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Abstract—Large Language Models (LLMs) have the potential
to revolutionize automated traceability by overcoming the chal-
lenges faced by previous methods and introducing new possibil-
ities. However, the optimal utilization of LLMs for automated
traceability remains unclear. This paper explores the process of
prompt engineering to extract link predictions from an LLM.
We provide detailed insights into our approach for constructing
effective prompts, offering our lessons learned. Additionally, we
propose multiple strategies for leveraging LLMs to generate
traceability links, improving upon previous zero-shot methods
on the ranking of candidate links after prompt refinement.
The primary objective of this paper is to inspire and assist
future researchers and engineers by highlighting the process of
constructing traceability prompts to effectively harness LLLMs for
advancing automatic traceability.

Index Terms—automated software traceability, large language
models, prompt engineering

I. INTRODUCTION

The challenges of automating traceability have been well
documented over the past two decades [1], [15], [18], [25];
however, achieving satisfactory degrees of accuracy across di-
verse datasets has been an ongoing challenge [9], [13] that has
inhibited its adoption in industry. The release of the Google’s
BERT model [11] in 2018 introduced new possibilities for
the field, transforming the once far off dream of automatic
traceability into a reality for projects in common domains
[16], [17]. However, despite these improvements, challenges
such as highly-technical domain-specific terminology, low data
availability for training, and lack of interpretability meant
that automated tracing continued to under-perform in many
projects and domains where trace links were still delivered at
low degrees of accuracy [8], [19]. In the present day, large
language models (LLMs), such as GPT3 and Claude [2], [4],
offer the promise of further transformation in automated trace-
ability, eliminating many of these problems and introducing
new possibilities for the field. However, as of yet, there is
no clear direction on how best to utilize LLMs for automated
traceability.

When we began the work for this paper, our initial aspiration
was to discover the “silver bullet” prompt for automated
traceability. Similar to previous approaches [1], [16], [17], the
“silver bullet” would discern true candidate links from false
ones across all projects and circumstances. While we identified
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a prompting approach that performed well across multiple
projects, we concluded that the optimal prompting strategy
depends on factors like available resources, the model being
used, and the targeted usage scenario. Different LLMs exhibit
distinct strengths and weaknesses and may require different
prompts to achieve desired outcomes on the same data sets;
compounding this, variance across versions of the same base
model can alter performance on the same task [5]. More-
over, top-performing models can be cost-prohibitive to many
engineers and researchers. Despite LLMs’ capabilities, high
variability persists across projects, prompts, and parameters.

Therefore, by bringing attention to some of the obstacles
we encountered while crafting out prompts, we hope to make
researchers and practitioners aware of potential pitfalls when
employing the models for traceability related tasks. Rather
than merely showcase top results, we have chosen to elaborate
on the process we followed to construct our prompts with the
goal of inspiring other engineers who may wish to identify a
prompt that best suits their needs.

In this paper, we seek to shed light on the following
questions:

1) Do LLMs possess knowledge necessary for tracing

projects with technical domain-specific vocabularly?

2) Can LLMs provide reasonable explanations for their

decisions?

3) If so, can these explanations be utilized to improve

prompts?

4) Can reasoning be used to improve responses?

5) How can LLMs be leveraged to generate software trace-

ability links?

While much future work is needed in this area, we hope
to aid future researchers and engineers by highlighting the
process of constructing traceability prompts for leveraging
LLMs effectively to advance automatic traceability.

II. RELATED WORK

Effective automated software traceability has many benefits
for software engineering, and several approaches have there-
fore been proposed to address its challenges. In recent years,
the emergence of LLMs, such as GPT-3 and Claude, has shown
promise for automating software traceability and mitigating
the limitations of previous methods. In this section, we discuss



TABLE I

DATASETS
Project Name Description Artifacts Children Candidates True
The requirements for an instrument a part  High-Level Requirements — Low-Level
CMI [15] of NASA’s Metric Data Program (MDP). Requirements 3 265 13
Open-source electronic health record sys-
iTrust [21] tem. Created at North Carolina State Uni- Requirements — Java Classes 227 1135 13
versity as a part of a software engineering
course.
A system for managing the navigation of NL: Requirements — Design Definitions 99 495 4
Dronology [10] UAVs and their communication to the ground
control station. PL: Design Definitions — Java Classes 458 2290 48

Describes the artifact types in each dataset, the number of children per query, the resulting candidate links across all queries, and how many of those
candidates were true links. Dronology is split into two datasets, DronologyNL and DronologyPL, to focus on traces between natural language artifacts and
between natural language and programming language artifacts respectively.

the relevant works that have explored the use of large language
models and the subjectivity of trace establishment in the
context of software traceability.

