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Abstract

Runtime monitoring is critical for ensuring safe operation and for enabling self-adaptive behav-
ior of Cyber-Physical Systems (CPS). Monitors are established by identifying runtime properties
of interest, creating probes to instrument the system, and defining constraints to be checked at
runtime. For many systems, implementing and setting up a monitoring platform can be tedious
and time-consuming, as generic monitoring platforms do not adequately cover domain-specific
monitoring requirements. This situation is exacerbated when the System under Monitoring
(SuM) evolves, requiring changes in the monitoring platform. Most existing approaches lack
support for the automated generation and setup of monitors for diverse technologies and do not
provide adequate support for dealing with system evolution. In this paper, we present GRuM
(Generating CPS Runtime Monitors), a framework that combines model-driven techniques and
runtime monitoring, to automatically generate a customized monitoring platform for a given
SuM. Relevant properties are captured in a Domain Model Fragment, and changes to the SuM
can be easily accommodated by automatically regenerating the platform code. To demonstrate
the feasibility and performance we evaluated GRuM against two different systems using Turtle-
Bot robots and Unmanned Aerial Vehicles. Results show that GRuM facilitates the creation and
evolution of a runtime monitoring platform with little effort and that the platform can handle a
substantial amount of events and data.

Keywords:
Cyber-Physical Systems, Runtime Monitoring, Model-Driven Engineering

Email addresses: michael.vierhauser@jku.at (Michael Vierhauser), antonio.garmendia@jku.at
(Antonio Garmendia), marco.stadler@jku.at (Marco Stadler), manuel . wimmer@jku.at (Manuel Wimmer),
janeclelandhuang®nd.edu (Jane Cleland-Huang)

Preprint submitted to Journal of Systems and Software October 9, 2023



1. Introduction

Robotic systems are increasingly used in the context of shop floor automation [1, 2],
as autonomous vehicles for medical device delivery [3], and search-and-rescue [4] oper-
ations. Such Cyber-Physical Systems (CPS) exhibit tight integration between hardware
and software components and frequently interact with humans. This in turn introduces a
number of safety concerns that need to be mitigated [5, 6], resulting in the need for cus-
tomized and system-specific runtime monitoring support. For example, when Unmanned
Aerial Vehicles (UAVs) are engaged in search-and-rescue flights in close proximity to
humans, or when robots operate on a factory floor, precautionary measures need to be
taken to ensure that the CPS adheres to its specified requirements and operates within its
predefined safety envelope. Therefore, support is required for monitoring diverse prop-
erties at runtime [7]. However, the heterogeneity of hardware and software components
within a CPS means that creating and implementing monitors, and subsequently collect-
ing, processing, and checking the required data is often an arduous and time-consuming
task.

Runtime information is typically collected from the System under Monitoring (SuM),
through source code instrumentation [8, 9], using dedicated data-buses [10, 11], or
other collection services. It is then processed at runtime to check constraints to as-
certain whether the system is behaving according to its specified requirements, or if
deviations from expected behavior have occurred. While off-the-shelf monitoring ap-
proaches support application performance monitoring [9] or checking Service Level
Agreements [12, 13], they often provide inadequate support for instrumenting custom
systems, or defining complex temporal or structural constraints. The problem is exacer-
bated as CPS are typically long-running, with ongoing maintenance and evolution activ-
ities that require both, the data collection mechanisms and constraints to be updated and
adapted. If the monitoring infrastructure does not co-evolve with the SuM, constraints
may become stale, and data outdated due to changes in the underlying components.
Few approaches have addressed the challenge of automatically generating customized,
system-specific, runtime monitoring solutions and their maintenance and evolution sup-
port. In closely related work, Model-Driven Engineering (MDE), which automatically
generates source code from system models, has previously been used to model entire
systems, including their runtime properties [14, 15]. When a new feature or functional-
ity is introduced, the model is updated, and its respective code regenerated. As a result,
MDE has been shown to improve productivity by enabling developers to specify a sys-
tem at a higher level of abstraction. However, the application of MDE has fallen short
of enabling the generation and evolution of a complete monitoring platform [16].

To address these shortcomings, we propose and evaluate GRuM, a model-driven
framework for Generating CPS Runtime Monitors. We aim to enable (i) the genera-
tion of a customized monitoring platform with support for data collection and analysis,
which (ii) can be readily extended and updated when changes to the monitored system

occur. GRuM provides a lightweight monitoring solution that only requires modeling
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those parts of the system that are relevant for the monitoring infrastructure. As a result,
it can be applied to diverse projects, whether or not MDE is adopted as the primary
development paradigm. This paper builds upon our earlier work [17, 18], in which we
collected requirements for model-driven monitoring and derived an initial architecture.
We significantly extend that work by introducing a refined architecture, extending our
weaving and meta-model, and providing code generators for the monitoring platform.
Furthermore, we have greatly extended the automation support for automatically gen-
erating the platform and monitors, and include a thorough evaluation of GRuM using
two diverse systems. More specifically, we evaluate our approach against a system for
deploying UAVs for search-and-rescue and a second system that uses a set of mobile
robots to assess indoor air quality.

The contributions of this work are as follows: First, we present a monitoring meta-
model that enables us to generate a custom monitoring platform with a runtime model,
instead of implementing it manually. This provides a higher automation potential, for
more efficient development of monitoring solutions. Second, probes are automatically
generated for the target technology. Given this platform, we can leverage different types
of (off-the-shelf) constraint engines depending on the monitoring needs, as shown in our
evaluation (using a CEP Engine for temporal constraints and event sequences) without
the need to reimplement other parts. Finally, once a probe generator for a specific tech-
nology has been implemented, evolving the monitoring framework alongside the SuM is
greatly simplified and only requires a few steps to update the model and automatically
regenerate the platform'.

The remainder of the paper is structured as follows: example describes open chal-
lenges. framework presents an overview of the GRuM framework, while application
describes its application and implementation. In evalmethod we first describe our eval-
uation objectives and setup, and in Sections 6 to 8 we report on our evaluation results
for two real-world systems and discuss results and threats to validity. Finally, relwork
describes related work and, conc draws conclusions and proposes future directions.

2. Monitoring Challenges and Motivating Example

Runtime monitoring plays a pivotal role in checking and ensuring that a system
operates safely within its predefined operational capabilities and that it adheres to its
specified constraints related to both functional and non-functional requirements related
to performance, safety, and other quality concerns. It plays an intrinsic role in creating
Digital Shadows and Digital Twins [19, 20], and provides support for the MAPE-K loop
in self-adaptive systems [21, 22].

'All models and source code, as well as the generated monitoring infrastructures, are available on
GitHub as an open-source system at https://github. com/LIT-Rumors/grum-public



However, the field of runtime monitoring is quite diverse with approaches that have
been designed to support various purposes, technologies, and types of system architec-
tures [23, 24]. Examples include service-based systems [13, 25], application perfor-
mance monitoring [9], and goal-oriented monitoring approaches [26, 27]. The fact that
existing approaches are typically customized for a specific type of system, application
domain, or support particular types of constraints, has further hampered the broader
adoption of runtime monitoring frameworks. As a result, significant upfront investment
is required to implement and maintain custom monitoring infrastructures, often with-
out inbuilt support for maintenance and evolution after deployment. In previous work,
Rabiser et al. [28] investigated several different monitoring frameworks and ultimately
derived a reference architecture, identifying three common components: Monitoring
Setup related to defining monitors, generating probes, and instrumenting a system, Mon-
itoring Execution concerning data collection, processing and constraint checking, and
finally Monitoring Support targeting additional functionality such as data persistence
and external applications.

The continuous maintenance, enhancement, and hence evolution, that complex CPS
are subject to, has a significant impact on any monitoring infrastructure that collects and
analyses data from a system. Runtime monitoring frameworks need to embrace these
changes and co-evolve with the SuM, providing support for updating, and maintaining
the monitoring framework itself as part of the system development process [29, 30].

These challenges are illustrated in Dronology, an open-source, multi-UAV system [31]
with support for planning and executing UAV missions. Establishing a monitor for
Dronology requires in-depth knowledge of the system in order to identify and collect
necessary data, establish a monitoring platform that aggregates data from different UAVs
and then stores the data for subsequent analysis, and ultimately to select and configure a
suitable constraint engine to analyze the data and provide evaluation results. In the case
of Dronology, instrumentation is needed to collect UAV data (e.g., GPS coordinates,
attitude, mission status), transmit the data to a Ground Control Station which is respon-
sible for aggregating, analyzing, and persisting the data, and developing a dashboard for
visualizing data to the UAV operators. In addition, a constraint engine needs to be con-
figured to check constraints, such as whether the UAVs remain within their designated
altitude band, avoid no-fly zones, and are flight-worthy.

