original author of the waterfall model [20], considers
the execution of a strict waterfall process as risky and likely to fail.

often assume pre-defined process models and rigorous tool
integration. Kedji et al. provide a collaboration-centric de-
velopment process model and corresponding DSL [37]. At
a micro-level, Zhao et al. propose Little-JIL for describing
fine-grained steps involved in refactoring [38] and to help
developers track artifact dependencies during rework [39].

A few approaches on general-purpose process modeling
and execution (e.g., [40]–[43]) focus on step-centric languages
such as SPEM and BPMN, which both imply active execution
where engineers cannot deviate from the prescribed process.

B. Business Process Modeling

In the business process modeling domain, significant related
work focuses on formally verifying processes [44] rather than
attempting to fix them. Fixing is limited to achieving sound
process models but is not applicable to instances as we aim
for. The few, recent approaches that address inconsistencies
and their repair exhibit limited expressiveness for specifying
constraints: LTL for expressing task and event constraints [45],
[46] or Mixed-Integer Programming for determining runtime
compliance of task and resource allocation [47]. Business
process compliance checking approaches determine whether
complex sequences of events and/or their timing violate partic-
ular constraints. Ly et al. analyze frameworks for compliance
monitoring [48] and highlight that the investigated frameworks
have little or no inherent support for referencing data beyond
the properties available in the respective events (hence no
access to the actual artifact details and their traces/relations
to other artifacts). They also show that hardly any approach
supports proactive violation detection, the ability to continue
monitoring after a violation, or root cause analysis in a manner
useful for software engineering. Also, recent work such as [49]
or [50], lacks this crucial support for defining constraints on
artifact details.

Notably, the processes studied and used for evaluation
in the business process management or information systems
domain exhibit complex decision-making about which task
to do next, or which task must not be done, and how much
time between tasks may pass. Evaluation domains thus often
include administrative processes, medical processes, or legal
processes but virtually never software engineering processes.
In the software engineering domain, processes are simpler but
instead require a focus on keeping artifacts consistent with
each other. Hence structural (i.e., data-centric) constraints are
required which our approach checks proactively, subsequently
highlighting that they are not yet fulfilled. Often the necessary
guidance is not so much about which task to do next, but when
to do it.

In comparison to dedicated software engineering process
environments introduced above, general (business) process
support, as provided by enterprise tools like SAP, is not ap-
plicable in software engineering environments as such support
rigidly controls what steps may be worked on without any
possibility of deviation.



C. Traceability

Several researchers have proposed techniques for contin-
uously assessing and maintaining software traceability [13].
Event-Based Traceability (EBT) uses a publish-subscribe
model to notify developers when trace links need to be updated
[51] while Rempel et al. proposed an automated traceability
assessment approach for continuously assessing the compli-
ance of traceability to regulations in certified products [52],
[53]. These approaches are orthogonal to our work as they
are process-unaware, and hence provide little to no guidance
for which step in a process a trace link must be available.
Furthermore, we assume engineers have chosen a suitable
traceability strategy [54] and assessed that the resulting TIM
(supported by flexible traceability management tools such as
Capra [55]) also conforms to the relevant guidelines [3].

D. Model Consistency

QA constraint checking exhibits some similarities to cross-
artifact consistency checking. Examples include work on
model-to-model [16], [56], [57] or model-to-code checking
[15]. These approaches support the correct propagation of
changes across artifacts once these artifacts are known to
“belong” together. Our work, in contrast, supports the engineer
in what state an artifact needs to be, and which trace links it
needs to exhibit depending on the process progress.

E. Research Gap

The main research gap that we address in this paper is
the lack of guidance in the presence of deviation from the
intended process. Existing approaches either need to explicitly
model the possibility to deviate or are too flexible (hence not
providing sufficient guidance). Additionally, most approaches
require engineers to interact with the process environment
in order to track the process progress rather than a process
environment passively observing the engineers’ activities in
their tools and inferring process progress in the background
from these activities.

IV. APPROACH – THE PROCON FRAMEWORK

In this section, we provide a comprehensive overview of
ProCon, our framework for passive Process execution and
quality Constraint support. Two of the key aspects that
characterize our framework are the integrated handling of
explicitly distinct processes and constraints, and the tracking
of engineering progress realized through explicitly linking
process descriptions to software engineering artifacts.

As part of ProCon, a passively executable Process Specifica-
tion describes the sequence and alternatives of engineering ac-
tivities (i.e., the “control flow”) and the corresponding software
engineering artifacts serving as inputs and outputs of those
activities (i.e., the “data flow”). Explicitly modeling a software
engineering process for controlling the software engineering
life-cycle is not new, with a plethora of research dating back to
the 90s [23], [24], [58], [59] (c.f. previous Section). ProCon is
different insofar as (i) the process is tracked in the background,
based on the software engineers’ activities performed in the

Fig. 2: The ProCon framework.

tools they are using in their daily work, and as such, it does
not require engineers to interact with a process engine, (ii)
engineers are free to deviate from the process, (iii) engineers
may receive guidance even in the presence of deviation, and
(iv) ProCon supports control- and dataflow conditions as well
as constraints across diverse artifact types and tools.

We refer to these abilities as “passive execution”. Instead
of simply monitoring the process, our framework determines
available future steps, detects premature steps, and makes this
information immediately available to engineers. ProCon, is
capable of detecting and tracking deviations from a predefined
process via a series of process and quality constraints. These
constraints, and their respective evaluation results, are treated
as first-class citizens in the software engineering process
(model), and hence represent explicit software engineering
artifacts in their own right. This in turn allows constraints
to be explicitly evaluated as soon as actions are performed
so that the evaluation results can provide valuable insights
about the status of the process beyond whether a step has
been completed or not.

A. ProCon High-level Architecture

ProCon consists of four major elements (depicted in Fig-
ure 2) for defining, checking, and maintaining the process and
development artifacts of an organization:

Existing Semi-informal process definitions, standards,
guidelines, and regulations (A) serve as the initial input
for ProCon. Typically, these already exist within an organi-
zation and describe (and motivate) the prescribed processes
and quality assurance measures. Process definitions may in-
clude (parts of) the Software Process Engineering Metamodel
(SPEM) [60], PDFs representing flowcharts, or simple text
documents outlining the steps and responsibilities of the
different roles.

The process definition documents are complemented by –
and used in conjunction with – a variety of diverse Tools



within an organization to create, update, and maintain the
artifacts that represent the input and output of the different
process steps. Artifacts such as issues often serve as a (partial)
informal representation of process instances. Tool Connectors
(B) for the respective tools provide access to artifacts often
in machine-readable formats such as JSON data. These con-
nectors enable sophisticated tasks such as obtaining artifact
updates via polling or subscriptions, and managing which
artifacts are relevant for a process. It is, therefore, necessary
to keep track of these artifacts, provide caching mechanisms
for quick repeated access, and keep this cache up to date (cf.
Section VIII).

Passively Executable Process Specifications and Con-
straints (C) are manually derived (cf. Section V-A and V-D,
respectively) based on the above two main inputs. Process
Specifications formalize the (semi-)informal process defini-
tions and guidelines and allow a fine-grained mapping to the
respective artifacts, properties, and their changes observable
via the tool connectors.

The Passive Process Engine (D) manages instances of
passively executable process specifications (or Process In-
stances for sake of brevity). The passive process engine
obtains the state of an artifact and respective events from tool
connectors (E), and feeds these changes into a rule engine
in which the process progress conditions and QA constraints
are evaluated. The rule engine eventually fires events that the
process engine, in turn, utilizes to update the process progress
and quality constraint evaluation results (cf. Sections VI and
VI-A, respectively).

Finally, a web-based Process Dashboard makes process
progress and QA constraint evaluation results (F) continuously
available to software engineers. It enables control of the pas-
sive process instance: triggering new instances, observing their
progress, and eventually archiving them (cf. Section VIII).

B. ProCon Usage

ProCon users are primarily QA engineers and developers,
but may include other stakeholders, such as product managers
and team leads. While the former can use the framework with
a focus on quality assurance, which is the focus of this paper,
the latter can leverage the framework to track and manage
process progress.

Based on this, ProCon supports two distinct use cases. In the
process and constraint modeling use case, various stakeholders
map the informal process definitions, standards, etc. (A) to
passively executable process specifications (C). Stakeholders
comprise dedicated process engineers, QA engineers, project
managers, and others, depending upon how the organization
assigns responsibilities for (i) defining how the development
team needs to work to adhere to regulations and (ii) monitoring
and improving these practices. Responsibility for providing a
tool such as ProCon would fall under the responsibility of an
IT department similar to maintaining other infrastructure such
as source code repositories and issue tracking systems.

The definition phase involves analyzing how engineers
currently produce evidence of process execution in the various

tools (B). The tool connectors describe what artifact properties
are available and thus what change events may serve as process
progress triggers during process execution: for example, what
(custom) properties are used for various Jira issues, or what
trace links are available to navigate from a Jira [61] issue to a
requirement managed in Jama [62]. The outcome of the mod-
eling use case is a passively executable process specification
and its quality constraints.

It is, however, important to note that our approach does not
require modeling the complete process if tools do not facilitate
access to certain information. One would typically start with
those parts that are most important, or most error-prone, etc.,
and focus on these. Ambiguity may arise, for example, if
rules expect one trace to navigate to an artifact but find
multiple ones, then a random one will be selected. Mitigation
includes correcting and/or extending QA constraints to identify
these ambiguous situations. In line with Lee Osterweil’s key
observation that “software processes are software, too” [63] we
advocate the use of contemporary software engineering prac-
tices such as developing in iterations, testing, versioning, and
issue tracking. A key element here is replaying the artifacts’
history to test the constraints’ ability to detect deviations [64].

Upon process instantiation, the passive process engine ob-
tains artifacts and their changes as they occur in various tools
(D). The engine then tracks the progress of each step and its
attached constraints. It determines completed and in progress
steps (Figure 2 center, with solid border), which steps an
engineer is free to start next, and which ones should not
yet start (dashed border). Artifact and process updates trigger
reevaluation of constraints (document symbols with icons).
ProCon users then access the process progress and constraint
evaluation results (E). An engineer may notice an unfulfilled
constraint, conduct the necessary artifact changes via the tools,
trigger reevaluation, and confirm quality constraint fulfillment.
Note that users exclusively affect process progress and con-
straint evaluation results via tool interactions (F) and never via
direct interaction with the passive process engine itself (except
for explicit triggering of quality constraint evaluation).

V. PROCESS AND CONSTRAINT MODELING

ProCon relies on a dedicated process meta-model that
structures the constraint and artifact space. Furthermore, a
number of process steps guide the (passive) execution of the
process during the engineering life-cycle.

A. Process Meta-Model

One major challenge, when passively executing processes,
is to determine the steps that are currently available for an
engineer to work on, steps that represent work in progress (but
perhaps shouldn’t be worked on yet), and finally, steps that
have been successfully completed. In comparison to existing
approaches, the major differences are not the basic building
blocks (i.e., the process steps), but rather the way transitions
between these steps are defined and subsequently triggered.
Figure 3 (left) provides a simplified UML class diagram of
the main elements in the process specification and instance



Fig. 3: Meta-model of the process specification (top) and
process instance (bottom) - simplified view.

meta-model. The two main elements of the process model are
Steps and the Decision Nodes attached to them.