Early work in automated traceability relied on classical
natural language processing (NLP) techniques such as the
vector space model (VSM) and latent semantic indexing
(LSD) to establish traceability links between software artifacts
based on their textual similarity [1], [3]. In the 2010s, deep
learning techniques such as long short-term memory networks
(LSTMs) and gated recurrent units (GRUs) were applied
to improve traceability performance. Researchers used these
neural networks to learn distributed representations of software
artifacts and match them based on semantic similarity [13].
Around 2018, pretrained language models and transformers
revolutionized the field. Models like Google’s BERT allowed
researchers to generate contextualized embeddings of software
artifacts and achieve state-of-the-art results in automated trace-
ability tasks [16], [17]. Transformer language models then
grew exponentially larger and more powerful, culminating in
GPT-3 and models with hundreds of billions of parameters.
GPT-3 demonstrated human-level language understanding with
175 billion parameters, achieving startling fluency and few-
shot learning capabilities [4], [7], [24]. GPT-4 continues to
push the limits of LLMs, scoring in the top 10% of the BAR
exam [22].

In the domain of software engineering, efforts have been
made to leverage large language models for various software
engineering tasks including code generation, summarization,
and enhancement [6], [27]. Although prompt-engineering is
a relatively new area of exploration, some prior work has
been done on how best to instruct models for various tasks.
Researchers have identified different prompt patterns and
techniques that tend to produce the best results - many of
which are employed in this paper [12], [29]. Additionally,
prompt engineers have crafted prompts for a variety of tasks,
including classification [14], [20] and ranking [23], both of
which we utilize in this paper.

However, there has not been extensive evaluation of the
potential for large language models in automated software
traceability. To address this gap, we conducted a preliminary

investigation using Claude, an LLM developed by Anthropic,
to predict trace links between software artifacts. We outlined
our two approaches for trace link prediction: classification and
ranking. The evaluation of our approaches will be discussed
in the following section.

III. EXPERIMENTAL SETUP

For the preliminary investigation reported in this paper, we
analyzed three software engineering datasets: CM1, iTrust, and
Dronology. We selected these datasets to span natural language
and programming language artifacts as well as diverse appli-
cation domains (embedded systems, healthcare, UAVs).

For each dataset, we selected only a subset of its data to
use in our study in order to increase the depth of our analysis,
reduce run-time, and decrease cost. To select the links, we
first calculated the number of children artifacts traced to each
parent and then identified the minimum, maximum and median
number of links. Using these categories, we identified five
parent artifacts: one with the fewest child links, three with
the median number of child links, and one with the maximum
number of child links. In cases where multiple parent artifacts
tied for the minimum, median, or maximum, we randomly
sampled from those tied parents. This allowed us to create a
set of trace queries that were representative of the project’s link
distribution of its trace queries. Table I describes the selected
queries for each system noting the parent and child types, the
number of potential trace links (candidates), and the number
of those links that were actually true.

Prior to the start of our experiments, we tested Ope-
nAl’s fext-davinci-003 model for predicting trace links, and
found that, while it required slightly different prompts, it had
comparable capabilities to Anthropic’s Claude instant model
(claude-instant-v1). Due to its lower cost and increased speed,
we selected Claude for the remainder of our experiments.
We also explored utilizing embeddings to compute similar-
ity scores between artifacts, similar to the original Vector
Space Model (VSM) approaches [1]. We examined the ada-
embedding model developed by OpenAl (text-embedding-ada-
002), howeyver, the results obtained from this investigation did
not show a significant advantage over VSM. Therefore, we
decided to leverage the generative capabilities of the models



for trace link predictions within this paper. Nevertheless, we
acknowledge the need for future endeavors to conduct a more
comprehensive analysis of the advantages and disadvantages
associated with utilizing embeddings for generating trace links.

Additionally, we obtained summaries of all code artifacts to
use in our experiments. We accomplished this by prompting
the model to provide a several sentences focusing on the high-
level functionality of the code. Although this removed some
information, the resulting summaries contained most of the
relevant details and reduced the number of tokens required
for each tracing prompt.

For our first approach, we prompted the model to classify
every source and target artifact pair. Each prompt followed
a similar format, consisting primarily of a question and in-
structions to answer ‘yes’ or ‘no’, followed by the content
of the source artifact numbered as ‘1’ and the target artifact
numbered as ‘2’. When a prompt directly referenced the source
or target in the question, it used (1) to indicate the source
or (2) to indicate the target, corresponding to the numbers
of the artifact content (e.g., “Is (1) related to (2)?”). Each
question was posed such that an answer of ‘yes’ was indicative
of a link between the answers, while ‘no’ indicated that the
artifacts were not linked. The resulting candidate links are
then evaluated against the ground truth links using common
classification metrics such as precision and recall.

Precision is the ratio of the number of correctly identified
relevant trace links to the total number of trace links identified
by the system. Recall, on the other hand, measures the ratio of
the correctly identified relevant trace links to the total number
of relevant trace links in the system. This is shown below
where TP is the true positives, FP is false positives, and FN
is false negatives.