Ongoing changes to both, the hardware and software can adversely affect the mon-
itoring system. For example, if a new water sampling capability were introduced to
Dronology, it would require additions and modifications to the hardware and software
components. New downward-facing sensors would be required to ensure that the UAV
maintains a stable distance from the water during the collection process. Furthermore, as
light reflecting from the water could cause dangerous altitude fluctuations, the monitor-
ing system would need to be updated to continually check that altitude remained within
an acceptable range. In order to reduce the cost and effort of creating and maintaining
a runtime monitor as illustrated for Dronology, it is necessary to (i) provide automated
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support for creating a system-specific solution, including the setup and configuration of
the monitoring system and specification of its respective constraints, and (i7) avoid the
additional effort of maintaining the monitoring system itself by enabling the infrastruc-
ture to co-evolve alongside the SuM.

3. The GRuM Framework

To provide support for the different parts of a runtime monitoring architecture and
to ease the task of maintaining and co-evolving monitors, GRuM leverages MDE tech-
niques to specify relevant monitoring properties and ultimately to generate a complete
monitoring infrastructure. It follows Rabiser et al.’s reference architecture [28], provid-
ing support for data collection, analysis (i.e., checking constraints), and visualization.
However, one of the novel characteristics of GRuM is that for a SuM, both a Set of
Probes, as well as a fully customized Monitoring Platform can be generated based on a
model describing the parts to be monitored. Fig. 1 provides an overview of GRuM’s
architecture. The Modeling part relies on a Monitoring Meta-Model (MMM) and a
system-specific Domain Model Fragment that is populated for a SuM; the Code Gen-
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Figure 1: Architectural overview of the GRuM components for modeling the domain and relevant con-
straints, and for generating probes and the core monitsoring platform.



erators responsible for generating the Monitoring Platform and the probes for collecting
data from the SuM; and finally the generated Monitoring Platform itself, providing a
number of runtime capabilities such as a runtime model, a query engine, and a middle-
ware layer to connect external services. Properties of interest from the SuM that are
collected and monitored via Probes can be accessed in various different ways. This, to a
large extent depends on the code generator, and the resulting Probes that are generated
from the model. For example, when generating a simple monitoring API (cf. appli-
cation), the SuM needs to be “accessible”, meaning that API calls can be added. If
additional means of data collection are required, a code generation that used byte-code
instrumentation [23, 32], or aspect orientation [33] might be employed.

3.1. Monitoring Models

MDE has been used extensively to generate applications and system components
across a wide variety of domains, including automotive, railroad systems, business pro-
cess engineering, and embedded systems [34, 35, 36]. GRuM uses model-driven tech-
niques to generate a customized monitoring platform for the SuM. It only requires the
parts of the SuM that need monitoring to be modeled, instead of the entire SuM. This
represents a significant time-saving as it is often the case that only a small subset of prop-
erties and data created by a system are of interest at runtime. For example, a UAV’s PX4
flight controller [37] has over 1,200 configurable properties and sensor values. Of these,
a few values are regularly checked during the preflight arming process, whilst other val-
ues, such as GPS coordinates, altitude, attitude, velocity, satellite links, temperature, and
camera/gimbal settings are typically monitored during flight; however, many hundreds
of properties, such as internal flight controller states are unlikely to be monitored at run-
time. The GRuM Monitoring Setup specifies exactly what parts of the system should be
monitored and provides the mechanisms for performing the monitoring.

The challenge of creating a Probe [38], to collect runtime information from the SuM
and making it available to the monitoring infrastructure, is that each SuM uses different
technologies, diverse architectural styles, and consists of various software and hardware
components. Therefore, in practice, monitors are typically defined and developed in-
dividually for each type of system or technology, such as byte-code instrumentation or
dedicated service busses in service-based systems [9, 11].

GRuM addresses this challenge by providing a generic approach for describing mon-
itoring properties and their resulting monitors, so that instead of building a custom set
of probes, we specify the setup in a standardized way and generate a custom monitor
directly from the specification. GRuM leverages MDE to describe the components of
the SuM that need to be monitored, and then subsequently generates the monitoring in-
frastructure. To support this process we have created a dedicated MMM that can be used
to define the relevant parts of the system for the resulting probes and the Monitoring
Platform.



3.1.1. Monitoring Meta-Model (MMM)
Our MMM, shown in Fig. 2 was derived from analyzing the monitoring reference
architecture from Rabiser et al. and existing runtime monitoring frameworks [28]. The
MoConfig element defines the monitoring configuration for a specific system and is sub-
sequently used to generate the code for a target system (cf. code,eneration).Itcontainsin formationregardingthen
processinganalysissuchasdataaggregationorqueryingthedatamodel(cf.runtimemodel).
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Figure 2: GRuM’s Monitoring Meta-model (MMM)

3.1.2. Domain Model Fragment

The MMM provides the foundation for all systems monitored with GRuM, requir-
ing only those properties of the SuM that must be collected and analyzed at runtime
to be specified in a Domain Model Fragment. Fig. 3 contains a partial Domain Model
Fragment for the Dronology system, showing the Drone elements, each of which con-
sists of different properties, such as the state (DroneState), a dedicated flightplan
(FlightPlan), and safety checks at startup (StartUpCheck). The state, in turn, in-
cludes sub-properties such as battery and location information. While a Drone has many
other properties that are either set during startup or at runtime, the Domain Model Frag-
ment describes the subset of properties to be collected and analyzed by the monitoring
framework. Properties can represent primitive data types (e.g., numbers, strings) or more
complex aggregated elements.

3.1.3. Weaved Monitoring Model

In order to support the generation of monitoring code, the different elements speci-
fied in the Domain Model Fragment need to be linked to the concepts specified on the
MMM.

These links are specified in the Weaved Monitoring Model (WM) and are subse-

quently used to determine which code fragments are generated for which element in the
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Figure 3: Excerpt of Dronology’s Domain Model Fragment

Domain Model Fragment. Model weaving has been used in the past to connect different
models to establish dedicated links between them [39, 40, 41, 42, 43]. As described by
Del Fabro et al. [41], the weaving model is not self-contained but is meant to be used in
conjunction with its related models and to provide the respective link semantics for the
application scenario — in our case, the creation of the runtime monitoring platform.

In the WM, for example, a Drone element from the Dronology Domain Model
Fragment is linked to the MonitorableAgent from the MMM, whilst DroneState and
FlightPlan are children of the Drone element and linked to a MonitorableProperty as
they can be directly collected from the system. The resulting WM (cf. Listing 1) is a
hierarchical representation of the monitored system. Additionally, the WM also contains
information about the topic mappings as well as the server configuration (represented by
the MoConfig element) which is used to automatically generate topic subscriptions and
connection code.

This clear separation of concerns, the monitoring information on the one hand, and
the system configuration on the other, facilitates easy updates of the Domain Model
Fragment when new properties or agents are added. It also supports reuse of existing
models in cases where new SuMs also use model-driven techniques to generate system
code.

3.2. Code Generation

A runtime monitoring platform relies upon several different components to collect,
aggregate, and analyze runtime data. Based on the information encoded in the WM
and the Domain Model Fragment, GRuM automatically generates (i) a set of probes for
collecting information from the system, and (ii) an instance of the Monitoring Platform

for the SuM.
8



T - N N e R

Listing 1: Excerpt of the WM for the Dronology system

MoConfig DroneConf
projectName DroneProject
defaultServer localserver
ePackage Dronology
serversq
Server localServer
connectionURL "tcp://192.168.0.55"
}
system MoSystem{
agents{
MoAgent "Drone"{
eClass "Dronology.Drone"
elements{
MoProperty "DroneState"
topic "state"
sync true
eClass "Dronology.Dronestate"

3.2.1. SuM Probes

Existing monitoring approaches use a variety of techniques to collect information
from the running system. In order to reduce the overhead of manually implementing
system-specific probes and to create data collection mechanisms for each system indi-
vidually, GRuM generates a technology and language-specific set of probes. The Probe
Set Generator (PSG) is independent of the data that is actually collected from the system
but is dependent upon the underlying technology. For example, a PSG for a Java-based
system that generates target Java code can be reused for other Java-based systems, and
code can be re-generated when new properties or types of agents are added to the Do-
main Model Fragment. New PSGs can be easily added to GRuM when probes for a new
technology or type of system are required without any need to redesign or re-implement
the underlying monitoring platform.

3.2.2. Monitoring Platform

Runtime data provided via probes subsequently has to be collected and aggregated,
so that the data can be analyzed, constraints checked, and results visualized. A topic-
based message broker sends runtime data from the SuM (via the probes) to the generated
infrastructure. The respective topics and topic subscriptions are generated automatically
based on the agents and properties defined in the WM. Each MoAgent represents a root
topic (e.g., “Drone”), and each MoProperty a respective sub-topic, e.g., “State”. At
runtime, each activated drone sends information through these topics (e.g., “Drone/-
Dronel/State” for an update of the State property). This data is then used to populate
and update the runtime model.