A StepDefinition describes what an engineer “should”
do (in contrast to “must” do – as prescribed by a more
restrictive process). Examples include: “refine a requirement”,
“implement a feature”, or “define a test case”. A defined
step, in turn, has zero or more Input artifacts that represent
data required for making a decision, creating a new artifact,
or artifacts that need to be modified. Furthermore, zero or
more Output artifacts are defined, describing the result of
executing the step (e.g., having modified an input artifact or
created a new artifact). Input and output artifacts can represent
arbitrary kinds of information such as requirements, tests,
issues, or trace links. While the StepDefinition only defines
what type of Artifact is expected, identified via its Role, the
InputArtifact and OutputArtifact in the process instance will
contain the references to the actual artifacts of a concrete
instantiated step. In addition to the textual description of an
engineer’s activity, a step consists of a set of event-condition-
action (ECA) rules that define which event(s) stemming from
the engineering environment (e.g., an artifact update), given
additional constraints (i.e., the condition), trigger the inclusion
of an artifact to a step’s output artifact set (i.e., the action part
of the rule). For example, in S5 “When an engineer posts a
review URL as a Jira issue comment, then add that link as the
step’s output artifact”.

A Decision Node describes how the completion of one
or more Steps – and additional conditions – leads to the
execution of subsequent steps. Therefore, the set of available
decision nodes defines the control flow of the overall process.

A decision node’s DataMapping declaration describes how the
output of one step becomes the input of a subsequent step,
thereby defining the process’ data flow. For example, “The
LLReq output artifacts of S3 and LLSpec output artifacts
of step S4 become the input artifacts to step S6”. As the
WorkflowInstance is also a Step, the DataMappings also
enable the mapping of workflow input into step input, and
step output to workflow output. The ExecutedMappings then
track which artifacts have already been mapped.

In order to avoid conflicting control or data flows, ProCon
limits the preceding and subsequent decision nodes of a
step to one single node. Only a decision node may link to
multiple steps. Ultimately, a process consists of a set of steps
and decision nodes that create a single connected, directed
graph (further well-formedness properties are discussed in
Section V-C). Note that currently loops are not yet supported
as the use cases at our industry partner did not require this
feature for two reasons: first, artifacts can be updated over
and over again until QA-constraints are fulfilled. Second,
longer, explicit loops such as sprints are typically represented
as separate sub/processes and thus are “spawned” separately.
We do, however, support recursion by instantiating the same
process as a sub-task.

Similar to more traditional process models, a DecisionNode
allows the specification of InFlowTypes that determine whether
all prior steps (AND), at least one step (OR), or exactly
one step (XOR) must be completed before any subsequent
step is activated. The InflowStepUsage tracks which steps
have been considered for triggering further activation. The
decision node’s optional ContextCondition determines whether
that activation occurs immediately, or only once that condition
is fulfilled. This allows refinement of the InFlowType (e.g., at
least two steps that need to be completed before the process
continues) or awaiting deadlines (e.g., wait for the next day)
and similar aspects.

In contrast to the relatively simple decision nodes, a step
needs to track its state in much more detail in order to provide
developers with feedback on which steps are ready to be
started, which ones have started too early, and which ones
should not be done at all. Figure 4 and Figure 5 depict a
step’s expected and actual life-cycle, each modeled as a finite
state machine (FSM). Note that the actual step life-cycle FSM
extends the expected life-cycle FSM with additional transitions
and triggers (depicted in red), while both share the same set
of states shown in Table I.

Beyond these standard building blocks, the process meta-
model includes additional modeling elements to support our
advanced use cases:
• Constraining Step Input and Output
The main purpose of pre- and post-conditions of a step is to
allow further refinement of input and output artifacts. The
engine itself merely checks if there is at least one artifact
available for each required input and required output. The
step transition ECA rules may have the side effect of adding
multiple artifacts per expected output instead of just one,
and this is considered normal behavior. Step S3 HLReq



Fig. 4: Expected step life-cycle FSM: transitions list the
respective triggers. For bidirectional transitions, the text before
the “/” describes the trigger to the right or bottom, the
remaining text defines the trigger for transitioning to the left
or top.

Fig. 5: Actual step life-cycle FSM: red triggers and transitions
are in addition to the expected live-cycle FSM, unchanged
transitions provided in grey.

State Description

AVAILABLE When a step is instantiated, it resides in the AVAILABLE
state, indicating that it’s input is not sufficient yet (i.e., it
has not yet obtained the necessary data from the preceding
decision node) and/or its optional precondition is not yet
fulfilled.

ENABLED Once all specified input conditions are met (for example,
required input artifacts are available), a decision node
causes the step to transition to ENABLED, indicating that
an engineer is free to start working on it.

ACTIVE When StepTransitionRuless signal that artifacts attached
to the state are updated or modified, the step becomes
ACTIVE, indicating that an engineer is actively working
on it.

NO_WORK_
EXPECTED

When multiple mutual exclusive steps are ENABLED it
can initially not be determined which of these an engi-
neer has chosen. Once, one of the alternative steps tran-
sitions into ACTIVE, the remaining steps transition into
NO_WORK_EXPECTED.

CANCELED When “business logic” dictates that a step can/should no
longer be executed (and that condition cannot be encoded
in the step’s precondition) then the step is canceled. The
difference between CANCELED and NO_WORK_EXPECTED
is that the former is determined by process constraints, while
the latter is determined by the engineer selecting one step
out of many XOR alternative steps.

COMPLETED When all expected output artifacts are available and optional
quality constraints, as well as optional post-condition are
met, then the step transitions into COMPLETED and triggers
the evaluation of the step’s subsequent decision node.

TABLE I: Overview of process step states.

Refinement into LLReq, for example, may specify that all
refined LLReq are collected within one required output. In
this case, a post-condition can ensure, for example, that there
are at least as many refined LLReqs as there are provided
Input HLReqs.

• Reactivation of XOR steps: The states COMPLETED,
CANCELED, and NO_WORK_EXPECTED are not necessary
final states. In the case of two or more steps from a set of XOR
alternatives, the first step that becomes ACTIVE will cause the
other step to transition to NO_WORK_EXPECTED. When the
active step, however, becomes canceled, then the other steps

now become relevant again and hence can transition from
NO_WORK_EXPECTED back into AVAILABLE, ENABLED,
etc. depending on the fulfillment of pre-conditions and firing
of StepTransitionRules.

The same occurs if upstream changes (i.e., changes of
artifacts in prior steps, thus process deviations) affect input
artifacts in such a manner that a step becomes relevant again.
Suppose we have two testing step types: unit test and manual
test (that exclude each other) that become enabled depending
on the validation type of their input requirement. If a delayed
assessment causes the change of the requirement’s validation
type, then the testing steps’ precondition evaluations will be
inverted.
• Deviations from expected state: Aside from the expected
task life-cycle FSM, we use the actual life-cycle FSM to track
deviations between the defined and the actual process. For
example, an engineer has performed a change but input artifact
changes cause the pre-conditions to fail. Then the actual life-
cycle FSM would transition into AVAILABLE (which is not
possible in the expected FSM). This results in an explicit
deviation whenever actual and expected life-cycle FSMs are
not synchronous. Continuing with this example, eventually,
this step might be not the selected one in an XOR, thus both
FSMs transition into NO_WORK_EXPECTED, thereby resolv-
ing the inconsistency. Similar deviations are possible when a
step is COMPLETED, CANCELED, or NO_WORK_EXPECTED
but further work is observed once that state is reached. Here
the actual FSM would transition into ACTIVE.

To distinguish when a transition to the active and com-
pleted state is deviating in contrast to repairing, we append
“ deviating” and ” repairing” to the triggers in Figure 4 and
Figure 5.

B. Process Notation

The data model described above determines all information
required by ProCon to instantiate a process. Our intention
was not to mandate a particular visual notation, and we opted
against using a preexisting language, such as BPMN [65], for
two main reasons. First, we aimed to reduce the data model
to only its core elements that are absolutely necessary. For



example, BPMN defines far more elements than what is sup-
ported by our framework, hence making process design much
harder for a process engineer, as they would need to recall
which elements to use and which ones have no effect. Second,
our constraints are defined as Drools rules and subsequently
best written using a Drools editor, hence requiring the process
engineer to switch between several tools.3 However, as we
define a canonical process format in JSON one could produce
a transformation from a BPMN process model to our data
model. This would be rather straightforward as noted above
in Section IV: the key modeling elements themselves such
as steps and AND, OR, and XOR decision nodes used for
defining the process structure are not new. The novelty is in the
way they are interpreted and allow for flexibility by ProCon.

C. Well-formed Process Specification

The process definition meta-model prescribes that a step
must have exactly one predecessor decision node and exactly
one successor decision node, but no further rules on what the
emerging graph, containing these two element types, should
look like. A well-formed process specification consists of a
single kickoff decision node leading to steps that ultimately
converge in a single-end decision node. Hence, only one deci-
sion node has no preceding steps, and only one decision node
has no subsequent steps. Furthermore, whenever a decision
node has k subsequent steps (with k > 1), a decision node
that “collects” these k branches (i.e., having k preceding steps)
needs to exist at some point in the process. In the prototype
implementation section, we show how our web-based process
editor assumes responsibility for automatically ensuring such
well-formed process specifications without burdening the pro-
cess designer with this aspect.

D. Quality Constraint Integration

For each step, additional Quality Constraints can be defined,
describing conditions for the newly created or updated output
artifacts. Such a constraint can refer to all the information that
is available for a step, such as its input and output artifacts,
its local metadata, and its global process metadata.

Each constraint has an identifier that enables the triggering
of constraints – not only upon artifact changes – but also
manually, upon demand. It is important to provide control
to the user, for example, by allowing an engineer to trigger
a constraint check to reassure him/her that a step is indeed
complete and nothing has been overlooked. ProCon does not
prescribe a specific constraint engine or language in which
constraints are defined, as this can vary depending on the
domain and application scenario. The only requirement is that
the adopted solution provides respective evaluation results that
can be further processed. Further examples of constraints and
the constraint language are discussed as part of the case studies
described in Section IX).

Every time a quality constraint is evaluated, a correspond-
ing new instance of Quality Constraint Evaluation Result is

3We are currently working on unifying the process structure and constraints
to remove the need for tool switching.

created. This evaluation result not only reports the result (i.e.,
fulfilled or unfulfilled) of the evaluation, but also lists the arti-
facts affected by the constraint. For example, a constraint for
step S6 checks whether each low-level requirement (LLReq)
output artifact has a trace link to a high-level requirement
(HLReq) which must be in state “released”. Therefore, the
respective constraint evaluation result will contain the list of
LLReqs that fulfill this constraint, and a list of LLReqs that
violate this constraint. For each constraint, ProCon further
collects timestamps indicating when the constraint evaluation
result was last evaluated, and when the evaluation result last
changed from being violated to fulfilled and vice versa. This,
for example, allows a user to determine how recent the results
are when displayed in the Process Dashboard. The evaluation
results of all quality constraints associated with the same step
are collected and bundled into a Quality Check Document
which is added to the output artifacts of that step.

The process model itself remains largely independent from
constraints and their evaluation results. While a process step’s
completion constraint must check whether a Quality Check
Document output artifact exists which contains only positive
Quality Constraint Evaluation Results, it does not need to
understand the particular constraints that resulted in the eval-
uation success.

This rather loose coupling allows the same process to be
executed with different levels of quality assurance by simply
replacing quality constraints. Inversely, a quality constraint
may be used in different process contexts when the respective
process step provides the artifacts on which the constraint is
evaluated.

