Engineering Challenges for AI-Supported Computer
Vision in Small Uncrewed Aerial Systems

Muhammed Tawfiq Chowdhury and Jane Cleland-Huang
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, Indiana 46556, USA
Email Addresses: mchowdhu@nd.edu, Janeclelandhuang @nd.edu

Abstract—Computer Vision (CV) is used in a broad range
of Cyber-Physical Systems such as surgical and factory floor
robots and autonomous vehicles including small Unmanned
Aerial Systems (sUAS). It enables machines to perceive the world
by detecting and classifying objects of interest, reconstructing
3D scenes, estimating motion, and maneuvering around objects.
CV algorithms are developed using diverse machine learning
and deep learning frameworks, which are often deployed on
limited resource edge devices. As sUAS rely upon an accurate
and timely perception of their environment to perform critical
tasks, problems related to CV can create hazardous conditions
leading to crashes or mission failure. In this paper, we perform
a systematic literature review (SLR) of CV-related challenges
associated with CV, hardware, and software engineering. We
then group the reported challenges into five categories and
fourteen sub-challenges and present existing solutions. As current
literature focuses primarily on CV and hardware challenges,
we close by discussing implications for Software Engineering,
drawing examples from a CV-enhanced multi-sUAS system.

Index Terms—Small Uncrewed Aerial Systems, Computer
Vision, Artificial Intelligence

I. INTRODUCTION

Computer Vision (CV) supports many different tasks includ-
ing object detection, autonomous navigation, and surveillance
by small Uncrewed Aerial Systems (sUAS). All of these are
critical for the success of diverse missions such as emergency
response [1], fire detection [2], parcel delivery [3], and search
and rescue [4] missions. However, there are many challenges
associated with achieving effective CV on sUAS, many of
them are introduced by the significant computational needs
of deploying deep-learning algorithms on a highly-resource
constrained edge environment, and exacerbated by real-world
environment conditions related to weather, terrain, lighting,
aerial perspectives, and the constant motion and vibration of
the SUAS. These challenges have traditionally been under-
explored in the literature, especially in core CV publications,
which tend to focus on developing and validating novel
algorithmic solutions using static datasets of images, rather
than solving the challenges of deploying CV on cyber-physical
systems in real-time applications. Without guidelines for how
to engineer CV-based, software-intensive SUAS systems, new-
comers to the field will inevitably waste time and resources
as they learn these lessons the hard way.

To motivate the need for such guidelines, we describe our
own missteps as software engineers while deploying CV on

SsUAS over the past couple of years. Our task was to equip
our sSUAS to detect and then track people during a search-and-
detect mission. We started by experimenting with CV pipelines
that were capable of processing a video stream, detecting a
person (or people), and raising an alert. We ran an extensive
series of experiments on several different Nvidia Jetson mod-
els, compared the accuracy of various CV person-detection
algorithms and pre-trained models, and selected YOLO V3 and
YOLO V4 object detection algorithms. We integrated the CV
pipeline into our onboard autopilot, ran extensive simulations
until the pipeline worked efficiently, and finally deployed it
onto our sUAS environment using an Nvidia Jetson Xavier
NX carrier board and an IMX477 camera. However, fitting
all of our software and CV modules onto the carrier-board
version of Jetson NX was extremely challenging. The Jetson
was initially underpowered and quickly became overheated,
requiring hardware fixes that included a stepdown transformer
and additional airflow through a makeshift cooling system. The
gimbal movements of our sSUAS were initially misaligned with
those in the Gazebo simulator, and the physical placement of
the antenna caused interference in the image stream. In addi-
tion, during flight, the CV algorithms and autopilot competed
for processing cycles, initially causing jerky flight maneuvers.
Finally, detection accuracy significantly underperformed in
comparison to the results obtained in the pristine, experimenta-
tion environment. Each of these problems translated into days,
and even weeks, of time-consuming and challenging fixes by
our hardware and software engineering teams.

This paper takes a systematic look at these challenges, many
of which are directly or indirectly related to the deployment
of Al on a resource-constrained edge device. We report on a
preliminary systematic literature review (SLR) of CV usage,
challenges, and solutions when deployed on sUAS. We label
this a preliminary SLR because of the breadth of issues that
are covered and the need to take a deeper dive into many
of the individual challenges in future work. We address the
following research questions:

RQ1: What technical challenges, associated with the de-
ployment of CV on sUAS platforms, are presented in
existing literature?

RQ2: What common solutions for addressing these chal-
lenges have been proposed?

RQ3: What are the implications of these challenges on the
Software Engineering process?

The aim of this study is, therefore, to explore the inter-
section of Software Engineering and the deep-learning (AI)
aspects of deploying CV on limited resource, edge-based
sUAS platforms. However, our SLR analysis returned far more
information about the CV and hardware-related problems and
had little to say about actual Software Engineering challenges
at the intersection of CV and sUAS systems design. One
of our findings is, therefore, that a clear gap exists in the
literature, highlighting the need for more focused work in
this emergent area. Despite this lack of prior work, this paper
lays important foundations for future exploration through the
following contributions:

« It identifies challenges and solutions associated with CV,
hardware, and software aspects of deploying CV in sUAS
applications, providing fundamental insights for software
engineers building systems in this space. The aim is to
equip Software Engineers with the knowledge that may
help them avoid the kinds of missteps that we experienced
due to our initial lack of domain knowledge.

o It offers a simple process model highlighting one of our
overarching findings that CV, hardware, and software
should be developed and tested in unique workflows,
and then integrated incrementally through clearly defined,
frequent integration tests that progress rapidly from sim-
ulation to the real-world.

« Given the lack of Software Engineering research in this
area, it discusses implications for Software Engineering
of CV-based sUAS systems with pointers to future work.

The remainder of this paper is laid out as follows. Sec-
tion II discusses the background information and related work.
Section III describes the SLR process including search terms,
papers retrieved and analyzed, and the process for identifying
challenges and solutions. Sections IV to VIII describe the
five challenge areas identified through our preliminary SLR,
as well as sub-challenges and potential solutions, and then
Section IX discusses the implications of these findings upon
Software Engineering practices. Section X describes a case
study based on our Drone Response system. Section XI
discusses the two primary threats to validity and Section XII
presents conclusions and future work.

II. BACKGROUND AND RELATED WORK

An sUAS is a small uncrewed aircraft, and includes all of
the onboard and offboard hardware and software components
needed for its communication and control. An sUAS can
be non-autonomous, semi-autonomous, or fully autonomous.
Autonomous sUAS typically carry sensors, such as cameras,
in order to perceive the world around them using onboard CV.
Their cameras are often mounted on gimbals to control their
attitude, comprised of roll, pitch, and yaw.

CV uses machine learning (ML) and deep learning (DL)
algorithms to identify different classes of objects in images
and/or image streams, with models typically trained, tested and

validated using large datasets of images. Once trained, they
can be used by software and cyber-physical systems (CPS)
to perform activities such as object recognition and depth
perception. CV is typically implemented as a pipeline that
broadly involves (1) image acquisition, (2) data processing to
remove noise, perform frame scaling, and make color correc-
tions, (3) identification of areas of interest using techniques
such as segmentation, (4) analysis and recognition, and finally
(5) decision making.

