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Abstract— Missing person searches are typically initiated
with a description of a person that includes their age, race,
clothing, and gender, possibly supported by a photo. Unmanned
Aerial Systems (sUAS) imbued with Computer Vision (CV)
capabilities, can be deployed to quickly search an area to
find the missing person; however, the search task is far more
difficult when a crowd of people is present, and only the person
described in the missing person report must be identified. It is
particularly challenging to perform this task on the potentially
limited resources of an sUAS. We therefore propose AirSight , as
a new model that hierarchically combines multiple CV models,
exploits both onboard and off-board computing capabilities,
and engages humans interactively in the search. For illustrative
purposes, we use AirSight to show how a person’s image,
extracted from an aerial video can be matched to a basic
description of the person. Finally, as a work-in-progress paper,
we describe ongoing efforts in building an aerial dataset of
partially occluded people and physically deploying AirSight on
our sUAS.

I. INTRODUCTION

The deployment of Unmanned Aerial Systems (sUAS)
is becoming increasingly prevalent in diverse application
areas such as smart home construction [21], traffic and
fire surveillance, environmental sampling, law-enforcement
activities [13], and search and rescue missions [2]. In such
scenarios, quickly finding a human in need or identifying
a suspect in a crowd can save lives. Currently, emergency
responders tend to fly sUAS manually to enhance opera-
tions by providing additional aerial, mobile “eyes”; however,
autonomous sUAS could be even more beneficial in time-
critical scenarios [9], empowering human first responders
and law enforcement officers to focus on mission level goals
supported by intelligent sUAS [2], [9].

An sUAS’s onboard computer vision (CV) system plays a
critical role in enabling its autonomy. However, deploying an
effective CV pipeline on a resource-constrained, edge-based
computing platform is very challenging. Edge computing
forces the system to perform operations under severely
limited resources [17], [22], which can degrade performance,
result in loss of accuracy, and potentially lead to failure to
detect a human even when they appear in the image stream.
We address this challenge through proposing AirSight – an
optimizable, hierarchical approach that seeks to improve the
performance and accuracy of sUAS-based CV search for
a missing person. AirSight assumes an sUAS infrastructure
that includes both on-board (onboard the Unmanned Aerial
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Vehicle) and off-board (Ground Control Station) computing
capabilities. Initial vision tasks are executed on-board to
identify objects of interest, and then the remainder of the
CV task is delegated to the resource rich, ground-based
infrastructure, where humans can also be engaged as active
decision makers [2], [9].

The remainder of this paper is structured as follows.
Section II presents our hierarchical approach to CV-based
person detection, while Section III describes a simple case
study that illustrates the use of our approach. Section IV
describes related work that uses both CV and non CV
approaches to aid aerial detection. Finally, Sections V and
VI describe future work, draw conclusions, and provide a
collaboration statement.

II. A CONFIGURABLE HIERARCHICAL APPROACH

AirSight addresses the issue of limited resources for sUAS-
based edge CV tasks, such as detecting and identifying
a missing person, by exploiting and configuring various
combinations of CV models, and deploying them across
on-board and off-board computing resources. As illustrated
in Fig. 1, when applied to the task of finding a missing
person, the mission starts when (1) a description of the
missing person is provided and the sUAS are prepared for
deployment. Next, (2) the CV hierarchy is configured by (3)
deploying lightweight CV models on-board for initial person
detection and filtering, and (4) deploying additional models
off-board for further analysis with (5) support for human-in-
the-loop decision making.

Each sUAS must be equipped with a camera, gimbal, and
a CV pipeline. Installing this pipeline on the edge device
is very challenging due to several tradeoffs. The computer
needs to provide enough storage and memory to install and
run CV algorithms, models, and other flight-related software,
but also be as light as possible to increase flight time. In
addition, the onboard computer must be sufficiently powered
with adequate ventilation and cooling to avoid problems such
as cutting-out or throttling down during flight.

In order to differentiate between different people, Air-
Sight includes traditional CV models for detecting people and
differentiating characteristics such as gender and age, while
using heuristic-driven approaches for detecting clothing color
and other characteristics. AirSight runs a basic person-
detection algorithm on-board, and one or more additional
CV models to perform an initial evaluation as to whether
each detected person fits key aspects of the search criteria.