TP
TP + FP

TP

Recall = ————
TP 4+ FN

Precision =

For our ranking approach, we prompted the model to rank
all targets for each source artifact. In this case, the model was
given the content of the source artifact and the ID and body of
each target, separated by newlines. The model was instructed
to return the artifact IDs in the order of relevance (from most
to least) in a comma delimited list. Given the non-deterministic
nature of responses from each model, there were times when
the model neglected to include some artifact IDs. This problem
was unique to the ranking task, as the model correctly output
yes and no each time for the classification task. In these cases
we randomly appended the missing ids to the end of the list
for our evaluation. We calculate the Mean Average Precision
of these rankings to showcase their performance. It provides
a measure of the effectiveness of the ranking algorithm in
identifying relevant trace links between software artifacts. To
calculate MAP, the precision is computed at different levels of
recall. The average precision is then calculated as the average
of the precision values at each recall level. Finally, the mean
of the average precision values across trace queries is taken
to obtain the MAP score. The equation for MAP is obtained

by taking the mean of the average precision values across
different queries or datasets:

N
1
MAP = N Zl Average Precision,

where NV is the number of queries or datasets.

Throughout our process of generating trace-links, we have
several conversations with the model to test its prior knowl-
edge, understand its responses, and to brainstorm potential
prompts and improvements to prompts. We include many
of these in our paper. It is important to note that these
exchanges occurred independently - the model could not ref-
erence previous conversations when responding to subsequent
questions or when making new traceability classifications.
Each conversation represented an isolated context, rather than
a continuing thread. This methodology enabled us to system-
atically probe the model’s knowledge without reliance on prior
memorization.

IV. ANALYSIS AND PROMPT DISCOVERY

Due to space constraints, we focus our analysis on our
prompt engineering process for the CM1 dataset. While we
followed a similar prompting process with other datasets, we
found that many of the challenges we faced were exemplified
in CM1. We specifically chose CM1 to focus on because it has
posed a unique challenge to researchers in the past [16], [17].
In the end, we show the performance of our best approach
on all the datasets to highlight that many of the lessons we
learned from CM1 were transferable to the other datasets as
well.

A. Domain-specific Knowledge

Before running trace-link prediction with the models, we
first wanted to understand what prior knowledge the model
had about the system being evaluated. Previously, BERT mod-
els often required extensive pre-training on domain-specific
documentation to interpret the vocabulary within a project
[16], [17]. CM1, in particular, includes a myriad of jargon
and acronyms that have long presented a challenge to previ-
ous methods of automatic traceability [15], [26]. Since one
strength of LLMs is their ability to perform well without
any training [4], [22], we wanted to explore whether Claude
possessed enough prior knowledge to succeed on the CMI
dataset. To do this, we had the following conversation with it
about one of the CMI1 artifacts containing a large number of
acronyms.

Human: What does this artifact mean?

The DPU-TMALI shall utilize SCM-DCI-SR, along with
ERRNO provided by DPU-DCI to decode errors and place
them on an error queue for DPU-CCM.




Assistant: ... Some guesses at the meaning:

DPU may stand for Data Processing Unit ... SCM-
DCI-SR seems to be some kind of protocol or interface
used for communication between DPU-TMALI and DPU-DCI.

ERRNO is a standard way for software components

to return error codes. So DPU-DCI seems to be providing
error codes to DPU-TMALI ... DPU-TMALI is receiving error
data from DPU-DCI, decoding or interpreting those errors,
and then queuing them up to be sent to DPU-CCM.

DPU-CCM seems to be a component that is receiving error
data, perhaps for monitoring purposes...

As shown in the conversation above, the model was able
to leverage its general knowledge to reason about what each
component did from only the artifact content. Although we
did not extensively investigate the model’s knowledge of each
acronym or vocabulary word in the dataset, this example shows
that Claude can interpret the meaning of complex acronyms
in some cases where previous models could not without fine-
tuning [16], [17].

B. Classification Prompt Discovery

Next, we began the process of creating a prompt to use for
our trace link prediction. As discussed previously, we provide
highlights only for our experiments with CM1 but performed
a similar analysis across datasets. Results for each prompt can
be found in Table II. Our initial prompt for the model was
general:

Human: Is (1) related to (2)? Answer ‘yes’ or no'.

The content of the two artifacts was included in the prompt
following the format explained in Section III. On CM1, this
prompt resulted in the model correctly identifying 6 out of 13
links and mispredicting 27 of the 225 true negative links as
positive links for precision of 18% and recall of 46%.

In order to understand why the prompt failed on over half of
the true links, we randomly selected one of the false negatives
and prompted the model to explain why it responded ‘no’ for
the link. For reference, the artifacts in the link are shown in
Table IV in the row for Link #1.

Assistant: ...The first paragraph is very high level, while the
second paragraph goes into more technical implementation

details. If they were related, you would expect a more
consistent level of technical depth...