A. CV Application Areas for sUAS

CV is used onboard an sUAS to perform many different
tasks. We briefly summarize them here in order to provide
context for discussing CV-related challenges and solutions
throughout the remainder of the paper. One of the most
common applications is object detection to empower sUAS
to perceive their surroundings by identifying objects in a live
video stream. [5]. The ability to detect specific types of objects
allows sUAS to track moving objects, such as people, and to
perform surveillance, obstacle avoidance, path planning based
on collision-free trajectories, and other tasks that depend upon
the detection of one or more specific classes of objects [6],
[7]. CV is also used for autonomous navigation [8] such
as autonomous takeoff, landing, and navigating even when
obstacles are present [9]. For example, Pulido et al. [10]
used image segmentation to support object recognition during
navigation, while others used different CV-based approaches
for safe landings [11], [12], [13], [14], [15]. In a related area,
CV can also be used to help an sUAS track a moving object,
such as a person. The sUAS continually monitors the person
and then actively generates a trajectory to follow the person
whilst avoiding crashing into them [16], [17], [18]. Other
common applications of sUAS-based CV are surveillance,
monitoring, and inspections, where the SUAS uses aerial image
processing [19] to detect events, intruders, and anomalies [20],
[21] or to perform tasks such as structural monitoring [22].

B. Common CNN Algorithms

As our focus is on the challenges of implementing CV on
sUAS-based edge computing environments, we also provide a
brief summary of common CV algorithms, many of which
are based on artificial neural networks which is a branch
of artificial intelligence (AI). Convolutional neural networks
(CNN) [23] are frequently used by CV algorithms including
the following types:

« R-CNN [24] is a two-stage object detector that locates
objects in an image using a selective search with feature
extraction at a high computational cost.

« Faster R-CNN [25] improved processing speed and accu-
racy of R-CNN. It takes the entire image as input instead
of using a CNN for different regions of the image.

e Mask R-CNN [26] is an extended version of Faster R-
CNN with a branch for predicting object mask while
simultaneously adding recognizing bounding boxes.

e YOLO [27] is a one-stage object detector that signifi-
cantly enhances processing speed. Similar to Faster R-

Receiving frames
through camera

Preprocessing of
frames/images

|

Identifying areas of
interest

Processing of
selected areas of
frames/images

., Decision Making

Starting the camera
module

Noise reduction,
frame scaling, color
correction, pixel
thresholding

Object detection,
background
subtraction, feature
extraction, image
segmentation

Tracking, feature
maching

Raising events or
flags and sending
information to the
SUAS navigation
software

Fig. 1: The general Computer Vision pipeline processes images via a series of steps

CNN, YOLO uses a single feature map to detect objects.
However, the image is divided into a grid for performing
object searches. There are many versions of YOLO
[28], and it has been extensively used in many different
applications [29].

Many additional neural networks have been proposed to ad-
dress issues related to scale variability in aerial images. Yang et
al. [30] proposed a three-step pipeline composed of specialized
sub-networks. Zhao et al. [31] introduced Mixed YOLOvV3-
LITE, a lightweight architecture that is suitable for real-time
performance. Based on YOLO-LITE, [32] included residual
blocks and parallel high-to-low resolution sub-networks for
achieving a balance between speed and performance in devices
such as non-GPU-based computers.

C. Related Work on CV for sUAS

Researchers have written survey papers on CV algorithms
and applications for UAVs and sUAS, including discussions
about convolutional neural networks for UAS. Al-Kaff et al.
[33], Luo et al. [34], Kanellakis et al. [35], and Liu et al. [36]
have all conducted surveys of computer vision applications,
including their technical challenges and solutions. Belmonte
et al. [37] conducted a survey specifically on CV with UAVs,
and Chen et al. [38], Liu et al. [39], and Morton et al. [40]
discussed the use of various CNN models and algorithms for
CV on sUAS. However, none of these papers considered CV
from a software engineering perspective.

III. SLR METHODOLOGY AND OVERVIEW

We performed a preliminary SLR, following the process
summarized in Figure 2, in order to address our previously
stated research questions.

A. Search Query and Criteria

We initiated the SLR using the following query
terms, and executed our search in IEEE, ACM, and
Springer digital libraries as well as on Google Scholar:

“UAV” OR “unmanned aerial vehicles” OR “drone”
OR “unmanned aerial system” OR “UAS” OR
“Cyber-physical systems”

AND
“Autonomy” OR “Navigation”
AND
“Computer Vision” OR “Artificial intelligence”

Al-supported computer vision enables the autonomous nav-
igation of sUAS so in our search queries, we included the
terms “autonomy” and “navigation” to focus on associated
challenges. We used search queries such as “Computer Vision
OR Artificial intelligence” to include papers that discussed
computer vision or included an Al component, such as deep
learning, which was used in computer vision; however, as
discussed in exclusion criteria, we ultimately filtered out all pa-
pers unrelated to CV. Our initial search returned approximately
1,500 papers. The first author skimmed the titles of these
papers and selected 150 papers for which, the titles matched
the inclusion and exclusion criteria. The first author then read
the abstract of all 150 papers and applied the following filters:

Inclusion Criteria:

o Papers must discuss computer vision for autonomous
unmanned aerial systems.

o Papers must describe the Al and/or ML components of
the systems.

Exclusion Criteria:

« Papers focused only on recording and/or enhancing aerial
images and videos

o Papers focused on designing and/or the technology of
a simulator or mechanics of a hardware component to
support Computer Vision

« Papers focused on autonomous ground vehicles

« Papers focused on manned aerial systems

« Papers not written in English

This step resulted in 90 papers. The first author then
skimmed all of these papers, again applying inclusion and
exclusion criteria and selecting the most relevant papers. This
produced the final selection of 15 papers. Furthermore, we
reviewed each of these papers to identify specific discussions
about the CV applications for SUAS and identified any use of
ML and DL techniques and algorithms.

We followed an inductive analysis approach whereby we
reviewed each paper to identify challenges and solutions and

Identification
of the Need
for the SLR

. A
Selection of
Article
Libraries

pr— A
Search
Keywords
Finalization

Y

IEEE, ACM,
Springer, Google
Scholar

)

Keyword
Search

A

)
Retrieved |
Papers
(1500)
—~ N

—
p——

Screening

Selected |

l

Identification

of the
Purposes of
the CV/ML
Components

!

Formation of| e || Papers Identification
Search i il (150) of the Types of
Queries - Challenges for

T~ cv
- v N
Screening Selected l
@ || FEEE Finalization of
Absfracl J (99L - the Research
— o Questions
v — - l
Final
Full Text Read ~|| Papers —

N

(15) Classifying the‘w
— Challenges
- {| and Solutions

Fig. 2: The Systematic Literature Review process includes
paper counts at each step.

tagged each of these with a concept tag. For example, we cre-
ated ‘challenge’ tags such as poor video quality and insufficient
training data, and ‘solution’ tags that included customized
models and 3D dataset. We then performed a conceptual card-
sorting exercise to group concepts into challenges, and assign
solutions to each challenge.

In some cases, where problems were well defined but where
the papers did not provide solutions, or where we were aware
of additional solutions, we performed a secondary literature
search using search terms associated with either the challenge
or the known solution to find additional materials. The second
author assisted the first author in this process. Papers retrieved
from the initial SLR are all shown in Table I and referenced
in the text by means of their ID (e.g., P1, P2), whereas all
other materials are referenced directly in the text. This entire
process resulted in the identification of 14 challenges and 22
solutions. While neither challenges nor solutions are intended
to be complete, they provide useful context for informing the
software engineering process for CV-imbued sUAS systems.

B. Analysis of SLR Results

Based on our SLR, we identified five major challenges of
CV for sUAS. The challenges are:

o TD: Insufficient, Inappropriate Training Data

e QI: Low Quality of Imagery

« EC: Environmental Context

o« CM: Computer Vision in Motion

« RC: Resource Constraints of Running Al on a UAV

In the following sections, we describe each of these chal-
lenges in more detail, decompose them into sub-challenges,
identify solutions, and map each of these back to the papers in
which they were discussed. The challenges and sub-challenges

Fig. 3: Three perspectives: A view from the ground, a low-
altitude aerial view, and a distant aerial view. The CV model
needs to be trained to recognize these diverse perspectives.

are all derived from our SLR; however, in some cases, we have
proposed solutions from alternate sources. Our study shows
that deploying CV on sUAS introduces challenges that go far
beyond those of applying CV to static datasets of videos, or
of applying CV on ground-based, stationary, platforms with
fewer resource constraints.