E. Supporting Semi-structured Artifact Properties

Development tools quite frequently support artifacts that
can not be sufficiently customized to match the underlying
development process. In such cases, users typically revert to
providing information in text fields or rich edit fields where
data is entered using HTML tags or markdown. To this end,
the process engine utilizes the full potential of Java that comes
with defining the rules and constraints in the Drools rule
engine. ProCon supports the extension of individual artifacts
with arbitrary key-value pairs that are populated when an
artifact changes based on custom drools rules. These rules
transform semi-structured information from the artifact to
structured key-value pairs that can then be used in pre-
conditions, post-conditions, StepTransitionRules, etc., hence
separating the concern of how to extract information from
artifacts from the concern of processing that information.

VI. PASSIVE PROCESS EXECUTION

Every process specification model comes with a set of
required input artifacts, typically representing a change request
issue or work package issue that already serves as some form
of informal process representation. There are three ways in
which a process instance can be created. First, manually when
a ProCon user provides the identifier(s) of the input artifact(s)
via the framework’s user interface. Second, when a subprocess



step definition is instantiated, the step instance then creates
the corresponding process passing its input artifacts along.
Third, when a rule in an existing process instance spawns
a new separate process. The difference between the second
and third option is that in the former case, the framework
ensures that output from the subprocess is mapped back
into the subprocess step and any relevant state changes of
the subprocess step such as canceling are propagated to the
subprocess. In the latter case, the spawned process remains
completely independent from the spawning process. The last
option is particularly useful for creating multiple fine-grained
processes, for example, one for each story within an epic.

The process engine instantiates the process and triggers
the initial decision node instance, which in turn instantiates
the first step(s) and executes the data mappings from process
input(s) to step input(s). Further instantiation happens incre-
mentally, only when a step reaches the state ENABLED, and
the process engine instantiates the step’s subsequent decision
node. Similarly, only when a decision node’s context condition
is fulfilled, the engine instantiates the subsequent steps. With
step instantiation, the engine also instantiates the quality check
constraints. Thus, as long as a step doesn’t exist, none of its
constraints will be checked.

However, as passive process execution does not mandate
and enforce a fixed, predefined step, incremental step and
decision node instantiation are not sufficient in our case. For
example, when an engineer decides to work on a step that
is not yet available, as soon as the artifact changes trigger
StepTransitionRules, the process engine must instantiate the
corresponding “premature” step and retrieve an existing pre-
ceding decision node that this step should be linked to. If no
preceding decision can be found, the step remains dangling
in the process until the process progress catches up: i.e.,
upon instantiating a decision node, the engine checks if a
dangling step exists that should be linked. From the engine’s
perspective, there is no difference between missing a step and
starting the next, or starting too early on the next step. It will
continue either way. In such a case, however, the engine will
not be able to fully execute a DataMapping that requires the
output of the skipped/incomplete step. The consequence is then
highlighted via the step’s status as having insufficient input
artifacts. In the case of a premature step, the missing input
artifacts will eventually be mapped when the prior steps are
complete. As a decision node instance keeps track of executed
DataMappings, it notices which artifacts have not yet been
mapped. In the latter case, when a step is skipped, the user
may manually provide the missing input artifacts via ProCon’s
web interface.

Missing input has multiple effects: when StepTransition-
Rules rely on missing input, they will not trigger any state
transitions in the step. The same rules might use the input
to navigate to or to identify the step’s output, which in turn
also will prevent the quality constraint checks from being
evaluated. As long as input is missing, the step will not reach
a COMPLETED state, even if the user considers the step done.
In short, missing input will typically lead to failure of the

step’s state to accurately reflect the step’s true progress in
the real world. However, ProCon will continue to support the
user in other parts of the process, or even in other steps in
the downstream process which will then most likely also be
treated as “premature”.

As a side effect, in iterative development environments, with
often missing or incomplete artifacts, the step states become
less informative as steps will reach and remain less often in the
COMPLETED state. For engineers assigned to specific tasks,
ProCon nevertheless informs about which artifacts are not
ready yet or currently changed again. For stakeholders, such
as team leads and QA Engineers interested in an overview of
one or more processes, percentage data might be then more
insightful.4 To this end, the process engineer needs to consider
the extent and parts of a process subject to significant iterative
activities when determining the process scope, e.g., foreseeing
one process instance per development iteration.5

A. Constraint Checking

ProCon provides two possible ways of how constraint
checks can be performed. By default, QA constraints and
StepTransitionRules are evaluated upon every single artifact
change. As ProCon tracks which process instance accesses
which artifacts and forward the respective change events,
only constraints relevant for the process instances need to be
checked.

Additionally, we allow for manual user input, enabling an
engineer to request explicit checks of artifact updates and sub-
sequent evaluation. The reason for this is based on the fact that
many tools do not provide an active notification mechanism
when changes to artifacts occur. Jama, for example, doesn’t
offer automatic event notifications, but requires polling with
subsequent explicit fetching of changed artifacts. In the case
where polling intervals can not exceed a certain duration,
to avoid introducing performance issues, engineers will not
immediately notice effects of their work on QA constraints.
This effect becomes even more severe when a single change is
not indicative of step completion or QA constraint fulfillment.
This is the case when quality constraints span across multiple
artifacts and potentially even multiple tools: a single change
to an artifact then is insufficient, multiple changes need to
occur. For example in S6: not just one low level requirement
(LLReq) needs to be set to “released” but all linked ones. In
such a situation, on-demand fetching of updates ensures the
engineer that all QA constraint evaluations occur on the most
recent artifact versions, and any violation will not be due to
stale data.

B. Propagating Artifact Input/Output Changes

In the same manner as StepTransitionRules monitor artifacts
for changes to add output artifacts (e.g., a requirement gets
linked to a test case), they remove output artifacts when

4How to best aggregate and display meaningful percentage data is outside
of the focus of this paper, and part of future work.

5We acknowledge that highly dynamic, highly iterative development envi-
ronments perhaps might not benefit as much from our framework.



their conditions are no longer met (e.g., a link to a test
case is removed again). The process engine ensures that such
artifact usage changes are properly propagated to subsequent
tasks. For example, in a case when S4 (Updating LLSpec)
is completed and S5 (HLReq to LLReq Trace Review) has
started. Now deviating from the process by having in the scope
of S4 adding another trace between a HLReq and LLReq.
Execution of S4’s StepTransitionRules would result in another
trace (also an artifact) to be added to S4’s output which needs
propagating as input to S5. Likewise, removing such a trace
in S4 would result in removing the respective trace artifact
from the input of S5. A change in input of a subsequent step
may then in turn cause the revaluation of that step’s transition
rules and cause the post-conditions or quality constraints to
change with impact on the step’s state; with further change
propagation potentially occurring.

C. Rule Execution Order

The majority of project/team-specific aspects such as task
pre-conditions, post-conditions, StepTransitionRules including
adding output, and quality constraints are defined as rules
which in turn signal changes to the process. Together with
the process engine internal change triggers such as task
instantiation and DataMappings etc, these change evaluation
sources need to be activated in a predetermined order to avoid
“race” conditions: e.g., executing post-condition checks that
signal task completion before adding new output that would
cause these post-conditions to fail and hence not to signal
task completion. Recall that the ultimate source of any activity
in the process engine is an artifact change. Upon an artifact
change, the change evaluation sources then are evaluated in
the following order: 6

• Adding input to tasks
• Pre-processing of artifact change events (e.g., when semi-

structured artifact properties need to be parsed)
• StateTransitionRule which evaluate the pre-conditions
• StateTransitionRules which add output to tasks
• StateTransitionRules which activate or cancel the step
• Quality constraint evaluation
• StateTransitionRules which complete the step (i.e., the

post-conditions)

VII. EVALUATION METHOD

Evaluating our ProCon framework, we investigate five re-
search questions regarding the feasibility, flexibility, perfor-
mance, and usability of our approach. Specifically, we assess
the general feasibility of our approach by evaluating it against
real historical process data from three distinct case studies.
For each case study, we created process specifications and
constraints, and implemented connectors for issue tracking and
requirements management tools.

6Note that typically only one or two such change evaluation sources become
indeed active and trigger a consequent change such as a step state change.

A. Research Questions
While this research project was originally motivated by a

pain point of our industrial collaborators (Frequentis), our first
two research questions investigate the nature of process devia-
tions and constraint violations (i.e., from a process view and a
QA constraints view, respectively) to empirically evaluate the
need for a tool such as ProCon.
RQ1: How frequently do process deviations occur, and to
what extent are these temporary?
Rationale: As part of this research question we investigate
process deviation problems to uncover whether engineers
continue their work even in the presence of QA violations,
and ultimately the extent to which they require support to
eventually fix these process deviations (i.e., investigating from
a process perspective). To this end, we replay historical
engineering process events and establish if and when engineers
continued to a subsequent step in the presence of a constraint
violation.
RQ2: Are quality constraint violations common in practice?
Rationale: When only a small subset of QA constraints is
violated, the effort for specifying detailed processes, transition
rules, and constraints, as well as to maintaining ProCon might
outweigh its benefits. We are, therefore, interested in obtaining
insights into the potential benefits that ProCon can provide
(i.e., investigating from a constraint perspective). Similarly to
RQ1, during the replay of historical engineer process events,
we determine which constraints are violated.

Our next two research questions focus on evaluating the
ability of ProCon to track process progress under realistic
conditions in a timely manner.
RQ3: Does ProCon sufficiently support flexible processes
in which engineers frequently iterate and switch between
alternative steps?
Rationale: Software development is rarely a predefined se-
quence of activities but often requires rework, breaks, and
adaptation. Hence, we investigate whether ProCon is able
to support engineers with accurate feedback in the presence
of frequent deviations from the prescribed process. For this
purpose, we collect statistics on how often process steps are
canceled, reactivated, revoked, and prematurely started.
RQ4: Is ProCon reacting to artifact changes sufficiently
quick for practical application?
Rationale: Engineers are least interrupted in their work when
they can receive feedback on their actions before moving on
to their next task. We collect performance data by measuring
the time ProCon requires to evaluate constraints upon change
events.

Our final research question focuses on ease of use.
RQ5: Is ProCon sufficiently simple to define processes and
QA constraint to encourage practical applicability?
Rationale: When specifying processes and their QA con-
straints require a steep learning curve, chances for uptake by
practitioners, or the integration of the approach in an actual
product, will be significantly diminished, and our research
will fail to make an impact. We obtain insights into ease



of use by conducting a preliminary controlled experiment,
where developers were asked to write process progress and
QA constraints.

B. Case Studies

We address the research questions by applying ProCon to
three distinct systems with unique processes and artifacts,
from different domains and report our findings and lessons
learned. The first case study, (CS-1) Dronology [66] – an
open-source project – represents an agile, lightweight process.
The second case study, (CS-2) is provided by Frequentis,
a producer of safety-critical systems in the air traffic
management domain, and describes a rigid, standardized
process with stringent quality assurance criteria. The third
case study, (CS-3) ACME-RA, is placed in a company
developing non-safety critical web and mobile applications
using constraints to measure process improvement. For the
last research question, we mapped an existing traceability
information model and process [67] (case study CS-4) onto
Jira artifacts and their relations and asked a set of participants
to specify process step transition rules and QA constraints.

CS-1: Dronology
Dronology is a UAV management and control system,
providing a full project environment for managing,
monitoring, and coordinating the flights of multiple UAVs.
It can interact with real hardware, as well as a high-fidelity
Software-in-the-Loop simulator that enables experimentation
with virtual UAVs. Dronology was developed, with both
students and professional developers, over several years
as a research incubator with various development artifacts
publicly available [66], [68]. For the purpose of this case
study, we obtained permission to use data from multiple
sprints maintained in Jira from 2017 to 2019. This includes
the following artifacts: Bugs, Hazards, Requirements, Design
Definitions, Tasks, and Sub-Tasks.