Inspired by this response, we inserted “Ignoring the differ-
ent abstraction levels of the artifacts...” before our question.
Interestingly, this link was correctly predicted when we used
the modified prompt. Throughout our experiments, this would
be a re-occurring problem where the model often failed to
predict links between artifacts with different levels of de-
tails/abstractions. We therefore began instructing it to ignore
abstraction levels in many of our following prompts. When
we re-ran this modified prompt on the dataset, it correctly
identified 7 out of the 13 links (one more than before) but also
predicted 86 false positives. We again prompted it to explain
its decision for one of the remaining false negatives (Link #2

in IV). Its response and our subsequent questioning are shown
below:

Assistant: ...while there is a small overlap in the error
handling mention, the main substance and purposes of
the artifacts are distinct. | would still assess them as not
strongly related...

Human: Would there be a traceability link between artifact 1
and 2?

Assistant: There could potentially be a weak traceability
link between the two artifacts based on the minor overlap
in error handling/queueing...

We found that asking it directly if the artifacts were linked
received a better response, and further prompting revealed that
Claude had a relatively robust understanding of traceability,
thus we decided to update our prompt as follows:

Human: Is there a traceability link between (1) and (2)?

We suspected that this prompt would be more specific,
potentially eliminating some of the false positives, and this
was indeed the case with Claude only predicting one false
positive. However, it now correctly identified only 4 of the
13 links. This time when questioned about why it incorrectly
believed Link #3 (Table IV) was un-traced, Claude’s confusion
seemed to come from it not realizing the artifacts were talking
about the same system:

Assistant: ...The first requirement mentions specific
tasks...that need to report heartbeats, while the second
requirement talks about tasks in general without specifying
which tasks. So it's not clear if the tasks mentioned in the
first requirement are the same as those referred to in the
second...

We found this to be another common point of confusion
for Claude so we updated our prompt to include “Below are
artifacts from the same software system” at the start of our
prompt.

Human: Below are artifacts from the same software
system. Is there a traceabilty link between (1) and (2)?

With this additional information, Claude identified all of
the project trace-links but wrongly predicted 98 negative links
to be positive. Since Claude now mistakenly believed many
artifacts were linked, we randomly selected a false positive
(Link #4 in Table IV) to investigate further. This lead us to
gain the following insight into the misprediction:

Assistant: Yes, there is a traceability link between (1) and
(2). (1) mentions that the DPU-TMALI places errors on an
error queue for the DPU-CCM.

(2) describes the error collection and reporting
mechanism of the DPU-CCM, specifically referring to
enqueueing errors.

So (2) provides an implementation detail for the

error queueing functionality briefly mentioned in (1).
Therefore, there is a traceability link between these two
artifacts in the software system.




We found nothing in Claude’s response to be inherently
wrong, so we speculated that the mistake came not from
a misunderstanding but rather from a misalignment between
Claude and the tracers of CM1 on what should be considered
a trace-link. Thus, we began to generate prompts that focused
on the specific relationships between the requirements and
regulations of CM1.

system. Ignoring different levels of abstraction, can

Human: Below are artifacts from the same software
(2) be
decomposed from (1)? Answer ‘yes’ or 'no’.

This led to the model identifying 8 of the trace links with
only 14 false positives. These missed trace links seemed to
result from a confusion surrounding the model’s understanding
of decomposition, where the model believed that no new
information could be added to a decomposed requirement. This
was indicated by its response below for Link #1:

be derived or decomposed from (1) alone. The answer is

Assistant: ... So (2) contains new information that cannot
‘no’.

Replacing the question with “does (2) fulfill (1)?” resulted
in the model missing 7 links for a similar reason, including
Link #1 again:

Assistant: ...(2) lacks critical details and scope needed to
conclusively fulfill (1)...

Despite missing 7 links, the model was able to correctly
rule out all but 3 true negatives. Although both of these
prompts were too restrictive (i.e. not all the true links were
captured), they seemed to align Claude with at least some of
the relationships established in CM1 as indicated by its success
at eliminating false links.

Some other prompts we tried included:

1. are (1) and (2) part of the same feature and share
functionality?

2. does (2) implement system functionality from (1)?

3. are (1) and (2) dependent on the same system capability?

where each prompt began with “Below are artifacts from the
same software system. Ignoring different levels of abstraction”
and concluded with ”Answer ‘yes’ or ‘no’.” Each subsequent
prompt successfully predicted one more positive link than the
one before, but led to an increasing number of false positives
ranging from 28 all the way to 48 for #3.

Our final prompt of this structure was a combination of

several previous prompts that had shown promise:

Human: Below are artifacts from the same software
system. Ignoring different levels of abstraction, can (2) be
one of the hierarchical decompositions of (1)? Consider
whether (2) implements a part of (1).

By adding “one of the hierarchical” and “a part of”’, we
hoped to make the prompt less restrictive so that the model
would allow new information to be added to decomposed
artifacts. This time the model correctly predicted all but one
true link. Its 44 false positives still fell short of our goal of

less than 20 but were significantly less than the 98 returned in
the previous approach that achieved these high levels of recall.