IV. CHALLENGE #1 : INSUFFICIENT, INAPPROPRIATE
TRAINING DATA

Several papers discussed problems related to training data
[2], [41], [15], [18], [9], [12], [42]. As machine learning and
deep learning models need large amounts of appropriately rep-
resentative training, testing, and validation data, the problem
of insufficient or inappropriate training data is quite common.
It results in poorly trained models which return unsatisfactory
object detection rates and false positive detection. This is true
for any CV algorithm but is exacerbated in the sUAS domain
for reasons discussed below.

A. TDI: Aerial Perspectives

sUAS view the world from a different perspective than
ground-based cyber-physical systems. As a result, existing
CV models, trained with ground-based images tend to under-
perform when used on aerial images. To further exacerbate
the problem, labeled datasets of images in the public domain
(e.g. ImageNet, MS COCO, CIFAR-10 and CIFAR-100) are
also badly misaligned with the SUAS’ aerial perspective and
potential distances. Therefore, as illustrated in Figure 3, SUAS-
based CV faces two challenges. The sUAS sees objects from
above rather than from the side, and the sUAS is often quite
far away from the object it is tasked with identifying.

As a result, CV models trained for ground-based object
detection do not work well when deployed on aerial platforms.
For example, (P2) discussed the challenge of using sUAS-
based CV to detect people and reported that the accuracy of
human detection decreases when the sUAS is more than 10
meters above ground level (AGL). This is problematic as SUAS
tend to fly at much higher altitudes.

Solutions: Two papers (P2, P9) identified the need for new
aerial datasets. (P9) demonstrated the importance of having
a dataset that included images taken from diverse altitudes,
claiming that the view of a person from 20m AGL is very
different from one taken from 100m AGL. There is, therefore,
a general need for more publicly available, labeled aerial
datasets taken from diverse pitches, distances, and altitudes
and validated in diverse settings.

TABLE I: Papers selected from the preliminary SLR with mappings to specific CV Challenges

| Paper Title Ref | Challenges
P1 | Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques [10] | EC2
P2 | UAV Landing Using Computer Vision Techniques for Human Detection [11] | TDI, QI1, EC2, CM1, RC3
P3 | Autonomous navigation, landing and recharge of a quadrotor using artificial vision [8] | EC2
P4 | Computer Vision based guidance in UAVs: Software Engineering challenges [43] | QI2, EC2, RCI1, RC2
PS5 | Vision-based UAVs Aerial Image Localization: A Survey [41] | TD4, EC2
P6 | Computer Vision for Fire Detection on UAVs—From Software to Hardware [2] | TD2
P7 | Swaying displacement measure. for structural monitoring using comp. vision and an unmanned aerial vehicle [22] | EC1, CM2
P8 | Vision-based UAV Positioning Method Assisted by Relative Attitude Classification [42] | QI2
P9 | Unsupervised Human Detection with an Embedded Vision Sys. on a Fully Auto. UAV for Search & Rescue Oper. | [18] | TD3
P10 | A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance 9] | EC2
P11 | Deep-Learning-Based Aerial Image Classification for Emergency Response App. using Unmanned Aerial Vehicles | [19] | RC3
P12 | SafeUAV: Learning to estimate depth and safe landing areas for UAVs from synthetic data [15] | TDS
P13 | A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs) [12] | TD2, TD3
P14 | Timely autonomous identification of UAV safe landing zones [13] | QI2, RC1
P15 | Vision-based UAV Safe Landing exploiting Lightweight Deep Neural Networks [14] | RC1

B. TD2: Task Specific Models

As previously discussed, sUAS perform a wide variety of
tasks. Many of these tasks, such as bridge inspections, cable
inspections, and fire detection are highly dependent on CV and
require task-specific models. For example, (P6) focused on the
use of SUAS for wild-fire detection and demarcation, which
required a very large number of labeled aerial views showing
various aspects of wild-fires including major fires, burned-
out areas, brush fires, creeping fires, and general images of
vegetation and terrain. Training datasets, therefore, need to
broadly cover all aspects of the tasks that CV needs to support.
This analysis was supported by (P13), which discussed the
challenges of classifying safe landing zones for SUAS when
the training and testing datasets of landing zones were not
aligned.

Solutions: These findings highlight the need for large, diverse,
task-specific training and validation data. The datasets can be
collected from the real-world and/or as described by (P6), from
existing images collected from the web and labeled appro-
priately. (P13) proposed a different solution based on using
CV models trained to detect and avoid individual obstacles
rather than a more holistic scene-based training approach that
is possible when larger datasets are available.

C. TD3: Occluded Views:

Many objects viewed from above will be occluded in various
ways. For example, a human may only be partially visible
due to occlusion by other objects (e.g., trees, buildings, other
people) or by water if they are partially submerged. This means
that the CV needs the ability to recognize various parts of
the object (e.g., a human arm, half a body) from multiple
viewpoints (i.e., frontal, sideways, backward). Two papers (P9,
P13) discussed this challenge and pointed out that a generic
person detection model may not work well in this case (P9).

Solutions: There are two solutions to this problem. First, as
described by (P9, P13), a model can be trained with occluded
images. For example, (P9) developed a new dataset from
images of swimmers found on the web, while other datasets
collected entirely new sets of occluded images from an sUAS

[44], and several others proposed augmenting images to create
occlusions (P5).

D. TD4: Model overfitting

Model overfitting occurs when ML models perform well on
training data but underperform on validation and testing data.
This is discussed in (P5) with respect to overfitting for the
extraction of semantic features from aerial images using deep
learning [45]. Overfitting generally occurs when insufficient
training data is available; however, this is particularly prob-
lematic in sUAS-based CV, where inadequacies of existing
aerial datasets and the cost and effort required to create new
ones mean that developers often train CV models (at least
initially) using less than ideal datasets.

Solutions: Two complementary solutions were proposed. The
first, as in the case of TDI, involves collecting and labeling
new aerial datasets. The second is an algorithmic solution
that is designed to compensate for non-ideal data during the
training process. In (P5), the authors proposed two specific
techniques of data augmentation and fine-tuning their CNN
architecture to avoid model overfitting. Data augmentation
was used to create greater diversity and enlarge the existing
training data by vertical, horizontal, and diagonal object flip-
ping, scaling, image shifting, rotation, color jittering, etc. For
fine-tuning, they started with a large pre-trained model and
performed additional training using images with new classes
of objects, in order to improve the performance of object
detection on the new classes.

E. TD5: Lack of High Resolution 3D Datasets

sUAS operate in 3D space; however, much of the available
training data is either 2D, low-resolution 3D, and/or unla-
belled. This means that datasets for training SUAS to conduct
operations within 3D space, such as landing through trees, are
inadequate (P12). Furthermore, learning dynamically in the
real world is costly and likely to cause accidents.

Solutions: (P12) addressed this challenge by using the Google
Earth application and its 3D reconstructions derived from
the real-world to build a virtual dataset [46]. They collected
a random set of images of the ground that have uniform

elevations between 30 and 90 meters with a tilt angle of 45
degrees. They proposed SafeUAV-Net which is a deep CNN
designed for depth estimation using RGB input and used it to
train their CV model. They used image segmentation and made
a prediction for each pixel of the input image for different
categories mentioned in the paper such as horizontal, vertical,
and other. For training models, they used Pytorch deep-
learning framework [47]. The authors explored two variants
of the model running at 35 FPS and 130 FPS respectively
and evaluated both on embedded platforms. They both showed
good performance.

