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The interplay between stochastic chemical reactions and diffusion can generate rich spatiotemporal
patterns. While the timescale for individual reaction or diffusion events may be very fast, the timescales for
organization can be much longer. That separation of timescales makes it particularly challenging to
anticipate how the rapid microscopic dynamics gives rise to macroscopic rates in the nonequilibrium
dynamics of many reacting and diffusing chemical species. Within the regime of stochastic fluctuations, the
standard approach is to employ Monte Carlo sampling to simulate realizations of random trajectories. Here,
we present an alternative numerically tractable approach to extract macroscopic rates from the full
ensemble evolution of many-body reaction-diffusion problems. The approach leverages the Doi-Peliti
second-quantized representation of reaction-diffusion master equations along with compression and
evolution algorithms from tensor networks. By focusing on a Schlogl model with one-dimensional
diffusion between L otherwise well-mixed sites, we illustrate the potential of the tensor network approach
to compute rates from many-body systems, here with approximately 3 x 10'> microstates. Specifically, we
compute the rate for switching between metastable macrostates, with the expense for computing those rates
growing subexponentially in L. Because we directly work with ensemble evolutions, we crucially bypass
many of the difficulties encountered by rare event sampling techniques—detailed balance and reaction

coordinates are not needed.
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I. INTRODUCTION

Connecting microscopic kinetics to emergent rates has a
long history for equilibrium and nonequilibrium processes.
Complex systems often settle into metastable basins with
rare transitions regulating the rates of switching between
the emergent states. In equilibrium, transition state theory
[1,2], variational transition state theory [3], Grote-Hynes
theory [4,5], and transition path sampling (TPS) [6,7] have
given strategies to estimate the transition rate. Away from
equilibrium, theories built upon a free-energy landscape
lose their applicability, yet trajectory sampling approaches
can extract rates from microscopic dynamics, through a
noise-guided TPS approach [8,9] or forward flux sampling
(FFS) [10-12]. For all their merits, sampling approaches
bring intrinsic challenges. How many samples are required
to estimate the rate? Is a good approximate reaction
coordinate needed, and if so, how is it found [13]? How
does the expense grow with larger or more complicated
microscopic systems? Motivated by those ubiquitous
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concerns, we set out to consider a different approach—
one that effectively samples all possible trajectories as an
ensemble evolution instead of propagating individual
realizations. Such a proposition may appear absurd given
the exploding state space presented by the many-body
problem, but we show that for the class of discrete state,
continuous-time, reaction-diffusion master equations
(RDMESs), we can evolve the full distribution of classical
many-body systems in a numerically controllable manner
by combining two well-developed methods, the Doi-Peliti
(DP) formalism and tensor network (TN) algorithms.
While TPS and FFS have been developed for a variety of
dynamical equations of motion (Hamiltonian, Langevin,
Markov jump, etc.), we focus our attention solely on the
chemical master equation (CME) dynamics, the setting
where FFS was first developed [10]. More specifically, we
study discrete reaction-diffusion dynamics of L sites or
voxels as they are often called in the RDME literature
[14,15]. The rationale for this focus is twofold. From a
practical perspective, the RDME is important as a popular
method to model chemical and biological processes
[16-18]. From a theoretical perspective, the RDME is
interesting because it provides a setting where one can
analyze the influence of stochasticity on the emergence of
patterns [19-21]. In many pattern-formation problems, it is
possible to understand the underlying physics in terms of a
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mean-field partial differential equation that tracks spatio-
temporal evolution of deterministically evolving fields
[22,23]. It is, however, well appreciated that stochastic
effects can quantitatively and even qualitatively impact
kinetics [24-29]. It is therefore important that the meth-
odology we discuss captures more than just the typical
dynamics. Accurately computing transition rates between
metastable states requires quantitatively resolving even rare
tails of the state space distribution since these rare fluctua-
tions can be instrumental in triggering transitions [11,30].

Historically, similar schemes for the CME ensemble
evolution have been hampered by the curse of dimension-
ality. As aresult, exact solutions are rare [31] and numerical
solutions often resort to sampling methods built upon the
kinetic Monte Carlo stochastic simulation algorithm (SSA)
[32,33], also known as the Gillespie algorithm. Another
approach is to evolve a subset of the state space through the
finite state projection (FSP) method [34]. FSP has pre-
viously been combined with TNs to approximately describe
the CME [35,36], resembling our use of TNs to tame the
many-body problem. Unlike those projective methods,
however, the approach we describe uses the time-dependent
variational principle (TDVP) to evolve the dynamics with
probability conservation at all times, akin to prior work
with diffusion and no reactions [37-39]. Since we estimate
rare events by measuring the distribution’s small proba-
bility fluxes, conservation of probability and high-fidelity
dynamical evolution are materially important.

While the formalism we describe applies quite generally
to different well-mixed and reaction-diffusion models, we
center our paper around a single model problem: rate
calculations for transitions between basins of the Schlogl
model [40] in the bistable regime, both with and without
diffusion [41]. In Sec. II, we first illustrate the rare event
problem and extract rate constants from a propagator in the
well-mixed regime. For more complicated systems (either
systems with more chemical species or more voxels), the
curse of dimensionality precludes the exact calculation of
the propagator, but the remainder of the paper shows how to
employ TN to follow the same conceptual path. In Sec. III,
we review the Doi-Peliti framework for writing reaction-
diffusion dynamics in a second-quantized field theoretic
form. Section IV then reviews the TN matrix product state
(MPS) ansatz, a controllable approximation to the ensem-
ble that can be evolved via TDVP. Those methods are
applied to the many-body rate calculation in Sec. V. In
Sec. VI, we show results for the RDME with diffusion
between L well-mixed Schlogl voxels, demonstrating that
the methodology can extend numerical transition rate
calculations to regimes where the SSA becomes imprac-
tical. The approach effectively evolves the probability of
occupying each microstate in an unfathomably large many-
body state space, yet the calculations scale subexponen-
tially with system size and do not assume detail-balanced
equilibrium. Section VII discusses how the TDVP

calculations yield not only a rate, but also a mechanism.
Finally, in Sec. VIII, we discuss potential applications and
challenges that should motivate future work.

II. ENSEMBLE RATE CALCULATIONS

Consider an archetypal two-state rate process between
reactants and products R=P, initiated entirely in the
reactant state. After some reaction timescale, the concen-
tration of products grows before eventually leveling off at
its steady-state value. The reaction rate can simply be
defined and measured in terms of how quickly the product
concentration rises. An alternative formulation is to study
the fate of an individual reactant on its path to transitioning
into a product. The TPS and FFS path sampling approaches
extract the reaction rate by focusing on the statistical
properties of these individual trajectories. Algorithms exist
to propagate those single trajectories, algorithms that can be
practically implemented even when the system grows large
and complex. By contrast, propagating the entire ensemble
of trajectories has typically been limited to simple low-
dimensional problems. In this section, we illustrate an
ensemble-evolution rate calculation for a simple case in
order to develop notation and lay the groundwork for the
many-body problem. The remainder of the paper will show
that the methodology can be extended beyond such simple
problems by employing TNs.

A. Well-mixed Schlogl model

Consider the well-mixed Schlogl model, a quintessential
example of bistability in chemical reaction networks
(CRNs) [42,43]. The model tends to be studied under
chemostatted conditions that fix the concentration of two
species A and B, while allowing the amount of a third
species X to evolve according to the four reactions:

X + A = 3X, (1)

e

B <X, 2)

Cq

where ¢, ¢,, C3, and ¢, are the stochastic rate coefficients.
Our starting point is microscopic such that the rate ¢,
should be interpreted as the reciprocal of the waiting time
for a particular set of 2 X molecules to react and form 3 X
molecules when mediated by a fixed number of A mole-
cules. In the large-system, well-mixed limit of chemical
kinetics, it is common to also define kinetic rate constants
k. = ¢,(NoV)™ for each reaction r with m reactants. Here,
Avogadro’s number N4 serves to convert between micro-
scopic measures (counting molecules) and macroscopic
kinetic measures (concentrations in molarity) for a volume
V. In this paper, we focus on the microscopic kinetic
picture, viewing the ¢, as the fundamental parameters, but
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these parameters can be converted into k, for linear
reactions or in the thermodynamic limit [44]. In that
thermodynamic limit, the stochastic kinetics often tends
to the solutions of the deterministic reaction-rate equations.
For the Schlogl model, analysis of that deterministic limit
reveals that the sign of the discriminant,

A = 4i3k;A’B — K3K2A? + 4k, k3 — 18k koksk,AB
+ 271213 B2, (3)

determines the number of stable steady-state solutions [42],
where the A and B denote the concentrations of species A
and B. While holding the rate coefficients fixed, the sign of
A changes as a function of A and B, allowing one to pass
from A > 0 with one steady-state solution, through A =0
with a diverging variance of the number of X molecules
[45], and on to A < O with one unstable and two stable
solutions. In the A < 0 regime, a finite (stochastic) system
sees the regions around the two stable fixed points become
metastable states. The number of X molecules stochasti-
cally switches between the two metastable values. A
representative trajectory, shown in Fig. 1, oscillates
between a state with n %5 X molecules and another with
n = 50. We first set out to compute the rate of bistable
switching between those two metastable states in the well-
mixed regime, making use of the fact that the dynamics is
one dimensional—n executes a random walk between 0
and some large maximum number M, which we impose for
the sake of calculation.

Rather than track n(z) for a single trajectory as in
Fig. 1, the ensemble approach tracks evolution of the
distribution p,(n), measuring the probability that an
individual trajectory would have n molecules at time t.
Foreshadowing the analogies with quantum-mechanical
methodologies, we choose to write that distribution as a
ket: |p,) = [p.(0), p,(1), ..., p,(M)]", where T indicates
the transpose to give a column vector. The distribution
evolves according to the master equation:

AP pip,), @
Here, H is a rate matrix whose off-diagonal elements H,,,
are the rates of transitioning from n X molecules to n’ and
whose diagonal elements H,, are minus the rate of
escaping from the state with n X molecules. The rate
matrix conserves probability, a fact compactly expressed as
(1|H = 0(1|, with (1| denoting a vector of ones. The
distribution |p,) can always be formally evolved in terms
of a propagator e’ as

|p:) = ™[ po). (5)

Because of the analogy with quantum-mechanical
time evolution, we equivalently call H an effective

(a)

80 f

60 f

0

0 40 50

(b) 002
= 0015

& 001
m0

~— 0

A, 0.005] °

0

FIG. 1. (a) A typical trajectory in the bistable regime
(¢, =36.38, ¢, =0.040, ¢3 =2200, and ¢4 = 37.6) of the
well-mixed Schlogl model of Sec. II A. The system stochastically
switches between the two metastable basins, where basin A is the
top colored region and B is the bottom colored region. (b) Starting
with a distribution localized in basin A, the evolution has three
timescales. Initially, no trajectories can reach B. After the so-
called molecular timescale 7., the fastest trajectories begin to
reach 3. Subsequently, probability leaches into region B at a
constant rate with P(B,|Ay) o kg 42. The inset shows that growth
on a much longer timescale, revealing the third scale when the
system eventual approaches the steady state.

Hamiltonian. Assuming H is irreducible, the longtime
limit for this distribution tends to the unique steady
state |7t) = lim,_ o, €| py).

H can be decomposed into contributions from the two
different reversible mechanisms of Egs. (1) and (2), labeled
HA and H®, respectively, based on whether the transitions
are mediated by the chemostatted species A or B. Then, the
Schlogl model at the level of the master equations corre-
sponds to tridiagonal rate matrices with elements

Gn(n—1)(n=2)
6 5n’+1,n

n(n=1) (El +Z‘2(n—2)>5n/‘n ”

and
HS’.n = 53511’—111 + Z’élnén’le.n - (53 + 6:4’1)511%1’ (7)

where H = H» + H® and 0; j is the Kronecker delta. Given
the specific tridiagonal H and the restriction 0 < n < M,
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both H and the propagator e' are (M + 1) x (M + 1)
matrices, amenable to evolving the entire distribution,
effectively averaging over all the realizations.

To extract a rate from the evolution of distribution, we
must initialize the distribution in one of the two metastable
states and measure the rate of relaxation. In analogy with
free-energy basins, we will call the two metastable regions
basins A and B (red and blue regions of Fig. 1, respec-
tively) with A 0 B = @. We write P,, for the non-negative
idempotent (753) = 75w) operator that projects onto the
density lying in a region ®, where w € {A, B}. If |p,)
has support over a state space €2, then the projection 75(,, )
is an unnormalized distribution with support restricted to .
The total probability in @ at time ¢ can then be expressed

as (1P, |p.).