CS-2: Frequentis
For the Frequentis case study, we selected a safety-critical
product for voice communication in air traffic control centers.
The product consists of several different subsystems for
interfacing with radio transceivers, managing near-real-
time voice streams, and providing operator user interfaces.
Frequentis follows a V-model [69] like engineering process.
Specifically, for this case study, we focused on sub work
packages (SubWP). This process for each team (each
responsible for one subsystem) starts with high-level
requirements resulting in the actual implementation and the
successful execution of test cases. This covers steps S3 to
S8 of the motivating scenario. Trace links between SubWP’s
and low-level requirements are therefore the main focus of
QA constraints defined as the completion conditions of steps
S3 (represented by ATC-C1 to ATC-C4), S4 (ATC-C5), S7
(ATC-C6 and ATC-C7), and S8 (ATC-C8) (cf. Table II).
Frequentis uses Jama to manage all artifacts and trace links
depicted in Figure 1 and uses Jira to manage the engineering

process.

CS-3: ACME-RA
ACME-RA7 is in the business of hosting a recreational
activities web platform. ACME-RA tracks development
progress with Jira, heavily customizing available issue
states and state transitions. Different issue types come with
different states and transitions. Based on feedback from a
developer at ACME-RE we selected issues of type “Task” as
a representation for a non-trivial development sub-process.
ACME-RA follows an agile development methodology,
pulling issues in from a backlog for each sprint. Issues then
undergo a set of possible transitions some of which require
a particular engineering role to be involved. Once a new
task is created, its initial state is Open. The state changes to
In Development as soon as the work on the issue starts.
After finishing the task the developer changes the state to
Ready for Review when needed. A quality assurance
engineer then picks up the task and assesses the issue before
changing the state to Reviewed. Alternatively, no review
is conducted and the task is regarded as finished, hence
it changes to Resolved (one of the allowed end states).
If required, testing can be performed after resolving the
task (state In Testing). Both development and testing
can be suspended (states Suspended Development
and Suspended Test), for example, in case additional
resources are required, and then resumed when these resources
become available. Additional states track when a task needs
to be in development again, is suspended again, or reviewed
again.

CS-4: Siemens L+A
The case study from Siemens Logistics and Automation,
described by Cleland-Huang et al. [67], involves various
artifacts stakeholders use to capture the requirements and
system components for automatically obtaining a shop
floor layout. Business Goals (BG), Stakeholder Requests
(SR), Minimal Marketable Features (MMF), and Business
Use Cases (BUCs) are primarily used by business end
users, while developers primarily interact via System
Use Cases (SUCs), Concrete System Capabilities (CSCs),
and Concrete System Components (CSComp). While a
significant set of traces exist, the process of implementing a
stakeholder request can be modeled rather straightforward as
a sequence of “WriteOrReviseMMF”, “RefineToSUC”, and
“CreateOrRefineCSC” steps.

Regulatory Certification
The case studies are subject to different regulatory certifi-
cations. The Dronology project (CS-1) aims to follow best
practices and guidelines as, for example, specified in DO-
178C [6] but does not require official certification, and hence
is not certified. The ATC system by Frequentis (CS-2) is

7The company’s identity and project names have to remain confidential due
to the sensitive nature of the analyzed data.



developed to be compliant with ED-109A/DO-278A [7] and
externally certified. In our evaluation, we focus mostly on the
respective standards’ traceability requirements, whereas the
process description stems from engineers at the two case study
organizations, describing how they manage software devel-
opment and fulfillment of traceability constraints. ACME-RA
(CS-3) and Siemens L+A (CS-4) are not subject to certification
but were specifically chosen to demonstrate the applicability
of our framework in non-regulated domains.

Differences in Case Study Results Reporting
Note that these case studies serve different evaluation pur-
poses. CS-1 Dronology, CS-2 Frequentis, and CS-3 ACME-
RA provide real historic process data to answer RQ1 and RQ2.
While CS-2 has a simple underlying process but complicated
constraints, CS-3 additionally was chosen to evaluate whether
ProCon can also support a more complicated process where
engineers repeat steps and may choose to skip steps (RQ3)
but CS-3 yields more simple constraints than CS-2.

Performance evaluation in the scope of RQ4 only considers
CS-2 and CS-3 as the former comes with the most complicated
constraints among the four case studies and the latter comes
with the most complicated process progress constraints among
the four case studies. Both case studies come with a significant
amount of related artifacts and change events. Hence they
produce realistic loads on ProCon.

Finally, CS-4 Siemens L+A was selected for evaluating ease
of use of specifying process and QA constraints as it comes
with a reasonably complicated process structure, together with
reasonably complicated QA constraints—thereby representing
a middle ground between CS-2 and CS-3. As we have no
access to historical process data for CS-4, we cannot report
results for RQ1 to RQ4 for this case study.

VIII. PROTOTYPE IMPLEMENTATION

To support the evaluation, and to obtain feedback from
our industry partner Frequentis about our approach and the
provided tool support, we created a prototype implementation
of ProCon.

Tool Connectors: To cover a diverse set of artifacts from
our industry partner and from the Dronology case study,
we implemented connectors for Jira, a web-based tool for
planning, issue tracking, and reporting, and Jama, a tool for
requirements management, traceability, and test management.
The Jira Connector uses the Atlassian Java REST API to
retrieve artifacts and their attributes, and is used to periodi-
cally poll for changes in these artifacts. Similarly, the Jama
connector uses the Jama REST API. To reduce the load on
network and tools, the tool connectors cache Jira and Jama
artifacts in a MySQL database in their native JSON format as
obtained from the REST interface.

Process Engine: The Process Engine is implemented in
Java, containing an implementation of the process specification
metamodel and a rule engine for checking constraints. We
opted for the Drools [70] rule engine, a Business Rules
Management System that can be easily integrated into a Java

Fig. 6: ProCon Prototype Architecture.

application and allows easy access to Java objects (representa-
tions of Jira and Jama artifacts) within rules written in a Java
dialect. The process engine is wrapped in a web application
(see Figure 6) using the Command Query Responsibility Seg-
regation (CQRS) pattern via the Axon framework8. Here any
commands (A) (i.e., requests) to the engine are first checked
for validity (B) against a lightweight version of the process
instance, and then may result in events (C) that describe the
expected change due to the command. These events are then
propagated to the query side of the framework where the event
is processed to realize the effect of the original command
(D). From there, the user interface obtains the current process
status and Quality Check Documents (E). Separating command
and query side enables us to have different applications
transparently connecting to events aside from the primary
process dashboard (see below). As the CQRS pattern enables
the replaying of events, we can utilize these to replay the
progress of each process instance and inspect the fulfillment
of QA constraints at any moment in time (F).

Also, on the query side resides the rule engine, and any
firing of step transitions and quality assurance constraints
checks as the result of a change in the live process instance
(G) potentially result in additional commands back to the
process engine via the command side (H). This opens up to
opportunity for manually overriding step transition conditions
and QA check results, if so desired, by an authorized user role
while ensuring that such commands (and their consequential
events) are captured and persisted by the Axon Event Store
(J) to form an audit trail.

8https://axoniq.io



Passive Process Specifications and QA Constraints: The
Drools rule engine evaluates process progress conditions and
quality constraints. We, therefore, defined quality constraints
as well as the decision nodes’ control and dataflow conditions
in respective Drools rules files. Figure 7 provides an example
rules excerpt that controls the completion of a process step
by signaling that the step’s postconditions are fulfilled. Most
Drools code is boilerplate with the application-specific part
focusing on the specific conditions of the StepTransitionRules.
Similarly, quality constraints come with a significant portion
of boilerplate code. To enable the process engineer to focus on
the constraint formulation and avoid introducing errors in the
boilerplate code, we provide a preliminary visual process edi-
tor (see, for example, a screenshot of the ACME-RA process
in Figure 8) utilizing Blockly.9 The editor ensures the well-
formedness of the process steps, and generates the boilerplate
code from the visual representation. In the rules excerpt of
Figure 7 only lines 181 to 183 out of lines 271 to 187 had to
be manually added, with the rest being generated automatically
by the process editor. Overall, the process progress rules for
the ACME-RA case study involved around 600 lines of code
(not counting any java imports), out of which only around 70
had to be manually written. Similar for the quality constraints:
for the four ACME-RA constraints, only 14 lines out of 150
(again without java imports) had to be manually defined.

The preliminary process editor enables a process engineer
to define the steps, the types of artifacts used in input and
output, their parallelism/alternatives, and which artifacts are
utilized in StepTransitionRules and QA Constraints. Formu-
lating the actual conditions of the rules and constraints is
not yet supported as we are still investigating which type of
visualization is best suited to specify complex conditions over
artifact properties. Nevertheless, this structure is sufficient to
generate all boilerplate code.

Fig. 7: ProCon Drools StepTransitionRule example: signaling
the “Developing” step’s post conditions as fulfilled.

Process Dashboard: Figure 9 shows the user interface for
inspecting quality constraint evaluation results. The results
contain links to the original artifacts, enabling engineers to
quickly switch to their commonly used tools (here Jama and
Jira) to investigate and fix any unfulfilled constraints. The
process dashboard is automatically updated whenever a step,
decision node, or quality constraint evaluation changes without
the user having to poll for updates in the browser. There the
user also has the option to inspect available or missing artifacts

9https://developers.google.com/blockly

Fig. 8: ProCon Process Editor screenshot displaying an excerpt
of the ACME-RA process.

and even manually add artifacts to step input and output in
case the currently active rules fail to identify these from the
process context.

IX. EVALUATION PREPARATION

Before ProCon can be used with a specific process and sys-
tem, a number of preparatory steps are necessary, to identify,
select, and integrate artifacts and tools, and create respective
constraints. In the following, we briefly describe the relevant
steps for our four case studies.

A. Evaluation Setup

CS-1: Process and Constraint Creation: For the purpose
of this case study, we treat each of the collected Dronology
issues as “small sub processes”. The state of each issue
represents a process step, and quality constraints for each step
describe the conditions that need to be fulfilled to transition



Fig. 9: ProCon Process Dashboard.

from one step to the next and to complete the process (i.e.,
close the issue). Given the lean nature of typical agile open-
source development processes, the states observed are limited
to the default process steps in Jira, “Open”, “InProgress”, and
“Closed”. Based on the information available, we identified the
following eight quality constraints and allocated them to the
steps where they are most useful (note that some constraints
are reusable for multiple issue types). Defining the processes
and constraints used in this evaluation took approximately
three hours and did not include familiarizing with the project’s
artifact types and traceability strategy. We then confirmed the
validity of the constraints and the process together with the
lead developers of the project. An overview of the constraints
can be found in Table II. At the end of step “Open”, we require
constraints D-C1 to D-C5 to be fulfilled, and at the end of
step “In Progress” we require constraints D-C6 and D-C7 to
be fulfilled.

CS-2: Process and Constraint Creation: For the second
case study, we defined the eight constraints from the SubWP
process together with a QA engineer from Frequentis. This
was done in approximately two hours, and another two hours
were spent extracting process information from documents and
specifying the actual process. This duration did not consider
familiarizing with the artifact types and their traces as this
was done earlier in the collaboration with Frequentis and can
be assumed to be common knowledge of a QA engineer.
Frequentis’ informal process definition precisely defines how
engineers need to set properties of Jira and Jama artifacts for
completing the various steps. Changes to these properties serve
as step-completion signals in our process engine.