V. CHALLENGE #2 : LOW QUALITY AND NOISY IMAGES

One of the fundamental assumptions of CV algorithms is
that the quality of video streams and/or images is sufficient to
support an accurate CV system. As a result, problems in the
video stream quality can lead to degraded performance. In this
challenge, we explore two specific problems related to image
quality.

A. QII: Low Quality Imagery

Inferior sensors lead to low-quality imagery. (P2) reported
that sensors that work satisfactorily in ideal lighting conditions
are often unable to perform well when operated in outdoor
environments where significant variations in lighting condi-
tions can affect image quality. Problems include blurring, over-
exposure, and under-exposure. However, due to trade-offs with
size, cost, and weight, sUAS often have low-quality sensors
and, therefore, tend to underperform (P1).

Solutions: Selecting appropriate sensors is critical for im-
proving the quality of input for real-time applications. (P2)
discussed the importance of a good camera/sensor in object
detection quality and proposed several types of cameras and
observed that infrared cameras work well in all lighting
conditions. They experimented with three different cameras
(i.e., iPhone 6S Plus, DJI Phantom 4, Raspberry Pi NoIR
Camera V2) and observed that each of them had a sweet spot
with respect to distance. This of course can be computed based
on the camera’s specifications. Clear trade-offs exist between
cost, weight, size, power consumption, and resolution. For
embedded platforms, CSI cameras are preferred over USB
cameras as they transfer data faster.

B. QI2: Obscured Images:

Noise in images caused by environmental conditions, such
as fog, rain, bright sunlight, atmospheric disturbance, and low-
altitude wind sheer (P4, P14), as well as electrical interfer-
ence from the equipment on the sUAS (P8), and vibration
from sUAS motion can all negatively impact image quality,
resulting in poor CV outcomes. Figure 4 depicts the electrical
interference and sun glare problem in images captured by the
camera in our own sUAS.

Solutions: Issues such as electrical interference and vibra-
tion can be partially resolved through careful placement of
components and wiring on the sUAS and the use of vibration
dampers. In addition, the CV pipeline can be augmented with

Fig. 4: Electrical interference and sun glare

additional pre-processing steps aimed at removing specific
types of noise such as fog or glare (P4). This can be performed
in real-time using libraries such as OpenCV [48] to improve
the performance of vision algorithms.

VI. CHALLENGE #3: ENVIRONMENTAL CONTEXT

CV solutions are tasked with detecting and identifying
objects within the context of real-world scenes. They ac-
complish this by extracting global and local features. Global
features describe the overall image and include attributes such
as contour representations, textures, and shape descriptors,
whereas local features represent key-points within an image
such as an edge or point.

A. ECI: Image Feature Sensitivity

(P7) explored issues related to both global and local fea-
tures. Imagery collected from an sUAS often contains many
different overlapping objects and rich background contexts,
which makes feature analysis and extraction quite challenging
and can ultimately lead to reduced CV accuracy in real-
world sUAS deployments. The problem impacts both local
and global features; however, local features tend to have good
viewpoint invariance, meaning that objects can be recognized
regardless of their viewing angle, while global features have
limitations in densely populated areas with large texture re-
peatability, and are also sensitive to viewpoint changes.

Solutions: Many researchers have proposed algorithmic solu-
tions for solving this general problem, which exists in many
domains and contexts. However, we focus on one example.
(P5) explored the issue for sUAS live video stream and
proposed dividing images into groups of pixels (i.e. 10x10
pixels, 7x7 pixels, etc.) called patches, and then extracting
features from each of the patches instead of from the whole
image. Patch size needs to be small enough to ensure that
the viewpoint is able to highlight local features, whilst large
enough to also detect global features. They made other sug-
gestions too concerning the treatment of colors and shapes in
order to improve object detection accuracy [49].

B. EC2: Weather and Daylight Conditions

sUAS need to fly in diverse weather conditions, however,
CV algorithms perform differently under different conditions,
creating problems of system reliability. For example, (P4)
discussed the weather-related impact of wind speed, cloud and
haze, and lighting, which in turn translates to different levels

of CV performance across different weather conditions and
seasons. (P3) reported varying performance for the same CV
systems when deployed indoors vs. outdoors.

In general, CV performs better in the summer under sunny
conditions than in dark winter days with low sunlight. In low
lighting conditions, there is a tendency for higher false positive
rates due to the lack of details in an image. (P2) analyzed
the performance of a vision system using the SSD-MN-V2
model for different phases of the day and showed that the
performance of the system was lower in the morning compared
to the afternoon lighting conditions.

On the other hand, if a camera faces the sun on a bright
sunny day, the resulting glare can cause complete failure of
a vision system as most CV algorithms and models cannot
extract useful information from extremely glared regions. The
issues related to variations in lighting were discussed in several
papers (P1, P2, P5, P10). From the Software Engineering
perspective, smart solutions are needed to reposition the sSUAS
to avoid glare and other similar noise.

Solutions: Proposed solutions were quite diverse. (P4) pro-
posed augmenting the sUAS with fog lights to improve
lighting; however, this approach clearly has distance and
weather-related limitations. (P14) recommended an algorith-
mic solution based on using a feature-based algorithm such
as Scale-invariant feature transform (SIFT) [50] to counteract
the variations in lighting in various environments. Finally, (P3)
proposed adaptive CV algorithms, able to self-adapt according
to the current lighting conditions.

VII. CHALLENGE #4: CV IN MOTION

sUAS-based computer vision applications face additional
challenges caused by the motion of the sUAS. Problems
include vibration and sudden jerky movements of the sUAS
caused by wind and/or turns. This can impact individual
images but is particularly problematic when CV is used over
a sequence of images, for example, to track a moving object
such as a person or a vehicle, or to circle an object during
a surveillance activity. It also impacts CV-related challenges
such as accurate geolocation of an object, which requires
alignment of image frames with sUAS position and attitude
(yaw, pitch, and roll) at the time that the image was taken.
We discuss each of these challenges in turn.

A. CMI: Image Blurring Caused by Vibration and Jerk

At the most basic level, vehicular movement caused by
vibration, wind, or abrupt vehicular motions can cause image
degradation such as blurred images (P2), [51].

Solutions: (P4) recommended applying pre-processing algo-
rithms to enhance the quality of images before the primary
algorithms process them. They also recommended the use
of feature-based vision algorithms similar to the algorithms
mentioned in the solution of CM1. Features in an image can
be defined as important properties in an image such as edges,
corners, texture, etc. When images are blurred,preprocessing
methods such as sharpening images are useful techniques.

Fig. 5: During a live test with physical sUAS using Drone
Response, the SUAS took off at [1], detected the person at [2],
but miscalculated the person’s position, and, therefore, instead
of circling [2], it circled an empty space [3]. The problem was
its initial failure to match the figure to the correct timeframe
of the flight log data.

B. CM2: CV-Based Geolocation of Objects from an sUAS

Several of our papers discussed aerial surveys (P4) and
object detection during landing (P2, P3). In these cases, we
are interested in either computing accurate coordinates of the
objects or accurately determining the relative direction of the
objects from an sUAS. The challenge is that the sUAS needs
to utilize its CV to geolocate the object whilst it is itself in
motion. It accomplishes this by first detecting the targeted
object in the image, secondly extracting the position of the
object with respect to its pixel coordinates in the image, and
then geolocating it either relative to the SUAS or in absolute
coordinates by considering the attitude (yaw, pitch) of the
gimbal carrying the camera, and the absolute attitude of the
sUAS at the time the frame was taken. Given an image frame,
the challenge is to account for the movement of the sUAS
in determining the true position of the targeted object (P7).
Computing the position of an object based on the current
position of the sUAS rather than its position at the time the
frame was taken (if only milliseconds different) can lead to
incorrect geolocation of the object. Figure 5 shows a live test
with sUAS.