C. Introduction of Chain-of-Thought Reasoning

As our prompt evolved, we saw improvements in the
model’s link-prediction abilities, but the results were still
falling short of our goals. It seemed evident that we needed to
approach the task differently. As a result, we decided to break
down the task into steps to aid the model in reasoning about
the relationship between the artifacts before arriving at a final
decision. This process, known as “chain of thought”, has pre-
viously shown to be effective in helping LLMs solve complex
tasks [28]. To test the impact of incorporating reasoning into
the process, we reran our original prompt with this additional
step at the beginning of the prompt:

Human: You are working on a software system and are
given a high-level requirement and a low-level requirement.
Your job is to determine if they are traced. Give one reason
why (1) might be related to (2) enclosed in <related >
</related> and one reason why (1) might be un-related

to (2) enclosed in <unrelated> </unrelated> but ignore
levels of abstraction. Then based on these reasons, do you
think (1) is related to (2)? Answer should be yes’ or 'no’
enclosed in <answer> </answer>.

Having it enclose each separate response in xml tags
allowed us to easily parse its answer despite the added
complexity. An example of the model’s response for link #5
in Table IV is shown below:

Assistant: <related> Both specify requirements related to
processing commands within a certain time </related>
<unrelated> Requirement 1 specifies a time constraint
while requirement 2 provides a general description of a
command and control subsystem </unrelated> <an-
swer>yes </answer>

Recall increased by nearly 50% while precision rose by
14%. With the added reasoning step, the model missed only
1 true link and misidentified just 25 false positives. With
both questions (1) and (3) from Table II, the introduction of
incremental reasoning helped the model find a higher portion
of the true connections in the data. Due to time constraints, we
were unable to test the reasoning on the remaining questions
but we believe this is an interesting avenue for future work.

Encouraged by this initial success, we decided to have
the model answer each of our questions as intermediate
steps before finally determining whether the artifacts were
related. We hoped this approach would help the model explore
different ways in which the artifacts could be connected. It
also allowed us to use a simple ranking system in which more
‘yes’ responses would increase the likelihood that the artifacts
were linked. By quantifying the model’s degree of support for
a relationship through the ranking system, we could evaluate
not just whether it predicted a link but also how confident it
was in that prediction based on the reasoning exhibited in its
responses.



(Human: | am giving you two software artifacts from a sys- )
tem. Your job is to determine if there is a traceability link.
Answer whether (2) implements a part of (1) with yes or
no enclosed in <implements> </implements>. Answer
whether (2) is a hierarchical decomposition of (1) with yes
or no enclosed in <decomposed> </decomposed>.
Answer whether (2) fulfills (1) with yes or no enclosed in
<fulfills> </fulfills>. Answer whether (2) and (1) are part
of the same feature and shares functionality with yes or
no enclosed in <feature> </feature>. Answer whether
(2) and (1) are dependent on the same system capability
with yes or no enclosed in <capability> </capability>.
Use your answers to give one reason why (1) might be
related to (2) enclosed in <related> </related> and
one reason why (1) might be un-related to (2) enclosed in
<unrelated> </unrelated>> Now answer is (1) related to

\(2) with yes or no enclosed in <traced> </traced>.

D. Ranking Prompt Discovery

Despite not outperforming other classification prompts,
ranking the artifacts by the number of ‘yes’ and ‘no’ an-
swers, did provide the opportunity to establish a threshold
retrospectively, allowing us to categorize items based on the
strength of the model’s prediction instead of relying on a
single yes/no choice. This, combined with Claude’s new 100k
context window, inspired us to experiment with an entirely
new strategy.

For our next experiment, we gave Claude the following
instructions:

p
Human: # Task

Rank all related artifacts from most to least related to the

source.

Source: [SOURCE ARTIFACT]
# Artifacts

<artifact>

<id>... </id>
<body>... </body>
</artifact>

# Instructions
Rank the artifact bodies from most to least relevant to the
source. Provide the ranked artifacts as comma delimited
list of artifact ids where the first element relates to the

| source the most and the last element does so the least.

J

By providing the model with more context about the system
in the prompt and allowing it to compare all targets when
making its decision, we hoped to see a performance boost.
Unfortunately, the task was not as simple as we had hoped,
and we, like previous researchers, identified another nuance
with the prompts - order matters [23]. When we presented
the target artifacts in a random order, performance was barely
above random; however, ordering artifacts that were more
likely to be linked at the top, delivered significantly higher
performance. It seemed that unless there was some pattern
already established, the task would overwhelm the model.
Because of this, we decided to rank the target artifacts based
on their VSM similarity to the source. Then, we presented the
model with targets in this order. With this initialization, the
model improved upon the original VSM ranking. Furthermore,
While discussions throughout the paper have focused on the
CMI1 dataset, we applied this approach to the three other
datasets presented in Table I and report results for all four
datasets in Table III.