CS-3: Process and Constraint Creation: For the third
case study, the web platform, we selected “Task” issues and
transformed the state transitions into a process consisting of
seven steps (see Figure 10). Any issue state that indicates
a repetition of some activity was treated as a reactivation
of the corresponding process step. For example, reopening
an issue (i.e., Reopened) is interpreted as a reactivation of
the “Prepare” step. Together with a developer from ACME-
RA we discussed the conditions under which these transitions
should occur and encoded three of them as quality assurance

constraints (listed in Table II bottom). 10 Constraint RA-1
needs to be fulfilled at the end of step “Preparing”, constraint
RA-2 is required only in case a review is conducted (i.e.,
step “Reviewing”), constraint RA-3 is required only in case
testing is carried out, and constraint RA-4 is checked for
finalizing the “Completing” step. The four constraints were
straightforward to encode within half an hour, while the step
activation, completion, etc. rules required more time (around
4 hours), due to the extensive use of different issue states.

For the purpose of this paper, in the ACME-RA case
study, we focus on demonstrating (aside from QA constraint
checking) the ability of the passive process engine to handle
revoked, reactivate, canceled, and prematurely started process
steps.

CS-4: Process and Constraint Preparation: In a first step,
we mapped the TIM to Jira by creating a dedicated Jira issue
type for each artifact type, and mapped the process to a Jira
story with the individual steps modeled as that story’s subtasks.
We then created example artifacts and traces (including an
example process instance). Such a grounding of the TIM and
process in actual tools is required in any case, independent of
the application of ProCon.

Given the simplicity of the process compared to the more
complex traceability information model, the preliminary us-
ability evaluation focuses on the effort required for specifying
process step transition rules and the QA constraints. To this
end, we prepared the process specification with the ProCon
process editor and generated the Drools templates for the
process step transitions and quality constraints.

Performance measurement We focus on measuring the
time ProCon requires to check all constraints after an update
event (i.e., a change to an artifact) occurred. We leave aside
any time required to load the artifacts from their originating
tools as this is heavily influenced by the tool’s API11 current
load and availability of artifacts already in ProCon’s cache.
Hence, we measure the time from replaying the first of the
change events to the end of processing the last change event
for CS-2 Frequentis and CS-3 ACME-RA. We measured this

10Due to the limited amount of issue details, we were only able to encode
a small subset of the actual constraints.

11Tools differ in the number of API calls required to obtain artifact details
and artifact updates.



Fig. 10: ACME-RA transformation from issue states (left) to process specification (right) for issues of type “Task”. Circles
represent decision nodes.

interval for 10 replay runs on a standard Core i7 laptop, with
8 GB of RAM to obtain the average duration. Dividing the
duration by the number of relevant events (i.e., those that
potentially affect the constraint evaluation result) provides
insights into the expected average processing time to evaluate
one change event. We measure in the presence of multiple
process instances as realistically a change event potentially
affects multiple constraints (in the scope of multiple process
instances) that all need separate re-evaluation.

User Experiment Preparation In the scope of the small,
controlled experiment, we asked six software developers that
had not used ProCon before to implement the StepTransition-
sRules for activation and completion for each process step as
well as the input to output DataMappings (experiment task 1)
and to implement the six QA constraints textually given in
the process specification (experiment task 2) by filling out the
generated Drools templates. Overall, the participants had to
write six StepTransitionRules, seven DataMapping rules, and
six QAConstraints.

We recruited six participants, each of whom had some
knowledge about software processes and basic knowledge
about Drools, but had not used ProCon before to write quality
constraints or process progress constraints. The participants
had between 1 and 6 years of Java development experience
in the scope of research project employment at our research
institution.

The six participants had access to the ProCon development
environment in Eclipse comprising the Drools Editor, ProCon
Java API, with source code to access and inspect Jira issues, as
well as code for executing their process and constraints rules.
We additionally provided one example process step transition
rule and one QA constraint from CS-3 as a reference.

During the 75 min experiment, the participants received
a 15-minute introduction to the framework and development
environment. They then had 30 minutes and 20 minutes

available for the two experiment tasks, respectively, and 10
minutes to provide informal feedback at the end.

During the experiment, we documented how much of the
task each participant was able to complete, and how many mis-
takes they made that remained in the final output. Additionally,
participants received minor feedback on the Jira Artifact’s API.

B. Data Gathering

For the Dronology project, we received access to the Jira
server REST API to obtain artifacts and their change history.
The data set consists of 802 process instances (i.e., Jira issues):
199 Tasks, 211 Sub-tasks, 109 Bugs, 247 Design Definitions,
and 36 Hazards.

From Frequentis we obtained Jira issues related to the
aforementioned SubWPs. Each SubWP managed in Jira has
a corresponding Jama artifact with respective trace links to
LLReqs and subsequent artifacts. We used the Jama REST
API to navigate across these trace links to collect all Jama
artifacts (including their history) that are relevant for constraint
evaluation. This resulted in a set of 109 SubWPs and ∼14,000
linked Jama items (out of which 1,121 are LLReqs).

From ACME-RA we received a JSON dump of Jira issues
of four multi-year projects: P1, a low-priority Android app
development project; P2 and P3, two business-critical Android
App development projects; and P4, a project integrating two
types of recreational activities that involved experts beyond
front-end, business logic, design, and database engineering
(e.g., marketing and legal departments). In total the dataset
contained 1,017, 2,676, 1,052, and 939 issues, respectively.
The five most common issue types were “Task”, “Bug”,
“Improvement”, “Localization”, and “Project Management”
and make up between 80% and 90% of all issues. All issues
had their change history reduced to changes to the properties
assignee, state, fix version, and due date. Additionally, the



Constr. Description Issue Type
D-C1a The issue traces to one or more Design

Definitions
Tasks

D-C1b The issue traces to one or more Design
Definitions directly, or via its parent

Task, Sub-Task

D-C2 The issue does NOT trace to a Requirement Task, Sub-Task

D-C3 The issue has an assignee Bug, Task, Sub-Task

D-C4 The issue traces to a Requirement Design Def.

D-C5 The issue is mitigated by a Requirement
(i.e., trace type: isMitigated) or refined by a
Hazard (i.e., trace type: isRefined)

Hazards

D-C6 The issue has all related bugs (if any) closed Task, Sub-Task

D-C7 The issue has all sub-tasks (if any) closed Bug, Task

ATC-C1 All traced LLReq have status “released” SubWP

ATC-C2 All traced LLReq have a release assigned SubWP

ATC-C3 All traced LLReq have a trace link to at
least one HLReq

SubWP

ATC-C4 No traced LLReq has a trace to another
SubWP with a status other than “closed”

SubWP

ATC-C5 All traced LLReq have a trace link to ex-
actly one Functional Unit

SubWP

ATC-C6 All traced LLReq have a link to at least
one test case matching the requirement’s
verification method

SubWP

ATC-C7 The SubWP’s Jira issue has at least one “Fix
version”.

SubWP

ATC-C8 The SubWP’s Jira issue is set to “resolved” SubWP

RA-C1 An engineer of role ’developer’ needs to be
the issue assignee

Task

RA-C2 An engineer of role ’QA’ conducts the re-
view

Task

RA-C3 An engineer of role ’QA’ conducts the test Task

RA-C4 All sub-tasks are in state ’Closed’ Task

LA-C1 Each Process (story) must trace to at least
one SR via a ’Realized’ Link

Story

LA-C2 Each linked MMF must trace to at least one
SR via a ’Realizes’ link.

Subtask
WriteOrReviseMMF

LA-C3 Each linked MMF must trace to at least one
BUC via a ’Realizes’ link.

Subtask
WriteOrReviseMMF

LA-C4 Each SR linked via an MMF must trace to
at least one BUC via a ’Relates’ link.

Subtask
WriteOrReviseMMF

LA-C5 Each SUC must trace to at least one (parent)
SUC or a BUC via a ’Realizes’ link.

Subtask
RefineToSUC

LA-C6 Each CSC must trace to at least one SUC
via a ’Realizes’ link.

Subtask
CreateOrRefineCSC

TABLE II: Constraints derived for the Dronology use case
(“D”), the Frequentis (“ATC”), the ACME-RA (“RA”), and
the Siemens L+A (“LA”).

anonymized user identifier were enhanced with role identi-
fiers to distinguish between front-end developers, back-end
developers, database developers, team leads, quality assurance
engineers, graphics designers, marketing engineers, and bots.
Project P1 was the first to start, its end interleaving with P2 and
P3 which had a similar duration, their end again interleaving
with the start of P4 which, at the time of data gathering, was

not completely finished yet.
For this study, we retained only issues of type “Task”, that

were successfully resolved (i.e., in state “Fixed”), with a non-
empty set of child issues. This resulted in 46, 21, 119, and 81
process instances, respectively.

We used our trace link replay tool [64] to reset all datasets,
particularly the Jira issues and Jama items and their trace
links to the earliest change event and then replayed every
single change in the correct temporal order. The changes
occurred between April 2017 and December 2019 for Dronol-
ogy, between May 2018 and June 2020 for Frequentis, and
between December 2013 and January 2018 for ACME-RA,
respectively. Using the replay tool allowed us to start from
the beginning of the development process and, step-by-step,
simulate (i.e., “replay”) changes made by engineers (e.g.,
modify the state of artifacts in Jira, add trace links, etc.)
allowing us to automatically trigger constraint checks and track
the process state the same way as in a “live” environment
separately for each change. In other words, after each change
event, we evaluated all process and QA constraints against the
updated process snapshot.

To answer RQ1 for each constraint evaluation we evaluated
(i) whether a step’s Quality Check Document was fulfilled;
(ii) which constraints were (not) fulfilled; and (iii) whether a
step became active without the constraints of the predecessor
step(s) being fulfilled.

To answer RQ2, we collected the following metrics for each
process instance (i.e., a Jira artifact): number of Quality Check
Documents un/fulfilled; number of un/fulfilled constraints;
number of constraint checks performed; and the maximum
number of past steps with unfulfilled constraints (i.e., how
many steps an engineer advanced ahead without having the
completion condition of the previous steps fulfilled).

To answer RQ3, we additionally captured the number of
step cancelations, reactivations, and revocations only when
replaying CS-3 as the process descriptions for CS-1 and CS-2
didn’t make use of exclusive (XOR) branching.

X. RESULTS

A. RQ1: Process Replay

Tables III and IV report details regarding the QA constraint
evaluation results across multiple process instances, grouped
per process type for the three case studies.
AlwaysOk represents the number of process instances

where engineers only progressed to subsequent steps when
all quality constraints in previous steps were fulfilled.
EventualOk reports the processes for which all con-
straints were eventually fulfilled. CompleteNotOk shows
processes for which at least one constraint was never ful-
filled. IncompleteOk counts those process instances that
were not finished by the end date of the timeframe but
had all mandated constraints up to their current state ful-
filled. IncompleteNotYetOk counts the partially com-
pleted process instances with unfulfilled constraints but no
progress beyond those not fulfilled steps, in contrast to
those with progress beyond that point as depicted in row



IncompleteProgressedNotOk. Percentage values are
reported relative to the sum of completed process instances,
respectively sum of incomplete process instances.