B. Rate constants

In general, one can compute the probability to pass from
any subset /A C Q into an arbitrary nonoverlapping subset
B. For the current example, .A and B are basins of attraction
for the Schlogl model [see Fig. 1(a)], and we would like to
measure the rate of going from .A — B. Rate constants can
be defined either for the unidirectional flux from A — B,
the quantity we focus on in this work, or for the timescale of
the relaxation to the steady state, which also involves the
B — A transitions [46]. Additionally, the precise definition
of the rate depends on whether one seeks trajectories that
move from the boundary of one basin to another or from the
interior of one basin to another. For instance, studying
the time to transition from the boundary of A to the
boundary of B yields the transition path theory rate
associated with the committor function [47]. This unidi-
rectional rate k4 is related to the probability of having
reached 5 from A in time 7 without returning to A. If we
focus on trajectories short enough that those reaching B
will stay (no recrossings), then kg, can be expressed in
terms of the probability P(Ay) to start in A at time zero and
the conditional probability P(5,|.4y) to subsequently be
found in B at time #:

k= 2 PBIAPA)| Q

I>Tmol

The derivative is evaluated at some timescale exceeding
Tmol» @ Mmolecular timescale of the system that is long
enough for the first trajectories to reach 5 from .4 but much
shorter than the typical transit time kg, [see Fig. 1(b)].
We compute the rate of Eq. (8) by initializing in a
distribution confined to A then propagating for time ¢ and
measuring the probability in 3. A suitable initial distribu-
tion is P 4|x)/(1|P 4|x), a normalized distribution con-
structed by projecting the steady-state distribution |7t) onto
A. With this initialization, P(4,) = 1, and Eq. (8) becomes

d (1[Pge™Py|m)

B0 (1P ®)

[

To the extent that there is a separation of timescales between
exploring a basin and transiting between basins, the tran-
sition event is rare and no transitions can occur faster than the
molecular timescale 7,,. Beyond that time, the number
of transitions accumulates over time as P(B,|Ay) o kpat.
At times long compared to k', P(3,|Ay) must eventually
stop growing linearly to level off at the stationary value

(1|Pg|m), but our interest is in extracting kj, from the
growth at much shorter times. A typical realization of the
process will not require observation much beyond 7, units
of time, to ascertain the rate, meaning our ensemble
evolutions must be propagated for roughly 7,,,. Notice
from the inset of Fig. 1(b) that at long times the recrossing
events obscure the rate of growth, ultimately yielding the
plateau. As discussed in Sec. V and Appendix D, for rare
rates and long times, the rate calculations can be improved
by removing these recrossing events via a modified dynam-
ics in which region 5 is an absorbing state, forbidding
dynamics out of that region.

Our ability to compute kz 4 from the ensemble evolution
traces back to the fact that it is practical to numerically
calculate e’’’ for the well-mixed model with a single species
and a modest M. While Eq. (9) generalizes naturally for
harder problems (those with more than one species or with
diffusion between multiple well-mixed voxels), the state
space for |p,) grows exponentially with additional stochas-
tic degrees of freedom. We next show that the Doi-Peliti
framework reexpresses the rate matrix in a second-quan-
tized form that allows us to generalize beyond the case of a
single well-mixed species.

III. DOI-PELITI

The Doi-Peliti formalism is a classical version of the
second-quantization methods from quantum field theory
[48,49]. Originally introduced by Doi [50] as a critique to
the assumptions of the Smoluchowski equation, it was later
developed by Peliti [51] and others [52] as a path integral
formalism for solving chemical reaction networks [53-56].
The DP framework has also found success in other areas
such as studying kinetically constrained lattice models in
the context of glassy dynamics [57,58], cellular signaling
[59], predator prey models [60], and active matter [61]. The
DP representation builds operators which encode the
dynamics onto the high-dimensional space that accompa-
nies many-body problems. Crucially, writing the chemical
reactions in an operator form guarantees it can be easily
converted into a matrix product operator (MPO) [62,63], as
we will do in Sec. IV.

To start, we go beyond Sec. II by considering well-mixed
reactions with multiple dynamic species as well as hetero-
geneous systems where molecules can diffuse between
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neighboring voxels. Let X, X,,...,X; represent each
chemical species in each site. We could be talking about
a single species X with different values in L different
voxels, a single well-mixed voxel with L distinct dynamic
species, or a mixture with multiple species and multiple
voxels. The number of molecules in a given voxel can
change due to a chemical reaction or a diffusion event, with
both events being cast as

Er
PIL/R ) DR (10)
j j

where ¢, are again the rate coefficients for reaction r. ; and
u’; reflect the stochiometry of the reactions and give the
stochiometric vector v = u” — 1" which evolves the system
from state n € Q to n’ =n + v". In the previous section,
these reactions induced changes between the M + 1 differ-
ent microstates, specified by the scalar n. Now, the micro-
states n are specified by n = [n, n, ..., n;], counting the
occupation of each species within each voxel.

For a dilute well-mixed solution, where well mixed
means molecules’ locations within a voxel are unresolved,
the change in probability of microstate n follows the gain-
loss equation [14],

) _ S g =) -dipm). ()

r

where the sum is taken over N different reactions of the
form Eq. (10), each with their own stochiometric vector v".
The transition rate between any two states is the sum of
contributions from each reaction H,, = >, ah. Each
propensity o’ is a product of a stochastic rate coefficient
¢, and the combinatorial number of ways to select either 7;
or y" molecules from reaction r, depending on the direction
of the reaction. For a “forward” reaction the propensity is
ap =¢, H(Zj), where the product includes a term for each
17; participating in reaction r.

Encoding the reactions into a matrix form allows us to
evolve the elements of the joint distribution p,(n) analo-
gously to the previous section. While it is appealing to try
to directly solve these more complicated dynamics as we
did before, it is impractical. The curse of dimensionality
demands a less onerous way to work with both A and
p:(n). Since particles of the same species in the same voxel
are indistinguishable, it is beneficial to work in an occu-
pation number representation with

p) = _pi(n)n). (12)
n
The basis vectors,

|Il> = |n1’n27 cees nL>

=|n) ®Iny) ® - @ [ny), (13)

correspond to a possible microstate, and the set of basis
vectors forms a tensor product space called a Fock space
FL with [n) € FL and (m|n) = 5y, [64]. Without loss of
generality, we will discuss the case of a single chemical
species and L physical voxels, in which case n; has the
interpretation of the number of molecules in voxel /. The
second-quantization procedure rewrites the rate matrix as
an operator A in terms of creation and annihilation
operators, xlT and x;, that respectively raise and lower the
number of X molecules in voxel /. That is to say,

xﬂn,) =|n+1),
x,|n,> = ny|n; — 1>’

x;|0) =0, (14)

where |0) is the vacuum state, i.e., no molecules. By x; or )clT
we are implying that the operator only acts [on the /th
voxel]. As shorthand one can use the same symbol x; to act
on a many-body state, in which case the symbol must be
interpreted as:

=LL® QL xR L ®---QL,, (15)

where [, is the identity operator acting on voxel k. Because
they act on the single-site space, the general one-site
operators x and x' can be written in a matrix form as

000 010
. |roo 002 ..
=1510 and x= |, 4 . (16)

That these matrices yield Eq. (14) can be readily confirmed.
More abstractly, the existence of such creation and anni-
hilation operators in this classical setting originates from
the classical commutation relation [xi,x;] = 6;; and the
existence of a positive semidefinite number operator
n :x;x,, so named because 7;|n;) = ny|n;). Together,
the set {Q, FL, x,x"} are also sometimes called an inter-
acting Fock space [48]. As in the construction of the
number operator, we will be able to decompose contribu-
tions to A in terms of the x™ and x’s.

In practice, the matrices of Eq. (16) will not be infinite in
size but will rather be (M + 1) x (M + 1) matrices due to
our enforcement of a maximum voxel occupancy of M. At
the operator level, this maximum voxel occupancy supple-
ments Eq. (14) with an additional requirement that

xj|M;) =0, (17)

arequirement that is met by the finite truncation of Eq. (16).
Those truncated operators obey a commutation relation
which is similar to that of their infinite counterpart, but the

041006-5



SCHUYLER B. NICHOLSON and TODD R. GINGRICH

PHYS. REV. X 13, 041006 (2023)

2X 4+ A %5 3X

A Xi, Xigr —50 X1, Xipr F1
Y o |o ° °
o “ 9
@ "0 o o
° ®
) ° =
° o ® :
° 57 2
jo2)
i Y %0 =
5
Agor _ 120 T2 2P Bror _ Nl P iff g 1o De
Hprr = CN} (-’ITHZ —aiPgy),  Hye = ces(r] — Piy) Hi%i = d("l+1"l _-’z"lpfwm)

2 P
HIA“v = cQ.’I‘}\ (r— .'1‘;).1‘;3,

B, . Ao diff g g Dc
HP = eq(n) — 2)1) Hi ., =d (.1,,1 11— 2 Py,

FIG.2. The reaction-diffusion master equation (RDME) consists of voxels in which well-mixed chemical reactions occur and between
which species can diffuse. This work centers around a one-dimensional chain of L such voxels, each with a fluctuating number of
molecules of species X in a Schlogl chemical reaction. The Doi-Peliti (DP) framework turns the reaction-diffusion evolution into a
second-quantized effective Hamiltonian that governs the evolution of the distribution over classical reaction-diffusion microstates. That
effective Hamiltonian is represented by a high-dimensional tensor, with each vertical leg taking one of (M + 1) possible values
corresponding to the number of molecules of species X which could occupy each site. The DP form of the effective Hamiltonian lends
itself to a compact representation of the effective Hamiltonian tensor of rates for transitioning from one microstate to another.

usual commutation relation is broken at the maximal
occupancy state. That is to say,
(18)

(xjx] = xjx))|M)) = =M |M)) # |M,).

The commutation relation for the truncated operators is
therefore

[, x ] = 8;;(1 = (M + 1)|M)(M,

); (19)

an expression involving the projector operator onto site i’s
maximal occupancy state, 75M[ = |M;)(M;|. As discussed in
depth in Appendix A, this violation of the usual commutator
relation must be accounted for when constructing a finite
effective Hamiltonian that conserves probability.

One benefit of defining operators in terms of creation and
annihilation operators is that expectation values for observ-
ables can be expressed easily in terms of inner products
with operators. Consider, for example, the observable that
counts all particles in all voxels, i = ), 71;. The operator 71
acts on a many-body state |n), yet each 7 is a single-
body operator acting on voxel / and leaving all other
voxels unchanged. It is therefore understood that when
local operators such as 7; act on |n), it is written as a
shorthand for

ﬁl:]ll®---®x;rxl®---®]lb (20)
In terms of that shorthand, 7;/n) = n;|n) counts the
number of particles in voxel [ for the many-body state
|n). The time-dependent expected number of particles in
the whole system is thus (n(7)) = >_,(1|#|p,), where the
vector of ones (1| serves to sum over all microstates. The
time dependence of a distribution can also be extracted
from the action of a second-quantized A on |p,), and this

operation can be practically computed when H is expressed
in terms of the single-site operators.

Mirroring the discussion in Sec. II, the generator H,
for the Schlogl model reactions within the /th voxel is a
sum of contributions from the elementary reactions
H, =", H}. Figure 2(a) shows each reaction, expressed
as a second-quantized contribution to the effective
Hamiltonian, as derived in Appendix A. Probability con-
servation requires that this effective Hamiltonian include a
term with a projector 7554[ EH—75M,. This projector is
complementary to the one appearing in Eq. (19) in that it
projects onto states which are not maximally occupied.
Combining together the forward and reverse reactions
mediated by species A, we show in Appendix A that the
reversible reaction Eq. (1) contributes

A 3.2 2. 24¢ 2.3 3.3
H} = ¢\[x;"x] = x leMl] + eafx;7x) = x;7x;p]

(21)
to the effective Hamiltonian. For convenience we
have absorbed the combinatorial terms into that rate
coefficient, defining ¢, = ¢,/y!, where y is either 5" or
u" for forward and reversed reactions, respectively.
Likewise, the contribution

HP = c3(x] = Piy,) + calog = x]x;) (22)
comes from Eq. (2). In the M — oo limit, 73,6”/ — Ito give
the more familiar expressions as in Table I.

The Hamiltonian operator for L independent, well-
mixed Schlogl voxels is thus A™" =YL At + HP. To
add diffusion, consider the well-mixed voxels arranged in a
1D Ilattice as in Fig. 2(b). Each chemical species is able to
move between neighboring voxels as regulated by a
diffusion operator,
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The ensemble evolution of the many-body state requires that one solve for the probability of every microstate at all times. That

high-dimensional joint probability distribution can be well approximated by a matrix product state (MPS). An MPS approximation for
the joint distribution can be advantageous whether there are N, species in a well-mixed reaction [(a), top], one dynamical
(unchemostatted) species with diffusion [(a), middle], or multiple species and diffusion [(a), bottom]. In all three cases, each circle
represents a tensor, either rank 2 at the first and last site or rank 3 in the body. Horizontal lines represent the bond indices connecting
tensors and vertical lines are physical indices. For an RDME, the physical indices represent the possible number of molecules at a given
tensor. If two lines are connected, then the index is summed over. (b) An effective Hamiltonian H can be likewise decomposed into
lower-rank tensors to form a matrix product operator (MPO). Now there are two physical indices per tensor, representing transitions
from state n* to m. Vertical connected lines are the bond indexes which are contracted over.

L-1

frdiff __ E i T e

H = d(ler]Xl _x[leMH])
=1

+d(x)xin = x5 x5 P, (23)
with hopping rate d = D/h?, consistent with macroscopic
diffusion constant D for voxel width # [18]. Combining
reaction with diffusion gives

H — ern 4 f{diff, (24)
a straightforward linear superposition at the level of the
effective Hamiltonian. We emphasize that the linear super-
position of diffusion A% with reactions A and A% does
not imply a restriction to linear kinetics. The Schlogl model
kinetics is nonlinear in that it involves elementary reactions
which are not first order, and the diffusive coupling between
neighbors can induce nontrivial interactions between voxels.