Every change in the model triggers a query against the Model Query Engine where
constraints, i.e., checks on the model can be defined. Constraints are then evaluated on

the runtime model and violations are generated when an evaluation fails. For example,
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for the drone system, a constraint in the query engine could check whether the reported
FlightPlan received from the probe contains a valid flight id and a set of valid coordinates
the UAV should fly to. In case the constraint check fails, a violation is generated which
can then be displayed in the user interface and the user can cancel the flight, or if desired,
the flight could be aborted automatically.

3.2.3. Monitoring Middleware

In addition to the monitoring platform, GRuM also generates a middleware compo-
nent that provides a SuM-specific interface to, for example, connect external services or
applications. This allows applications to register to specific properties, and receive no-
tifications when a change in the model occurs, for example, when a new agent has been
added, or when properties are updated. Each agent and property is thereby accessible via
a dedicated API method that corresponds to information encoded in the WM (LisTING 1).
The mapping between the updated property/agent and the topic where the information is
published in the middleware is established via the topic name specified in the WM. Ex-
amples of external applications that can be attached include additional constraint engines
to support specific types of constraints (e.g., temporal constraints or event patterns), at-
taching a database to store runtime data, or adding a new UI. Separating the platform’s
core capabilities from external services decouples the data-receiving parts of the SuM
from application services that build on top of it. The interface provides access to all
information collected and aggregated in the runtime model from the SuM.

4. Applying GRuM

The process of using GRuM to specify and generate a monitoring platform and then
deploying the platform to monitor a system at runtime is described in Fig. 4. The upper
part involves creating the respective models and generating the platform code, whilst
the lower part uses the resulting platform to define constraints and to connect external
services, before deploying the platform for the SuM.

4.1. Creating the Models

In the first step of the process, relevant system information needs to be identified.
This could include hardware and software components, such as sensors and their re-
spective data, that provide valuable or critical runtime information. Various approaches
can be used to identify and document relevant runtime requirements, safety properties,
or QoS attributes [16, 44, 45, 46, 47]; however, the identified properties must be (1)
specified in the SuM’s Domain Model Fragment. In case the SuM itself is model-driven,
existing models of the system can be leveraged. Once the Domain Model Fragment is
populated with an initial set of properties and attributes, these are (2) linked to the differ-
ent monitoring concepts via the Weaved Monitoring Model. The WM captures monitored
data, structured by the different agents and their constituent monitorable properties. This
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step is vital for the subsequent code generation, so that the platform code generator can
generate the specific runtime model and the hierarchical topic structure.

4.2. Platform and Probe Generation

Based on the WM, (3) two different types of monitoring code is generated for the
SuM. First, a set of probes is generated using a technology-specific PSG which is either
selected from an existing library or created from scratch. GRuM provides templates to
ease the implementation of these generators, and new PSGs can be stored in the library
and then reused for any other SuM using the same technology. The second code genera-
tor is technology-independent and is shared across all SuM applications. It (4) generates
the monitoring platform containing the runtime model, data aggregation, and analysis
component.

4.3. Platform Usage & Runtime Monitoring

Generated probes can be (5) directly deployed to the SuM. Depending upon their
type (e.g., byte-code instrumentation probes, or data interceptors), they are integrated
directly by the developers, or as part of the continuous integration process, into the
source code or the binary files of the system. The generated platform then allows (6)
users to define constraints and runtime checks. GRuM deliberately does not store con-
straint information in the Domain Model Fragment, and hence does not generate the
constraints, since these are typically added incrementally, and subject to modifications
at runtime [24]. GRuM supports constraint checks in two different ways. First, it pro-
vides an integrated model query engine that can query MoProperties and second, it is
used to define checks on the model, for example, to ensure that a property stays within
a certain range. The monitoring middleware generates notifications when a constraint
is violated. Additional constraint engines can be connected via the middleware, provid-
ing the connectivity needed for constraint violations to be detected and reported. All
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Figure 4: GRuM process for specifying, gepgrating, and utilizing a monitoring platform



additional services (7) are connected via the middleware layer, and once connected, the
platform (8) can be deployed to collect and analyze runtime data sent from SuM via the
generated probes.

4.4. System Evolution

Since all major components of the platform and the probes are generated by GRuM,
changes made to the SuM can be easily incorporated into the monitoring platform as
well. This significantly reduces the effort of co-evolving the monitoring platform, as
well as the probes with the SuM. Changes in the SuM can be reflected in the Domain
Model Fragment and WM, and the code for the probes and platform can then be automat-
ically re-generated. Previously defined constraints as well as external services remain
unaffected and can be reused or deactivated (in case a constraint is checking a specific
property that no longer exists, or is not monitored anymore). For example, if an addi-
tional property of an existing agent needs to be added to the set of monitored properties,
this change can be directly performed at the model level. The respective element is first
added to the Domain Model Fragment and then linked in the WM. Once this change has
been made, probes and platform code can be completely regenerated without the need
to manually adapt the code. In case a property is removed for which a model query has
been defined the query engine provides an error message in the query description so that
stale and invalid constraints can be ignored or removed.

4.5. GRuM Implementation

We implemented a fully operational prototype? of GRuM supporting the aforemen-

tioned parts based on the Eclipse Modeling Framework (EMF) [48]. EMF provides
capabilities to describe meta-models by using its Ecore language which we used for the
MMM and the Domain Model Fragment. For the automatic code generation, we use
Roaster [49] to parse and create Java source files. Additionally, we used XText [50] to
define a textual domain-specific language (DSL) for the WM (see example in LisTING 1)
which allows easy creation and modification of the WM for a specific SuM.
Probe Set Generator: As part of GRuM we provide a template and utility functions
(e.g., for packaging and deployment) to create an implementation of a PSG for a target
language/technology. A concrete implementation needs to iterate over the elements de-
fined in the WM and then generate topic mappings for the respective agents and their
constituent properties, as well as the code to send the data to the message broker. As
part of our evaluation, we have implemented two distinct code generators to support two
different target languages and technologies. The first generates a Java-based Probe Set,
whilst the second targets ROS-based systems and generates a Python component with
ROS-node subscriptions (cf. eval).

2Further implementation details and documentation is provided in our GitHub repository: https://
github.com/LIT-Rumors/grum-public
12
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Monitoring Platform Generator: As EMF natively generates Java code from Ecore
models, we leverage this feature, and our runtime model and the platform core compo-
nents are implemented in Java (i.e., Java code is generated by the platform generator
for each SuM) regardless of the SuM’s native programming language. At runtime, an
instance of the Domain Model Fragment is created and used as the runtime model. All
model code, code for instantiating the model, as glue code for setting up the platform
is generated automatically. For data transmission, we use MQTT [51], which provides
a scalable, topic-based publish and subscribe mechanism which is also automatically
configured based on the WM.

The generated middleware layer is also Java-based and for each property and agent
specified in the model, a respective notification method is generated. This allows ex-
ternal applications to register to be notified about changes in the runtime model. Fur-
thermore, data is published on predefined topics (as specified in the WM), which can
directly be accessed by any service or application subscribed to the respective topic via
the MQTT broker. In case multiple instances of an agent are active (e.g., three UAVs are
monitored at the same time) the messages are augmented with the respective “agent id”
so that property updates received via the middleware can be assigned to the proper agent.
This separation between the incoming information from the probes and outgoing infor-
mation to the external services ensures that all information is handled by the runtime
model which serves as the single point of information for all connected services.
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Constraint Evaluation & Visualization: Integrated within the monitoring platform
core, our implementation uses the Viatra model query engine, which is tightly integrated
into EMF and directly operates on the model for specifying checks on runtime properties.
However, while Viatra provides tools and incremental evaluation [52, 53], it does not
support more complex constraints, such as temporal ones. We, therefore, connected the
Esper CEP engine [54] via the middleware to support Complex Event Processing (CEP)
as an additional service for checking temporal sequences and occurrences of events.

5. Evaluation Objectives and Setup

When evaluating our GRuM framework we address three main aspects. First, we
address the general applicability of our approach to diverse systems that should be mon-
itored. Second, we focus on the evolution aspect where we assess the effort that is in
fact required when the SuM evolves compared to other monitoring approaches. Finally,
we target efficiency and evaluate the performance of the generated monitoring platform
to ensure its suitability in real-world application scenarios. For this purpose we used our
GRuM implementation and investigate the following research questions:

RQ1: Can GRuM be used to create a runtime monitoring platform for a CPS with
reasonable effort?
While representing a binary question, it is an important one for validating that GRuM
works as specified. We, therefore, address the question by using GRuM to generate
a monitoring infrastructure, collect events from the system and evaluate constraints at
runtime.