Solutions: (P7) discussed the use of SUAS with CV to accu-
rately geolocate buildings in order to measure their degree of
sway. They adopted a technique to translate an image between
the camera reference coordinate system (i.e. three-dimensional
XYZ coordinate system) and the sUAS body reference coor-
dinate system to which the camera is attached and then used
key-points, referring to specific shapes and illuminations, in
the scene and compared consecutive image frames. Algorithms
included the Scale-invariant Feature Transform (SIFT) [52],
Binary Robust Invariant Scalable Key-points (BRISK) [53],
Speed-up Robust Feature (SURF) [54]. An alternate, geometric
approach, (adopted in our system) involves matching the sUAS
flight data (i.e., sSUAS and gimbal attitude) with the exact time

Fig. 6: Hardware was augmented to address problems related
to [RC1, RC2]. A stepdown transformer shown in the leftmost
image was added to provide sufficient power to the Jetson to
support the CV algorithms [RC2], and a new temporary cover
that included a fan in the middle image was constructed and
used to replace the poor airflow in the original cap [RC1]. The
rightmost image shows the ventilation system for the Jetson.

frame in which an image is taken, thereby performing more
accurate geolocation computations based on the actual position
of the sUAS.

VIII. CHALLENGE #5: RESOURCE CONSTRAINTS AND
CONFLICTS

Deploying CV on an sUAS can be challenging due to
processing intensive CV algorithms matched with limited
computational resources. We summarize these problems under
two key issues.

A. RCI: Power Limitations and Overheating

Keeping the sUAS in the air requires significant power,

typically from LIPO batteries, which provide a flight time of
anywhere from about 15 to 40 minutes on an average sUAS.
While additional batteries can be added, the increased weight
makes the sUAS heavier and causes it to drain power even
faster (P14). At the same time, CV algorithms can rapidly
draw down the available power and cause overheating (P4).
This is especially problematic while running computationally
intensive algorithms such as deep neural networks (DNNs)
or CNNs-based algorithms, such as YOLO, which require
significant resources from the CPU (P15), RAM, and GPU
and therefore, draw excessive power and/or easily overheat the
embedded platforms, causing unexpected slowdowns or even
shutdowns. Some solutions to these problems from the Drone
Response system are depicted in Figure 6.
Solutions: The problem can be tackled from both a hardware
and software perspective. First, hardware can be modified
if it is needed to ensure that sufficient power is available
(e.g., adding a stepdown transformer) and that the processor is
properly ventilated. (P4) suggested that the camera should be
placed into sleep mode or power-save mode when not in use.
(P15) and (P10) proposed the use of lightweight deep neural
networks to reduce processing requirements, and (P15) im-
plemented a lightweight version of the MobileNetV2+PSPNet
CNN, while (P10) proposed down-scaling input images to
increase processing speed and reduce computational needs.

B. RC2: Resource Conflicts

In systems with a single onboard processor, multiple system
functions will compete for cycle time. (P4) discussed CV
system failures on SUAS due to memory (RAM) overflow as
a single embedded platform often needs to support multiple
systems including CV, navigation, and higher-level mission
planning. Ideally, the image processing time should match the
capture rate of the camera, but due to limited resources, CV
systems running on an sUAS often suffer from low frames per
second (FPS) (P4).

Solutions: Software Engineers need to understand these con-
straints and design a solution that allows multiple systems to
run synchronously on the available space and works effectively
at a low frame rate. Ideally, the frame rate can be throttled up
and down depending on the current task. When this is unac-
ceptable, the system hardware and architecture need to support
a distributed solution in which systems are isolated across two
or more embedded platforms. (P11) recommended powerful
and energy-efficient embedded systems for the deployment of
computer vision systems in UAVs. The authors used Odroid
XU4 embedded system for their work.

C. RC3: Weight and Space Constraints

As discussed for RC1, adding additional payload comes at
the price of reduced flight time. (P11) discussed the limitation
of sUAS size and weight upon its payload. Each sUAS has
a maximum payload capacity, above which it cannot reliably
maintain flight. This is a hard constraint for a given sUAS.
Furthermore, embedded systems are often restricted in terms
of space available for installing software and its associated
libraries (P2). This is especially the case when platforms are
run on carrier boards, and even though boards typically have
extension slots, these may be better suited for storing videos
than for running core programs.

Solutions: (P2) recommended converting CV models to a
common format to avoid using new libraries. In our own
experience, we have loaded autopilot and CV libraries into
very constrained spaces through careful installation routines
and added and removed libraries and features in very specific
orders so as to remain within the space constraints.

IX. IMPLICATIONS FOR SOFTWARE ENGINEERING

In this section, we summarize some of the key findings
from the SLR and consider their implications for the Soft-
ware Engineering and Safety Engineering process. Notably,
as depicted in Table II, many of the proposed solutions are
targeted at the CV pipeline and/or the system hardware with
very little discussion about the Software Engineering aspects
of the system. In prior work, several authors have discussed
general safety issues related to sUAS (e.g., [55], [56], [57]),
but few have addressed safety concerns directly related to the
use of CV onboard sUAS. Some exceptions include work by
Abraham et al. [58], which explored the role of humans-in-the-
loop when CV confidence was low, and Lutz et al., who used

TABLE II: Proposed solutions mapped back to the Sub-challenges that they are designed to address

Identified Challenges

I+

Solutions

Type
CV HW SE|TD1 TD2 TD3 TD4 TD5|QI1 QI2|EC1 EC2|CM1 CM2|RC1 RC2 RC3

Data Image | Environ. | Motion Resource

Create image datasets from internet images

Collect image datasets using physical sUAS

Create 3D datasets from 3D maps & simulations

Dataset diversity wrt altitudes, pitches, & distance, etc.

Include occluded images in datasets

Augment existing datasets by image augmentation

Fine-tuning existing models with additional classes

O]0O]|0|0|0|0|O

O|O|O]O|O(0|O
O[0O|0|0|0|0|O
O[0O|0|0|0[0|O
O[0|0|0|0|0|O

Use a good camera with fast communication protocol

Pre-process images to remove noise

S| 0] 00| N O\ | | W | =

Use self-adaptive CV algorithms

—|
—

Use robust key-point based algorithms

—
(3]

Balance between local and global feature

—
(5]

Avoid electrical interference through configuration

—
~

Use fog lights in low visibility conditions

O|O

—
w

Put camera in sleep mode when not in use to save power

—_
)

Use lightweight version of CNN for embedded platforms

O|O

—
R

Select CV models compatible with current libraries

_
o]
o0 e

Downscale images to reduce processing

—_
el

Match the sUAS flight data with timestamped images)

B!
S

Improve the cooling and heating systems

¥
[J[]

Use powerful and energy-efficient embedded systems

D!
(S}

Discard old sensor messages [J

obstacle analysis to identify specific sSUAS safety concerns,
including CV-related ones [59].