IV. TENSOR NETWORKS

We have now seen how to transform the matrix-form rate
operator H of Sec. I into a Doi-Peliti form A, expressed in
terms of local creation and annihilation operators. That
change of representation is not merely cosmetic. As the
number of chemical species or number of lattice sites
grows, the size of H grows exponentially. For N dynamical
(unchemostatted) species and L lattice sites, the state space
has (M + 1)VE states. To put this scaling in perspective, the
largest numerical result that follows uses N = 1, M = 85,
and L =8, meaning the system contains 2.99 x 10"
microstates. Calculations on a matrix H, even a very sparse
matrix H, are untenable. By contrast, it is practical to
construct a TN decomposition of the second-quantized

form of H in terms of an MPO, as shown in Fig. 3(b), and
demonstrated explicitly for the Schlégl model in
Appendix B. Given the second-quantized form, the MPO
can be readily constructed in a practical form through
singular value decomposition (SVD) decomposition using
automated packages such as AutoMPO in ITensor [65].
Much like the operator A can be compressed as an MPO,
the states that operators act upon can also be expressed
more compactly in terms of TNs. Consider p,(n) =
pi(ny,n,, ...,n;), the probability of microstate n at time
t. This p,(n) can be thought of as a rank L tensor. By
specifying the occupancy of each of the L sites, p,(n)
outputs a number—a probability—associated to that micro-
state. By leveraging a matrix product ansatz, p,(n) can be
approximated as a partial contraction over L different low-
rank tensors [see Fig. 3(a)]. The low-rank tensors of an
MPS [66] are organized in a 1D chain of site-dependent
tensors Qf!, 0%, ..., 05, |, and Qs whose upper
index n; specifies the occupancy of site / and whose lower
indices are so-called bond indices, nonphysical indices
which are contracted over to generate correlations between
nearby sites. For compactness of notation, we suppress
labels QV), Q@) etc. that would distinguish the site-
dependent tensors, implicitly carrying that site dependence
through the labeling scheme for the physical indices. For
suitably chosen Q tensors, we therefore approximate

\pi) = Z pny ny, .. onp)ny,ny,...ong)
ny,ny,....np
N GOS0 Iy ny,ny)
nyng....ny,
= lq,). (25)
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where |g,) is the approximate distribution over microstates
generated from the MPS. Though not explicitly written, the
Q tensors are time dependent.

There is a diagrammatic representation of the tensors,
shown in Fig. 3, which aids in visualizing tensor operations.
The tensors Q are given by circles, one per site, and vertical
lines feeding into these circles are the physical indices that
pick out a particular slice of the tensor based on the
occupation number of that site. Circles also have horizontal
lines emanating from them, representing the nonphysical
bond indices. Connection of two circles by a line represents
a shared index being contracted over. Figure 3 emphasizes
that the TN decomposition is flexible enough to address
varied CMEs. The MPS of Fig. 3(a), middle, has been the
focus. Each site from 1 to L reflects the number of X
molecules in that site, but Fig. 3(a) (top) and (bottom) show
that the MPS decomposition can equally well be con-
structed when multiple species X;, i =1,2,..., N, can
occupy a single site or when N different species diffuse
between L /N sites to yield an MPS with L sites. What is
practically important is that Q’s be arranged such that the
physical dynamics correlates the neighbors. For example,
for the RDME Schldgl model, neighboring Q’s correspond
to neighboring voxels in the 1D Schlogl lattice.

An attractive feature of the MPS ansatz is that the size
and accuracy of the MPS are controllable through the bond
dimension of the auxiliary indices s. If the dimension of
those indices is allowed to grow exponentially from s,
through s; /», the ansatz in Eq. (25) is exact, but even when
the bond dimension of the indices s are capped at a
maximum dimension of k, the ansatz can be a very good
approximation. Crucially, capping that maximum bond
dimension makes it practical to work with |g,) because
the rank-L tensor |p,) has been replaced by the L different
Q tensors, each with no more than (M + 1)x? elements.

Having approximated both |¢,) and A by an MPS and
MPO, respectively, we can revisit the otherwise intractable
dynamics problem of Eq. (4), only now we wish to evolve
lg,) in lieu of | p;). As |gq,) is an MPS state, we wish for the
dynamics to be constrained for all times to the manifold M
of possible MPS states. Merely replacing |p,) by |g,) in
Eq. (4),

(26)

would not impose such a constraint because H in general
evolves |g,) off M. An appealing resolution is given by the
time-dependent variational principle [67,68], which pro-
poses to first project the right-hand side onto the tangent
space of the MPS manifold:

d A A
M = PTMH|511>~

7 (27)

In this way, dynamics is restricted to the desired subspace
of MPS states [69].

It turns out that the time-discretized numerical integra-
tion of this |g,) is amenable to efficient TN operations. The
technical details of the time-evolution algorithm have been
reported elsewhere [68,70-72]. We give only a brief, high-
level overview of that procedure (see also Appendix C for
more details). The central step in deriving the TDVP time-
evolution algorithm is to demonstrate that the projector
75TM can be decomposed in terms of a sum over L terms
(associated to each site of the MPS) and L — 1 terms
(associated to each bond that connects MPS sites). In the

limit of a small time step 6, the propagator e’ "x"® can

thus be evaluated as a composition of time evolutions
involving the 2L — 1 individual terms. That composition of
time evolutions is executed by a one-site TDVP algorithm
that “sweeps” from lattice site 1 through L, advancing each
term for the small time step.

The efficiency of the TDVP time-evolution algorithm
relies on the flexibility to represent the same MPS state in
redundant ways due to a gauge freedom. Consider, for
example, neighboring tensors Q5! ;, and Q55| in an MPS.
For an invertible R, replacing those tensors by Q™R and
R-1Qm=1, respectively, does not change the MPS state;
upon contracting over the neighboring sites, the identity
I = RR~! would fall out. By leveraging the gauge freedoms,
it is always possible to transform Eq. (25) into a so-called
mixed canonical form [73]:

lg,) = Z AM . AT QBT By g ),  (28)

where each A is a left-orthogonal tensor satisfying ATA =1
and each B is a right-orthogonal tensor satisfying BB = 1.
For notational compactness, we have suppressed implied
summations over the bond indices between tensors in
Eq. (28). We have retained the physical indices ny, ..., ny
and allow their presence to remind us that although tensors at
each site are named merely A and B, they are actually distinct
tensors A1), A@) . B B@ ... that vary across sites.
The mixed canonical form is said to be centered about the
tensor Q™. From that tensor’s perspective, the chain of A’s
and chain of B’s constitute the environment, and it is
beneficial to contract over the links between A’s and links
between B’s to obtain so-called environment tensors. These
environment tensors inherit an orthogonality from the
orthogonality of the A’s and B’s, significantly reducing
the computational complexity to advance Q™ in time by ot
provided the MPS was already centered about the Q" we
aim to evolve.

As made more explicit in Appendix C, the one-site TDVP
algorithm initially centers the MPS around the first tensor,
propagates that tensor forward in time by ot, changes the
gauge by factorizing the tensor into a product of two tensors:
OR, propagates the R term of that so-called QR
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FIG. 4. Snapshots of the joint density in two neighboring voxels from an L = 3 site lattice of Schlogl voxels. Using ¢; = 2.676,
¢, = 0.040, ¢; = 108.102, ¢, = 37.881, and d = 8.2207, the steady-state distribution was computed with k = 30 by evolving an initial
uniform distribution according to H via TDVP. That steady-state distribution was projected into A at time 0, renormalized, then
propagated according to the modified no-recrossing dynamics A using TDVP. For clarity of visualization, the density within A is not
plotted as it would overwhelm the small probability that leaks into B. By r = 0.01 (left-hand image), probability has begun to leak from
A but none has reached B. Probability has just begun to reach B at r = 0.14, roughly the 7, timescale for this problem. By ¢t = 0.44,
probability is collecting in 3, and by ¢ = 0.75, the flux passing from .A to B has attained an approximately constant steady-state value

corresponding to the linear growth phase where P(B,|Ag) « kgat.

decomposition backward in time by 6¢, then passes that term
to the neighboring site to recenter the MPS around the
neighboring site. The neighboring site is then propagated
forward in time as the algorithm iterates. After the complete
sweep through the MPS, the probability distribution |g,) has
been propagated by a time step 6t. Whether that propagation
well approximates the evolution of the full distribution |p,)
depends on the time-step error but also on the severity of the
MPS approximation, which can be systematically controlled
through the maximum bond dimension «.

Notably, the time-evolved MPS state |¢,) allows us to
estimate the probability of any microstate of interest, even
though it would be impossible to enumerate probabilities of
all microstates. Alternatively, sets of microstates can be
summed over to yield tractable marginal distributions. As
an example, Fig. 4 shows the results of calculating
q,(ny,ny,n3) for a 1D chain of L =3 Schldgl sites.
Though there are three sites, site one is traced over to
leave the two-dimensional joint probability of finding n, X
molecules in site 2 and n; X molecules in site 3. At time
zero, the distribution is initialized within region A accord-
ing to P 4|m) /(1P 4|m). As time progresses, a small flux of
probability leaks from A to 5. Because the overwhelming
preference is to stay in A, Fig. 4 highlights the rare
transitions by only plotting the joint distribution outside
of A. Notice that, consistent with a steady-state approxi-
mation, while the population in B gradually amasses, the
distribution over microstates between A and 5 is nearly
stationary. The slight asymmetry between sites is due to the
fact that site 2 is in the bulk while site 3 lies on the
boundary. The higher-dimensional joint g,(n, n,, n3) has
the anticipated symmetry under interchange of n; and n;.
More generally, symmetry holds between interchanging
sites / and L — [+ 1, as reflected in Fig. 6. In the next
section, we illustrate the fact that the MPS state’s ability to

capture the rare time-dependent flux is key to calculating
the rate of traversing between basins.

V. MANY-BODY RATE CALCULATION

Having established the TDVP dynamics of an MPS state,
we can now repeat the strategy of Eq. (9) to compute a
transition rate between states A and B:

d (PP y|m)
AT dr (1P ylw)

(29)

I>Tmol

In doing so, there are a few important differences from
Eq. (29). Most obviously, the TDVP dynamics includes the
projection onto the MPS tangent space and |5t) must now be
an MPS approximation to the steady-state distribution.
Additionally, the meaning of P 4 and P must be adapted
to now define many-body analogs of the projectors onto
the two metastable states. The single-voxel Schlogl model
had an A state defined as all microstates with occupancy
n above a threshold A}. Similarly, B included all micro-
states with occupancy less than some other threshold
As. The L-voxel Schldgl model generalizes to involve
hypercubic metastable states with basins defined by A =
{ny 22, VY Il}and B={n <A V l}.

With these generalizations, the transition rate of Eq. (29)
would measure the flux crossing into B through its
boundary, but if we are to compare with a transition path
theory rate, we must exclude recrossing events. In other
words, we want to include trajectories which exit A then
some time later enter 3, but we want to exclude the flux that
leaves B and reenters B some time later without having
returned to A. When kg, is sufficiently large, those
recrossings can be ignored, but when kz 4 becomes small
enough, those recrossings can become significant and must
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be removed. We note that the TDVP dynamics can just as
well be executed with a modified absorbing-boundary-
condition dynamics with effective Hamiltonian

['_“1 — Flrxn + [Z]diff7 (30)
where the reaction and diffusion Hamiltonians exclude
events that exit B. An explicit construction of that modified

absorbing-boundary dynamics is provided in Appendix D,
allowing us to directly remove the recrossing events.

VI. NUMERICAL EVALUATION OF THE L-VOXEL
SCHLOGL MODEL SWITCHING RATE

The formalism of the preceding sections has laid out a
controllable approximation to extract rates between meta-
stable states of RDMEs. Numerical experiments are neces-
sary to evaluate whether that formalism can be practically
useful. We set out to demonstrate that utility by computing
the transition rates between high-occupancy and low-
occupancy states of an L-voxel Schldgl model as a function
of L. The model is parametrized by the four stochastic rate
coefficients discussed in Sec. II. We sought rate coefficients
that fall in a bistable regime, with sharp peaks of steady-
state probability falling in high- and low-occupancy
states. Since the dynamics would need to be truncated at
some maximum occupancy M, we furthermore wanted to
limit how many molecules would naturally accrue in the
high-occupancy state. By scanning parameters with the
L =1 Schlogl model, we found parameters (¢; = 2.676,
¢, = 0.040, ¢; = 108.102, and ¢, = 37.881) compatable
with an M = 85 truncation and with a sharp bistability
between A and B regions defined by the thresholds 1} =
15 and Ay = 25. By linking multiple voxels together in a
1D chain with a diffusive hopping rate d, it becomes rarer to
switch between the two metastable states than it would be
with a single isolated voxel. With multiple voxels, a

switching event must flip the state of each voxel, and
diffusion between neighboring voxels works to stabilize
neighbors in identical high- or low-occupancy states.
Because of that diffusive coupling between neighbors,
the L-voxel Schlogl model’s A to B transition is charac-
terized by a correlated flip of all voxels, and the rarity of
that correlated event depends on L, the number of corre-
lated voxels. It is therefore straightforward for us to push
the rate-calculation methodologies into challenging
regimes; kg4 can be decreased by growing L.

The most straightforward way to numerically detect the
L dependence of the transition rate is via sampling of
trajectories. Realizations of the continuous-time RDME,
subject to the M = 85 maximum voxel occupancy at fixed
L, were generated using the SSA. First, 5 x 10° indepen-
dent SSA realizations were initialized from a uniform
distribution and propagated in parallel up to t =135 to
approach the steady-state distribution. Sampled configura-
tions that fell within A were then sampled as initial
configurations for 400 independent trajectories which were
evolved via the SSA until the trajectory first reached B.
From the 400 trajectories, the transition rate was computed
from the mean of those waiting times to reach B:
kpa = (tp4)~". Figure 5(a) (red line) shows that the rate
exponentially decreases as L is increased, a result con-
sistent with the exponential dependence of rate on volume
in the well-mixed Schlogl model [74]. While the rate can be
computed by trajectory sampling, the difficulty to do so
(via brute-force sampling) grows in proportion to the
typical 754, meaning the computational cost grows expo-
nentially with L [see Fig. 5(c)].