RQ2: What additional effort is required to update the platform and monitors when
the SuM evolves?
With the second research question we start with the generated platform (RQ1) and then
analyze the effort needed to co-evolve GRuM’s models and monitoring platform when
the SuM is modified. The goal hereby is to assess how different change scenarios impact
GRuM and the resulting changes required.

RQ3: To what extent can GRuM’s generated code be used to efficiently monitor time-
sensitive runtime data in a CPS system?
The last RQ directly addresses the pertinent question of whether the code generated by
GRuM is efficient. This is an important question, as generated generic code is often per-
ceived to be less efficient than manually constructed code, and efficiency is particularly
important in a runtime monitoring system. We address this question by measuring the
model-set-latency of the monitoring platform, i.e., by measuring the time it takes to up-
date the model at runtime when different property values change.

Two different researchers, both co-authors of this paper, performed the tasks asso-

ciated with research questions RQ1 and RQ2. One was assigned to Dronology and one
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to the TurtleBot system. Both researchers were familiar with the respective SuM, had
previous experience in Java development (for the Dronology use case) and ROS and
Python (for the ROS TurtleBot use case), as well as basic experience with Eclipse and
the Eclipse Modelling Framework for creating Ecore models. Specific knowledge about
code generation with Xtend was only necessary for implementing the initial Probe Gen-
erator prototypes, but not for subsequently generating a new GRuM instance based on
the existing generators.

5.1. Use Cases

We explored the three research questions in two diverse robotic systems.

Case 1 — Dronology: The first use case was the previously discussed Dronology UAV
system which we developed from 2016 to 2020 using Java and DroneKit [31] and is
now available in the open domain. Dronology is fully compatible with both physical
UAVs and simulated ones and has been used in extensive field deployments. The only
difference between simulations and physical deployments is a single string used to estab-
lish communication with a real or simulated UAV. For our experiments, we utilized the
high-fidelity Ardupilot simulation. All parts of the Dronology architecture pertaining to
UAV management (such as route creation, mission planning, user interfaces, etc.,) are
Java-based, while only the Groundcontrol Station responsible for forwarding messages
to the UAV’s flight controllers is Python-based. In our evaluation we, therefore, focus
on the Java system and generate the Java monitoring Probes for relevant parts>.

Case 2 — ROS TurtleBot Robots The second system used TurtleBot3 robots [55]
equipped with sensors to collect CO, measurements. A TurtleBot is a small mobile robot
using the Robot Operating System (ROS) [56] as a platform which has emerged as a
de-facto standard for both research and industry. The TurtleBot platform is also used
frequently for prototyping in research and education in the area of CPS in general and
robotics in particular. [57, 58, 59]. ROS is an open-source platform for robotics soft-
ware development using a component-based architecture with nodes that interact via a
publish-subscribe pattern. ROS supports both hardware and high-fidelity simulation us-
ing, for example, the Gazebo simulation environment [60]. As ROS applications are
commonly implemented in Python, we used this second case to demonstrate the applica-
bility of GRuM with different target languages and technologies. As part of the prototype
we implemented an application for controlling the TurtleBots and a number of control
scripts for performing actions. Additionally, to augment the original Hardware of the
TurtleBot3 robot, we attached an MQ-135 CO0; sensor to facilitate mobile sensor collec-
tion with the robots. All required parts for this case were implemented in Python, and
further details can be found in the open-source GitHub repository.

3Furhter details about the architecture, requirements, etc. can also be found on the project website:
https://dronology.info
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6. Evaluation

In the following we address our three research questions for creating (RQ1), evolving
(RQ?2) and evaluating the performance (RQ3) of GRuM.

6.1. RQI — Creating a GRuM instance

In the first part of our evaluation, we used GRuM to model MoAgents and Mo-

Properties, created the WM, implemented the reusable PSGs needed for each system,
generated the probes and monitoring platform for each system, and specified constraints
against the runtime model. Two different researchers, both co-authors of this paper, per-
formed this task. One was assigned to Dronology and one to the TurtleBot system. We
then recorded the time taken to complete each activity.
Case 1 — Dronology: As we had not previously created a PSG for supporting probes
in Java systems, we started by creating such a generator. Based on GRuM’s template
for generating deployment packages we used a Java code generation framework (JBoss
Roaster) to specify source code for the Java probes to be generated. We implemented a
push-based probe generator that used the Domain Model Fragment and the WM (parts
shown in LisTinG 1) to generate dedicated publish methods for each property, as well as
utility classes for setting up the connection to the MQTT broker. The implementation
effort for creating this reusable code generator was approximately 10 hours.

Modeling & Code Generation: We then developed runtime monitors for the Dronol-
ogy system. This was guided by our inherent knowledge of the UAV domain and the
Dronology system, including its properties, and the constraints that should be checked
at runtime. From this, we (1) specified an initial Domain Model Fragment using the
Eclipse EMF Ecore Editor. The model included multiple UAVs, representing moni-
torable agents, controlled by the DroneSystem, and several drone-related properties,
such as DroneState and, DroneCommands. In total, we modeled 8 properties with 33
attributes. We also modeled GeolocationAccuracy as a derived property computed
from each UAV’s GPS status and its reported bias. We then (2) created the WM specify-
ing the server configuration and the hierarchical structure of the system. These two steps
took around 1-2 hours of effort. As the process was informed by our in-depth knowledge
of the system, the reported effort focuses purely on the task of establishing the monitors
rather than on “thinking-time” which is expected to be similar whether the monitor is
built from scratch or using GRuM. We then (3) selected the Java code generator that we
had created and (4) generated an initial version of the Dronology monitoring platform
and its associated probes, composed of a set of executable Eclipse Plugins (for the plat-
form) and a maven project (for the probe) that were directly integrated into Dronology
(5). The only modifications made directly to the Dronology code base were the insertion
of one method call to the probes for each monitorable property. All other functionality
that was needed to collect data, establish a connection to the platform, and publish data,
was fully covered by generated code.
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Figure 6: Two of the TurtleBot robots equipped with an additional CO, sensor.

Platform Usage: We then derived a set of constraints (6). Once again, these were
guided by our own knowledge of the Dronology system [61] and its deployment in real-
world tests. In total, we created 10 constraints, 7 of which were implemented using the
Viatra model query engine [53], with three additional temporal constraints implemented
using the Esper CEP Engine [54], as listed in Table 3. Additionally, we (7) developed
a generic Ul for visualizing agents and runtime data (cf. Fig. 5). Both the Esper CEP
engine and our UI were connected via the middleware. Finally, we (8) deployed the
platform for the subsequent evaluation. Altogether, the implementation of constraints
and extensions was completed within about 20 hours.

Case 2 — ROS TurtleBot: As with the Dronology example, we started by creating a
new PSG. For the TurtleBots, the generated code targeted Python to collect data from
appropriate ROS topics and forward it to our monitoring platform. We modeled it in
the same way as the Java-based generator by implementing a push-based approach.
The Probes were implemented as a custom ROS package, consisting of the ROS API
which provides update-functions for every monitored property of the ROS system, and
an MQTT-Forwarder for sending data to the monitoring platform. Generated probes
were implemented using ROS Noetic Ninjemys distribution packages in combination
with the rospy client library for ROS.

Modeling & Code Generation: In contrast to the Dronology system, we developed
this application from scratch without prior experience with the system or technology.
Therefore, as a starting point, one researcher reviewed documentation for the TurtleBot
platform [55], and identified relevant properties and their associated ROS topics over
which the data was published. The resulting Domain Model Fragment (1) for the Turtle-
Bot consisted of 10 properties with 23 attributes. We then (2) again created the WM for
the Bot system specifying the server configuration and the hierarchical structure of the
system. It took approximately 15 hours to investigate ROS properties, identify relevant
ROS messages and create the Domain Model Fragment and WM. Of this, we estimate
that 5 hours were spent implementing the GRuM monitor after properties had been se-
lected.
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Platform Usage: After (4) selecting the Python probe generator, the resulting probes
were (5) easily integrated into the ROS workspace and executed without further cus-
tomization. For the constraints (6) we again created 7 constraints for the Viatra query
engine and 3 additional temporal constraints with Esper. In this case, constraints in-
cluded a maximum carbon dioxide concentration and an enforced speed limit when low
battery is detected to lengthen battery life and allow the bot to return to its starting po-
sition. A complete list of constraints is provided in Table 3. We (7) reused the same
generic user interface as developed for the Dronology system, and (8) deployed the plat-
form. In order to evaluate whether GRuM can easily cope with changes in the SuM, (9)
we additionally mounted an external air quality sensor (MQ 135) and connected it to
the control board of the TurtleBot. We incorporated this change in the Domain Model
Fragment by adding an additional monitorable property and then regenerated the probes
and the monitoring platform. The two constraints CST-T06 and CST-T10 specifically
use the data reported by the CO, sensor to check that the value does not exceed a critical
threshold and that measurements are collected only when the robot is stationary.