E. Summary of Results

Overall, our results demonstrated that the ranking task could
be a useful approach to automated traceability, but it may
require additional steps and further prompt refinement to reach
the necessary performance. In the future, we plan to explore
ways of decomposing the overall task into simpler, incremental
steps to reduce complexity for the model as we did for the
classification task. It should also be noted that the ranking
task necessitated a large context window, which may pose
a challenge for certain open-source models. Consequently,
classification remains a valuable alternative when ranking is
infeasible. Furthermore, classification opens up avenues for
diverse applications of traceability, such as “trace views” that
we discuss further in Section VI.

V. THREATS TO VALIDITY

While this initial study provides promising evidence that
prompt engineering can enhance LLMs for software trace-
ability tasks, several threats could limit the validity of our
findings. First, we evaluated only three open-source projects
and only provide a detailed analysis of one, limiting the
generalization of our findings. However, we selected projects
that spanned multiple domains, artifact types, and sizes to
improve generalizability. We also constructed trace queries
that were representative of their parent distribution. Second,
existing traceability datasets are typically incomplete, as truly
considering every candidate link in a project grows O(n?) with
the number of artifacts. The LLMs identified potential missing
traces, but we could not fully validate their accuracy without
a project expert. Third, our study used a limited set of LLMs
which may not represent the full space of the current state-
of-the-art. However, we chose the leading LLMs from our
initial explorations with publicly available commercial models.
Clearly, there are many extension to this study considering
more datasets, different LLMs, and other prompt engineering
methods. We leave the full exploration of the problem space to
future work and focus on showing the potential these models
have towards advancing automated software traceability.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Throughout our experiments, we addressed multiple ques-
tions and derived several key takeaways regarding using LLMs
for trace-link prediction.

A. Key Takeaways

o Small modifications to prompts can lead to significant
differences in model outputs, emphasizing the importance
of carefully crafting prompts.

e The performance of a given prompt in comparison to
alternative phrasings can vary across datasets and models,
though some general techniques like chain-of-thought
reasoning tend to produce a more consistent performance.

o LLMs frequently identify different artifact relationships
by than those selected by human tracers. Prompts should
specify the targeted usage of the traceability links (e.g.



TABLE II
CLASSIFICATION METRICS FOR CM1 PROMPTS

ID  Prompt | Precision Recal TP TN FP FN
1 Is (1) related to (2)? 18% 46% 6 225 27 7
32.4% 923% 12 227 25 1
2 Ignoring the different abstraction levels of the artifacts, is (1) related to (2)? \ 17% 54% 7 218 34 6
3 Is there a traceability link between (1) and (2)? 80% 31% 4 251 1 9
40% 46.2% 6 243 9 7

4 Below are artifacts from the same software system, is there a traceability link between (1) 12% 100% 13 154 98 0
and (2)?

5 Below are artifacts from the same software system. Ignoring different levels of abstraction, 36% 62% 8 238 14 5
can (2) be decomposed from (1)?

6 Below are artifacts from the same software system. Ignoring different levels of abstraction, 67% 46% 6 249 3 7
does (2) fulfill (1)?

7 Below are artifacts from the same software system. Ignoring different levels of abstraction, 32% 54% 7 237 15 6
are (1) and (2) part of the same feature and share functionality?

8 Below are artifacts from the same software system. Ignoring different levels of abstraction, 22% 77% 10 216 36 3
does (2) implement system functionality from (1)?

9  Below are artifacts from the same software system. Ignoring different levels of abstraction, 19% 85% 11 204 48 2
are (1) and (2) dependent on the same system capability?

10 Below are artifact from the same software system. Ignoring different levels of abstraction, 22% 92% 12 208 44 1
can (2) be one of the hierarchical decompositions of (1)? Consider whether (2) implements
a part of (1).

11 Combining all questions and chain-of-thought reasoning. \ 37.9% 84.6% 11 234 18 2

Rows in gray use chain-of-thought to make their final trace classifications.

change impact analysis, hierarchical composition) to bet-
ter align the model’s output with the desired outcome.

o Specifying the targeted usage has the additional benefit
of opening the door for creating different trace views - a
possible advantage over purely similarity-based methods.

« Requiring models to show intermediate reasoning steps
boosts performance on some tasks and builds in explana-
tions into the decision making process. This is useful to
both to those establishing the trace links and those using
them.

« List ranking style prompts are highly sensitive to the order
of artifacts presented in the prompt. This variability was
mitigated by pre-sorting by VSM scores.

o Overall, carefully tailored prompts are needed to harness
the versatility of LLMs for the task of traceability and
to produce outputs that are consistent with the goals of
traceability engineers and researchers.

Throughout this process, one of our biggest takeaways
was how minor adjustments to prompts could have dramatic
impacts on the results. Subtle changes, such as pluralizing

TABLE III
MEAN AVERAGE PRECISION OF RANKED TARGET ARTIFACTS

Dataset Ranking by VSM  Ranking by VSM + LLM
CM1 70.7% 79.4%
iTrust 44.5% 44.2%
Dronology (NL) 82.9% 100%
Dronology (PL) 23.2% 30.8%

words, interchanging prepositions, or reordering phrases, could
alter the outcomes. These findings underscore the inherent
challenge of engineering robust prompts. In future research,
we aim to explore strategies that mitigate such variability
and delve into the effectiveness of different prompts across
different models.