The poor scaling of brute-force SSA sampled rate
calculations has motivated so-called advanced sampling
methods like FFS [10], which focus computational effort
on the progress along a reaction coordinate. The idea is to
introduce a reaction coordinate A that resolves progress in
transitioning from a value 1} at the boundary of A to 4} at
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(a) The rate ki 4 for switching between metastable states of the L-voxel Schlogl model is calculated using the SSA (red line)

and using TDVP (dashed lines) with varying bond dimensions « using the same rate parameters as Fig. 4. For sufficiently large bond
dimensions, TDVP agrees with an SSA rate estimate built using 400 transitions from A to B at each L. (b) As L grows a larger bond
dimension is required to capture the dynamics. Signatures of numerical instability are apparent when « is too small, shown here for
L = 3, which stably converges when « exceeds 6. For this system, x = 20 is sufficient for numerical stability up to L = 6, while x = 30
gives stable solutions up to L = 8. (c) The total number of CPU hours to estimate kz 4 grows exponentially with SSA but polynomially
with TDVP.
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the boundary of . Rather than seek long trajectories that
snake from A} all the way to A3, it can be beneficial to break
up the transition into smaller trajectories that make some
progress in moving to states with values of 4 closer to 15
than they started. This FFS scheme is particularly clever in
that it can be statistically unbiased, meaning any choice of
reaction coordinate (any mapping taking a microstate to a
value of A1) will yield the true rate in the infinite sampling
limit. Despite that formal lack of bias, the computational
cost of an FFS calculation depends strongly on the
correlation between A and the reaction’s progress [11]. If
one already has a good idea of how the reaction’s rare
transition events proceed, a smart A can be constructed and
the exponential scaling of the SSA can be avoided, but that
identification of the reaction coordinate is seldom straight-
forward. For example, in the L-voxel Schlogl model, will .A
to B events typically be triggered by a high- to low-
occupancy flip at a boundary voxel of the 1D chain or in the
bulk? The boundary voxels have the benefit that they only
have diffusion from one neighbor stabilizing the high-
occupancy state, but the bulk voxels have the advantage of
being more plentiful. In Appendix G we describe FFS
calculations employing two reasonable choices of reaction
coordinate. Those existing FFS methods can yield rates
more cheaply than a brute-force SSA calculation, but the
speedup depends strongly on the reaction coordinate, the
choice of which is nontrivial even for this simple model.

The DP-TDVP approach we have described offers a
radically different strategy for circumventing the SSA
scaling problem. Because the reaction-coordinate selection
problem is hard, we developed the DP-TDVP strategy to
bypass it entirely, computing the rate and reaction mecha-
nism without prior information about how the transition
events move through the high-dimensional state space.
Figure 5 shows that the reaction-coordinate-agnostic DP-
TDVP approach indeed reproduces the SSA rates at lower
computational expense, reducing the scaling from expo-
nential to polynomial in L. The SSA rate calculations can
be made more accurate by collecting more trajectories, and
the DP-TDVP calculations likewise offer a systematic way
to improve accuracy in exchange for a greater computa-
tional expense. The two most prominent ways to adjust that
accuracy are through the time step ot for the TDVP
evolution and through the maximum bond dimension «
for the MPS state. In this work, a time step of 6t = 10~
was used throughout, and the trade-off between expense
and accuracy was entirely tuned through the choice of «.
The single-site TDVP algorithm we used to propagate an
MPS state does not alter the bond dimension of the MPS,
so k was entirely set by the bond dimension of the initial
MPS. We therefore needed to approximate the steady state
|7t) with different values of x. Approximations were
generated by starting with an initially uniform state using
a bond dimension « set to several different values between
5 and 30. Those uniform distributions were evolved

with single-site TDVP for 10000 time steps allowing
the natural dynamics of H to approach a stationary state
with (p,|p,) = (p,|H|p,) ~0 by time r= 1. Irreducibility
of H means the unique stationary state is the steady-
state distribution |t). While (p,|H|p,) = 0 would imply
lp) =|x), (p;|H|p,) =0 does not guarantee that
|p,) =~ |x), only that the distribution is evolving very
slowly. When transitions between .4 and B are slow,
one can imagine reaching a local steady state distribution
within A and within 53 but having probability very slowly
repartitioning between the two. For our purposes, what
matters is not that 7 = 1 has exactly reached |xt) but rather
that the + = 1 distribution confined to .4, upon renorm-
alization, has approached P 4|m)/(1|P4|x). Provided
dynamics within 4 is comparatively fast, this local steady
state within A is reached more rapidly than |xt) and is
reasonably confirmed by checking that (p,|H|p,) ~ 0.
The renormalized ¢ = 1 distribution was then propagated
under single-site TDVP with the A absorbing-boundary
dynamics (see Appendix D) for another 10 000 time steps,
and projected onto 15 to add up the total probability to have
reached B. Note that these 10000 steps are not nearly
enough to reach the steady state |7t) because the slow rate of
transitioning from A to B is a bottleneck. As additional
time steps of dynamics were taken, the growth of the
transition flux from A to B was measured and plotted in
Fig. 5(b). That figure shows that at very short times
(t < Tpe) the flux from A to B has not reached a steady
state value because there has not been enough time for any
transitions. After that initial time 7., the plot plateaus at a
value corresponding to the rate kg4, a plateau that is
reached orders of magnitude faster than the time for a
typical SSA trajectory to make a transition. We find that if
the bond dimension is insufficient [e.g., k = 5 for L = 3 in
Fig. 5(b)], then the dynamics becomes unstable, reflected in
erratic estimates for the conditional probability P(B,|.Ay).
As the bond dimension is grown [e.g., k =9 for L =3 in
Fig. 5(b)], the estimates converge, allowing a stable rate to
be extracted. That convergence as a function of x is
analyzed further in Appendix E. We find that setting the
bond dimension to roughly 10 or 20 is often sufficient, but
larger values of L can only converge with a larger bond
dimension. For example, Fig. 5(a) shows that SSA rates
agree with k = 20 calculations up to L = 6, but k = 30 was
required to push up to L = 8. Provided that larger bond
dimension is used, the DP-TDVP rates reproduce the SSA
rates across 5 orders of magnitude, up to and beyond the
point that the brute-force SSA rates are practical.
Though the required bond dimension grows with L,
Fig. 5(c) shows that the expense to estimate the rate grows
sub-exponentially. The blue and black dashed lines in that
plot are the total number of CPU hours time to estimate the
rate using TDVP with x =30 and x = 20 respectively.
Both SSA and TDVP were run using codes written in the
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JULIA programming language [75] on equivalent CPUs
with details of the runtime analysis described in
Appendix F. While the required CPU hours, of course,
depends on details of the hardware, parallelization, and the
particular implementation, we illustrate the difference in
scaling when comparing identical implementations run in
identical ways across different system sizes. Figure 5(c)
clearly demonstrates that difference in scaling between
brute-force SSA and DP-TDVP. An increase in bond
dimension increases the computation time, but it does
not fundamentally alter the favorable scaling in L.
Comparison of computational expense with FFS is com-
plicated by the fact that one can optimize FFS in many
different ways (how many interfaces, which reaction
coordinate, etc.), but Appendix G shows that the DP-
TDVP calculations remain favorable even compared to FFS
with a reasonable guess of an order parameter.

VII. DEPLOYING THE TOOL

We have described a numerical tool to extract the rate of
a rare switching event from a reaction-diffusion model, but
the numerical value of that rate is often not the final goal.
More than the value of the rate, it is desirable to know how
the rate changes in response to controllable parameters.
Figure 5(a) shows one such variation—the switching rate
falls off exponentially with the number of voxels L. The
essential physics of this exponential decay is consistent
with a mechanism in which a boundary voxel of the 1D
chain flips to create an interface between high- and low-
occupation voxels. Subsequently, each voxel at the inter-
face flips until the whole chain has flipped. Letting penq
denote the small rate of flipping a boundary voxel and p;,,
denote the small rate of flipping a voxel at the interface, it
follows that at short times P(B;|Ag) o penaply!. If (At)
is the typical time to wait between interface flips,
one therefore expects the exponential decay with
kga(L) o e~ LIn[pin(AD)]

The rate calculations as a function of L thus hint at a
stepwise mechanism with a flipped voxel passing from one
end of the chain to the other, but that mechanistic insight
can also be more directly extracted from the DP-TDVP
evolution. The time evolution of |p,) contains information
about the entire distribution that flows from A to 3, and we
can track the average number of molecules in each lattice
site as a function of time. For example, Fig. 6 shows
(ny(t)) = (1|7y|p,), the average number of molecules in
voxel [ with / ranging from 1 through 4 for an L = 8 voxel
lattice. At time ¢t = 0, the plot shows the normalized steady
state confined to A, the high-occupation-number state. In
the steady state, the six bulk voxels, 2 through 7, have
essentially indistinguishable mean occupancies, while the
boundary voxels, 1 and 8, have slightly depressed means
reflecting that it is marginally more likely for those two
voxels to fluctuate to low-occupancy states. As the time is
allowed to evolve for a timescale t < 7., the mean
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FIG. 6. The time evolution of the average number of molecules
for different lattice sites when L = 8 and rate parameters are as in
Fig. 4, computed with x = 30. Different colors correspond to
different voxels. The expected number of molecules (n;(t)) =
(1| p,) for voxels 1 to |L/2] (shown) are mirrored by voxels
|L/2 + 1] to L. The initial nonlinear flow of probability out of A
is shown by the steep drop in average number of molecules. The
system passing 7, is shown by the transition to a linear change
in particle number (n;(t)).

occupation of the boundary voxels drops markedly due
to the influence of rare trajectories in which one or both
boundary voxels can flip. Subsequent to that drop in
(n(1)), the mean occupancies of voxels 2 then 3 also
drop, though less sharply, establishing the mechanistic
sequence. After the molecular timescale 7, the rate of
decrease in (n;(1)) becomes linear, reflecting the steady-
state flux from A to B.

In addition to varying the extent of the space, it is
interesting to tune the balance between reaction and
diffusion events through the diffusive hopping rate d.
The sequential mechanism suggests that a limitation to
the transition events emerges from p;,, the probability of
flipping the state of an interior voxel at an interface between
low- and high-occupation states. The transition events thus
have low- and high-occupation blocks separated by an
interface that diffuses until the low-occupation block covers
the entire system. When molecules diffuse between inter-
face voxels, the interface itself can diffuse, and the faster
the interface sweeps through the system, the faster the
transition events. One might therefore anticipate that the
flipping rate grows with d. In fact, we find the exact
opposite. Figure 7 shows the results from varying the
diffusion over 20 evenly spaced values while holding the
bond dimension fixed at k = 20. The rate decreases for
each value of L as d is increased due to diffusion acting as
an effective stabilizer of high-occupation states.

At d =0, each voxel is an independent well-mixed
system. The switching rate depends on the probability that
each voxel independently experiences a collapse of pop-
ulation, dislodging it from its metastable high-occupation
state. As d grows, there is a diffusive mechanism to fight
against that population collapse. When the population of a

041006-12



QUANTIFYING RARE EVENTS IN STOCHASTIC REACTION- ...

PHYS. REV. X 13, 041006 (2023)

03Ff
025t
02}

=<
Folst
0.1

0.0571

FIG. 7. The switching rate k;z4 as a function of diffusion
coefficient d for 2 < L < 6, computed with x = 20 for the rates
from Fig. 4. As d is increased, the diffusion acts to inhibit the
stochastic switching of each voxel. At large enough d the system
acts similar to a large well-mixed system, resulting in a leveling
off of the rate coefficients.

voxel wanders dangerously close to a tipping point,
molecules could diffuse from a high-occupancy neighbor
to restore the population. In the limit of very fast diffusion,
the entire chain of voxels effectively behaves as a single
large well-mixed system with a markedly lower switching
rate because statistical fluctuations away from the meta-
stable state get correspondingly smaller.

VIII. DISCUSSION

Using the 1D Schlégl model, we have demonstrated how
TN calculations combined with the DP framework offer a
new paradigm for numerical investigation of reaction-
diffusion models, even when the physical bond dimension
(M + 1) is not small. That demonstration opens up a large
class of RDME models which represent small well-mixed
reactors, connected together by diffusive coupling. As
illustrated in this work, these models can exhibit interesting
physics when each reactor is small enough to exhibit
significant statistical fluctuations and when the diffusion
between reactors induces correlations between fluctuations
in different reactors. In this work, our approach was to start
with a well-studied kinetic toy model and to add spatial
dynamics. Spatial extensions of other toy models like the
Brusselator [76] or the Oregonator [77] would be amenable
to similar numerical analysis because any reaction-
diffusion model which can be written as a set of elementary
reactions will have a DP representation. That representation
can involve creation and annihilation operators for different
particle types, not only for species X, but the mapping from
reactions to effective Hamiltonians is systematic. Table I
shows the effective Hamiltonians for several common
(unchemostatted) reactions: unimolecular, bimolecular,
and autocatalytic. Given the set of reactions, it is com-
paratively straightforward to derive the DP representation,
and computational tools already exist to generate an

TABLE 1. Examples of the mapping between a common
chemical reaction and the Doi-Peliti form of the contribution
to an effective Hamiltonian. The procedure to derive such
correspondences is systematic [78] and typically discussed for
a Fock space with occupation number ranging from 0 to infinity.
To truncate to a finite Fock space, one must additionally add a
projector to each effective Hamiltonian, as in this work, to ensure
conservation of probability.

Reaction Hamiltonian
xSy e[y’ = ")
X+YS7Z el(z" = xTy")xyl
X+YS52X et (" = yF)xy]

MPO [62] and propagate via TDVP from that DP form
of the effective Hamiltonian.