Analysis of Implementation Process: Creating the Domain Model Fragment in both
cases was a straightforward task. After analyzing the two systems and selecting proper-
ties to be monitored, EMF provided an easy way to create the model, and was similar
to using any other UML modeling tool. The implementation of each PSG required an
initial one-time effort but the PSG was then reused to support subsequent changes in
the system and Domain Model Fragment. Furthermore, once a generator for a certain
language and/or technology is made available, it can be reused for any other system (in
our case for any other Java-based or ROS-based Python application). To answer RQ1,
for both cases we were able to model the monitoring properties with minimal effort.
The vast majority of this time was used to specify (and test) temporal constraints with
Esper, as no immediate tool support was provided, in contrast to the Viatra constraints
(cf. discussion in discussion). For the Dronology system, where we had in-depth knowl-
edge about the system, its properties, and structure considerably less effort was required,
whereas, for ROS, we had to familiarize ourselves with the technology, but still were
able to create a monitoring platform in less than 20 hours, including the process of se-
lecting relevant properties, creating the model, and the constraints. In the Dronology
case, for example, this resulted in 8 lines of code that were added manually to the SuM,
supported by approximately 200 lines of generated Java probe code, about 700 lines of
generated platform code, and an additional 2500 LoC generated by EMF for the runtime
model. More importantly, when the SuM is changed, only minor implementation effort
in the SuM is required to invoke GRuM-generated functions. When properties are added
to the model, the entire platform and probes are regenerated.

6.2. RQ2 — System Evolution Support

In the second part of our evaluation, we specifically focused on the support provided
by GRuM with regards to monitoring (co-)evolution, and what actions and efforts were
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| MoProperty NPR [#] SML [ms]

Command 470 5.79 (4.42,6.41)
FlightControllerData 2,943 5.91 (4.85, 6.52)
>, | FlightPlan 66 7.43 (5.33, 8.01)
¥ | GPSHealth 6 4.94 (4.32,7.19)
é HomeLocation 6 11.77 (7.91, 15.46)
2 | OperationMode 96 5.24 (3.91,5.74)
/| StartupChecks 6 12.86 (6.82, 18.42)
DroneState 14,702 6.32 (4.99, 6.96)
AirQuality 1,406 6.60 (5.50, 7.35)
BatteryStatus 368 6.97 (6.32, 7.63)
Diagnostic 965 6.66 (5.88, 7.28)
2 | JointState 1,828 6.35 (5.46, 6.93)
& | LaserScan 1,828 6.39 (5.49, 6.96)
¥ | MagneticField 1,828 6.35 (5.40, 6.89)
& | Odometry 1,790 6.44 (5.74,7.06)
SensorState 1,813 6.50 (5.76,7.12)
Velocity 1,829 6.47 (5.62,7.12)
VersionInfo 1,822 6.25 (5.55, 6.84)

Table 1: Model-Set-Latency results of the simulation runs (median values). NPR: number of property
values collected at runtime / run, SML: time required from event received until set in the runtime model,
median, (1st/3rd quartile)

required to add monitorable properties to a system, perform constraint checks using the
newly collected data, update an existing element (e.g., change the information and/or
type of a property) and remove an existing element from the model. We established a set
of tasks that impacted all three primary parts of the reference architecture [28, 62, 63,
64], focusing on activities related to Monitoring Setup and Execution). Based on these
tasks (cf. Table 2), for each of our two systems, we recorded the different steps necessary
for adding, updating, and deleting monitoring properties in the system, modifying the
respective constraints, and regenerating the platform.

We specifically examined three changes: (i) a new property needs to be monitored
and therefore added (A), (if) an existing property is modified (e.g., the property name,
MQTT topic, or attributes change) (U), and finally, (iii) a property is removed and should
no longer be monitored (D). For each change, we documented the steps necessary, the
tasks that needed to be performed, the elements/artifacts (e.g., models) that needed to
be touched, the tools used, and the degree of manual work/automation provided (cf. Ta-
ble 2).

Monitoring Setup: All changes performed related to the monitoring setup only re-
quire editing one of the two models - the Domain Model Fragment or WM, and all code
is subsequently generated. For activities related to the monitoring setup, all changes are
performed at the model level, including updating the Domain Model Fragment and the
WM. Using the Eclipse Ecore framework [65], this is supported by a graphical editor and
can be easily achieved with a UML-like diagram. All model code is subsequently gen-
erated automatically. Once these changes are applied, the probe API and the monitoring
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platform are generated automatically. For creating an executable monitoring platform
(and the respective runtime model), no changes are required at the code level for either
system.

Monitoring Execution: Once respective probe APIs have been generated, they need
to be linked with the SuM. If agents and/or properties are added or modified, the new
API methods need to be called accordingly. When applying our change scenarios to the
Dronology system, this required adding/modifying 1 line of code (1 method call) in the
system, calling the respective API method when a value is updated. For the ROS/Python
example, the effort is similar. First, the ROS node subscriber needs to be started and the
corresponding function call in the probe API executed. Besides this, no additional code
is required. All connections, topic publishing, and message forwarding is performed au-
tomatically by the generated probe and platform code. In the platform itself, no changes
or manual steps are required and the runtime model is executed automatically once the
platform has been generated.

Based on analyzing the different change scenarios for two different systems, we can
conclude that GRuM provides a high degree of automation, reducing the manual effort
that is required to adopt changes in the SuM in the monitoring platform. More impor-
tantly, the majority of steps performed are supported by tools and editors, and only the
actual instrumentation, i.e. linking the SuM to the respective probes, requires actual
changes in the source code of the system. None of the changes performed required a
manual change in the code of the monitoring platform, and all necessary code could be
generated automatically.

6.3. RQ3 — Performance of the generated monitoring platforms

As explained earlier, one question that often arises with code-generated solutions
is whether they perform efficiently. This part of the evaluation uses the two deployed
monitoring solutions from RQ1 to assess GRuM’s performance for monitoring a system,
collecting runtime information, and evaluating constraints. In both cases, we collected
the following metrics: The number of messages, i.e., monitorable properties sent to the
platform (NPR), the latency of the platform (set-model-latency), i.e., time required from
setting a value to the runtime model (excluding network delay from the system to GRuM)
(SML), the number of constraint checks/violations reported (NCST) and time required
for performing a constraint check after an element in the model changed (TCST).

The goal of this experiment is to assess whether the generated monitoring platform
can handle realistic data from either a high-fidelity simulator (Dronology case) or ac-
tual physical hardware (TurtleBot case). We excluded communication latency from our
experiments, as this would equally affect any monitoring solution that requires central
data analysis. Instead, we focused on the latency when data is available and propagated
in the runtime model, and constraint evaluation times, two critical characteristics of the
monitoring platform itself.
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Task Description | Artifacts & Action required in GRuM
Tools
Monitoring | What Domain Model | [A|U|D] MoProperties and MoAgents can be
Definition | should be Frag., changed in the Domain Model Fragment using a
monitored? | (Eclipse Ecore | graphical modeling editor.
Model and AUT.: PARTIALLY AUTOMATED
a, Generator When the Domain Model Frag. is updated,
% Model) Eclipse automatically generates required code —
(fn STEPS: 2 no manual code changes required.
E Monitoring | How are Weaving [A|D] MoProperties and MoAgents from the
g Instrumen- | actual Model (DSL) Domain Model Frag. need to be linked in the WM
'g tation Probes de- | Eclipse XText and topic bindings need to be established using
= fined/cre- editor the DSL. [U] If only attributes of MoProperties
ated? Steps: 1-2 are updated, no change in the WM.
AUT.: PARTIALLY AUTOMATED
When WM is updated, the respective code
generator can be selected in Eclipse, and the
platform and Probes are generated automatically.
Monitoring | What is Generated API | [A|U|D] No extra steps necessary for framework.
Informa- required to | library (Java: For instrumented system (Java, Python), the
tion collect data | JAR file, generated library needs to be added and the
Collection | from the Python: respective API method calls need to be added.
SuM? module for AUT.: FULLY AUTOMATED (PLATE.)/MANUAL
ROS) (SuM)
StEeps: 1
Monitoring | What is - [A|UID] No extra steps necessary, code for the
£| Informa- required to monitoring platform is generated automatically
g | tion manage and a runtime model is instantiated.
§ Processing | and AUT.: FULLY AUTOMATED
= distribute
%D data in the
§ mon.
'g frame-
= work?
Monitoring | What is Viatra editor, [A|U|D] Constraints need to be added/modified
Informa- required to | Esper rule file either in the Viatra query engine or as new Esper
tion define and | StEPS: 1-2 rules.
Checking | perform AUT.: MANUAL WITH TOOL SUPPORT.
constraint
checks?