However, CV-based sUAS systems are complex to develop
and their safety-critical nature warrants a rigorous Software
Engineering process. Based on findings from the SLR we,
therefore, make the following observations:

« System requirements need to be clearly specified, espe-
cially with respect to the expected operating environment
(e.g., wind, precipitation), and the purpose of the application
(e.g., search-and-detect). Specific end goals of the system
under development may lead to different hardware, software,
and CV design decisions. Architecturally significant require-
ments that impact both CV outcomes and more general
mission outcomes need to be identified, prioritized, and
evaluated with respect to their specific tradeoffs. Examples
highlighted in the SLR included tradeoffs between hardware
resource constraints (RC1-RC3), sophistication and accu-
racy of CV algorithms (QI1, QI2, EC1, EC2, CM1, CM2)),
and the selection and/or development of datasets and CV
models (TD1-TD5S).

o Delivering CV as a deep-learning solution on an edge-
device requires systematic Software Engineering effort
across three distinct workflows as depicted in Figure 7.
Results from the SLR indicated five categories of chal-
lenges. Two of them (TD, QI) relate directly to the CV
pipeline, whilst the other three (CM, EC, RC) cross-cut CV,
hardware, and software engineering issues. The workflows
include (1) composing the CV pipeline, including acquiring
datasets, training models, and selecting core algorithms and
preprocessing steps (green), (2) building and configuring the
physical hardware (gray), and (3) designing, developing, and
validating the software infrastructure, such as control and
integration software (blue). Understanding the individual

challenges of each workflow enables the engineering team
including data scientists, hardware engineers, and software
engineers to identify and tackle development risks in parallel
throughout the project. Components for each of the three
workflows need to be tested independently before being
integrated into the system. Test examples include:

— CV Workflow: The trained CV model must be validated
for accuracy against diverse images, and the overall CV
pipeline must be evaluated for accuracy against datasets
that match the targeted end-use [TD1-TDS5].

— Hardware Workflow: Physical components such as the
gimbal controls and movements must be tested for ac-
curacy and responsiveness, for example, to ensure that
an angular command moves the gimbal to the correct
position [CM2, RC1-RC5].

— Software Engineering: All CV-related software features
must be validated. Examples include the ability to activate
and deactivate the camera to save power [RC1] or to in-
terpolate the flight data to correctly align an image frame
with the position and attitude of the sUAS at the time the
frame was captured [CM2]. Navigation software should
be designed robustly for handling real-time requirements.
For instance, if sensor messages enter the message queue
too quickly and the software does not process them fast
enough, messages may accumulate. This may result in
delayed processing of sensor messages and jerky motion
of the sUAS. There are many ways to solve this problem
depending on specific message type. Solutions include
reducing the polling rate of sensor data, use of priority
queues, retaining one, and only one, message for certain
types of messages, or discarding old messages when a
maximum threshold is reached.

« Integration Tests must start early and be executed incre-
mentally. Surprises are inevitable when working with em-
bedded CV in real-world settings. Therefore, it is essential
to integrate and validate system-wide functionality as early
as possible. In general, it is a good practice to integrate
across the workflows in simulation first, and then to progress
rapidly and incrementally to deployment tests on physical
sUAS. Examples of integration tests include:

— Integrating CV with sUAS Software Control System: Per-
form functional tests in simulation to validate that the
SUAS can effectively use its CV features to detect and
track a person in realistic conditions [TD1-TDS5, QI1, QI2,
ECl1, EC2].

— Whole System Integration: Conduct real-world tests in
diverse weather and lighting conditions [CM1, CM2].
Validate the accuracy of CV in the real-world, respon-
siveness and latency of the CV pipeline, and overall
synchronization between the CV pipeline, the hardware
components (eg., gimbal) [RC1-RC3], and the general
software system.

« Safety Analysis is essential before deploying any sUAS
system on real-world missions. The analysis needs to con-
sider risks at the integration of CV and other aspects of the
system and to identify specific hazards, propose and assess
potential mitigations, and implement them into the system.
Approaches such as Failure Mode, Effects & Criticality
Analysis (FMECA), Fault Tree Analysis, or Safety-Cases
[60] can be employed. While an in-depth discussion of
safety analysis was outside the scope of our SLR; the indi-
vidual challenges and solutions reported in this paper pro-
vide initial foundations for exploring CV-related integration
risks. Examples include the impact of false positives or false
negatives in the core CV detection algorithms [TD1-TDS5],
resource contentions between core control software and CV
which could impact the safe flight of the sUAS [RC1-RC3],
and problems in synchronizing CV data and the sUAS flight
data resulting in incorrect geolocation computations leading
to unsafe flight paths [EC1, EC2].

X. CV DEPLOYMENT IN DRONE RESPONSE

We deployed CV in our own Drone Response system [61],
[62], [63] in both a simulated and physical-world environment.

A. Background of Drone Response System

The Drone Response system can be deployed and tested
in both simulation and physical world environments without
any changes to the code. It is built over the PX4 open source
autopilot system, and uses YOLO V3 and YOLO V4 for CV-
based object detection of persons. For simulation, we used
the Gazebo simulator with a high-fidelity physics engine.
The typhoon480 drone in Gazebo comes with a simulated
camera and gimbal which communicates with our CV pipeline
over the UDP protocol. For the physical world, we deployed
Drone Response on a Hexacopter equipped with an mRo
Control Zero F7 flight controller, and a Nvidia Jetson NX
carrier module on which we deployed the Drone Response

Define scope of CV in sUAS application |

— —

]
T) —

- Select, build, or Design and Prep sUAS ~
¢ | refine relevant CV — implement hardware]
H Model software system]
']
1]
H Test hardware]
\ e.g., gimbal, i
i Establish CV Y , ee- 8 |
; pipeline based on Valid Frw: i video :
: | . alidate software ' streaming) '
! planned use — system in ! '
i simulator : / '
' ¥ . Tests]
: Run CV Tests passed
v experiments passed | '
' against test data i]
I — o

' . failed

i Tests \\‘— software !

! passed !

H outcome .

' ¥ ' failed

H Execute integration tests of CV : hardware

failed cv and software system in simulator
outcome [} T
| Tests passed
|
3 Execute field tests of the CV on '
------- f_ i Cvibaeed | the physiFaI sUAS EJrjder diverse f--*
flight conditions.
software system
new features Tests passed

Fig. 7: Engineering a CV-enhanced sUAS requires concurrent
development of the CV pipeline, the software system that
controls the sUAS and integrates the CV, and the hardware
components. Each part must be developed and tested indi-
vidually and then systematically integrated, with system tests
progressing from simulation to physical field tests.

autonomous pilot and the CV pipeline. CV was supported by
an IMX477 CSI camera controlled using a 3-axes rotation
gimbal. Finally communication between the sUAS and ground
station was supported by mesh radio.

B. Experiments using Drone Response System

We faced numerous challenges, as discussed in this paper,
when deploying the CV pipeline on a physical drone. First
of all, the Jetson Xavier NX’ carrier board has an eMMC
module with under 16 GB of storage; therefore, in order to
install all of the essential CV libraries on the eMMC module,
we had to manually remove packages such as LibreOffice
from the Jetpack operating system. Second, while running
the CV pipeline using the GPU of the Jetson, the Jetson
drew too much current and kept shutting down. We used
a stepdown transformer to reduce voltage and increase the
current. However, when running the CV pipeline, it overheated
causing the GPU the throttle down the Jetson making the
hexacopter unstable. We designed a cover with a fan to
address this issue. Based on our observation, this issue persists
irrespective of the ambient temperature around the Jetson,
meaning that proper ventilation is needed even in the winter.

In our experiments, different computer vision algorithms
delivered different levels of performance for aerial images of

people, while running on the NX carrier model. YOLO V3
processed 8 frames per second with confidence scores close
to 40%, while YOLO V4, using the model pre-trained on the
MS COCO dataset, processed only 4 frames per second but
achieved a confidence score of over 90%.

Using our Drone Response System, we flew the hexacopter
in a circle around a detected person using the person’s calcu-
lated GPS location. In one of the experiments, the drone cir-
cled in the wrong place, and we later discovered that possibly
due to low lighting conditions just prior to sunset, a wooden
pillar was incorrectly detected and labeled as a person. This is
illustrated in Figure 8, and highlights the importance of having
high-quality sensors, a well-trained model for aerial object
detection, and the need for adequate lighting for accurate
object recognition.

In bright sunlight, the same algorithm and model (YOLO V4
with a model pre-trained on the MS COCO dataset) showed
good performance. Figure 9 shows a person detection with
93.88% confidence score on a bright sunny day.