As the TN techniques become increasingly well devel-
oped, one can imagine that the computational tools will
offer generic “turn the crank” analysis of microscopic
models of reaction-diffusion at the ensemble level. We
anticipate these numerical approaches to be beneficial to
both synthetic and biophysical reaction-diffusion systems.
In the case of the former, the discretization of space into
reactors can be explicitly realized, as in the microfluidic
fabrication of a two-dimensional array of nanoliter-volume
Belousov-Zhabotinsky (BZ) reactors [79]. In line with our
1D Schlégl model, the strength of coupling between those
BZ nanoreactors is regulated by diffusion, and there is
experimental interest in pattern formation as a function of
that diffusive coupling. In the case of biophysics, sub-
cellular dynamics is dominated by the generation and
diffusion of proteins with small copy numbers. Much work
has been devoted to understanding the logic of cellular
decision making through stochastic CRN models, most
famously gene regulatory models, which are most fre-
quently studied in a well-mixed limit [80]. We see these TN
tools as an intriguing pathway to numerically investigate
the timescales and pathways for switching between
metastable states in well-mixed CRNs like gene toggle
switches [10] and in reaction-diffusion variants of those
gene-regulatory models. Eventually, one can dream of
bringing these methods to the broad array of systems
biology applications where RDME models are widely
simulated [81], including in large-scale GPU-accelerated
simulations of systems with biologically relevant size
[82]. At present those sorts of reaction-diffusion model
can only be numerically accessed through sampling
approaches, and we expect the ensemble perspective will
some day complement those efforts.

To move from the toy models to the synthetic and
biophysical systems, it will be important to expand the
ability of TNs to approximate correlation between species
and voxels that are not simply connected through a 1D
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chain. Here, because our 1D chain of Schlogl reactors are
connected only to their neighbors, it was natural to
approximate the microscopic distribution with an MPS.
That choice allowed us to capitalize on the efficient TDVP
algorithm for MPS states, but a RDME with many dynamic
species will not always be easily approximated by a 1D
chain of tensors. If two chemical species are strongly
correlated but far apart in the MPS structure, the MPS
calculation will demand a very high bond dimension. It will
be important for future work to dynamically adapt the bond
dimension through subspace expansion [83] or by devising
systematic ways to generate tractable TN architectures with
connectivity mirroring the correlations between CRN
species. Those technical advances may eventually lay the
groundwork to move the methodology from this Schlogl
study to the complex, biologically motivated models where
SSA realizations presently reign supreme.
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APPENDIX A: DOI-PELITI ENCODING

Assume a set of elementary reactions are given. These can
be encoded into a Doi-Peliti representation which converts
each elementary reaction into a term of an effective
Hamiltonian. The operator representations can then be
exactly written as an MPO, as shown below. Consider an
L-site 1D lattice of well-mixed voxels. Inside each voxel the
Schlégl model reactions can fire. A probability distribution
will be written as a vector in the Fock space F spanned by
orthonormal basis vectors [n) = |n, n,, ..., n; ) which cor-
respond to single microstates, with occupancy of each voxel
given by ny, n, ..., n;. For any two microstates [n) and |m)
we thus have (m|n) = &, ,. Distributions over the micro-
states can be written as |p,) = >_,, p,(n)|n), where p,(n) =
p(n,t) = p(ny,ny, ...,ng, t)is the probability of microstate
n at time . When focusing on the /th voxel we will use the
shorthand p,(n) = p,(n, n;), where n® = {n,, V k#1}

defines the state of the set of voxels that complement voxel /.
Each reaction of the Schlogl model contributes to the set
of differential equations which describe the time evolution
of p,(n). We must convert the local change in probability of
microstate n to the global action of the effective Hamiltonian
on |p,). The linear nature of the chemical master equation
means we can consider one reaction at a time.

1. Reaction 1: 2X + A 2 3X

We start with the reaction 2X 4+ A %.3X. When this
reaction fires inside site /, the change in probability is

dp,(n) C ¢
dr j[(”z - 1)(n,=2)p,(n, n; — 1)

—ny(n; = 1)p,(n€, n)].

(A1)

The first (positive) term captures the gain of probability
into microstate n from microstate (n“, n, — 1). Two of the
n; — 1 possible X molecules must come together to make the
third, and there are (n; — 1)(n; — 2)/2 total combinations.
The second (negative) term of Eq. (A1) accounts for the
probability of already being in state n at time ¢. Note that this
reaction adds an X molecule, so if the system is already at the
maximum cap of n; = M molecules, there can be no
negative term at M + 1, to balance out conservation of
probability. The loss term therefore requires extra care when
there is an enforced cap since the loss term would come from
a forbidden transition. Consequently, Eq. (A1) can only
apply to microstates n whose [th voxel is not maximally
occupied. For the general case, we could rewrite the
evolution as

(n;=2)p,(m¢,n; = 1)
= 8 m)(n — 1) p,(n€, ny)]. (A2)

Summing each side of Eq. (A2) over the Fock states [n)
yields

d|pz>
dt

_ %Z[(m —1)(n; = 2)p,(n°, n; — 1)|n)

= (1 =8y p)mi(ny = 1) py (€, ) [m))]. (A3)
It is useful to match the argument of p, with the ket, which
can be achieved by introducing the appropriate creation

operator:

d ¢ .
% = 512“:[(”1 —1)(n; = 2)p,(n,n; = 1)x}n¢, n; — 1)
-

The x}L term preceding the first ket is an operator, but all other
terms preceding the kets are numbers that readily commute.
We reorder those terms to get

= 8pn)y(ny = 1) p,(n€, ny) ). (A4)
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d‘pt>

¢ +
)5 -

1)[m)].
Equation (14) gives the identity x]°x?n) = n,(n; — 1)|n),

allowing both the gain and loss terms to be reexpressed in
terms of powers of the creation and annihilation operators:

— (1 =8,,m) P, ny)ny(m (AS)

dlp;) ¢ + ¢ 2 ¢
4l _ E;[xlp,(n = Dx2x3 e, n, — 1)

dt
—(1-38,

Note that the creation and annihilation operators can
now be factorized outside of the sum to yield two terms
which look very similar to the Fock-space expansion

|pi) = > pi(0)[n):

dip) _Ci| + c c
p)_& [xfx%;mn = Dlnc, 1)

_xl xlE:

The first term is like the expansion of |p,) except that
the bounds of summation are shifted, including kets
with occupancy —1 through M; — 1 rather than O through
M,. The nonphysical state with occupancy —1 has no
probability, so it can be excluded from the sum.
Funhermore the occupancy M term can be added to the
sum since x°x7[n¢, M,) = 0. Consequently, the first sum of
Eq. (A7) is equivalent to |p,). The second sum can also be
expressed in terms of | p,) if we recognize that the § function
constraint can be viewed as the eigenvalue of a projector
operator:

)P (0 ) xi i m)). (A6)

m)p (€, np)m) | (A7)

Piyn) = (I = |n, M;) (. M;[)|m) = (1 =5, ) n).

(A8)

Hence, both sums of Eq. (A7) simplify in terms of the same
Fock state |p,):

d|p,> _ﬁ[ 3.2

XX _xz xsz,]|Pr> (A9)

dt 2

The factor of 1/2 can be traced back to a combinatorial
counting term for the unique number of ways to label the two
X molecules that react. We absorb that counting term into the
rate ¢; = ¢;/2 and extract from Eq. (A9) the contribution to
the effective Hamiltonian arising from the first reaction in
site [:

ﬁfﬂ" = C1[x;3xz _xl leMl] (A10)

We take that direction of the reaction to be “forward” and use
the superscript A because this is the reaction mediated by
species A. By applying Eq. (19), the projector term can be
rewritten in terms of a commutator of x; and x; to give an
alternative form of ﬁlf‘“’ expressed only in terms of the
creation and annihilation operators, ¢y, and the maximal
voxel occupancy M:

2.3,.% 2.2, % 2.2
x,°x0x] XXX X _ Mx;"x

f] A or }’i
H for
A A 7 iy v ey v
(Al1)
This form, shows that in the limit M — oo, Eq. (All)
recovers the more standard bosonic result, Iﬁlffor =[x’ x}-

x;rzxﬂ For compactness, we typically leave our expressions

for contributions to the effective Hamiltonians as expres-
sions that explicitly involve the finite-voxel projector, as
in Eq. (A10).

2. Reaction 2: 3X i» 2X +A

The reverse reaction, which transitions from an occu-
pancy of n; + 1 to ny, has (n; 4+ 1)n;(n; — 1)/6 different
ways to combine three of the X molecules together.
Consequently, the change in probability for the reverse
reaction is

dp,(n) ¢
. €2 (

—ny(n; = 1)(n; -

Unlike the forward reaction, the negative term does not
include a factor of 5, 3, that treats the maximal occupancy
state differently than the others. The distinction is that the
loss terms from reaction 2 arise when probability is lost
from occupancy n; down to occupancy n; — 1. Those loss
terms are possible from n; = 3 through M. If there are
fewer than 3 molecules, the reaction 2 mechanism is not
possible, but this restriction emerges naturally from the
n;(n; — 1)(n; — 2) coefficients in Eq. (A12). Expanding in
the Fock basis therefore gives

dp G
o = & Sl )+ )

—ny(n; = 1)(n; = 2) p,(m)[m)].

Mirroring the treatment of the forward reaction, we rewrite
the first |n) using a lowering operator:

n; = 1)n(n;+1)p,(m, n; + 1)

2)p:(nc, ny)]. (A12)

(A13)

d|pt>

¢ . -
Pl 25 (= Dy, + 1y 4 1)

—m(n; = 1)(n; = 2) p(m) m)]. (A14)
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Equation (14) implies x™xn) = n;(n; = 1)(n; —2)/n)
and x"2x}|n¢,n;+1)=(n;—1)n;x;/n,n;+1), which allow
us to simplify Eq. (A14) to

d‘pt> _ é
dt 6

—x*3x?§njp,<n>|n>].

We recognize the second sum over n as giving |p,). The
first sum ranges from n; = 1 through M + 1, but the M + 1
term vanishes due to the occupancy cap. Furthermore, an
n; = 0 term can be added to the sum since that term also
vanishes (x]2x3[n¢,0,) = 0). Thus the first sum can be
reindexed to give |p,). Performing both of those sums
yields

[x“x?z:pt(n“, n+ 1)n¢ n+1)
n

(A15)

d|p;) _Q[ 2.3 3.3
dt 6

x,7x) = x;°x]]|po)- (A16)
The contribution to the effective Hamiltonian from the
reverse A-mediated reaction in voxel [ is thus

friey 2,3 _ 13,3
H™ = cox) " = x°x],

(A17)
where we have again absorbed the combinatorial term into
¢, = C,/6. By summing together the forward and reverse
reactions, we arrive at the effective Hamiltonian associated
with the reversible A-mediated reaction, quoted in Eq. (21):

A A A A A
H;\ — Hl for + H[ rev

72,3 3.3

= cl[x?xlz - x;rzx%f?ful] +olxx) —x7x]]. (A18)

3. Reaction 3: B X

Deriving the effective Hamiltonian for the third reaction
is even more straightforward than the previous two. As in
the first reaction, the loss term is only present if the
microstate is not maximally occupied, so the probability
for microstate n evolves according to

dp,(n . ~
) pnt = 1) = (1= 5 ) m). (A19)
In the Fock basis, this evolution becomes
dlp) . .
AP1) S = 1) = (1 = 6,)p ()]
(A20)

We again seek to make the first ket’s microstate match the
argument of p, by introducing the creation operator:

dp ~ c TInc
% = 03211:[1%(“ = l)x} [n¢, n; — 1)

- (1 - 511,,M)pt(n)|n>]

— 53 [x;Zp,(nC, I’l[ - 1)|11C, nl - 1>

-y an,.M>p,<n>|n>]. (A21)

As in reaction 1, we reindex the first sum to get |p,) and we
introduce the projector operator into the second sum to get

7ADX4l|p,), leaving

d ~ ¢
AP0 _ (ot 5, py).

o (A22)

In this case, there is no combinatorial counting term, so
C3 = 53 and

A} = e3(x] = P5y). (A23)

4. Reaction 4: X =5 B

The reverse reaction is like reaction 2 in that the reaction
decreases X and therefore cannot cause an overflow beyond
the maximal voxel occupancy. Consequently, the evolution
of probability in microstate n is

dpt(n)
dt

= &y(n;+ 1)p,(n,n; + 1) = &4myp,(n€, ny).
(A24)
Expanding in the Fock space gives

% =&y [(n+ 1)p,(n°.n, + 1)[n) = np,(n)n)]

=2y _[p(n,n + D)x)n, g + 1) = np,(n)[n)].
(A25)

As before, we expand into two sums. Upon checking the
two boundary terms of the first sum, we reindex it and sum
over microstates, recovering |p,) from both sums to get

d\p .
AP0 _ . () = xx) ).

o (A26)

The combinatorial term is again trivial, so ¢4, = ¢4, and
1':I}3rev = cu(x; = x}x)). (A27)
Combining Eqs. (A23) and (A27) yields the effective

Hamiltonian arising from the reversible B-mediated reac-
tion, Eq. (22):
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AP = o5 (x] = Piy) + calry —x]x;).  (A28)
The diffusion operator AYT of Eq. (23) is derived
similarly by adding the maximal voxel occupancy
constraint to the derivation of the bosonic diffusion
operator [84].

APPENDIX B: MATRIX PRODUCT
OPERATORS

Note that the terms contributing to the effective
Hamiltonian [Egs. (21)—(23)] each take a “product” form
in which the creation and annihilation operators at a site
multiply other creation and annihilation operators at that
same site or at a nearest-neighbor site. For systems with local
and nearest-neighbor interactions, there exists a relatively
simple representation of the effective Hamiltonian. Let
H, = H?} + H? be the local effective Hamiltonian of the
reversible reactions occurring in voxel /. The total effective
Hamiltonian A includes this local contribution summed
over all voxels / plus the A% Owing to the nearest-
neighbor interactions, these terms can be elegantly summed
via a product of operator-valued vectors and matrices. We
define the operator-valued vectors associated with voxels 1
and L as

Wl = [y, dxy, dPy,, dxl, —x]x,. 1,

I

X

—x}x L
XL
dpPy,
Hp

and the operator-valued matrix associated with voxels 2
through L — 1 as

. -
X
xlx, 0
X
dPy,
L A,

dx;, d75,cwl, dxlT, —x}x,, I
(B2)

With these definitions, one can show that & = Wl . w2l
W= WU with the centered dot representing a
contraction.