However, the limited computational resources available on-
board the sUAS mean that only a subset of models can
be executed on-board the sUAS (On-Board computing),
while the remainder need to run off-board on the Ground
Control Station (GCS) (Off-Board computing). Furthermore,
it makes sense to deploy discriminatory models on-board in
order to quickly filter out unlikely persons. All non-filtered
images are sent to the GCS for further analysis by other
CV models. Overall, our off-board approach represents a
traditional Blackboard-style architecture in which various
agents (CV algorithms and models) contribute their opinion
about the extent to which the detected person matches
the provided description [5]. Any person scoring above a
predefined likelihood threshold can then be presented to the
human for evaluation.

A. Mission startup

The mission starts when an alert is raised for a missing
person and a description and/or photograph is provided. The
emergency responders quickly activate and deploy a cohort
of CV-equipped sUASs charged with the task of person
detection and identification. During this step, the human team
member shares the description of the missing person with
the sUAS in a machine-readable format (e.g., JSON), with
additional information such as the region of the search, that
could be used to quickly plan the mission.

B. Hierarchical configuration

This step defines which CV models are to be included in
the analysis as well as their hierarchical arrangement. Table
I provides a non-exhaustive list of the types of elements that
could be included in a description of a missing person. A CV
model is included in the hierarchy for each key characteristic
included in the missing person description.

Table II, represents a configuration file that provides a
mapping between types of features included in the descrip-
tion, the appropriate CV models to use, and the arrangement
of each of them in our hierarchical model. For each particular
descriptive attribute, the system can have more than one
model, and the position on the hierarchy may determine
which model to use. In our current implementation, we
manually create the JSON specification which defines the
hierarchy of CV models, and determines which models reside
on-board or off-board. However, in future designs we plan for
this configuration to be performed automatically, as discussed
in future work (see Section V).

On-Board resources must be processing light, while Off-
Board models have access to more powerful computational
resources; therefore, the configuration file indicates the par-
ticular model to use and the order in which each CV model
is applied. This is depicted in Fig. 1, where models assigned
with the same sub-level number are executed in parallel,
and models with different sub-level numbers are executed in
series, allowing us to include series and parallel sub-levels if
needed. Finally, as seen in Table II, further parameters, such
as a tolerance for the age range inference, are also specified.

TABLE I
SAMPLE JSON FILE WITH THE INFORMATION OF A MISSING PERSON

VISUAL ATTRIBUTES.

“clothing color”: [str, str],
“clothing”: [str, str],
“age”: int,
“gender”: str,
“race”: str,
“skin tone”: str,
“reference image”: path str,
“height”: int,
“weight”: int,
“special”: [str, str, ...]

TABLE II
CONFIGURATION OF THE CV MODELS SPECIFIED IN A JSON FILE.

“compute onboard”: {
“filter-human”: {“model”: str, “sublevel”: int},
“filter-clothing color”: {“model”: str, “sublevel”: int},
...

},
“compute offboard”: {

“filter-clothing color”: {“model”: str, “sublevel”: int},
“filter-age”: {

“model”: str, “sublevel”: int, “tolerance”: int},
...

},
“compute human”: int

AirSight deploys a lightweight discriminatory model on-
board the sUAS to serve as a filtering mechanism. For
example if the missing person was wearing a red shirt with
blue shorts, then a clothing-based CV model could provide
strong differentiation and any person not wearing at least one
of these items should be filtered out. However, as pointed
out by emergency responders whom we interviewed, in the
case of lost (and potentially abducted) children, the value
of clothing descriptions dissipates quickly as the kidnapper
could change the child’s clothes. In this case, the on-
board model might filter by body size or by age instead
of clothing, and additional mission-specific attributes such as
shoes description could be deployed for off-board computing.

Fig. 1 shows the elements of our model as well as their
hierarchy and order of execution. It includes the following:

• Three primary levels representing onboard, ground-
based, and human analysis.

• Sub-levels representing a group of filter-models that are
separated from each other by a discriminatory logic
phase.

• Filter-models that address the detection/inference of a
particular attribute of the missing person, and can be
grouped to act in parallel and make a joint decision
using a blackboard style approach, or placed in a series
to create a pipeline, as observed in Fig. 1.