Dronogy: We noticed that for “Task” processes no com-
pleted process instance (i.e., finished “Task”) ever fulfilled
every constraint before moving from one step to the next, yet
around 30% fulfill all their constraints at the end, with ∼70%
remaining unfulfilled at the end. “Sub-task” processes see
∼30% of instances “correctly” carried out, with only ∼50%
not fulfilling their constraints. “Bug” processes are almost
always correctly executed. “Design Definition” and “Hazard”
processes are either correctly carried out from the beginning
(the vast majority), or remain with unfulfilled constraints.
When examining the incomplete process instances we encoun-
tered an expected large number of processes with unfulfilled
constraints (i.e., hinting at steps with associated QA constraints
that are not complete yet). However, we noticed that only a low
percentage (< 20% for IncompleteProgressedNotOk)
of instances have engineers started too early on subsequent
steps without having fulfilled the previous steps’ constraints.

Frequentis: For the case study residing in the safety-
critical domain, we observed two interesting aspects. First,
the number of SubWPs ultimately Ok reaches almost 90%,
with the remaining 10% SubWPs showing unfulfilled con-
straints. To further investigate these, we manually examined
the violating artifacts (exclusively LLReqs) and the comments
attached to the SubWP Jira issue. Given that Jira is used as
the primary means for communication and as coordination
mechanism amongst the distributed teams and QA department,
the comments provide an accurate and sufficiently complete
track of the SubWPs history. For the 10 CompleteNotOk
SubWPs, we found that in two cases SubWPs were used
for documentation purposes rather than development, and
therefore no trace links to Functional Units were present. In
one case test cases were not applicable, and in three cases
more than one Functional Unit was linked. This was due
to the fact that the configuration subsystem affects multiple
Functional Units. Three times a test case was referenced in
the Jira comments (but no corresponding trace link in Jama
was created). Once an additional SubWP was traced without
closing the older one, and three times LLReq were marked
for proposed future changes (and thus being no longer in state
“released”). Note that some SubWPs experienced multiple,
diverse violations. The second observation we made was that
11 SubWPs are IncompleteOk, even though could confirm
that all the work was done. Manual investigation revealed that
the Jira custom fields which are used by the passive process
engine as a signal to advance the process were not used by
the engineers, hence the process remained in the first step. We
further discuss implications of these findings in Section XI.

ACME-RA:For all four projects we noticed that only a
third or fewer of all process instances never incur a quality
constraint violation. For P1 and P2 close to half or more of
process instances remain with violations at their end. P3 and
P4 fare much better in this respect with less than a third, or
just 15% of completed process instance, respectively, having

no constraint violations. The primary reason for unfulfilled
constraints for completed process instances across projects P1,
P2, and P3 was that the assignee for development was not a
developer, but frequently assumed the role of team lead. For
P4, the main reason was that not all child subtasks are closed
or that a team lead or the assigned developer conducted the
testing step. This violation temporarily also occurs in the other
projects but is eventually resolved as all issues become closed
at the end of the project. P4, however, was not completed at
the time of data gathering and hence several process instances
remained with an unfulfilled RA-C4 constraint.

Addressing the incomplete process instances: P3 has three
incomplete processes. Upon manual inspection of the issue’s
change log, we noted that they missed the final transition from
“resolved” to “completed”. P4 has 11 incomplete processes
which all come with a violation of RA-C1, i.e., not having a
developer assigned for development but the team lead.

RQ1 Key Observation: Temporary deviation from the
prescribed process in the form of prematurely starting
process steps without having preceding quality constraints
fulfilled is common in open-source system development
and industrial settings. The open source CS-1 sees most
deviations for processes with multiple constraints, the in-
dustrial safety-critical CS-2 has most process instances
executed in the expected step sequence even in the presence
of multiple complicated constraints, while the industrial
non safety-critical CS-3 shows less deviation in processes
that were part of more recent projects.

B. RQ2: Constraint Fulfillment

Table V (for CS-1 Dronology and CS-2 Frequentis) and
Table VI (for CS-3 ACME-RA) displays for each constraint
type and per each process type how often a constraint was
fulfilled at the end of the process, and how often the constraint
remained violated (i.e., an engineer did not fix it). In contrast
to RQ1, where we observed the amount of fulfilled processes
(and whether engineers deviated during the processes’ life-
time), here we obtain insights into which constraints are more
likely to be violated and hence are the root cause for a process
to not fulfill all QA constraints.

Dronology: The left-hand side of Table V reports the
differences in how often a constraint was fulfilled (limited
to completed process instances). A majority of the constraints
were fulfilled most of the time (∼90% and higher). The lower
fulfillment rates for constraints D-C1a and D-C1b (<55%)
are the main reason “Task” and “Sub-task” processes exhibit
low AlwaysOk and EventualOk values in Table III. Yet,
constraints applied across multiple process types (i.e., D-
C1a/b, D-C2, D-C3, D-C6, D-C7) exhibit similar fulfillment
rates, i.e., a constraint is typically equally well fulfilled,
respectively violated, regardless in which process type it is
used.

Frequentis: For the second case study we could observe
significantly higher fulfillment rates for all constraints (Ta-
ble V right). The 12 unfulfilled constraint instances are dis-



Dronology Task % Sub-task % Bug % Design Def. % Hazard %

AlwaysOk 0 0.0 55 31.2 94 98.9 134 82.7 26 72.2
EventualOk 42 31.1 31 17.6 0 0.0 2 1.2 0 0.0
CompleteNotOk 93 68.9 90 51.1 1 1.1 26 16.0 10 27.8
IncompleteNotYetOk 53 82.8 22 62.9 10 71.4 41 48.2 0 0.0
IncompleteProgressedNotOk 11 17.2 5 14.3 0 0.0 5 5.9 0 0.0
IncompleteOk 0 0.0 8 22.9 4 28.6 39 45.9 0 0.0
Total 199 211 109 247 36

TABLE III: Quality constraint evaluation results per process type (Dronology case study)

Frequentis SubWP % ACME-RA P1 % P2 % P3 % P4 %

AlwaysOk 78 79.6 15 32.6 3 14.3 32 27.6 21 30.0
EventualOk 10 10.2 8 17.4 5 23.8 49 42.2 38 54.3
CompleteNotOk 10 10.2 23 50.0 13 61.9 35 30.2 11 15.7
IncompleteNotYetOk 0 0.0 0 0.0 0 0.0 1 33.3 1 9.1
IncompleteProgressedNotOk 0 0.0 0 0.0 0 0.0 0 0.0 10 90.9
IncompleteOk 11 100.0 0 0.0 0 0.0 2 66.7 0 0.0
Total 109 46 21 119 81

TABLE IV: Quality constraint evaluation results per process type (Frequentis and ACME-RA case studies)

tributed across the 10 CompleteNotOk SubWPs described
above. Compared to the previous case study, a constraint for
Dronology typically requires the existence of a trace link to
one artifact (e.g., D-C1a: a Task traces to a least one Design
Definition), whereas for Frequentis a constraint requires that
all linked artifacts (i.e., LLReqs in ATC-C1 to ATC-C6) fulfill
specific conditions. For ATC-C5, for example, a single LLReq
out of 10 that doesn’t have a trace link to a Functional Unit
will cause the entire constraint to fail (regardless of whether
all other LLReqs links are correct). To account for this, we
further looked at the number of times an artifact (primarily
an LLReq) was part of a constraint violation. With 1,121
LLReqs and six constraints involving an LLReq, there are
potentially 6,726 opportunities that cause an overall constraint
to fail. We observed 128, which is less than 2%. Out of
128 LLReqs that were part of a violation (due to missing,
wrong, or superfluous trace links) only 3 were part of two
different constraint violations. 98 LLReqs belonged to a single
SubWP that was used for documentation (and needed no
Functional Unit trace links), additional 12 LLReq belonged
to a single SubWP where Test Cases were not applicable. The
remaining 18 LLReqs violations were spread across the other
eight CompleteNotOk SubWPs.

ACME-RA: In addition to the overall fulfillment rate, we
also tracked whenever a step was completed (for the first time)
but a constraint was still violated (χc).

We could observe that Constraint RA-C1 was the constraint
that was violated most frequently upon process completion for
three out of the four projects (P1, P2, P3). We further noticed
that there was hardly any improvement, in terms of violations,
during the process’ lifetime. Once a step was completed and
exhibited a constraint violation, this violation was hardly ever
repaired at a later stage. For these particular constraints, this
is not necessarily surprising as the role of an issues’ assignee
is determined by the skills (i.e., front end, back end, etc.) and
thus unlikely to change even when reopened. Given the high

intermediary and final fulfillment rate of P4, we hypothesize
that the engineer at ACME-RA better recalled the most recent
project (i.e., P4) compared to the older ones and that the
applicability of a “Task” issue has changed over time.

In contrast, for the remaining constraints RA-C2, RA-
C3, and RA-C4, we observe generally high final fulfillment
across all four projects. They, nevertheless, differ in their
intermediary fulfillment, with RA-C3 being almost always
fulfilled in P1 to P3, i.e., tests were done by a QA engineer,
reviews not being immediately done by a QA engineer (RA-
C2), and not much attention is given to check whether all sub
issues are indeed closed before closing the issue (RA-C4). As
all issues are gradually closed over the project’s duration, so
will this constraint be eventually fulfilled. The comparatively
lower final fulfillment in P4 (compared to P1 to P3) was found
to be due to the team lead or the assigned developer carrying
out the tests instead of a QA engineer.

RQ2 Key Observation: Quality assurance constraint viola-
tions are common but to a lesser extent in industrial safety-
critical environments, where QA constraints are mandated
by regulation. In the open source CS-1 violations are
mostly caused by forgotten or incorrect traces, while in the
industrial safety-critical CS-2 violations are mostly caused
by process edge cases. Constraint violations in CS-3 are
primarily caused by the issue’s assignee not having the
expected engineering role.

C. RQ3: Process Flexibility

ACME-RA’s process offers more flexibility to select a step
compared to the processes from Dronology and Frequentis.
Table VIII shows the number of steps that were started (i.e.,
became ACTIVE, are COMPLETED) and percentage of these
steps being (temporarily) canceled, reactivated (i.e., having
reached a completion state and then becoming active again),
revoked (i.e., being active and then having the preconditions
violated), and, finally, being prematurely started (i.e., having



the predecessor step(s) incomplete). Note that we analyzed
only completed process instances. Entries marked with a
dash indicate that no process progress rules are in place, for
example, to allow cancellation. Whether such rules can be in
place depends on the underlying artifact details, here in par-
ticular the Jira issues states and their transitions. Hence, while
only steps “Development” and “Testing” can be canceled, all
steps can be reactivated, i.e., be marked completed but then
experience additional engineering activities that violate the
step’s postconditions.

For ACME-RE we observed that engineers, for “Task”
issues, made heavy use of the flexibility offered by the Jira
state transitions. This flexibility is consequently also supported
by the ProCon framework. We see every step that can be
canceled was indeed temporarily canceled in every project
(except for “Testing” in P1). Unsurprisingly, there is some
correlation with the fulfillment of constraints. P1 and P2 see
more cases of a non-developer assigned to the development
step, while P3 and P4 fulfill this QA constraint more often,
hence the latter two projects see fewer cases of premature
starting the “Development” step. Premature execution of the
“Closing” step is particularly high in P2, which is explained by
the lack of either (No)Reviewing or (No)Testing steps being
carried out (note the sum of (No)Reviewing and (No)Testing
only amounting to 13 and 11, respectively, over a total of 21
process instances). Here, the engineers typically transitioned
the “Task” issue into state “Closing” directly from “In De-
velopment”. This is another case, where the valid transitions
in Jira changed over time, but nevertheless, our framework
was able to track this deviation. Inspecting the number of
step revocations (i.e., implying repeated execution of the same
step), we note that developing and testing are especially often
repeated in P4. This could be an indicator that engineers aimed
to provide more fine-granular feedback of their task progress
by switching often between the respective Jira issues states.
In contrast, reactivation primarily occurs for the “Preparation”
step (across all projects), as this step doesn’t come with
preconditions that are invalidated (and hence no revocation
is observable but rather only reactivation).