This decomposition of A offers a highly efficient way
to numerically encode the effective Hamiltonian as an

MPO. While we have shown an explicit MPO decom-
position for the nearest-neighbor situation, in practice
one uses powerful automated packages such as
AutoMPO 1in ITensor [65] to generate compressed forms
of the MPO from the second-quantized expressions like
Egs. (21)—(23).

APPENDIX C: TDVP ALGORITHM

As described in Sec. IV, we wish to approximate the
evolution of the distribution

dlp) 2
= H|p,). Cl1
i — filp, c1)
by approximating |p,) as
P = Z pi(nyng, ong)lny g, ooong)
N1,y
oY O8O O I, )
ny e,
G
= lq.). (€2)
Here |g,) is a distribution over microstates that

can be expressed as an MPS using the (time-dependent)
set of tensors {Q™,Q™,...,0"}. As in the main
text, the distinct Q tensors are implicitly distinguished
based on the labeling scheme for the physical index.
Only a subset of possible distributions |p;) can be
written in the form of |g,), but as the bond dimension
k increases, that subset necessarily grows. We call
these distributions which can be represented by MPS
states the MPS manifold M. Because H generally
evolves |q,) off M, the time-dependent variational
principle [67,68] seeks the evolution of |g,) along the
MPS manifold:

d|q,) £ 2
dl :PT(MH‘q»’

(C3)

where 75TM is a projector mapping the infinitesimal

change in probability H|g,) onto the MPS manifold’s
nearest (with respect to the /> norm) tangent vector. The
projector in this equation of motion ensures that |g,)
stays on M for all times.

Remarkably, in the case of the MPS manifold, an
explicit form for the projector can be written down as a
sum of 2L — 1 terms, L of which have a correspondence
to the L tensors of the MPS and L — 1 of which have a
correspondence to the bonds. To write down that
decomposition, it is beneficial to first define the envi-
ronment tensors which were obliquely referenced in
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Sec. IV. Through gauge transformations, |g,) is
expressed as
— n n- n My

|QI> = AHAH s 0 'ASz-zS/-l S/—N‘/BSIS/+| e

w1 mn,

S1o52eS T

-1 ”1
.BSL—ZSL 18- 1|n1""’nL>’ (C4)

where the A tensors are left orthogonal and B tensors
are right orthogonal, meaning

ZAHZ 15i S; IS :55,'55 (CS)
niSi_y
and
ZB?: 15i s ls, = 5Si 1Sf 1 (C6)

n;.s;

Summing the A tensors found in Eq. (C4) up to /-1
gives the left environment tensor,
‘q)Lnlr,rl” 1]>: Z AT

n n
ASIIASIZ,SZ Si_08)_ 1|n1,n2,...,n,_1>,

(C7)

with physical indices counting the occupancy of sites 1
through / — 1 and a single uncontracted bond index s;_;.
A similar sum over the s indices of the B tensors gives
the right environment tensor,

B”/+| .
S1S141

ny_y
X BSL 251-1

d [nigr s ngl
R.s;

?LL—I M1, oy ony), (C8)

with physical indices counting the occupancy of sites
[+ 1 through L and a single uncontracted bond index s,.

In terms of the left and right environment tensor
projectors,

1/ 1] Z“Dnlv; :1,1>< [n [_n|, 1]’

Si-1

(©9)

and

P[l+l L] ’(D%I;r]l:nd><q)£§]:ll g

. (C10)

we can now write out the 2L — 1 terms of the projector for
the MPS manifold [72,85]:

(C11)

The positive terms P, are associated to the L tensors
and the negative terms P; are associated to the
L — 1 bonds.

Integrating Eq. (C3) for a time step &t gives

(C12)

L
|9150) = exp (5t [Z PH+
=1

In the limit of an infinitesimal time step, we can
factorize that exponential to act with one [ at a time. For
example,

L-1

L
|91+60) =eXp <5t [ZP+FI+
1=2

PI—ICI:| > eétleﬁle&tPl*IfI |Ch>~

(C13)

=2

The operator ¢®Fi# has the physical interpretation of
mapping site 1 forward in time by a time step ot. To see

this interpretation, we illustrate the action of ¢ 7 on |g,),
where we assume the MPS has already be written in a
mixed canonical form centered on site 2. The operator
e"P3H acts globally on the MPS state, but as long as lg,) is
expressed in the mixed canonical form, only the tensor at
site 2 will be altered. In that way, the P2+ term is
implemented as a local update to a single tensor, a local
update with the structure of a time evolution with a local
effective Hamiltonian. The reduction from global to
local operations is seen if the global exponential operator
is expanded in a Taylor series:

§IP+H‘q Z Z P+H kQ Y152 . Q';L|n>
LRIy —
S182eeS [
(C14)

Each term of the sum over n can be expressed graphically,
where the blue triangular MPS tensors indicate their left
or right orthogonality by the direction they point toward
the black diamond tensor at the center of the mixed
canonical form:
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By contracting over all of the tensors in the shaded purple
region, we obtain the local tensor we call H(2). Note that
the same tensor appears repeatedly in the higher order terms
of the Taylor series. These terms can be resummed to give
back a local matrix exponential acting on site 2. Hence, by
contracting Q" (1) (the black diamond) with ¢”#(?) we get
Q™(t + 6t).

Following the P5 H propagation, the newly updated
tensor Q™ (t + 6t) is then decomposed into two blocks

5, = AZ?S,ZRSfﬂ via QR or SVD decomposition. Like
how Pzﬂq acted locally on the tensor at site 2, P; will act
locally to propagate Ry, but the interpretation is that the
propagation is a 6¢ time step backward in time, owing to
the negative sign in Eq. (C11). RSESZ is then contracted with
the next tensor in the chain, ijs3, which is also still at time
t. In doing so, we shift gauge such that the new ¢ + 6t tensor
assigned to site 2 is A;‘lzs, and the new center site tensor at

2
site 3 becomes Qt’,z-“’xg = >, Ry, By)s,. Having shifted the
center to site 3, one then iterates: acting with P;rI:I,
performing another QR or SVD decomposition, acting
with P35 H, shifting the gauge, then continuing to sweep
down the line. Sweeping over the entire MPS from n; to n;
evolves |q,) by ét.

APPENDIX D: MODIFIED ABSORBING
BOUNDARY CONDITION DYNAMICS

To measure a rate from 4 into B without multiple
crossings of B’s boundary, we define a modified dynamics

;
%*

I

via an effective Hamiltonian that zeroes out the rates of any
reaction or diffusion event that would depart the region B.
Deriving the forms of ™" and A% in Eq. (30) requires
that we first identify the set of states and reactions that
depart B:

B = {n,r:n+v €B‘nebB}, (D1)
where B¢ is the complement of 5. For the Schogl model,
only diffusion and the forward reactions can map out of B.
The states in B are those where particles in the /th voxel
are at the boundary to B, n; = gz andn, € B V k # 1. The
local boundary for B in one voxel can be projected onto
using Q = |¢j)(gp|. Combining Q with the projector
N =32, e |n)(n] lets us define the projection operator,

ﬁ?ut:Nl®N2®"'Nl_1®Q1®Nl+1®...NL’
(02)

that maps onto states which are at the boundary in voxel /
but anywhere in B in the other voxels. To build a projector
that isolates all boundary configurations, we require that at
least one voxel is on the boundary. We can build such a
projector from the powerset expansion,

L

«ﬁout _ Z(_1)1+IZ H 7")?1111’

=1 {si} &

(D3)
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where {s;} is the set of combinations from L elements
taken / at a time.
For L =3, Eq. (D3) becomes
f)out _ [j‘)(lyut 4 75(2)ut + ﬁgut]
_ [rf)(lmtrf)gut + z]’j(l)ut/]")gut + rf)&)Utrf)gut]
+ f)(fulﬁ(z)utfﬁgut.
Each product over 75?1‘“ at multiple voxels can be simplified
noting that N';,Q; = Q,, which leads to

L

pout _ Z(_I)IHZ H{N, Q}ck’

i=1 {cr} <k

(D4)

where the sum over c;, is now all combinations of A" and Q
where Q appears k times. The advantage of Eq. (D4) is that
effective Hamiltonians can be projected onto only using
local (single-voxel) projectors. In this work, B consists of
all molecule numbers less than g + 1. Then, projecting
onto reactions that can map out of B the effective
Hamiltonians for the Schlogl model become

L
<o — Z[[’_‘I}‘\mv + I’_‘I?rcv + (HZAM + H?for)(]:[ _ 7"30ut)], (D5)
=1

it — Hdiff (]I _ 7")0ut). (D6)

APPENDIX E: ERROR IN TDVP RATE
CALCULATIONS

When calculating observables using the ensemble
method, sampling error is avoided, but there are several
different sources for numerical error. Each source of
error is controllable in that a parameter can be increased
or decreased to systematically improve accuracy at the
expense of a greater numerical cost. That trade-off between
accuracy and cost is not straightforward, particularly
because it can switch depending on which source of error
dominates. The factorization of the time propagation in
Eq. (C13) relied upon a infinitesimal time step, but the
computational expense grows essentially linearly with the
number of time steps [86]. Consequently, one seeks a time
step which is small enough but not too small. We highlight
that the SSA has an effective time step that emerges
naturally as the typical time between subsequent events,
and that this time step shrinks as the system size grows. By
contrast, the TDVP approach’s time step is a parameter one
can choose irrespective of the system size. In addition to the
time-step error, the propagation of the local tensors dis-
cussed in Appendix C is implemented via a Krylov
expansion. We found that 30 Krylov basis vectors were
sufficient, but the model system here is not very sensitive to

(s 4 = Ksal ki

FIG. 8. The rate kg4 is calculated at different values of L and
different bond dimensions x. The relative difference in rates is
plotted against the “reference” rate calculated at x = 20. For large
enough bond dimension errors shrink exponentially.

the number used. We have not presented a thorough
analysis of time-step or Krylov errors because it is clear
that our error is dominated by the bond dimension x, which
can severely limit the variational search space of allowable
MPS distributions.

In order to get an estimate of how the bond dimension
impacts the numerical errors, we repeated the TDVP rate
for varying x and L. We would ideally compare each rate
against an exact rate, but getting those exact rates is not
numerically feasible for all system sizes considered.
We have shown [see Fig. 5(c)] that for L = 2 through 6
the bond dimension x = 20 was sufficient to reproduce the
SSA rates to within the size of the plot markers. For the
purposes of analyzing the bond-dimension convergence,
we thus take that k = 20 calculation as the “converged”
reference value and measure the approach to that value as
increases from 2 to 20. Figure 8 shows the absolute
fractional error comparing the rate at a given bond
dimension x and the x = 20 reference rate, all with the
same time step and Krylov dimension. We see that errors
can already be very small at modest bond dimension (where
the smaller tensors make the calculations substantially
faster), and the errors shrink exponentially with growing
k for all values of L.

APPENDIX F: RUN-TIME ANALYSIS

Figure 5(c) shows the total computational expense to
estimate rates from the initial .4 ensemble. The dominant
purpose of communicating the number of CPU hours is to
illustrate the scaling of computational expense with the
system size. That is to say, the brute-force SSA rates grow
exponentially more costly as L increases while the TDVP
cost grows subexponentially. It is enticing to compare the
costs to each other. At a fixed L, was the SSA calculation or
the TDVP calculation cheaper? Figure 5(c) appears to
answer that question, showing that the two methods have a
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crossover with TDVP becoming cheaper for sufficiently
large L. We argue that the existence of the crossover is a
generic consequence of the different scalings with L, but
the exact location of the crossover depends on specific
details of the implementations of both SSA and TDVP.
Considering the difference between the x = 20 (black) and
k = 30 (blue) lines in Fig. 5(c), one must be especially
careful to compare one method versus the other. Each
method has parameters that can be adjusted to improve
accuracy, and to compare different CPU hour timings, one
should have a sense that the two calculations are returning
comparable accuracies. Even more importantly, one should
recognize that although we have used the methods to
compute the rate, the computational expense goes into two
very different objects. In the case of SSA, that expense
results in a collection of representative trajectories, while
for TDVP it yields time-dependent joint distributions. If
one were using the calculations to compute different
quantities (say, waiting time distributions rather than just
the rate), the same TDVP joint distributions that were
generated to compute the rates could be used at essentially
no additional computational expense. By contrast, gener-
ating a converged waiting time distribution from SSA
samples would require many more than the 400 trajectories
used to estimate the rate. In a similar vein, in Fig. 6 we
show how the TDVP calculations give converged insight
into the mechanism of the rare event, but the SSA approach
would return only 400 representative events from which
one would extrapolate.

Having laid out the caveats, we spell out explicitly how
we computed the total computational expense for these two
classes of rate calculations (further information about
forward flux sampling calculations follows in the next
appendix). The TN calculations are not trivial to parallelize
since the TDVP algorithm proceeds from one tensor to the
next in serial, with the output of one tensor operation
feeding into the next one. We did not seek a sophisticated
parallelization, but we did note some imperfect paralle-
lization could be easily accessed from the way the ITensor
software in the JULIA language handles the organization
and contraction of tensors. Figure 9 shows that this
imperfect parallelization gave a roughly twofold speedup
if 8 processors were used instead of a single processor.
The computational expense reported in Fig. 5(c) is the
total number of CPU hours for those 8 processors to
complete the single-site TDVP dynamics with time step
6t = 10~* for 10000 time steps with 30 Krylov dimen-
sions starting from an already computed distribution in .A.
In a sense, this timing is artificially worse than it would
need to be. If we were willing to run for twice the duration
of real time, we could decrease the total number of CPU
hours for TDVP rates in Fig. 5(c) by a factor of 4 with a
serial implementation.