Fig. 1. The Hierarchical CV model is composed of three different levels, each one including a set of filters executed either as a pipeline or in parallel
supported by a blackboard style architecture. The filters at each level are responsible for determining whether an image should be passed for further analysis
to the next layer. The final layer includes human inspection.

C. Level-1: On-Board computing

In our adopted architecture the on-board computer is
responsible for performing the first image processing steps.
Fig. 1 shows a series configuration where the first CV model
is responsible for processing the raw frames provided by the
video stream, followed by a discriminatory logic phase in
which it determines whether the analyzed frames should be
passed to the next sub-level for further processing. Rather
than passing each and every frame, the filter can also identify
representative, high-quality frames representing the highest
likelihood of matching the missing person description. Level-
1 is responsible for decreasing the amount of information
that is passed to the GCS. Its role is highly important for
reducing network traffic whilst optimizing the likelihood of
finding the targeted person.

D. Level-2: Off-Board computing

After receiving the data from Level-1, the off-board
computer is responsible for detecting and/or inferring the
attributes of a missing person that were not analyzed in
Level-1 due to limited resources. However, it could also
apply more powerful models to the same attributes addressed
by Level-1, or even include facial recognition algorithms,
with the goal of reducing false positives. Fig. 1 illustrates
a parallel configuration on Level-2, where three models
process the same information provided by Level-1, either
addressing the same attributes with different computer vision
models in order to improve confidence of the result, or
addressing different attributes of interest.

E. Level-3: Human analysis

Finally, the candidate video streams or images that passed
through the discriminatory logic phases of Level-1 and
Level-2 are shown to a human team member monitoring
and supervising the sUASs, who provides feedback to Air-
Sight about why the person does not match the descrip-
tion, and/or dispatches physical resources such as additional
sUASs, other equipment, or human team members, to verify
the accuracy of the candidate.

The design of the interface between Level-2 and Level-
3 is still to be explored, one option being that the human
team member has the ability to choose the format of the
user interface, the amount of information displayed, and even
to control the level of autonomy of the sUAS. A space is
placed on the configuration file, shown in Table II, that could
allow us to configure the hierarchy model for Level-3, with
modifications to the user interface. By integrating the human
as a team member, we are seeking for an improvement in
performance not only by the permutation of computer vision
models, but by the communication and integration of the
human team member in the sUAS pipeline.

III. CASE STUDY

We conducted a case study which serves as a preliminary
proof-of-concept for AirSight. Fig. 2 shows three levels of the
pipeline. The images used for the case study were extracted
from an on-going IRB approved dataset collection that we
are performing, which currently includes 75 subjects out of
a planned 100 subjects. The dataset includes aerial views of
humans in various poses and varying degrees of occlusion



behind diverse obstacles. When completed, we will publicly
release the dataset, with annotated aerial imagery of fully
visible and occluded subjects as well as a 360 degree low
altitude view of each subject to serve as a reference image.
For purposes of this preliminary case study, we selected 12
subjects from the collection using a stratified approach which
resulted in balanced gender (six males and six females), age
(six adults/older adults and six young persons), and skin tone
(six white and six non-white subjects). We extracted five
frames of whole-body images for each subject to create a
mini-dataset of 60 frames that was then used in this study.

A. Start of Mission

Out of the 12 subjects we selected one to serve as our
missing person, and used the demographic data associated
with the subject to form a missing person description, with
age (28 years old), gender (male), race (latino hispanic), and
clothing color (blue shirt and black pants). This is summa-
rized in Table III. It should be noted that we deliberately
selected a person wearing easily described clothing and not
patterned material for this proof-of-concept. The case study
simulates the situation of a missing person with a description
but not a photograph. In addition, the case study provides
an example in which the person is expected to be wearing
the described clothing (e.g., immediately after a person goes
missing, or a shooting suspect who has escaped from the
vicinity of the crime).

B. Hierarchical configuration

As no picture is provided in our scenario, searching using
facial recognition is not possible. Furthermore, even if a
picture was available from the ground, the perspective from
an sUAS could be very different, therefore in this example we
focus on the textual description. The JSON file describing
the person is shown in Table III, and a second JSON file
describing the hierarchy of CV models is provided in Table
IV. These files are sent to both the sUAS and to the GCS
service that performs off-board CV. Each of these activates
the relevant CV models and establishes a pipeline as specified
in the JSON file. The specification dictates exactly when
frames will be passed from one model to another, and when
they will be transmitted from the sUAS to the ground-based
service, and from the ground-based CV service to the human.