RQ3 Key Observation: ProCon is able to accurately de-
scribe the process progress even in the presence of frequent
repetition, pausing, or skipping of engineering activities.
This is especially relevant in highly iterative development
processes (e.g., CS-3 P4) that frequently switch between
development and testing phases.

D. RQ4: Performance of the ProCon Framework

Constraints related to certain Quality Check Documents are
typically validated by engineers to ensure all QA demands for
their step are fulfilled. Overall, the replay of 26,926 change
events over 109 simultaneously active process instances from
the Frequentis case study resulted in 18,241 Quality Check
Document evaluations. The resulting replay of events from
the Tool connector’s cache including constraint evaluation
took ∼6.5 minutes (averaged over 10 evaluation runs). This

corresponds to ∼0.02 seconds necessary for evaluating all
quality constraints within a single Quality Check Document:
a duration that allows frequent and timely feedback to devel-
opers.

Similarly, we evaluated the performance for the ACME-
RA case study which exhibits simpler quality constraints, but
more complex constraints for process progress tracking. Here
we replayed almost 52,500 change events, out of which almost
10,500 were relevant for at least one process instance and thus
resulted in a trigger of ProCon. On average, evaluating the 267
process instances took ∼2.1 minutes.

RQ4 Key Observation: With an average individual con-
straint evaluation duration of ∼0.02 seconds ProCon is able
to quickly evaluate artifact changes and subsequently pro-
vide timely feedback on quality assurance constraints and
process status even in the presence of many simultaneously
active process instances. Rather, the main factor influencing
timely feedback to developers is the rate at which artifact
updates are made available to ProCon and how frequent
developers visit the process dashboard.

E. RQ5: Ease of use

To evaluate how easily constraints can be created using
ProCon, we conducted a preliminary user study to gain initial
insights in the way ProCon is used and what challenges
users face (c.f Section IX-A). Five out of six participants
successfully encoded all six StepTransitionsRules. Results are
more varied for the DataMapping rules (see Table VII). We
found similar result diversity for QA constraint writing.

All participants stated that they found writing the constraints
intuitive, with those not finishing them explicitly stating that
they felt confident to complete them if given more time.
Two of the six participants, however, found the DataMapping
rules a bit confusing. One participant stating “while the tasks
themselves are easy, it is hard to enter the mindset.” and
another participant commenting “having multiple rules for one
step was confusing”. Specifically for the DataMapping rules,
we hypothesize that they are more difficult to grasp as these
constitute not true/false evaluations but require adding and
removing of artifacts from the step’s output.

During the experiment, the participants made frequent use
of the test classes for inspecting the syntactic and semantic
correctness of their rules. Overall, we believe these are very
promising observations as the participants were able to specify
a significant portion of a realistic process and its associated
artifacts. Hence we conclude that ease of use is sufficiently
high as to not impede framework uptake. We need to highlight,
however, that in the field, process engineers overall would
take more time as they would also write tests, generate test
data, and replay artifact changes to obtain more confidence
in the rules’ correctness. At the same time, engineers would
develop proficiency over time, while the participants had only
15 minutes of training and still did very well.

In addition to this initial study, we introduced ProCon to QA
engineers at Frequentis during an internal company innovation



Dronology Task (n=135) Sub-task (n=176) Bug (n=95) Design Def. (n=162) Hazard (n=36) FRQ SubWP (n=98)
X χ X% X χ X% X χ X% X χ X% X χ X% X χ X%

D-C1a 44 91 32.6 ATC-C1 95 3 96.9
D-C1b 94 82 53.4 ATC-C2 98 0 100.0
D-C2 135 0 100.0 168 8 95.5 ATC-C3 98 0 100.0
D-C3 132 3 97.8 164 12 93.2 94 1 98.9 ATC-C4 97 1 98.9
D-C4 136 26 84.0 ATC-C5 94 4 95.9
D-C5 26 10 72.2 ATC-C6 94 4 95.9
D-C6 133 2 98.5 176 0 100.0 ATC-C7 98 0 100.0
D-C7 121 14 89.6 175 1 99.4 95 0 100.0 ATC-C8 98 0 100.0

TABLE V: Final quality constraint evaluation results (fulfilled X and unfulfilled χ) per constraint type from completed process
instances for CS-1 Dronology constraints (left) and CS-2 Frequentis constraints (right).

ACME-RA P1 (n=46) P2 (n=21) P3 (n=119) P4 (n=81)
X χc χ X% X χc χ X% X χc χ X% X χc χ X%

RA-C1 24 22 22 52.2 8 13 13 38.1 82 36 34 70.7 69 2 1 98.6
RA-C2 1 1 0 100.0 1 2 1 50.0 18 18 0 100.0 5 6 1 83.3
RA-C3 37 1 1 97.4 7 0 0 100.0 49 1 1 98.0 5 4 4 55.6
RA-C4 46 22 0 100.0 21 13 0 100.0 115 47 1 99.1 65 42 5 92.9

TABLE VI: Quality constraint evaluation results per constraint type from all completed CS-3 ACME-RA process instances:
differentiating between QA constraint violation upon first step completion (χc), unfulfilled at process end (χ), and fulfilled
(X) at process end.

P1 P2 P3 P4 P5 P6

Transition Rules (6) 6 6 6 3 6 6
DataMapping Rules (7) 7 3 0.5 4 4 4
QA Rules (6) 6 2 2 5 0 6

TABLE VII: Process definition success for six participants for
six Transition rules, seven DataMapping rules, and six QA
Rules.

event, by providing them with an initial prototype for writing
QA constraints. Our aim was to showcase ProCon’s potential
and adaptability and gather feedback from process engineers.
After some initial training, they were able to successfully
create additional constraints for their case study, based on the
existing set of rules without the direct involvement of any
of the authors. We received positive feedback from the three
engineers (from the QA department, and one development
team) encoding the rules and presenting the results at the end
regarding the usability of ProCon itself and how constraints
can be created and modified. This feedback provided the
foundation for the prototype currently being rolled out for
friendly user testing in three additional development teams.

RQ5 Key Observation: the preliminary results hint at an
easy learning curve as beginners were able to write correct
rules/constraints within an hour. Beginners made the least
mistakes when writing step Transition rules, and found
writing DataMapping rules the hardest. QA engineers at
our industry partner found adapting existing constraints to
new processes without any external support doable in a
timely manner.

XI. DISCUSSION

The analysis of the data collected from the first case study,
Dronology, indicated that the actual process – in some cases
significantly – deviated from the planned one. Upon requesting
feedback, a project lead at Dronology explained that while
guidelines and a development process were in place, it was
not always feasible to follow them by the letter. Student teams
were involved in the development of some of the components,
and while they have been trained on the process, they still
lacked experience in following all prescribed rules and guide-
lines. Furthermore, besides the software development aspect,
the focus was also on obtaining a data set of trace links, and
that the process had to be adapted to the availability of open-
source developers. Rather than forcing a change of process
which might be infeasible, the insights gained here could be
used to decide where to introduce additional QA checks, e.g.,
making constraint check results available upon reviewing a
pull request. Here ProCon would then highlight where traces
are missing or are incorrectly set. A trace recommendation
technique such as [71], [72] could further assist in establishing
the trace itself.

In contrast, the analysis of Frequentis’ SubWPs confirmed
that engineers do in fact follow the stringent quality standards
one would expect in the (highly safety-critical) ATC domain.
The finding that 10% of process instances EventualOK
confirms the QA engineer’s experience that engineers need
support for producing correct and complete trace links as
significant additional work at a later stage was necessary. Our
investigations of the CompleteNotOk instances highlighted
that, on the one hand, corrections come with significant
coordination effort, and still may result in missing traces or
incorrectly set artifact properties. On the other hand, the inves-
tigations highlighted the presence of edge cases where the QA



P1 (n=46) P2 (n=21) P3 (n=116) P4 (n=70)
Step Strt Canc Rea Rev Pre Strt Canc Rea Rev Pre Strt Canc Rea Rev Pre Strt Canc Rea Rev Pre

Prep. 46 - 10.9 - - 21 - 19.0 - - 116 - 27.6 - - 70 - 42.9 - -
Dev. 46 19.6 4.3 13.0 47.8 21 4.8 0.0 33.3 61.9 116 16.4 2.6 30.2 31.0 69 31.9 2.9 44.9 2.9
Rev. 1 - 0.0 - 0.0 2 - 0.0 - 0.0 18 - 0.0 - 0.0 6 - 0.0 - 0.0
NoR. 45 - 0.0 4.4 - 11 - 0.0 9.1 - 98 - 0.0 10.2 - 64 - 0.0 12.5 -
Test. 38 0.0 0.0 5.3 - 7 42.9 0.0 0.0 - 50 36.0 0.0 6.0 - 9 33.3 0.0 22.2 -
NoT. 8 - 0.0 - - 4 - 0.0 - - 66 - 0.0 - - 61 - 0.0 - -
Clo. 46 - 2.2 - 2.2 21 - 0.0 - 47.6 116 - 0.9 - 0.9 70 - 7.1 - 7.1

TABLE VIII: Process flexibility for completed CS-3 ACME-RA process instances: Started step instances, thereof percentage
Canceled, Reactivated, Revoked, and Prematurely started. A dash entry indicates that no corresponding process progress
tracking rules exists that could give rise to this phenomenon.

RQ Summary
RQ1 CS-1 In this open source, safety-critical setting, the more restriction-

rich Task and Sub-task processes exhibit a high amount of
deviation that remain also when the process is considered
finished.

RQ1 CS-2 In this industrial, safety-critical setting, there are only some
cases of process deviation with most deviations repaired upon
completing the process.

RQ1 CS-3 In this industrial, non-safety-critical setting, processes are de-
viated from regularly, but not to the same extent as the open
source setting in CS1.

RQ2 CS-1 Out of 14 combinations of process types and QA constraints,
only four exhibit no violation ever. Some QA constraints are
violated in more than half of all process instances.

RQ2 CS-2 Half of all QA constraints are violated with the remaining QA
constraints only violated in a few cases (less than 5%)

RQ2 CS-3 Projects appear to inconsistently apply QA constraints as QA
violation extent fluctuates significantly among projects.

RQ3 CS-3 ProCon is capable of supporting premature and repeated step
execution in the presence of exclusive step choices.

RQ4 CS-2 QA constraints were rapidly evaluated in the presence of
complicated QA constraints and linear processes.

RQ4 CS-3 Process constraints were rapidly evaluated in the presence of
simple QA constraints and complicated processes.

RQ5 CS-5 Beginners were able to write basic process and QA constraints
in a short time.

TABLE IX: Research Questions Summary per applicable case
study.

constraints do not apply, reinforcing the need for sometimes
tolerating these inconsistencies. ProCon offers two options in
such a case: first to ignore the constraint evaluation results,
and/or to adapt the process, respectively constraints. In either
of these two cases, a rigid (thus inflexible), active process
enforcement environment would have severely hampered the
engineer’s available actions, effectively forcing the engineer to
work outside the defined process. Finally, the huge amount of
>18.000 Quality Check Document evaluations explains why
manually providing timely feedback is infeasible.