Table 2: Key tasks in a monitoring framework based on the monitoring reference architecture by Ra-
biser et al. [28]. Aut. describes the degree of automation support provided by GRuM, and Steps refers
to the number of artifacts that need to be modified for performing a certain action for Adding (A), Updating
(U), and Deleting (D) elements from the monitoring platform and SuM.

Case 1 - Dronology: Using Dronology’s Software-in-the-loop (SITL) simulator we cre-
ated a UAV search mission scenario where multiple UAVs search for a missing person
in a predefined area. We deployed Dronology with our generated probes and the sim-
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ulation environment to six Raspberry Pis (RPi 4 with 4GB of RAM, running Raspian
Buster), each representing an individual UAV and connected via Wifi (similar to com-
panion computers on real UAVs). The monitoring infrastructure was set up on a standard
Desktop Computer, with 16GB of RAM, running Ubuntu 20, using Java 11, and Ecore
2.23. We randomly assigned 5 flight routes to each UAYV, and then collected runtime data
and performed constraint checks. We first performed a standard simulation scenario with
no anticipated constraint violations, and then in a second simulation, we seeded errors
every 30 seconds in order to evaluate whether violations were reported correctly and in a
timely fashion. Both scenarios (with and without errors), were executed 5 times and me-
dian values are reported over all 5 runs. An overview of the number of events captured
and constraint checks performed is provided in Table 1 and Table 3.

Overall, each simulation run lasted about 41 minutes representing a typical upper
bound of a typical battery-powered UAV flight. During this time, a total of 18,295
events were sent to the monitoring platform. The median time to set a property in the
model was between 4.9 and 12.9 ms. We only observed higher latencies (> 7.5 ms) for
the properties that were collected a single time during UAV startup (12.9 ms) (the startup
checks and homelocation) with all other properties well below this limit. The median
time to evaluate a constraint for the Viatra query engine was between 0.02 ms and 0.9
ms. As Esper is a stream processing engine that only matches a certain pattern, i.e., a
constraint violation, we were only able to count and/or measure constraint violations for
the seeded errors and not actual executions. In total 4,168 violations, for both Esper
and Viatra constraints were reported. As Esper constraints are temporal, the time from
the point an event is added to the event stream to the time a violation is detected varies
depending on the type of constraint. For CST-DOS (cf. Table 1), this means that a con-
straint violation is triggered after 5 minutes (300 seconds), for CST-DOS after 2 seconds,
when the second DroneState property is not received in time, and after 30 seconds for
CST-D10 respectively. In both cases our platform handled diverse constraints, some of
which are executed very frequently, some of which are only executed once, providing an
evaluation result of fewer than 0.9 ms for the Viatra constraint and 71 ms for a timing
constraint evaluated with Esper.

Case 2 — ROS TurtleBot: For the second case, we performed a series of runs with
two TurtleBot robots (TurtleBot3 Burger, equipped with a RPi 3, running ROS noetic),
tasked with measuring CO, levels in various offices and hallways to detect and report
high concentrations. We used the ROS SLAM (Simultaneous Localization and Map-
ping) node to create a map of the office space and sent the TurtleBots to different offices
multiple times using ROS’ 2D Navigation Stack. The monitoring infrastructure was set
up on a standard Desktop Computer, with 16GB of RAM, running Ubuntu 20, using
Java 11, and Ecore 2.23. Again, we first executed a scenario without any anticipated
constraint violations, followed by a second scenario seeded with random errors. Both
scenarios (with and without seeded errors), were executed 3 times and we report the
median values over the 3 runs. Each run lasted approx. 16 minutes with 15,477 events
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CST Description Type| NCST TCST

[#  [ms]

DO1 Altitude Restrictions: The UAV must not exceed a maximum altitude of 50m Q| 492 0.03

D02 Speed Restrictions: The UAV must not exceed a maximum speed of 15ms/s Q | 492 0.07

D03 Minimum Battery Level: The UAV has to maintain a minimum battery volt- Q| 492 0.02
ageof 10.5V

D04 Valid Goto-Commands: A waypoint sent to the UAV must have valid lati- Q| 286 0.09
tude, longitude and altitude values

DO5 Startup Arming Check: Before active, the UAV needs to compute its arming Q 6 0.30
checks

D06 Flight Controller Startup: Before active, the UAV flight controller needs to Q 6 0.17
properly startup

D07 GPS: A minimum number of 10 satellites must be available Q | 1458 0.06

D08 Flight Completion: An assigned route for a UAV has to be completed within T 42 59.00
5 minutes

D09 Update Frequency: State data from the UAV, updating its speed and position T | 541 58.70

must be sent at least every 2 sec

D10 Geolocation Accuracy: When GPS accuracy of the UAV is low for more Q/T | 353 71.75
than 30 sec., an active mission can not be continued and manual control has
to be assumed

TO1 Movement Speed Limit: To maintain accuracy during navigation, the bot Q 65 0.09
must not move faster than 2.5m/s

TO02 Minimum Battery Status: The bot has to maintain a minimum battery level Q 65 0.09
of 5%

TO3 Minimum Battery Voltage: The bot has to maintain a voltage between 10.5 Q 65 0.06
and 12.5 volts

TO04 Power Supply Health: The bot’s power supply must remain in a healthy Q 65 0.05
condition, e.g., no overheating

TOS5 Diagnostics Error: The operating level of the hardware components (actua- Q 49 0.07
tor etc.) must not be in an error state

TO6 CO, Limit: The C0O, measurements from the air quality sensor must not Q 76 0.08
exceed a threshold of 800ppm

TO7 Obstacle: The bot must maintain a minimum distance of Scm to an object, Q 65 0.08
as detected by the Lidar unit

TO8 Speed Reduction: When the bot operates below 25% battery level, the speed T 88 52.10
must not exceed 2.0m/s anymore

TO9 Diagnostics temporal check: A stale state of the actuator must change within T | 206 32.58
10 sec. to another state

T10 Measurements Accuracy: To ensure accurate measurements, an alert should T | 191 84.00

be raised when measurements are transmitted while moving

Table 3: Constraints used in the evaluation. NCST describes the median violations reported in our seeded
runs, and TCST shows the median evaluation time from when the value was received until the constraint
violation was reported in the platform

collected per run, which were sent to the monitoring platform, resulting in 980 events
per minute. The latency to set values in the model ranged between 6.3 ms and 7 ms
(cf. Fig. 7).

For the constraint evaluation runs, we obtained very similar results to the previous
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experiment. The median time to evaluate a constraint for the Viatra query engine was
between 0.05 and 0.09 ms and for Esper constraints between 33 ms and 84 ms, with a
median of 935 violations reported per run. All results are listed in Table 1 and Table 3.

6.3.1. Scalability

To validate the scalability of the generated platform, we evaluated its capability to
deal with a large number of properties and agents. For the Dronology case, we virtual-
ized the setup used on the Raspberry Pis in a Docker container and executed a simulation
scenario with 25 UAVs flying and reporting data at the same time. For the second case
with the TurtleBots, we increased the frequency with which data was sent to the monitor-
ing platform. Initially, properties were sent every second and every five seconds for the
battery measurements which were reduced to 0.25 seconds resulting in a much higher
rate of events and constraint checks. For the approx. 46-minute Dronology run with
25 UAVs, we received 71,567 property updates, i.e., more than 1,530 property changes
per minute, and observed a constant number of messages being received by the platform
throughout the run without any backup with comparably low latencies between 4.3 and
6.3 ms. During this run, 20,719 constraint checks were performed with evaluation times
between 0.08 and 0.13 ms for the Viatra queries and 46 and 61 ms for the Esper temporal
checks.

For the TurtleBot run, we received 64,000 updates during the 16 minutes run, i.e.,
approximately 4,076 properties per minute. 1,173 constraint checks were performed and
evaluation times range between 0.07 and 0.1 ms for the Viatra queries and between 63
to 180 ms for the Esper temporal checks.

Analysis of Performance Evaluations: For both cases, we were able to monitor a sub-
stantial amount of properties and the platform performed well for updating the runtime
model and performing constraint checks. For the Dronology system, we deliberately
selected properties with a diverse update frequency, demonstrating that the framework
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works well with data collected only a few times a minute, or several times a second
as for the TurtleBots. Additionally, even when scaling up the number of agents in the
Dronology system, and when increasing the frequency at which events are sent to the
platform for the TurtleBot robots, we achieved almost constant evaluation and latency
times. Furthermore, as all experiments were run on a standard desktop machine, both
the latency to update the model and time to perform constraint checks can be further
improved when deploying the platform on server hardware. With regards to RQ2, we
can conclude that the generated platform is capable of handling a substantial amount of
diverse properties from SuM using different architecture styles and technologies.