Further, due to the limited number of trace queries we
analyzed per dataset as well as our integration of chain-of-
thought, we were able to review trace predictions in depth.
Interestingly, we were often surprised by the strength of many
false positives, forcing us to re-think the accurate and complete
nature of these datasets. Reviewing predictions for even our
smallest subset (265 combinations) became an arduous task.
In reality, industrial projects range from 50K to 500K potential
trace links, making it extremely challenging to have complete
and standardized tracing practices. However, examining the
predictions of a few selected trace links may still provide trace-
ability experts with the insights they need to refine prompts
in a way that improves performance across the project.

B. Do LLMs possess knowledge necessary for tracing projects
with domain-specific vocabulary?

Our conversations with Claude revealed that it contained
sufficient knowledge to draw many correct conclusions about
the CM1 system, irrespective of the acronyms or jargon used.
Furthermore, we were able to obtain high MAP scores without
performing any additional pre-training. Nevertheless, we plan
to experiment with pre-training in the future to see if it can
provide a performance boost. Additionally, we hope to test
the model’s knowledge on a wider range of datasets. It is



important to note that since the datasets in this paper were
all publicly available at the time of the model’s creation, we
cannot eliminate the possibility that the model had previous
exposure to them. Thus, we are particularly interested to see
how the model performs on an entirely new dataset.

C. Can LLMs provide reasonable explanations for their deci-
sions?

By probing the model to elicit explanations for many of
its mispredictions, we found that it could provide an in-depth
analysis of its decision. Whether or not these explanations
are accurate reflections of the reasoning behind the model’s
decision is beyond the scope of this paper, but we did find
that when we adjusted the prompts based on the model’s
explanation, we were often able to change its answer.

D. If so, can these explanations be utilized to improve
prompts?

The ability to alter the model’s decision by using its
explanations proved to be a useful tool for improving prompts.
Engaging in conversations with the model enabled an in-
creased understanding of its interpretation of a given prompt,
facilitating an iterative approach to refine prompts. Gradually
adjusting the prompts in this way can be used to find a prompt
that better aligns the model’s understanding with the objectives
of the tracer.

E. Can reasoning be used to improve responses?

By asking the model to formally articulate its thinking in
response to probing questions, the model was able to make
a more well-informed final judgment about the relationship
between the artifacts in the classification. This also offers
the advantage of allowing the task to be broken down into
smaller pieces, where the model first evaluates the relationship
between the artifacts and then makes a final decision. Further,
chain-of-thought reasoning has the potential to improve the
ranking task and should be evaluated in future work.

F. How can LLMs be leveraged to generate software trace-
ability links?

In our experiments, we explored two different tasks which
could be used to predict trace links from pairs of software
artifacts: classification and ranking. While ranking allows for a
nuanced expression of confidence in a prediction, classification
offers the advantage of needing a smaller context window
and enables the discovery of diverse relationship types. By
adapting our prompts to describe various relationships, we
captured distinct links. For instance, when inquiring whether
two artifacts were part of the same feature, we discovered
different links than when asking if they shared functionality.
This can be used to present multiple “views” of traceability,
where each view highlights different relationships within the
system. This may be particularly valuable for change propa-
gation where the prompt can focus on determining whether a
modification to one artifact necessitates a change in the other.
Additionally, multiple prompts may be combined to capture

the many different relationships present in the project. This
presents an avenue for future investigation.

An alternative way in which LLMs can be used for trace
link prediction is by comparing the similarity of artifact
embeddings. As mentioned previously, we opted not to explore
this method in this paper, but future works might benefit from
comparing this approach to those discussed in this paper.

G. Concluding Remarks

Overall, our experiments demonstrated that large language
models show promise for tracing software systems. As op-
posed to previous approaches for automated traceability, LLMs
can perform well without pre-training and are able to offer
detailed explanations of their decisions. These explanations
are not only useful for helping an engineer make an informed
decision about a trace-link but can guide the process of
selecting an appropriate prompt for the tracing task. Through
iterative prompt refinement, the models can be used to classify
trace links and establish a diverse set of relationships between
project artifacts. The models are also capable of ranking target
artifacts based on how related they are to a source artifact,
albeit with aid from VSM. Ranking can allow engineers to
sift through a prioritized list of candidate links and potentially
reducing the review time required.