Fig. 8: False positive detection of a person in low light

Fig. 9: Person detection with aerial view

XI. THREATS TO VALIDITY

We highlight two particularly important threats to validity.
The primary threat is in the scope of the SLR and the selection
of search terms. Omissions of key search terms may well have
led to missing important papers with additional challenges
and more diverse solutions. For this reason, we refer to our
work as a preliminary study that was useful for identifying the

primary types of challenges. Further work is needed to identify
a more complete set of known solutions. Secondly, the SLR
returned more information about the CV pipeline and resource
challenges without providing deep insights into the associ-
ated Software Engineering challenges. Where insights were
provided, we have included them in our findings; however,
the implications for Software Engineering were based on an
introspective analysis of the development of Drone Response
system including an informal mapping to the findings from
the preliminary SLR. We have not yet run an exhaustive set
of experiments with CV on Drone Response and, therefore,
our findings are not intended to be exhaustive.

XII. CONCLUSION AND FUTURE WORK

To address our research questions, our study identified five
distinct areas of challenges related to deploying CV on sUAS.
These included data collection and model training, quality of
collected imagery, environmental contexts, the impact of sSUAS
motion, and edge-based resource constraints. From these, we
identified a total of 14 sub-challenges and 22 associated
solutions, which we summarized in Table II.

However, one surprising outcome of our SLR was the lack
of emphasis on Software Engineering. The papers discussed
many CV-related features, but we found limited information
about actual Software Engineering of the products. As dis-
cussed in the introduction, our own lack of knowledge at
the intersection of CV and Software Engineering resulted in
several missteps that impacted the development process. As
a preliminary exploration of the role Software Engineering
plays in the process of developing a CV-imbued sUAS system,
we, therefore, discussed Software Engineering practices for
addressing several of the identified challenges. These proposed
practices were designed to support a more holistic approach
for engineering the CV-imbued sUAS system in a way that
considered all three aspects of CV, hardware, and Software
Engineering, and which lay the foundation for future work.

In future work, we will extend the SLR to consider specific
challenges and solutions in greater depth through extended
literature reviews and through evaluating proposed solutions
in a more structured experimental environment. Finally, we
intend to conduct a focused investigation on safety-related
aspects of CV deployment in sUAS. We will conduct more
experiments in the future to further validate our findings.

ACKNOWLEDGMENTS

The work described in this paper was partially funded by
the US National Science Foundation (NSF) under grant #
CNS:1931962. It was also partially supported by the Intel-
ligence Advanced Research Projects Activity (IARPA), via
2022-21102100003. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied of IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright an-
notation therein.

[1]

[2]

[3]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

C. Kyrkou and T. Theocharides, ‘“Deep-learning-based aerial image
classification for emergency response applications using unmanned
aerial vehicles,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2019, pp. 517-525.

S. S. Moumgiakmas, G. G. Samatas, and G. A. Papakostas, “Computer
vision for fire detection on uavs—from software to hardware,” Future
Internet, vol. 13, no. 8, p. 200, 2021.

A. Li, M. Hansen, and B. Zou, “Traffic management and resource
allocation for uav-based parcel delivery in low-altitude urban space,”
Transportation Research Part C: Emerging Technologies, vol. 143, p.
103808, 2022.

S. Yeong, L. King, and S. Dol, “A review on marine search and rescue
operations using unmanned aerial vehicles,” International Journal of
Marine and Environmental Sciences, vol. 9, no. 2, pp. 396-399, 2015.
K. P. Valavanis, “Advances in unmanned aerial vehicles: state of the art
and the road to autonomy,” 2008.

D. Cazzato, C. Cimarelli, J. L. Sanchez-Lopez, H. Voos, and M. Leo,
“A survey of computer vision methods for 2d object detection from
unmanned aerial vehicles,” Journal of Imaging, vol. 6, no. 8, p. 78,
2020.

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. MIT press, 2011.

F. Cocchioni, A. Mancini, and S. Longhi, “Autonomous navigation,
landing and recharge of a quadrotor using artificial vision,” in 2014
international conference on unmanned aircraft systems (ICUAS). 1EEE,
2014, pp. 418-429.

M. Pethd, A. Nagy, and T. Zsedrovits, “A bio-motivated vision system
and artificial neural network for autonomous uav obstacle avoidance,” in
2020 3rd International Seminar on Research of Information Technology
and Intelligent Systems (ISRITI). 1EEE, 2020, pp. 632-637.

J. A. Garcia-Pulido, G. Pajares, S. Dormido, and J. M. de la Cruz,
“Recognition of a landing platform for unmanned aerial vehicles by
using computer vision-based techniques,” Expert Systems with Applica-
tions, vol. 76, pp. 152-165, 2017.

D. Safadinho, J. Ramos, R. Ribeiro, V. Filipe, J. Barroso, and A. Pereira,
“Uav landing using computer vision techniques for human detection,”
Sensors, vol. 20, no. 3, p. 613, 2020.

M. S. Alam and J. Oluoch, “A survey of safe landing zone detection
techniques for autonomous unmanned aerial vehicles (uavs),” Expert
Systems with Applications, vol. 179, p. 115091, 2021.

T. Patterson, S. McClean, P. Morrow, G. Parr, and C. Luo, “Timely
autonomous identification of uav safe landing zones,” Image and Vision
Computing, vol. 32, no. 9, pp. 568-578, 2014.

C. Symeonidis, E. Kakaletsis, I. Mademlis, N. Nikolaidis, A. Tefas,
and I. Pitas, “Vision-based uav safe landing exploiting lightweight deep
neural networks,” in 2021 The 4th International Conference on Image
and Graphics Processing, 2021, pp. 13-19.

A. Marcu, D. Costea, V. Licaret, M. Pirvu, E. Slusanschi, and
M. Leordeanu, “Safeuav: Learning to estimate depth and safe landing
areas for uavs from synthetic data,” in Proceedings of the European
Conference on Computer Vision (ECCV) Workshops, 2018, pp. 0-0.

J. Pestana, J. L. Sanchez-Lopez, S. Saripalli, and P. Campoy, “Com-
puter vision based general object following for gps-denied multirotor
unmanned vehicles,” in 2014 American Control Conference. 1EEE,
2014, pp. 1886-1891.

J. Pestana, J. L. Sanchez-Lopez, P. Campoy, and S. Saripalli, “Vision
based gps-denied object tracking and following for unmanned aerial
vehicles,” in 2013 IEEE international symposium on safety, security,
and rescue robotics (SSRR). 1EEE, 2013, pp. 1-6.

E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos,
and A. Gasteratos, “Unsupervised human detection with an embedded
vision system on a fully autonomous uav for search and rescue opera-
tions,” Sensors, vol. 19, no. 16, p. 3542, 2019.

C. Kyrkou and T. Theocharides, “Deep-learning-based aerial image clas-
sification for emergency response applications using unmanned aerial
vehicles.” in CVPR Workshops, 2019, pp. 517-525.

E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek, “Autonomous uav
surveillance in complex urban environments,” in 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent

Technology, vol. 2. IEEE, 2009, pp. 82-85.
J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and

R. Siegwart, “A uav system for inspection of industrial facilities,” in
2013 IEEE Aerospace Conference. IEEE, 2013, pp. 1-8.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

T. Khue, T. A. Nguyen, H. Dao, and F. N. Catbas, “Swaying displace-
ment measurement for structural monitoring using computer vision and
an unmanned aerial vehicle,” Measurement, vol. 159, p. 107769, 2020.
K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv preprint arXiv:1511.08458, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

M. Ju, H. Luo, Z. Wang, B. Hui, and Z. Chang, “The application of
improved yolo v3 in multi-scale target detection,” Applied Sciences,
vol. 9, no. 18, p. 3775, 2019.