Whereas the TDVP timing would have room for improve-
ment with more sophisticated parallelization schemes, the

3r

257

Processors

FIG. 9. The wall time to complete 100 time steps of TDVP
dynamics with L = 3 and « = 30 as a function of the number of
processors. Parallelization was not explicitly designed into the
TDVP sweep, so the limited parallelism emerged only from the
built-in capabilities of ITensor. If one could reach perfect paral-
lelization, either through a clever parallelization scheme or by just
running TDVP in serial on a single processor, the number of CPU
hours needed to compute the rates in Fig. 5 would decrease by up
to a factor of 4.

SSA calculations are already fully optimized in that they are
perfectly parallelizable. Each stochastic trajectory can and
should be run on a separate CPU. The CPU hours reported in
Fig. 5(c) is thus the sum of the wall times for 400
independent realizations, initialized in A and run until B
was first reached. The cost for SSA calculations would shift
up and down the log scale if one decided to use more or less
than the 400 independent trajectories. Our choice here was to
seek a number of trajectories that could make the SSA error
bars on the same order as the plot markers of Fig. 5(a).

APPENDIX G: COMPARISON WITH FORWARD
FLUX SAMPLING

It is interesting to see how the computational expense of
our rate calculation compares to advanced sampling rate
calculations. Here we compare against the original FFS
algorithm [10]. The key idea of FFS is that a (typically one-
dimensional) progress coordinate is defined to decompose
the single rare event from 4 to B down into less rare
excursions that make partial progress along that order
parameter. The progress coordinate is discretized to define
a collection of N nonoverlapping interfaces 4, 4,, ..., Ay.
The FFS procedure decomposes the transition rate as

N-1

ksa = 1 [ [ Pt [40),
k=1

(G1)

where @, 4 is the flux to pass from A to the 4, interface and
P(A141]4¢) is the probability of reaching 4, before first
returning to .4 conditioned upon initialization at the A,
interface. To the extent that the chosen progress coordinate
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acts as a good reaction coordinate, the method can radically
improve the efficiency of a rate calculation compared to
brute-force SSA, but if the order parameter is not “close
enough” to the reaction coordinate, the conditional prob-
ability terms can become very expensive to compute [87]. It
is tempting to think that P(1;,|A;) requires a trajectory
starting at A; and run until it hits either the next
or the previous interface, but the actual procedure requires
the trajectory to hit either the next interface or .A. When
the progress coordinate poorly approximates the reaction
coordinate, a tremendous amount of time can be wasted
simulating trajectories slowly wandering back to A from
one of the final interfaces. The efficiency of FFS calcu-
lations additionally depends on the number of interfaces,
their distance from each other, and the number of
trajectories needed to resolve the conditional distribu-
tions. Given all the tunable knobs that go into a FFS
rate calculation, it only makes sense to compare the
numerical expense of TDVP rate calculations against a
prudently designed FFS with a reasonable choice of
progress coordinate.

Without a priori knowing the mechanism of the Schlogl
reaction-diffusion switching events, we designed two
different order parameters and performed calculations
with both. For the first order parameter, we focus on the
global number of X molecules, summed over all voxels.
The interfaces for this order parameter measuring global
progress are A ={AA¢,....A§ . B} with A¥ = L% + [iA],
where A = (A3 —4%)L/9. Remember that %, = 15 and

5 = 25, so this order parameter tracks the progress of the
whole system in moving from 25L or more molecules to at
least 15L molecules. The second order parameter, inspired
by the demonstration in Fig. 6 that the voxels
on the end decrease first, uses only the number of
molecules in the first voxel as the sign of progress. The
interfaces for this order parameter measuring voxel 1 are
A= {A 2, ..., AL, B} with each A! interface recording the
addition of another X molecule in voxel 1 (4} = 15 + i),
so that 2} = 16 and A} = 23.

There are many ways to optimize both FFS calculations,
for example, changing the number of interfaces, the
number of trajectories to estimate @, 4, and the number
of trajectories to estimate the conditional probabilities.
These changes impact the computational expense, and it is
not generally knowable how to tune those parameters to
most cheaply decrease the error bars of the rate calcu-
lation. We found that 4000 trajectories were sufficient to
get decent estimates of the flux ®; 4 for both order
parameters, though the expense of computing that flux
was much greater for A® than for A'. While the flux was
more costly to compute for A%, the conditional proba-
bilities were easier. Each conditional probability could be
well estimated with only 4000 additional trajectories per
interface. Converging those conditional probability terms
for A! required 107 trajectories per interface, a cost that

(@)
o —J-SSA
—4-\!
107 = m
é 10_3 ——r =30
10
10°

Total time (CPU hours)

FIG. 10. (a) The rate kg4 from SSA and TDVP using x = 30
bond dimension compared to FFS using different order param-
eters. Though FFS can correctly estimate the rate even when the
order parameter is not exactly the reaction coordinate, the choice
of order parameter significantly impacts the computational
expense. It is notable that the TDVP rate calculation can bypass
the introduction of an order parameter; in fact, by analyzing the
TDVP-evolved joint distribution, one can reveal the reaction
mechanism as an output of the calculation.

was at least partially offset by the cheaper ®; 4 calcu-
lation. For each order parameter we generated these
samples to calculate ten independent estimates of the
rate, allowing us to measure both the mean and standard
error. From these standard errors, we determined that the
FFS calculations were converged in line with the SSA
errors in that plot.

A notable feature of FES is that it will return the correct
transition rates even when the order parameter is not a
perfect reaction coordinate. Figure 10(a) reflects that in that
both A% and A' reproduce the rates given by the SSA and
TDVP methods. However, the computational expense of
the two are not identical. Figure 10(b) plots the CPU hours
needed to generate the samples that yield the means and
standard errors of Fig. 10(a). At small L, A is faster; at
large L, A is faster. The FFS calculations have many
tunable parameters. They could likely be improved through
further refinement of order parameters, changing the
number of interfaces, fine-tuning the number of samples
for each conditional probability, etc. Still, we find it notable
that our reasonable but perhaps unoptimized FFS imple-
mentations perform with similar (and slightly greater)
expense as the TDVP rate calculations. This observation
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is particularly notable since the TDVP calculations do not
need one to guess an order parameter and since they offer
converged statistical information about the mechanism in
addition to just giving the rate.

[1] H. Eyring, The Activated Complex in Chemical Reactions, J.
Chem. Phys. 3, 107 (1935).

[2] K.J. Laidler and M.C. King, The Development
of Transition-State Theory, J. Phys. Chem. 87, 2657
(1983).

[3] D.G. Truhlar and B.C. Garrett, Variational Transition-
State Theory, Acc. Chem. Res. 13, 440 (1980).

[4] R.F. Grote and J. T. Hynes, The Stable States Picture of
Chemical Reactions. II. Rate Constants for Condensed and
Gas Phase Reaction Models, J. Chem. Phys. 73, 2715
(1980).

[5] J.T. Hynes, Chemical Reaction Dynamics in Solution,
Annu. Rev. Phys. Chem. 36, 573 (1985).

[6] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler,
Transition Path Sampling and the Calculation of Rate
Constants, J. Chem. Phys. 108, 1964 (1998).

[7] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler,
Transition Path Sampling: Throwing Ropes over Rough
Mountain Passes, in the Dark, Annu. Rev. Phys. Chem. 53,
291 (2002).

[8] G.E. Crooks and D. Chandler, Efficient Transition Path
Sampling for Nonequilibrium Stochastic Dynamics, Phys.
Rev. E 64, 026109 (2001).

[9] T.R. Gingrich and P. L. Geissler, Preserving Correlations
between Trajectories for Efficient Path Sampling, J. Chem.
Phys. 142, 234104 (2015).

[10] R.J. Allen, P.B. Warren, and P.R. ten Wolde, Sampling
Rare Switching Events in Biochemical Networks, Phys. Rev.
Lett. 94, 018104 (2005).

[11] R.J. Allen, D. Frenkel, and P.R. ten Wolde, Simulating
Rare Events in Equilibrium or Nonequilibrium Stochastic
Systems, J. Chem. Phys. 124, 024102 (2006).

[12] R.J. Allen, C. Valeriani, and P. R. ten Wolde, Forward Flux
Sampling for Rare Event Simulations, J. Phys. Condens.
Matter 21, 463102 (2009).

[13] A. Ma and A.R. Dinner, Automatic Method for Identifying
Reaction Coordinates in Complex Systems, J. Phys. Chem.
B 109, 6769 (2005).

[14] S. A. Isaacson and C. S. Peskin, Incorporating Diffusion in
Complex Geometries into Stochastic Chemical Kinetics
Simulations, SIAM J. Sci. Comput. 28, 47 (2006).

[15] R. Erban, J. Chapman, and P. Maini, A Practical Guide to
Stochastic Simulations of Reaction-Diffusion Processes,
arXiv:0704.1908.

[16] D. Fange, O.G. Berg, P. Sjoberg, and J. Elf, Stochastic
Reaction-Diffusion Kinetics in the Microscopic Limit, Proc.
Natl. Acad. Sci. U.S.A. 107, 19820 (2010).

[17] D.J. Wilkinson, Stochastic Modelling for Systems Biology
(CRC Press, Boca Raton, FL, 2018).

[18] S. Smith and R. Grima, Spatial Stochastic Intracellular
Kinetics: A Review of Modelling Approaches, Bull. Math.
Biol. 81, 2960 (2019).

[19] G. Craciun, Y. Tang, and M. Feinberg, Understanding
Bistability in Complex Enzyme-Driven Reaction Networks,
Proc. Natl. Acad. Sci. U.S.A. 103, 8697 (20006).

[20] A.L. Krause, E. A. Gaffney, P. K. Maini, and V. Klika,
Modern Perspectives on Near-Equilibrium Analysis of
Turing Systems, Phil. Trans. R. Soc. A 379, 20200268
(2021).

[21] S. Kondo and T. Miura, Reaction-Diffusion Model as a
Framework for Understanding Biological Pattern Forma-
tion, Science 329, 1616 (2010).

[22] A. Turing, The Chemical Basis of Morphogenesis, Phil.
Trans. R. Soc. B 237, 37 (1952).

[23] M. C. Cross and P. C. Hohenberg, Pattern Formation Out-
side of Equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[24] D. A. McQuarrie, Stochastic Approach to Chemical Ki-
netics, J. Appl. Probab. 4, 413 (1967).

[25] R. E. Lee DeVille, C. B. Muratov, and E. Vanden-Eijnden,
Non-Meanfield Deterministic Limits in Chemical Reaction
Kinetics, J. Chem. Phys. 124, 231102 (2006).

[26] H. H. McAdams and A. Arkin, Stochastic Mechanisms in
Gene Expression, Proc. Natl. Acad. Sci. U.S.A. 94, 814
(1997).

[27] M. Thattai and A. van Oudenaarden, Intrinsic Noise in Gene
Regulatory Networks, Proc. Natl. Acad. Sci. U.S.A. 98,
8614 (2001).

[28] J.M.G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler,
Mechanisms of Noise-Resistance in Genetic Oscillators,
Proc. Natl. Acad. Sci. U.S.A. 99, 5988 (2002).

[29] J. Paulsson, Summing Up the Noise in Gene Networks,
Nature (London) 427, 415 (2004).

[30] T. Tian and K. Burrage, Stochastic Models for Regulatory
Networks of the Genetic Toggle Switch, Proc. Natl. Acad.
Sci. U.S.A. 103, 8372 (2006).

[31] W.J. Heuett and H. Qian, Grand Canonical Markov Model:
A Stochastic Theory for Open Nonequilibrium Biochemical
Networks, J. Chem. Phys. 124, 044110 (2006).

[32] D.T. Gillespie, A. Hellander, and L. R. Petzold, Perspec-
tive: Stochastic Algorithms for Chemical Kinetics, J. Chem.
Phys. 138, 170901 (2013).

[33] C. Yang, D.T. Gillespie, and L. R. Petzold, Efficient Step
Size Selection for the Tau-Leaping Simulation Method, J.
Chem. Phys. 124, 044109 (2006).

[34] B. Munsky and M. Khammash, The Finite State Projection
Algorithm for the Solution of the Chemical Master Equa-
tion, J. Chem. Phys. 124, 044104 (2006).

[35] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct
Solution of the Chemical Master Equation Using Quantized
Tensor Trains, PLoS Comput. Biol. 10, e1003359 (2014).

[36] H.D. Vo and R.B. Sidje, An Adaptive Solution to the
Chemical Master Equation Using Tensors, J. Chem. Phys.
147, 044102 (2017).

[37] P. Helms, U. Ray, and G.K.-L. Chan, Dynamical Phase
Behavior of the Single- and Multi-Lane Asymmetric Simple
Exclusion Process via Matrix Product States, Phys. Rev. E
100, 022101 (2019).

[38] N.E. Strand, H. Vroylandt, and T.R. Gingrich, Using
Tensor Network States for Multi-Particle Brownian Ratch-
ets, J. Chem. Phys. 156, 221103 (2022).