In our case study we utilize clothing color as the prelim-
inary filter on-board the sUAS and assign other CV models
for age, gender, and race to the off-board GCS.

C. Level-1: On-Board computing

Fig. 2 shows the deployment of the hierarchical CV
process. The YOLOv4 model was used to detect a person
using a threshold confidence score. YOLOv4 was able to
successfully detect a human in 59 of the 60 images, based on
our predefined confidence score of 0.60. Bounding boxes for
the 60 images were manually annotated in order to evaluate
the performance of the YOLOv4 model on these images,
using an Intersection over Union (IOU) value of 50%. Table
V shows the results when varying the confidence threshold.

Fig. 2. The image shows the pipeline of actions for a case study of the
hierarchical model through the three different levels.

Images of detected persons were cropped, and all subsequent
analysis was performed on the cropped images.

For illustrative purposes we show how one frame, taken
from the targeted subject, was analyzed using the CV hier-
archy. In addition to the person detector we also deployed
a second CV algorithm on-board the sUAS with the aim of
checking whether the detected person’s clothing matched the
description. The color-clothing filter-model used a region-
based segmentation [18] that provided a segmentation of
foreground and background.

The assumption taken during this part of the case study
was that the first sub-level would provide an image of a
standing whole body person, therefore a histogram could
be applied to the upper and lower part of the segmented
foreground image. The histogram was analyzed in the HSV
color space, where most common colors could be distin-
guished just by the hue component. Besides simplifying the
classification of colors, this approach introduces robustness
against different levels of light over the same color. Once the
histogram was built, the model looked for the peak values
and reported an HSV value of [228,80,47] for the top of the
image and an HSV value of [240,33,4] for the bottom of the
image. These values were compared against a preset list of
HSV values of common colors and were reported back as
blue and black. It should be noted that the classification of
black, grey and white in the HSV color space are based on
the saturation and value numbers, ignoring the hue number.
Finally, the discrimination logic phase applied during this
part was a complete match, that is, the upper-body color
that was detected matched the t-shirt color provided in the
description, while the lower-part color matched the pants
color; therefore this cropped image was passed to Level-2.
We discuss challenges of using clothing colors in Section V.

D. Level-2: Off-Board computing

In our case study example, Level-2 used a parallel con-
figuration to analyze gender, age and race. The DeepFace



TABLE III
SAMPLE IMAGE OF VISUAL ATTRIBUTES PRESENT IN THE JSON FILE

FOR THE CASE STUDY

“clothing color”: [“blue”, “black”],
“age”: 28,
“gender”: “male”,
“race”: “latino hispanic”

TABLE IV
SAMPLE JSON FILE OF THE CONFIGURATION OF THE COMPUTER VISION

MODELS FOR THE CASE STUDY.

“compute onboard”: {
“filter-human”: {

“model”: “YOLOv4 pretrained”, “sublevel”: 1},
“filter-clothing color”: {

“model”: “foreground seg”, “sublevel”: 2},
},
“compute offboard”: {

“filter-age”: {
“model”: “deepface”, “sublevel”: 1, “tolerance”: 5},

“filter-gender”: {“model”: “deepface”, “sublevel”: 1},
“filter-race”: {“model”: “deepface”, “sublevel”: 1}

},
“compute human”: int

library was used as it incorporates state-of-the-art models for
face detection, face verification and face recognition tasks,
and includes facial attribute analysis of age, gender, race and
facial expressions [15], [16]. The DeepFace facial attribute
analysis model has reported a Mean Average Error (MAE)
of +-4.6 years for age inference, and a 97.44% accuracy,
96.29% precision and 95.05% recall for gender inference
[16]. An SSD face detection model was used from the
DeepFace library to crop the face from the whole body
image. DeepFace provides access to models with better face
alignment such as RetinaFace and MTCNN if required. After
having the face image of the subject, this image was fed to
the DeepFace facial attribute analysis model. Table VI shows
a comparison of the ground truth and the results obtained
from DeepFace. Although race was incorrectly inferred, the
discrimination logic phase used in this sub-level employed
a simple majority voting scheme, meaning that if two of
the attributes matched the description, the candidate image
would be passed to the human in Level-3. Detected age was
deemed a match as it was within the tolerance of +-5 years
set in the configuration file.