6.4. Comparison to related techniques and Trade-Offs

In order to contextualize the results of RQ1 and RQ2 and to draw conclusions about
the extent to which GRuM can reduce required effort, we provide a qualitative compar-
ison against a selection of related approaches. We do not provide quantitative compar-
isons — as fully recreating each of the other systems and frameworks is out of scope of
this paper. For this purpose, we leverage our previous work in the area of analyzing Run-
time Monitoring Frameworks [16] by selecting five [13, 66, 67, 68, 69] approaches that
(a) cover a broad spectrum of different application domains and application contexts of
runtime monitoring; and additionally, (b) provide sufficient information in the paper to
allow a comparison with respect to the capabilities provided for Runtime Monitoring and
trade-off ease of use and convenience. We structure our discussion along the previously
discussed key tasks of “Monitoring Setup”, “Monitoring Execution”, and ‘Monitoring
Support” from the monitoring reference architecture [28]. Results from this analysis are
summarized in Table 4.

Monitoring Setup: Our GRuM framework relies on a strict separation between the
description of the SuM (and its constituent properties) in the Domain Model Fragment
and any information relevant for monitoring in the Weaved Monitoring model. With
regards to monitoring definition, similar to many other approaches, we use a textual
description based on a dedicated DSL to specify monitoring-related information. Similar
to our approach, Java-MaC [67] and Inzinger et al. [69] use their own custom DSLs,
and Kieker [68] uses OCL for monitoring definition. In contrast, SPASS-meter and
WLSA [13, 66] rely on XML files for defining monitoring scopes. Alternatively, SPASS-
meter also supports direct annotation of source code, thereby avoiding the need for a
separate file for defining monitors. One negative trade-off that we are aware of is that
as a precursor to applying GRuM the creation of the Domain Model Fragment requires
some additional effort. However, as only relevant properties need to be modeled, the
perceived effort is relatively low, and the resulting benefits are the tool-assisted creation
of the Weaved Monitoring Model (auto-completion, selection of properties, etc.) which
greatly eases its creation and maintenance, and the entire framework generated from it.
Furthermore, if models are readily available for the system, they can be easily reused and
integrated, thus further reducing the effort of this extra step. With regards to the creation
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of probes, we also follow the paradigm of automatically generating probe code for the
target SuM. Depending on the approach, either Java bytecode instrumentation [66, 67]
or aspect-oriented programming [68] techniques are employed. With the concept of
dedicated Probe Set Generators, we introduced one additional layer. This increases
flexibility (similar to, for example, Kieker [68] where templates for Python and Java-
based systems are provided). PSGs thus facilitate easy reuse, and once a generator for a
specific technology/target system has been created it can be easily integrated and readily
reused.

Monitoring Execution: Once created, GRuM provides a fully operational monitor-
ing framework that can be readily executed. This includes event collection as well as
distribution at runtime. While other approaches combine the definition of event moni-
toring and analysis (e.g., as part of the Event Definition DSL [67] or SLA metrics [13])
we again focus on separation of concerns between these two parts. The MaC [67] ar-
chitecture, for its Java implementation, for example, relies on a dedicated instrumentor
and compiler to manipulate bytecode and a run-time checker. While this allows for
some flexibility, and its concepts can also be applied to other languages, it requires a
specific implementation of these components. We avoid this by decoupling probes and
the actual framework implementation. Kieker [68] on the other hand follows a similar
approach as GRuM, with a common and extensible monitoring record model for data
collection, and a dedicated record consumer model that facilitates runtime checks. As
part of the core capabilities in GRuM, we leverage the Viatra query engine that again
use the generated Ecore code to provide sophisticated tool support for generating model
queries/constraints on the monitored properties. More complex constraints can be added
via external services connected through the middleware layer.

Monitoring Support: While the main purpose of GRuM is the generation of the
“base” monitoring framework, the automatically generated Monitoring Middleware en-
ables easy integration of additional services and tools. We have demonstrated this by
connecting a CEP engine, which is an approach also used in the framework proposed
by Inzinger et al. [69]. The model-to-code transformation, using EMF, GRuM gener-
ates ready-to-use interfaces and classes and a template Java Maven project, that provides
SuM specific interfaces and wrapper classes that could significantly ease the task of con-
necting external applications. While introducing model-based technologies adds to the
complexity of GRuM, our goal is to “hide” this complexity from the user to the fullest
extent possible. Similar to the other monitoring frameworks, we employ a domain-
specific language for defining monitoring configurations, ready-to-use code generators,
and templates for connecting to external services.

Co-Evolution Support: The aspect of monitoring co-evolution is only lightly ad-
dressed by a few other approaches. SPASS-meter briefly addresses the co-evolution
aspect, acknowledging that depending on how the scope configurations are defined they
may become outdated as the system evolves. When using their external configuration
option, specified as XML files, synchronization is required, whereas their inline con-
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figurations are directly added to the source code, hence avoiding the synchronization
issue. However, the latter requires direct modifications to the source code of the SuM.
The results of RQ3, indicate clear benefits when relying on model-based concepts, not
only with regards to easy re-generation of the entire framework, but also in terms of the
provided support structure. For example, removal or updates of properties from the sys-
tem/model are immediately reflected in the updated code that is generated (or removed),
and error messages and warnings are triggered in the tool-supported editors (e.g., for
Viatra model queries that reference a property that no longer exists).

Framework
Phase GRuM [66] [67] [68] [69] [13]
Monitoring Setup [ o [ ] d @ d
Monitoring Execution [ ) O > > O O
Monitoring Support " ) O > O O
Monitoring Co-Evolution [ ) O @) O O O

Table 4: Comparision of GRuM with regards to support and ease of use of key monitoring tasks [28].
@= fully supported/available; @= partially supported ; O= not supported/mentioned; (*=supported via the
GRuM Monitoring Middleware).

7. Threats to Validity

As with any experiment, our evaluation is subject to a number of threats to validity.

Internal validity is related to the rigor of the experimental design. Our evaluation
is based on the creation of monitoring models, and the generation of the monitoring
platform for two different application scenarios. While these were created by the au-
thors of this paper, the selected properties and resulting constraints were selected from
real-world use case scenarios and applications. With regards to the selected systems,
for Dronology, we possess in-depth knowledge about its internal design, structure, and
functionality which also informed the creation of the Domain Model Fragment and se-
lection of constraints. To avoid bias, we performed the same steps on a second system,
the TurtleBot robots where we first had to get familiar with the technology and system
characteristics. Additionally, having built a custom, system-specific monitoring solution
for one of the systems allowed us to discuss and assess the value of a generic monitor-
ing platform that can easily be applied to different systems and updated when the SuM
evolves. So far, as part of the evaluation, GRuM was used by several authors to create
models and generate the Monitoring Platform demonstrating the applicability and evo-
lution efforts. In order to properly assess the usability, and to show broader applicability,
we need to involve additional users, e.g., by conducting a dedicated usability study of

the framework and provided tools.
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External validity refers to the generalizability of results and findings. Our study
focused on only two different systems, and therefore, we cannot claim full generaliz-
ability of our approach to diverse types of CPS. However, the Dronology system and the
TurtleBot systems exhibit significant differences in terms of the technology used, their
architectural styles, and properties that are monitored, demonstrating the flexibility of
GRuM across different types of systems. Further, to minimize the threat of invalid data
measurements due to external factors such as OS tasks or interference with other appli-
cations, we performed multiple runs of each scenario and calculated the medial values;
however, our performance measurements focused on the runtime model and the con-
straint evaluation and did not include network delays or delays in the underlying SuM
which likely account for certain latencies such as retrieving the home coordinates of a
UAV in Dronology. Most notably, while the model-set-latency and constraint evalua-
tion times are acceptable for the Dronology and TurtleBot systems, we can not currently
guarantee strict real-time deadlines for evaluating constraints. Nevertheless, the modular
nature of GRuM allows key platform components to be replaced, for example, replacing
MQTT with a DDS [70] middleware implementation providing real-time capabilities.

Construct validity refers to the extent to which a study measures what it claims to
be measuring. RQ1 investigated the ability of GRuM to describe relevant properties
and to generate a customized monitoring platform. We applied GRuM to two different
systems with real-world applications and physical hardware using properties derived
from existing documentation. We were able to represent all identified properties and
constraints with our proposed approach and generated a fully functioning, customized
monitoring platform, and showed that in both cases, GRuM’s generated platform was
able to handle realistic amounts of data and different types of properties. While we have
been using a simulator for the Dronology use case, Ardupilot is a high-fidelity simulator
providing a realistic execution environment, and our previous experience has confirmed
that this closely resembles real-world scenarios.