[39] N.E. Strand, H. Vroylandt, and T. R. Gingrich, Computing
Time-Periodic Steady-State Currents via the Time Evolution

041006-23


https://doi.org/10.1063/1.1749604
https://doi.org/10.1063/1.1749604
https://doi.org/10.1021/j100238a002
https://doi.org/10.1021/j100238a002
https://doi.org/10.1021/ar50156a002
https://doi.org/10.1063/1.440485
https://doi.org/10.1063/1.440485
https://doi.org/10.1146/annurev.pc.36.100185.003041
https://doi.org/10.1063/1.475562
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1103/PhysRevE.64.026109
https://doi.org/10.1103/PhysRevE.64.026109
https://doi.org/10.1063/1.4922343
https://doi.org/10.1063/1.4922343
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1063/1.2140273
https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1021/jp045546c
https://doi.org/10.1021/jp045546c
https://doi.org/10.1137/040605060
https://arXiv.org/abs/0704.1908
https://doi.org/10.1073/pnas.1006565107
https://doi.org/10.1073/pnas.1006565107
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1073/pnas.0602767103
https://doi.org/10.1098/rsta.2020.0268
https://doi.org/10.1098/rsta.2020.0268
https://doi.org/10.1126/science.1179047
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.2307/3212214
https://doi.org/10.1063/1.2217013
https://doi.org/10.1073/pnas.94.3.814
https://doi.org/10.1073/pnas.94.3.814
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1073/pnas.092133899
https://doi.org/10.1038/nature02257
https://doi.org/10.1073/pnas.0507818103
https://doi.org/10.1073/pnas.0507818103
https://doi.org/10.1063/1.2165193
https://doi.org/10.1063/1.4801941
https://doi.org/10.1063/1.4801941
https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.2145882
https://doi.org/10.1371/journal.pcbi.1003359
https://doi.org/10.1063/1.4994917
https://doi.org/10.1063/1.4994917
https://doi.org/10.1103/PhysRevE.100.022101
https://doi.org/10.1103/PhysRevE.100.022101
https://doi.org/10.1063/5.0097332

SCHUYLER B. NICHOLSON and TODD R. GINGRICH

PHYS. REV. X 13, 041006 (2023)

of Tensor Network States, J. Chem. Phys. 157, 054104
(2022).

[40] F. Schlogl, Chemical Reaction Models for Non-Equilibrium
Phase Transitions, 7. Phys. 253, 147 (1972).

[41] C. Kim, A. Nonaka, J. B. Bell, A. L. Garcia, and A. Doneyv,
Stochastic Simulation of Reaction-Diffusion Systems: A
Fluctuating-Hydrodynamics Approach, J. Chem. Phys.
146, 124110 (2017).

[42] M. Vellela and H. Qian, Stochastic Dynamics and Non-
Equilibrium Thermodynamics of a Bistable Chemical Sys-
tem: The Schlogl Model Revisited, J. R. Soc. Interface 6, 925
(2009).

[43] S.B. Nicholson, J. S. Greenberg, and J. R. Green, Entrance
and Escape Dynamics for the Typical Set, Phys. Rev. E 97,
012146 (2018).

[44] D.J. Higham, Modeling and Simulating Chemical Reac-
tions, SIAM Rev. 50, 347 (2008).

[45] G. Nicolis and J. W. Turner, Stochastic Analysis of a
Nonequilibrium Phase Transition: Some Exact Results,
Physica (Amsterdam) 89A, 326 (1977).

[46] B. Roux, Transition Rate Theory, Spectral Analysis, and
Reactive Paths, J. Chem. Phys. 156, 134111 (2022).

[47] W. E and E. Vanden-Eijnden, Transition-Path Theory and
Path-Finding Algorithms for the Study of Rare Events.,
Annu. Rev. Phys. Chem. 61, 391 (2010).

[48] J. Ohkubo, Algebraic Probability, Classical Stochastic
Processes, and Counting Statistics, J. Phys. Soc. Jpn. 82,
084001 (2013).

[49] U. C. Tauber, Critical Dynamics: A Field Theory Approach
to Equilibrium and Non-Equilibrium Scaling Behavior
(Cambridge University Press, Cambridge, England, 2014).

[50] M. Doi, Stochastic Theory of Diffusion-Controlled Reac-
tion, J. Phys. A 9, 1479 (1976).

[51] L. Peliti, Path Integral Approach to Birth-Death Processes
on a Lattice, J. Phys. (Paris) 46, 1469 (1985).

[52] P.-A. Rey and J. Cardy, Asymptotic Form of the Approach to
Equilibrium in Reversible Recombination Reactions, .
Phys. A 32, 1585 (1999).

[53] A.Reyes-Veldazquez, A. Molgado, J. Berra-Montiel, and J. A.
Martinez-Gonzalez, A General Path-Integral Monte Carlo
Method for Exact Simulations of Chemical Reaction Net-
works, J. Phys. Chem. A 127, 4363 (2023).

[54] J.J. Vastola, Solving the Chemical Master Equation for
Monomolecular Reaction Systems and Beyond: A Doi-Peliti
Path Integral View, J. Math. Biol. 83, 48 (2021).

[55] X. Yang, P. Liu, and J. Zhang, Analytical Time-Dependent
Distributions for Two Common Signaling Systems, Chin. J.
Phys. 55, 289 (2017).

[56] M. Harsh and P. Sollich, Accurate Dynamics from Self-
Consistent Memory in Stochastic Chemical Reactions with
Small Copy Numbers, arXiv:2303.00029.

[57] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Dynamical First-Order
Phase Transition in Kinetically Constrained Models of
Glasses, Phys. Rev. Lett. 98, 195702 (2007).

[58] J. P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, First-Order Dynamical
Phase Transition in Models of Glasses: An Approach
Based on Ensembles of Histories, J. Phys. A 42, 075007
(2009).

[59] Y. Lan, P. G. Wolynes, and G. A. Papoian, A Variational
Approach to the Stochastic Aspects of Cellular Signal
Transduction, J. Chem. Phys. 125, 124106 (2006).

[60] E. DeGiuli and C. Scalliet, Dynamical Mean-Field Theory:
From Ecosystems to Reaction Networks, J. Phys. A 55,
474002 (2022).

[61] M. Bothe and G. Pruessner, Doi-Peliti Field Theory of Free
Active Ornstein-Uhlenbeck Particles, Phys. Rev. E 103,
062105 (2021).

[62] U. Schollwock, The Density-Matrix Renormalization Group
in the Age of Matrix Product States, Ann. Phys. (Amster-
dam) 326, 96 (2011).

[63] L. Causer, M. C. Bafuls, and J. P. Garrahan, Finite Time
Large Deviations via Matrix Product States, Phys. Rev.
Lett. 128, 090605 (2022).

[64] M. J. del Razo, D. Fromberg, A. V. Straube, C. Schiitte, F.
Hofling, and S. Winkelmann, A Probabilistic Framework
for Particle-Based Reaction-Diffusion Dynamics Using
Classical Fock Space Representations, Lett. Math. Phys.
112, 49 (2022).

[65] M. Fishman, S.R. White, and E. M. Stoudenmire, The
ITensor Software Library for Tensor Network Calculations,
SciPost Phys. Codebases 4 (2022).

[66] R. Orus, A Practical Introduction to Tensor Networks:
Matrix Product States and Projected Entangled Pair States,
Ann. Phys. (Amsterdam) 349, 117 (2014).

[67] P. A. Dirac, Note on Exchange Phenomena in the Thomas
Atom, in Mathematical Proceedings of the Cambridge
Philosophical Society, Vol. 26 (Cambridge University Press,
Cambridge, England, 1930), pp. 376-385.

[68] J. Haegeman, J.I. Cirac, T.J. Osborne, I. Pizorn, H.
Verschelde, and F. Verstraete, Time-Dependent Variational
Principle for Quantum Lattices, Phys. Rev. Lett. 107,
070601 (2011).

[69] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-
Space Methods for Uniform Matrix Product States, SciPost
Phys. Lect. Notes 7 (2019).

[70] S. Paeckel, T. Kohler, A. Swoboda, S.R. Manmana, U.
Schollwock, and C. Hubig, Time-Evolution Methods for
Matrix-Product States, Ann. Phys. (Amsterdam) 411,
167998 (2019).

[71] J. Haegeman, C. Lubich, 1. Oseledets, B. Vandereycken, and
F. Verstraete, Unifying Time Evolution and Optimization
with Matrix Product States, Phys. Rev. B 94, 165116
(2016).

[72] C. Lubich, I. V. Oseledets, and B. Vandereycken, Time
Integration of Tensor Trains, SIAM J. Numer. Anal. 53,917
(2015).

[73] G. Vidal, Efficient Classical Simulation of Slightly En-
tangled Quantum Computations, Phys. Rev. Lett. 91,
147902 (2003).

[74] M. Vlysidis and Y. N. Kaznessis, On Differences between
Deterministic and Stochastic Models of Chemical Reac-
tions: Schlogl Solved with ZI-Closure, Entropy 20, 678
(2018).

[75] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
Julia: A Fresh Approach to Numerical Computing, SIAM
Rev. 59, 65 (2017).

[76] 1.J. Tyson, Some Further Studies of Nonlinear Oscillations
in Chemical Systems, J. Chem. Phys. 58, 3919 (1973).

041006-24


https://doi.org/10.1063/5.0099741
https://doi.org/10.1063/5.0099741
https://doi.org/10.1007/BF01379769
https://doi.org/10.1063/1.4978775
https://doi.org/10.1063/1.4978775
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1103/PhysRevE.97.012146
https://doi.org/10.1103/PhysRevE.97.012146
https://doi.org/10.1137/060666457
https://doi.org/10.1016/0378-4371(77)90107-8
https://doi.org/10.1063/5.0084209
https://doi.org/10.1146/annurev.physchem.040808.090412
https://doi.org/10.7566/JPSJ.82.084001
https://doi.org/10.7566/JPSJ.82.084001
https://doi.org/10.1088/0305-4470/9/9/009
https://doi.org/10.1051/jphys:019850046090146900
https://doi.org/10.1088/0305-4470/32/9/008
https://doi.org/10.1088/0305-4470/32/9/008
https://doi.org/10.1021/acs.jpca.3c01064
https://doi.org/10.1007/s00285-021-01670-7
https://doi.org/10.1016/j.cjph.2016.10.025
https://doi.org/10.1016/j.cjph.2016.10.025
https://arXiv.org/abs/2303.00029
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1063/1.2353835
https://doi.org/10.1088/1751-8121/aca3df
https://doi.org/10.1088/1751-8121/aca3df
https://doi.org/10.1103/PhysRevE.103.062105
https://doi.org/10.1103/PhysRevE.103.062105
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.128.090605
https://doi.org/10.1103/PhysRevLett.128.090605
https://doi.org/10.1007/s11005-022-01539-w
https://doi.org/10.1007/s11005-022-01539-w
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1137/140976546
https://doi.org/10.1137/140976546
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.3390/e20090678
https://doi.org/10.3390/e20090678
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1063/1.1679748

QUANTIFYING RARE EVENTS IN STOCHASTIC REACTION- ...

PHYS. REV. X 13, 041006 (2023)

[77] R.J. Field and R.M. Noyes, Oscillations in Chemical
Systems. 1V. Limit Cycle Behavior in a Model of a Real
Chemical Reaction, J. Chem. Phys. 60, 1877 (1974).

[78] M. Schulz and P. Reineker, Exact Substitute Processes for
Diffusion-Reaction Systems with Local Complete Exclusion
Rules, New J. Phys. 7, 31 (2005).

[79] T. Litschel, M. M. Norton, V. Tserunyan, and S. Fraden,
Engineering Reaction-Diffusion Networks with Properties
of Neural Tissue, Lab Chip 18, 714 (2018).

[80] P.B. Warren and P.R. ten Wolde, Enhancement of the
Stability of Genetic Switches by Overlapping Upstream
Regulatory Domains, Phys. Rev. Lett. 92, 128101 (2004).

[81] D.J. Wilkinson, Stochastic Modelling for Quantitative
Description of Heterogeneous Biological Systems, Nat.
Rev. Genet. 10, 122 (2009).

[82] M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-
Schulten, Simulation of Reaction Diffusion Processes
over Biologically Relevant Size and Time Scales Using
Multi-GPU Workstations, Parallel Comput. 40, 86 (2014).

[83] C. Hubig, I. P. McCulloch, U. Schollwock, and F. A. Wolf,
Strictly Single-Site DMRG Algorithm with Subspace Ex-
pansion, Phys. Rev. B 91, 155115 (2015).

[84] J. Cardy, Field Theory and Non-Equilibrium Statistical
Mechanics, 2006, University of Warwick, https://www-
thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf.

[85] J. Haegeman, T.J. Osborne, and F. Verstraete, Post-Matrix
Product State Methods: To Tangent Space and Beyond,
Phys. Rev. B 88, 075133 (2013).

[86] We say essentially linearly rather than linearly
because as time progresses the distribution can build
richer correlations which can result in singular value
decompositions that utilize the full bond dimension «.
Distributions with less rich correlations can be described
by smaller tensors if the singular values are truncated at a
threshold.

[87] S. Hussain and A. Haji-Akbari, Studying Rare Events Using
Forward-Flux Sampling: Recent Breakthroughs and Future
Outlook, J. Chem. Phys. 152, 060901 (2020).

041006-25


https://doi.org/10.1063/1.1681288
https://doi.org/10.1088/1367-2630/7/1/031
https://doi.org/10.1039/C7LC01187C
https://doi.org/10.1103/PhysRevLett.92.128101
https://doi.org/10.1038/nrg2509
https://doi.org/10.1038/nrg2509
https://doi.org/10.1016/j.parco.2014.03.009
https://doi.org/10.1103/PhysRevB.91.155115
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://www-thphys.physics.ox.ac.uk/people/JohnCardy/warwick.pdf
https://doi.org/10.1103/PhysRevB.88.075133
https://doi.org/10.1063/1.5127780