E. Level-3: Human Team Member

Finally, images that passed the criteria assessed in Level-2,
were presented to a human team member, who then applied
their own discrimination logic to determine whether the
image represented the missing person or not.

IV. RELATED WORK

The interdisciplinary nature of our work means that our
solution leverages ideas from software engineering, human

TABLE V
RESULTS OF THE YOLOV4 MODEL OVER THE 60 SAMPLE IMAGES.

Confidence threshold TP FP FN Recall Precision
0.00 59 42 1 0.98 0.58
0.60 59 24 1 0.98 0.71
0.80 56 10 4 0.93 0.84
0.85 51 3 9 0.85 0.94
0.90 46 0 14 0.76 1.00

TABLE VI
INFERENCE RESULTS OBTAINED FROM DEEPFACE

Attribute Truth Inference
Age[years] 28 23

Gender Male Man
Race Latino Hispanic asian: 1.0718737728893757,

indian: 3.075053170323372,
black: 0.10856959270313382,
white: 57.12805986404419,

middle eastern: 24.243606626987457,
latino hispanic: 14.372840523719788

computer interaction, hardware development and computer
vision in order to address an open challenge in the field of
emergency response scenarios and aerial identification.

A. Computer vision approaches

Several researchers have developed new datasets, such
as DroneFace [10] and DroneSURF [11] for aerial face
identification, VisDrone [20] for aerial object detection and
tracking, and HERIDAL [12] and SARD [14] for aerial
human detection under search and rescue missions. A more
extensive description of each dataset, as well as additional
categorized datasets, can be found in [19]. These datasets
have enabled CV algorithms to be trained specifically for
aerial detection and identification tasks, and have enhanced
the ability of researchers to develop improved CV models
for aerial tasks. Amato et al. [4] address the low resolution
characteristic of drone imagery, and test an optimized CV
model for cross-resolution face re-identification (gallery im-
ages with high resolution vs probe images of low resolution)
on the dataset DroneSURF, achieving an accuracy of 60.87%.
Despite the improved accuracy, further improvements are
needed to support edge-based tasks such as identification of
a missing person. Abraham et al. [1] seek improvement of
CV models performance during aerial human detection on
emergency response scenarios by taking into consideration
the context of the detection, resulting in decreasing the
number of false positives. Božić-Štulić et al. [6] introduce
a new region proposal network algorithm, inspired by the
Faster R-CNN model, but using saliency object detection
algorithms for the Region Proposal Module; their tests on
the HERIDAL dataset acheive a detection rate of 88.9%.

Our AirSight work proposes an optimizable hierarchical
architecture that exploits existing CV models to provide an
effective CV pipeline for person detection and identification
in a limited resource environment. This differs from the
majority or prior work, which has emphasized detection
rather than identification (cf. Fig.3) [19].



Fig. 3. Aerial computer vision papers distribution [19].

B. Non-computer vision approaches

Other research has focused on integrating additional hard-
ware and software capabilities into sUAS for their deploy-
ment in search and rescue missions. Pensieri et al. [13]
explore the idea of introducing remote sensing tools, such
as ground penetrating radars, to aid in the search for a
missing person. Albanese et al. [3] introduce an interesting
concept of incorporating mobile networks into the sUAS
to localize a cellular network during a search and rescue
mission, under the assumption that the missing person carries
a cellphone and that the signal detected corresponds to the
missing person. Their system also guides the sUAS towards a
trajectory that would enhance the localization accuracy. Such
solutions could be integrated with our approach to improve
the overall mission performance.

Additionally, we have explored areas of Human Computer
Interaction (HCI) and software engineering. Agrawal et al.
[2], through participatory design with first responders, de-
signed a solution for achieving situational awareness dur-
ing the deployment of multi-sUAS for emergency response
applications. Further research aimed at tackling different
types of interactions in a human-sUAS environment [7].
Furthermore, Cleland-Huang et al. [9] promote partnerships
between humans and sUAS by incorporating the Human-
Machine Teaming (HMT) paradigm design into the MAPE-
K feedback loop model for self-adaptive and autonomous
machines, emphasizing interactions, partnerships, and team-
work between humans and machines, capitalizing upon the
respective strengths of both the human and the machine, and
compensating for each of their potential limitations.