8. Discussion

Results from our evaluation have shown that our model-based GRuM framework
can be successfully used to (1) describe relevant properties and (2) collect and check
runtime data via the automatically generated monitoring platform. The platform was
easy to customize through the use of the middleware — which allowed us to seamlessly
add the additional temporal constraint engine. Clear separation of concerns makes the
platform highly flexible and maintainable.

The distinction between the platform’s core capabilities and add-on services allows
the core to be regenerated in response to changes in the SuM, while the separation be-
tween the generation of the platform and the probe set for collecting runtime data enables
easy adaptation of GRuM for new technologies and types of systems being monitored.
In our prototype implementation, we currently use direct instrumentation for the gener-
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ated Probes (i.e., providing probes that expose an API for submitting new data). This,
on the one hand, allows for easy use (similar to a logging API), but on the other hand,
requires some manual effort to connect the SuM to our framework, and requires source
code access. If this is not possible and/or not desired, this can be easily changed by sim-
ply replacing the respective Probe Generator with a different one. For example, a new
Probe Generator for Java-based systems could use byte-code instrumentation [71], or
aspect orientation [33] to collect runtime data. The main advantage however is that the
platform can be easily tailored to a new system with no programming effort if a probe
Set Generator can be reused from the library or with considerably low effort as shown in
RQ1. In comparison, as part of our Dronology system, we have previously implemented
a custom monitoring solution specifically tailored to the UAV use case. With a similar
technology stack (MQTT, and Drools as a Constraint Rule engine), this required approx.
a person-month of effort and roughly 1500 lines of code for a platform that is highly
specific and interwoven with the Dronology system. In contrast, GRuM required some
initial modeling effort, but only minimal implementation effort to call the probe API to
connect the system to the platform.

With regards to monitoring co-evolution support, we were able to demonstrate that
GRuM provides a high degree of automation and reduces the manual effort of modifying
code in the monitoring platform, when changes to the SuM occur. Certain manual tasks
are still required (e.g., adding/modifying properties in the models), but these largely
take place at the model level, where tools and support for the users are provided. One
aspect we are currently investigating as part of our ongoing work is providing additional
support for checking the consistency between the WM and the actual source code of the
system, by e.g., annotating Java Classes and fields in the system as monitorable, and
subsequently leveraging AST analysis to synchronize, or even automatically generate
the WM. Additionally, we are planning on extending our evaluation to include a full
user study, providing participants with a system and the requirement to monitor and
check certain properties, with the goal of assessing the usability of the platform and
modeling approach.

Eclipse and the EMF platform provide a convenient way of defining the Domain
Model Fragment and the WM. For the WM, a textual representation via a DSL and the
provided EMF editor (including code completion and syntax highlighting) enables easy
updates and adaptation of the WM and regeneration of the monitoring platform. The
evaluation showed that both Domain Model Fragment and WM can be easily created and
updated with minimal effort. However, to further ease the task of preparing the generated
platform for a specific SuM, we plan to provide additional tool support. While creating
Viatra model queries is relatively easy and straightforward, defining temporal constraints
as Esper queries is more challenging and time-consuming. We, therefore, plan to further
investigate the suitability of other constraint and rule engines and to provide a dedicated
DSL with constraint templates that get automatically translated to either Viatra queries
or Esper constraints as appropriate.
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9. Related Work

Related work is primarily in runtime monitoring for CPS, model-based runtime mon-
itoring, and models @runtime.

Runtime Monitoring for CPS: A recent survey by Rabiser et al. [28] highlights the
runtime monitoring area as an active field of research, presenting a reference architec-
ture for monitoring platforms. We based the architecture of GRuM on the architecture
described in this work. However, the approach of Rabiser et al. is not model-based
and does not provide capabilities to generate monitoring support for different types of
systems.

Several approaches have been proposed with regards to monitoring CPS and large-
scale systems. For example, Doherty et al. [72] presented a task planning and execution
monitoring framework using temporal action logic to specify the behavior of the system.
Vierhauser et al. [73] presented a case study on monitoring UAVs using their ReMinDs
framework. In the domain of self-adaptive systems, Machin et al. [74] proposed an ap-
proach for synthesizing monitored autonomous systems. Kieker [68] provided capabil-
ities for inserting probes for intercepting the system execution and monitoring various
runtime aspects of the system. The framework also supports adaptation of monitor-
ing rules for activating and deactivating probes relevant to the current monitoring task.
HiFi [75] used programmable agents and filters to manually configure the infrastructure
at runtime and adapt different agents. However, while some of these approaches provide
support for instrumentation, for example via byte-code instrumentation or predefined
monitors [76, 9], or customizing the monitoring platform, none of them provide ex-
tensive support for automatically generating code or provide an independent-language,
applicable across different types of systems and thus lack of a more abstract solution.

Model-based Monitoring & Models @ Runtime: In MDE and industrial CPS domain,
the term “Digital Twin” has become synonymous with a model of the system instanti-
ated at runtime [20, 77]. Specifically, in Models @ Runtime research [78, 79], the models
are instantiated at runtime, and then used to check properties and support self-adaption.
However, very few approaches employ model-based concepts to facilitate the generation
of a complete monitoring platform. Hili et al. [80] proposed a model-based architecture
for interactive runtime monitoring using model-based techniques. However, while they
supported model-to-model transformation as well as automated code generation, their
focus was on monitoring real-time and embedded systems. In the domain of robotic
applications, MROS by Corbato ef al. [81] supported runtime adaptation of ROS-based
systems using a model-based framework. While their approach provides potentially in-
teresting extensions to our ROS PSG, with GRuM we aim to provide a more diverse
framework that can generate and provide monitoring support for different types of sys-
tems. Brand and Giese [15, 82] have extensively worked in the area of model-based
adaptive monitoring. They proposed a generic adaptive monitoring approach, based on
analyzing queries on a runtime model and adjusting periodic or event-driven monitor-

ing tasks. While their work also revolves around runtime models and MDE, their focus
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is on adaptive monitoring and query support on runtime models, without support for
automatically generating the monitoring platform and probes to perform these queries.

Sakizloglou et al. [83] used runtime models supported by Viatra to check constraints
as part of adaptation rules. Bur et al. [84] provide support for querying CPS runtime
properties using distributed graph queries. While we plan to explore distributed moni-
toring in future work, GRuM focuses on the specification, creation, and maintenance of
a flexible, and extensible monitoring platform.

Formal approaches for Monitoring & Verification: An entire research area is dedi-
cated to formal approaches and runtime verification with several frameworks that specify
monitors using formal models, such as temporal logic or Event Calculus. For example,
MOP [76] uses a specification formalism either part of a Java class file or specified
independently. It consists of a header containing meta-information, a body specifying
the desired property to be checked, and a handler performing certain actions in case
the property is violated. Chan et al. [85] developed a framework for runtime verifica-
tion of timed and probabilistic non-functional properties in component-based systems.
At runtime, the specified assertions can be verified and the framework provides addi-
tional capabilities for linking domain-specific models with the system interception code.
Drusinsky [86] have presented Temporal Rover supporting Linear Time Temporal Logic
(LTL) including real-time, as well as time series constraints. This facilitates monitor-
ing properties such as stability and calculating sum, average, and temporal minima and
maxima. While these approaches provide an important foundation for runtime verifica-
tion and formal constraint checking, with GRuM we further focus on providing support
for the entire lifecycle, reducing the burden of creating monitors, and allowing for easy
adaptation of constraints, monitors, and instrumentation when the underlying system
evolves.

10. Conclusion

In this paper, we present GRuM, a novel framework for automatically generating
runtime monitors. GRuM leverages model-driven technologies for defining a Domain
Model Fragment and WM, describing relevant properties and data. Depending on the
SuM’s technology and architectural style, different types of probes collecting runtime
data can be generated. Additionally, GRuM automatically generates a customized mon-
itoring platform consisting of a runtime model, a model query engine for defining con-
straint checks, and a dedicated middleware for connecting external services and appli-
cations. We evaluated our approach on two different systems, a UAV management and
control system, and a set of TurtleBot 3 robots. The results of our experiments have
shown that our implementation of a model-driven framework for automatically generat-
ing a runtime monitoring platform is well suited for describing the monitoring needs of
non-real-time systems for collecting and checking large amounts of runtime data.

As part of our ongoing future work, we plan to explore ways to support dynamic
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reconfiguration of the monitoring platform and to provide additional evolution support
by synchronizing the models with the SuM. Furthermore, we are exploring adding self-
adaptation capabilities [87] to our GRuM framework. Probes then, instead of just send-
ing data to the runtime model, provide an additional back channel to receive and execute
adaptation instructions, for example, triggered by the constraint engine when a specific
constraint check fails.
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