Finally, for the third case study, ACME-RA’s software
product has no stringent safety implications, and no external
regulation that enforces the use of strict quality standards. The
use of prescribed engineering processes is motivated mainly
internally to obtain an accurate picture of the overall devel-
opment progress within the individual projects. We observed
simpler constraints, and lower degrees of following these
constraints. Here ProCon is helpful in obtaining a true picture

of the progress, e.g., by highlighting those “Task” processes
that are officially closed, but still have child tasks that are not
closed yet, hence indicating that there is still work to be done.
Tracking processes and constraints violations also supports
engineers in inspecting how often certain steps are indeed
found to be applicable, and when executing these occasional
steps, whether they are indeed executed as planned (i.e.,
are quality constraints indeed fulfilled). Over the course of
time, process engineers may then learn whether the fulfillment
rate of QA increases, and the rate of unfixed QA violations
goes down. For the ACME-RA case study, our ProCon also
demonstrates the ability to track repetition and deviation of
process steps and the frequent encounter of such behavior,
a strong signal that temporary deviations are pervasive in
software engineering efforts.

A. Implications for Practitioners and Researchers

Based on the observations made from the case studies, we
can conclude that ProCon can have significant practical impli-
cations for QA engineers. Supported by automated checks for
“standard” cases, they can shift attention and focus on edge
cases and deviations from the process. Furthermore, they can
allocate time for improving constraints checks, and investigat-
ing whether these checks and following the process actually
result in better software quality [73]. Engineers can leverage
the immediate feedback they receive on their work status and
do not need to revisit their work at a later, inconvenient time.
The various stakeholders no longer need to build their own
(error-prone) custom “helper tools” that are almost infeasible
to maintain or to reuse across multiple projects or teams.

We received very positive responses from engineers at Fre-
quentis upon presenting ProCon with one team lead wishing
to have it ready as a product by tomorrow, and a QA engineer
joking to be out of work then. While the prototype was applied
only to one product group at Frequentis, we are currently
rolling out the prototype to three more product groups, each
having different rules (but use Jira/Jama), thus only the process
and rules need to be adapted. Given the excellent performance
during replay (i.e., handling 27k artifact changes across 109
process instances within a few minutes) we are confident
that adding more rules in the current rollout will not lead
to performance problems. We subsequently expect to obtain
more detailed insights into the prototype’s practical use.



Beyond the immediate practical applicability, we would
expect that our approach leads to cost savings by reusing
constraints due to treating constraints and their evaluation
results as first-class citizens (which also reduces maintenance
costs). Constraints may be modified over time to accommodate
changes in the organization’s process, or may apply in diverse
process contexts, making them amenable to product line engi-
neering approaches. Further, the concepts of software product
line engineering could be used to manage the variations in
process and QA concerns found in a larger organization [74].
We would also expect cost savings by reusing constraints
across different systems subject to the same regulation. As a
regulatory standard is applicable for a wider range of systems,
constraints (and also processes) could be formalized at the
level of the standard for reuse by affected companies. We
are however aware, that initially reuse would occur primarily
within an organization for two main reasons. First, constraints
are rather tool-specific, especially how an organization makes
use of their tools’ extensibility through custom fields and
custom link types. (We could imagine a mapping from a more
generic/high-level standard-centric constraint to an organiza-
tion’s low-level tool-specific constraint; the feasibility of this
is largely unclear). Second, from our discussions with various
regulated companies, we understand that many see their pre-
cise processes and constraints for implementing a regulatory
standard as confidential. We, hence, expect reuse at the level
of a regulatory standard to find traction once processes and/or
constraints are no longer considered a competitive advantage
but rather an opportunity for jointly reducing development
costs.

With respect to implication for researchers, ProCon has
further potential to serve as a platform for additional research
prototypes and support tools built on top of if. Passive process
execution has the benefit of enabling inspection at any time
to what degree the process is followed and where deviations
have occurred (respectively are not mitigated yet). Deviations
can thus be detected earlier, e.g., an engineer has started too
early on a step. Alerts or mitigating actions may then be less
invasive rather than significant rework later on. Other potential
support mechanisms could guild the engineer in how to set up
the correct output artifacts, or direct the engineer in how to
fix a constraint violation or offers to automatically fix it [11].

Our approach can serve as the basis for other research on
supporting the software engineering process such as proac-
tively driving the process through automated actions. Here,
open points for investigation include how the process context
can be used to better drive CI/CD pipelines, and automatically
prepare engineering artifacts and engineering activities such as
reviews. In general, the questions that emerge from automation
also need to focus on the negative sides, such as engineers
trusting too much in tool support or choosing guidance actions
that are the most convenient for them but perhaps not optimal
for the overall development process.

XII. THREATS TO VALIDITY

Internal Validity. We address researcher bias by modeling
process and constraints from an open-source system and
two companies rather than conducting controlled experiments.
ProCon works on arbitrary artifacts, traces, and change events
and was not specifically tailored to Jama or Jira.

External Validity. Based on the limited scope of our eval-
uation with two different systems, we can not claim gener-
alizability of our findings. However, we argue in line with
Briand et al. [75] that context-driven research will yield more
realistic results. Our work evaluated the ability of ProCon
to passively execute diverse engineering processes and QA
constraints (simple ones from an open-source system, as well
as medium and more complex ones from industry) in a timely
manner. We analyzed data from these three sources with
two being “production data” from an industrial safety-critical
system and an industrial non-safety-critical system. Typically,
being able to obtain such data, and furthermore being able to
publicly report results is quite challenging as companies are
reluctant to provide insights into their working processes at
that level of detail, and open-source systems rarely come with
such extensive explicit artifacts and trace information.

Construct Validity. For RQ1 and RQ2 we addressed the
question of how frequently process deviations occur and
which specific constraints are violated, by replaying real
historical data. Hence, we stepped through the process as
it occurred with exactly the same sequence of changes and
evaluated the process and QA constraints. We thus measure
the “official” state of the process as it would be used as
evidence to demonstrate compliance with regulations. We
cannot, in this way, measure the tacit process state implicit in
the minds of engineers. Engineers might have used informal
communication channels to convey status information while
forgetting/delaying the update the indented process status
signals (e.g., Jira issues status or checkboxes). We thus might
generate a more pessimistic view of the process state. As the
purpose of ProCon is to provide guidance to engineers and
evidence for compliance, however, we believe it is important
to minimize the gap between measured and tacit process states
by highlighting deviations.

For RQ3, for assessing whether ProCon support flexible
processes, we measured if for a process with alternative steps
and engineers frequently repeating steps, we indeed find the
reactivation, cancellation, and revocation of steps as indicated
in the replayed artifacts’ history.

For RQ4, we measured only the performance of the core
process and QA constraints evaluation as this aspect is compu-
tationally expensive. Poll frequency for obtaining artifact up-
dates might have an effect on the responsiveness as rare polling
with the subsequent potentially large amount of updates could
lead to longer constraint evaluation times. This aspect is also
determined by the network load, tool load, and artifact update
frequency which is different in each deployment scenario and
hence needs to be assessed on a case-to-case basis.

For RQ5 we conducted a controlled experiment to evaluate



ease of defining realistic constraints. Our aim was to obtain
insights into whether the initial learning curve is sufficiently
low to promote uptake by practitioners. Long-term use in a
production environment needs to be separately investigated
as actual constraint complexity might vary in practice. To
mitigate any threats we provided information to participants
about the concepts we were investigating, communicated the
purpose of the study to our participants, carefully discussed
the study setup and execution among multiple researchers, and
conducted a pilot study.

A. Limitations

The evaluation process is exemplary of the processes at
Frequentis, but doesn’t cover all of ED109. The model and
engine however are not specific to ED109 and can be adopted
to the specific process setting as shown with Dronology and
ACME-RA that followed a completely different process and
TIM.

Adopting a different scenario then is mostly a matter of
connecting different tools. Contemporary tools tend to come
with a HTTP/REST interface, or client implementation (as did
Jira and Jama with dedicated Java clients). Hence, it requires
little effort in wrapping these clients for integration with the
engine. New tools (and artifacts) are then accessible in the
rules.

We also make the assumption that step completion can
be detected from tools. The need for management, team
leads, and project leaders to obtain an accurate picture of
progress, as well as having teams increasingly work distributed
across multiple locations leads to a move away from informal
signaling of completion toward explicit one, e.g., assigning a
different member to an issue, setting a checkbox, setting the
status of an issue, etc. Thus we believe that obtaining such
indicators in almost all cases is reasonable.

Note, that overall, we cannot make any claims on the com-
pleteness of our approach as our research was primarily guided
by the needs of our industry collaborators and the attempt
to avoid investigating irrelevant aspects, the equivalent of the
software development pitfall YAGNI: “you ain’t going to need
it”. As we continue to apply our approach and framework to
additional scenarios, we expect to identify missing aspects,
especially along the lines outlined here [11]. However, we
want to be able to validate the solutions to those aspects under
realistic settings which, in the context of this work, typically
requires an industry evaluation partner.

XIII. CONCLUSIONS AND OUTLOOK

In this paper, we presented an approach for reducing the
effort of ensuring that development activities adhere to quality
constraints. The novel aspects are the decoupling of QA
constraints from process control and dataflow, which allows
engineers to deviate from the process when necessary, whilst
informing them which constraints are yet unfulfilled and
which steps are already complete. Our framework achieves
this flexibility by merely observing the engineers’ actions
in their tools rather than restricting them in their allowed

activities. Constraints get constantly reevaluated upon changes
even for steps that should not be worked on yet or which have
been already marked as complete. Our evaluation using both,
industry and OSS projects, revealed that engineers frequently
deviated from the intended process for some time and that
our approach can identify missing (traceability) information
required by regulations.

Future work focuses on two main aspects. First, we intend
to study the effect of having our prototype in use by engi-
neers at Frequentis. This will include design, prototyping, and
evaluation of advanced features, such as actionable guidance
suggestions on how to return to the prescribed process upon
deviation and change impact notification across steps. We aim
to quantify the actual effort reduction and gather qualitative
feedback for further improvements. Second, we will study QA
engineers and process engineers during the creation, evolution,
and maintenance of process models (including constraints)
with ProCon to understand how their task can be supported
even better. This will include experimenting with constraint
code completion techniques, automatically creating premature
start conditions, and constraint deadlock checking techniques.
Ultimately, we aim to quantify the cost savings by comparing
the effort to specify and maintain processes to the benefits of
easier and less error-prone collection of QA evidence.

XIV. DATA AVAILABILITY

The prototype and data used in this paper is available at
Figshare https://doi.org/10.6084/m9.figshare.12840053.

ACKNOWLEDGMENT

This work was funded by the Austrian Science Fund (FWF)
under the grant numbers P31989, P29415-NBL, and P 34805-
N, and by the state of Upper Austria through LIT-2019-8-
SEE-118 and LIT-2019-7-INC-316 as well as the LIT Secure
and Correct Systems Lab. This work has been also supported
by the FFG, Contract No. 881844: ”Pro2Future”. The
Dronology case study was supported by the United States
National Science Foundation under grants SHF:1741781 and
CPS:1931962.

REFERENCES

[1] D. Galin, Software quality assurance: from theory to implementation.
Pearson education, 2004.

[2] D. B. Kramer, Y. T. Tan, C. Sato, and A. S. Kesselheim, “Ensuring
medical device effectiveness and safety: a cross–national comparison of
approaches to regulation.” Food and drug law journal, vol. 69 1, pp.
1–23, i, 2014.
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