Our approach contributes to the overall engineered solu-
tion for the case of search for a missing person by focusing
on engineering the computer vision pipeline. In addition,
HCI components (described as future work on Section V)
address the particular interaction interface needed between
emergency responders and sUAS when using our hierarchical
approach to search for a missing person.

V. FUTURE WORK

In this work-in-progress paper we have proposed Air-
Sight as a hierarchical approach to supporting multi-faceted,
CV-based aerial search for missing persons. Our approach
took into consideration the limited resources that are avail-
able onboard sUAS due to trade-offs related to weight and
power consumption. Our case study demonstrated that our
approach is viable; however, the following open challenges,
risks, and opportunities should be explored in future work.

• Complex descriptions: In our case study we se-
lected a person wearing clearly defined clothing (blue
and black); however, real-world descriptions are often
less clear (e.g., strips, patterns, non-descript colors).
This served as a proof-of-concept example but clearly
oversimplified the real-world. Future work will first
evaluate our current approach against our complete on-
going dataset of images, and then explore techniques
for improving results for more diverse descriptions and
subjects.

• Feature Interactions: Our case study used a very
simple majority voting scheme to determine whether to
pass a frame to the next level; however, future work will
explore more sophisticated approaches for integrating
diverse sources of evidence in order to improve the
accuracy of the overall approach and to better prioritize
the way in which images are forwarded to the next layer
of the hierarchy.

• Optimizing CV Hierarchies: In this work we selected
an organization of CV models somewhat subjectively;
however, future work will comparatively evaluate alter-
native ways of connecting and arranging CV models.
Furthermore, we plan to automate the deployment of
AirSight into our own DroneResponse system, which
already has fully deployed and tested capabilities for on-
board CV supported by off-board microservices capable
of running powerful CV algorithms [9].

• Human-in-the-loop: Future work will explore ways in
which humans can partner with sUAS in person search,
and develop effective UIs to support these collabora-
tions.

• Temporal evidence: Finally, our current approach
treats each frame as an isolated entity. In future work
we will explore ways to build evidence over a sequence
of frames, and how to select best frames to process and
forward to subsequent CV models.

• Aerial dataset: Our initial CV experiments have
shown reduced accuracy when detecting people from
the air, especially when they are partially occluded by
objects such as trees. We are therefore collecting and
annotating a new dataset of partially occluded subjects
from various altitudes. We have collected data from 75
out of 100 planned participants and expect to release
the dataset in Spring 2023.

VI. CONCLUSION AND COLLABORATION STATEMENT

As explained earlier in this paper, deploying CV solutions
in real-world conditions can be very challenging. This is



especially true onboard an sUAS in a resource-constrained,
aerial environment where computing resources and power
are limited, and views of people from above may make
it difficult to identify specific individuals. Our hierarchical
approach overcomes many of these challenges by leveraging
onboard CV capabilities to perform an initial image analysis
and then passing images off-board for deeper assessment
by a diverse set of CV models and by engaging humans-
in-the-loop. Our approach can be configured according to
specific scenarios by dynamically organizing the hierarchy
of CV models, allowing different CV models to be used as
preliminary on-board filters, and others to provide deeper
assessments as off-board CV services.

While we have focused on the CV pipeline, this work
represents an interdisciplinary approach combining the fields
of computer vision, software and systems engineering, and
HCI research. For example, techniques that engage humans
in close partnerships with sUAS, require carefully designed
GUIs which allow humans to clearly communicate mission
goals and to work interactively with the sUAS in evaluat-
ing images of candidate missing persons. Finally, while it
may seem simple to deploy a CV pipeline onto an edge
device, it is challenging to balance diverse computational
needs on a resource-constrained edge device, and therefore
solutions must be drawn from software architecture and IoT
domains. The CV solution proposed in this paper is part of a
broader collaborative effort between our DroneResponse [8]
research group at the University of Notre Dame, and several
Police and Fire Departments. These have included the South
Bend Fire Department [2], Michigan City Fire Department,
Mishawaka Fire Department, Mishawaka Police Department,
and the University of Notre Dame Police Department. In
particular, we have conducted focus groups with each of
these agencies to elicit their requirements and to engage
them in participatory design activities for deploying sUAS
in emergency response scenarios.
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