F. Yang, H. Fan, P. Chu, E. Blasch, and H. Ling, “Clustered object de-
tection in aerial images,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 8311-8320.

H. Zhao, Y. Zhou, L. Zhang, Y. Peng, X. Hu, H. Peng, and X. Cai,
“Mixed yolov3-lite: a lightweight real-time object detection method,”
Sensors, vol. 20, no. 7, p. 1861, 2020.

R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: a real-time object
detection algorithm optimized for non-gpu computers,” in 20/8 IEEE
International Conference on Big Data (Big Data). 1EEE, 2018, pp.
2503-2510.

A. Al-Kaff, D. Martin, F. Garcia, A. de la Escalera, and J. M. Armingol,
“Survey of computer vision algorithms and applications for unmanned
aerial vehicles,” Expert Systems with Applications, vol. 92, pp. 447-463,
2018.

B. Luo, X. Wang, and Z. Zhang, “Application of computer vision
technology in uav,” in Journal of Physics: Conference Series, vol. 1881,
no. 4. 1IOP Publishing, 2021, p. 042052.

C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for
uavs: Current developments and trends,” Journal of Intelligent & Robotic
Systems, vol. 87, pp. 141-168, 2017.

Y.-c. Liu and Q.-h. Dai, “A survey of computer vision applied in aerial
robotic vehicles,” in 2010 International Conference on Optics, Photonics
and Energy Engineering (OPEE), vol. 1. 1EEE, 2010, pp. 277-280.
L. M. Belmonte, R. Morales, and A. Fernandez-Caballero, “Computer
vision in autonomous unmanned aerial vehicles—a systematic mapping
study,” Applied Sciences, vol. 9, no. 15, p. 3196, 2019.

C. Chen, J. Zhong, and Y. Tan, “Multiple-oriented and small object
detection with convolutional neural networks for aerial image,” Remote
Sensing, vol. 11, no. 18, p. 2176, 2019.

T. Liu and A. Abd-Elrahman, “Deep convolutional neural network
training enrichment using multi-view object-based analysis of unmanned
aerial systems imagery for wetlands classification,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 139, pp. 154-170, 2018.

T. Liu, A. Abd-Elrahman, J. Morton, and V. L. Wilhelm, “Comparing
fully convolutional networks, random forest, support vector machine,
and patch-based deep convolutional neural networks for object-based
wetland mapping using images from small unmanned aircraft system,”
GIScience & remote sensing, vol. 55, no. 2, pp. 243-264, 2018.

Y. Xu, L. Pan, C. Du, J. Li, N. Jing, and J. Wu, “Vision-based uavs
aerial image localization: A survey,” in Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Al for Geographic Knowledge
Discovery, 2018, pp. 9-18.

S. Zhang, J. Li, C. Yang, Y. Yang, and X. Hu, “Vision-based uav
positioning method assisted by relative attitude classification,” in Pro-
ceedings of the 2020 5th International Conference on Mathematics and
Artificial Intelligence, 2020, pp. 154-160.

S. Bhat, V. Malagi, K. Rangarajan, and R. Babu, “Computer vision based
guidance in uavs: software engineering challenges,” ACM SIGSOFT
Software Engineering Notes, vol. 35, no. 6, pp. 1-6, 2010.

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53

[utrt

[54]

[55]

A. M. R. Bernal and J. Cleland-Huang, “Hierarchically organized
computer vision in support of multi-faceted search for missing persons,”
in 2023 IEEE 17th International Conference on Automatic Face and
Gesture Recognition (FG). 1EEE, 2023, pp. 1-7.

S. Workman, R. Souvenir, and N. Jacobs, “Wide-area image geolo-
calization with aerial reference imagery,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 3961-3969.
L. Kumar and O. Mutanga, “Google earth engine applications since
inception: Usage, trends, and potential,” Remote Sensing, vol. 10, no. 10,
p. 1509, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief
introduction to opencv,” in 2012 proceedings of the 35th international
convention MIPRO. 1EEE, 2012, pp. 1725-1730.

R. WANG and Z. ZHU, “Sift matching with color invariant characteris-
tics and global context,” Opt. Precision Eng, vol. 23, no. 1, pp. 295-301,
2015.

J. Markel, “The sift algorithm for fundamental frequency estimation,”
IEEE Transactions on Audio and Electroacoustics, vol. 20, no. 5, pp.
367-3717, 1972.

X. Wang, B. Luo, and Z. Zhang, “Application of uav target tracking
based on computer vision,” in Journal of Physics: Conference Series,
vol. 1881, no. 4. IOP Publishing, 2021, p. 042053.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91-110,
2004.

S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International conference on com-
puter vision. leee, 2011, pp. 2548-2555.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346-359, 2008.

M. Vierhauser, M. N. A. Islam, A. Agrawal, J. Cleland-Huang, and
J. Mason, “Hazard analysis for human-on-the-loop interactions in suas
systems,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021, pp. 8-19.

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

R. A. Clothier and R. A. Walker, “The safety risk management of
unmanned aircraft systems,” Handbook of unmanned aerial vehicles,
pp. 2229-2275, 2015.

A. Chhokra, N. Mahadevan, A. Dubey, and G. Karsai, “Qualitative fault
modeling in safety critical cyber physical systems,” in Proceedings of
the 12th System Analysis and Modelling Conference, 2020, pp. 128-137.
S. Abraham, Z. Carmichael, S. Banerjee, R. VidalMata, A. Agrawal,
M. N. Al Islam, W. Scheirer, and J. Cleland-Huang, “Adaptive au-
tonomy in human-on-the-loop vision-based robotics systems,” in 2021
IEEE/ACM st Workshop on Al Engineering-Software Engineering for
AI (WAIN). 1EEE, 2021, pp. 113-120.

J. Chen, H. Guo, P. Liu, and Y. Wang, “The summary on atmospheric
disturbance problems in the motion imaging of high resolution earth
observation system,” in Proceedings of 2011 International Conference
on Electronic & Mechanical Engineering and Information Technology,
vol. 8. IEEE, 2011, pp. 3999—4003.

E. Denney, G. Pai, and I. Whiteside, “Modeling the safety architecture of
uas flight operations,” in Computer Safety, Reliability, and Security: 36th
International Conference, SAFECOMP 2017, Trento, Italy, September
13-15, 2017, Proceedings 36. Springer, 2017, pp. 162-178.

J. Cleland-Huang, A. Agrawal, M. N. A. Islam, E. Tsai, M. V.
Speybroeck, and M. Vierhauser, “Requirements-driven configuration of
emergency response missions with small aerial vehicles,” in SPLC
’20: 24th ACM International Systems and Software Product Line
Conference, Montreal, Quebec, Canada, October 19-23, 2020, Volume
A, 2020, pp. 26:1-26:12. [Online]. Available: https://doi.org/10.1145/
3382025.3414950

M. N. A. Islam, M. T. Chowdhury, A. Agrawal, M. Murphy, R. Mehta,
D. Kudriavtseva, J. Cleland-Huang, M. Vierhauser, and M. Chechik,
“Configuring mission-specific behavior in a product line of collaborating
small unmanned aerial systems,” J. Syst. Softw., vol. 197, p. 111543,
2023. [Online]. Available: https://doi.org/10.1016/j.jss.2022.111543

A. Agrawal, S. J. Abraham, B. Burger, C. Christine, L. Fraser,
J. M. Hoeksema, S. Hwang, E. Travnik, S. Kumar, W. J. Scheirer,
J. Cleland-Huang, M. Vierhauser, R. Bauer, and S. Cox, “The next
generation of human-drone partnerships: Co-designing an emergency
response system,” in CHI ’20: CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, April 25-30, 2020, 2020, pp.
1-13. [Online]. Available: https://doi.org/10.1145/3313831.3376825