While this paper showcases the power of LLMs for trace-
ability, it also highlights many of the lingering challenges in
engineering effective prompts for the models. Careful tailoring
of prompts can help to reach high performance for each project
but this was ultimately a time-consuming task that may not
always be feasible. Although the community might one day
discover a silver bullet” prompt, a more practical path forward
may be to identify common patterns that make prompts most
effective for certain projects and tracing objectives. Discov-
ering such patterns could enable partially automating this
process so that it can be seamlessly integrated into current
traceability workflows. There remains much future work that
must be done to gain a comprehensive understanding of how
LLMs can best be utilized to enhance the field of traceability.
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TABLE IV
INVESTIGATED LINKS

ID

Source

Target

The DPU-CCM shall
implement a mechanism
whereby large memory loads
and dumps can be
accomplished incrementally.

Memory Upload and Download Handling Data can be uploaded to several types of locations,
including:

« DRAM

« EEPROM

o Hardware registers

« EEPROM filesystem

The D-MEM-DAT-UPLD command specifies the target location. If the destination is the EEPROM
filesystem, a ”block number” is provided in lieu of a memory address, which is used by the DPU
FSW to formulate a filename of the form eefsi:DPU_blk.##, where ## is the block number. In
this case, once the entirety of the uploaded data is received by the DPU FSW, the uploaded data
is then written to that file in the EEPROM filesystem. If a file already exists with that name, it
is overwritten. The EEPROM filesystem can be reinitialized using the command D-MEM-DISK-
INIT.

The DPU-TMALI shall utilize
SCM-DCI-SR, along with
ERRNO provided by
DPU-DCI to decode errors
and place them on an error
queue for DPU-CCM.

Control and Monitoring the CCM Control Task initializes the DPU FSW. It is the responsibility
of the CCM Control Task to establish a successful boot. It does so by blocking on temporary
semaphores, each with a 5 second timeout, after spawning the SCU Interface Task and the CCM
Command Task. If both of these tasks report a successful initialization by giving the semaphore,
the CCM Control Task toggles the BC_INDEX parameter in EEPROM to indicate a successful
boot. If either task does not report a successful initialization, the CCM Control Task disables
the watchdog strobe to effect a reboot of the DPU. The rationale for selecting the successful
initialization of these two tasks as the definition of a successful boot is that the DPU FSW
requires these tasks, as a minimum, to establish ground contact and provide commandability.
Once this initialization is complete, the task blocks on a binary semaphore which is given by the
SCUI Command ISR upon arrival of the 1 Hz Clock Message. In the event a Clock Message does
not arrive, the semaphore will time out after 1.5 seconds. The CCM Control Task remains alive
to create and transmit DPU housekeeping at the appropriate intervals, perform various periodic
processing tasks, and to process memory dump commands. The final call to ccmErrEnq() is
performed in order that if an error occurs in an interrupt service routine, a global variable is set
to the value of the errno which is then enqueued into the Error/Event Queue as part of this task’s
normal processing. The DPU-CCM shall collect a TASK_HBEAT from DPU-SCUI, DPU-CCM,
DPU-DCX, DPU-TMALLI, and DPU-DPA. Non-responsive tasks will be reported in DPU_HK.

The DPU-CCM shall collect a
TASK_HBEAT from
DPU-SCUI, DPU-CCM,
DPU-DCX, DPU-TMALLI, and
DPU-DPA . Non-responsive
tasks will be reported in
DPU_HK.

Control and Monitoring Every time the CCM Control executes, it calls ccmPerProcess() to handle
periodic processing responsibilities. Such responsibilities include analog to digital conversion
updates, DPU task monitoring, ICU heartbeat message production, and watchdog strobe. The
ccmHealthChk() function, called by ccmPerProcess() verifies the execution of other tasks by
monitoring the amount of time that has elapsed since each task last reported. Other tasks report
their execution to the CCM Control Task by calling the function, ccmTaskReport(), providing
their task index. Each task has an expected execution frequency, and if a task does not execute
as expected, an error is reported in DPU housekeeping. If the Command Dispatch Task fails to
report for an extended period, the DPU will execute a reboot, since it is impossible to command
the DPU if this task is not executing, otherwise it will strobe the watchdog.

The DPU-TMALI shall utilize
SCM_DCI_SR, along with
ERRNO provided by
DPU-DCI to decode errors
and place them on an error
queue for DPU-CCM.

Error Collection and Reporting The ccmErrEnq() function tracks the last error reported and its
frequency of occurrence. Once an error code has been reported it becomes the previously reported
error code maintained by ccmErrEnq(). A repetition count is then incremented for each subsequent,
consecutively reported, identical instance of this previously reported error. If this error code is
reported more than once in one high-rate housekeeping reporting period, then a special error,
S_ccm_ERR_REPEAT is enqueued with the repetition count for the error encoded in the least
significant byte. This mechanism effectively reduces the potential for housekeeping telemetry to
become flooded with a single repeated error.

The DPU-CCM shall process
real-time non-deferred
commands within B ms of
receipt from the ICU or the
SCU.

The Command and Control CSC provides the core command and control functionality for the
system. It includes tasks for initializing the system at bootup, scheduling housekeeping data
generation, monitoring other tasks, executing periodic tasks, and receiving and dispatching real-
time commands. It maintains data structures for system state, commands, errors and events.
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