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ABSTRACT
Monte Carlo Tree Search (MCTS) is a widely used search tech-
nique in Artificial Intelligence (AI) applications. MCTS manages
a dynamically evolving decision tree (i.e., one whose depth and
height evolve at run-time) to guide an AI agent toward an op-
timal policy. In-tree operations are memory-bound leading to a
critical performance bottleneck for large-scale parallel MCTS on
general-purpose processors. CPU-FPGA accelerators can alleviate
the memory bottleneck of in-tree operations. However, a major
challenge for existing FPGA accelerators is the lack of dynamic
memory management due to which they cannot efficiently sup-
port dynamically evolving MCTS trees. In this work, we address
this challenge by proposing an MCTS acceleration framework that
(1) incorporates an algorithm-hardware co-optimized accelerator
design that supports in-tree operations on dynamically evolving
trees without expensive hardware reconfiguration; (2) adopts a hy-
brid parallel execution model to fully exploit the compute power
in a CPU-FPGA heterogeneous system; (3) supports Python-based
programming API for easy integration of the proposed accelerator
with RL domain-specific bench-marking libraries at run-time. We
show that by using our framework, we achieve up to 6.8× speedup
and superior scalability of parallel workers than state-of-the-art
parallel MCTS on multi-core systems.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures; •
Theory of computation→ Theory and algorithms for application
domains; • Computing methodologies→ Game tree search.
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1 INTRODUCTION
Monte Carlo Tree Search (MCTS) utilizes a search tree along with
random simulations to find optimal actions performed in an en-
vironment to maximize rewards. It is a general technique used in
many domains, for example, Constraint Satisfaction Problems [18],
Computer Games [19], and Neural-Architecture Search [22].

Tree-parallelMCTSmethods have been proposedwith the goal of
enabling high-throughput simulations without negatively affecting
the algorithm performance (i.e., domain-specific rewards that can be
achieved with a fixed number of simulations) [3, 13, 19]. However,
it is challenging to efficiently implement Tree-parallel MCTS on
sharedmemorymulti-core systems. This is because parallel workers
synchronizing on a shared tree lead to frequent memory accesses,
and MCTS in-tree operations have low arithmetic intensity. High-
latency memory accesses cannot be hidden on shared-memory and
data parallel architectures (e.g., CPU and GPU). As a result, in-tree
operations become a bottleneck that hinder performance scalability
to large number of workers on multi-core systems.

Because of the heterogeneity in the compute and memory char-
acteristics of MCTS primitives such as simulations and in-tree op-
erations, heterogeneous platforms consisting of both spatial archi-
tecture (i.e., FPGA) and general-purpose data-parallel architecture
(i.e., multi-core CPU) should be exploited to efficiently accelerate
MCTS. Existing works such as [14] use CPU-FPGA heterogeneous
platform for parallel MCTS, where the FPGA acceleration of in-tree
operations alleviates the memory bottleneck that otherwise occurs
on CPUs to improve the system performance.

However, the state-of-the-art FPGA acceleration of MCTS re-
quires a strictly static association between the topological ordering
of tree nodes with the on-chip memory addresses. This severely
limits the supported tree height and constrains the asymptotically
growing characteristics of MCTS trees, thus affecting the domain-
specific performance of MCTS algorithms. It is challenging to sup-
port runtime dynamic memory allocation on FPGA due to the
nature of static memory assignation in FPGA bitstreams, while
hardware reconfiguration lead to large time overhead.

In this work, we address the above challenges and propose
the first CPU-FPGA MCTS acceleration framework that supports
dynamic tree management without run-time FPGA reconfigura-
tion. We achieve high performance by algorithm-hardware co-
optimizations for the in-tree operations. Our framework maps the
MCTS memory components and schedules MCTS primitives to
concurrently exploit the compute power provided by both CPU
and FPGA. The framework also provides an easy-to-use software
API to reduce the effort for developing the application-agnostic
accelerator and interfacing with high-level benchmarking libraries.
Our original contributions are:
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• To support arbitrary dynamic accesses by all the in-tree op-
erations with minimal area overhead, we propose an acceler-
ator design with an custom Butterfly-based Interconnection
between the computing units and the memory banks;
• Based on our interconnection design, we propose an on-
chip memory bank assignment algorithm for MCTS tree
construction to minimize the runtime bank conflict during
all the in-tree operations;
• To enable efficient hardware mapping and end-to-end exe-
cution, we develop a framework consisting of:
– Accelerator Generator that decides the hardware configu-
ration based on algorithm and benchmark parameters;

– A hybrid parallel execution model that concurrently ex-
ploit the compute power of both CPU (data parallelism)
and FPGA (pipeline parallelism);

– Python-based API encapsulating the FPGA in-tree accel-
erator to make our design portable to state-of-the-art RL
benchmarking libraries;

• Evaluation on widely-used game benchmarks show that our
framework achieves up to 6.8× throughput improvement
than the CPU implementations, and better algorithm perfor-
mance than the state-of-the-art CPU-FPGA implementation
of Tree-Parallel MCTS.

2 BACKGROUND
2.1 Monte-Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a model-based Reinforcement
Learning algorithm [3]. It is performed by an agent iteratively to
plan the best sequence of actions with the goal of maximizing
the cumulative reward. In the MTCS tree ⟨E,S⟩, a node 𝑠 ∈ S
records an environment state, an edge 𝑒 (𝑠, 𝑠) ∈ E denotes an action
taken at state 𝑠 . At each agent step, the agent decides its action
by constructing an asymmetric partial decision tree using one or
multiple workers. Table 1 shows the operations performed by a
worker in each iteration of the tree construction. In practice, in
each agent step, the Selection, Expansion, Simulation, and BackUp
phases are repeated until an iteration budget is reached [3, 14]. This
budget is quantified as 𝑋 that denotes the maximum number of
recorded nodes in the tree (i.e., size of the MCTS tree).

2.2 Operations of Tree-Parallel MCTS
In parallel implementations of MCTS, multiple workers serve the
same agent to speed up the agent decision process. Various ap-
proaches to parallelize MCTS have been proposed (Sec. 3.1). In
this work, we target the popular Tree-Parallel MCTS method. The
Tree-Parallel MCTS incorporates virtual-loss (VL) based in-tree
operations. Specifically, after a worker selects an edge, a VL is sub-
tracted from 𝑢𝑐𝑡 of selected edge to lower its weight and encourage
other workers to take different paths. It also creates read-after-write
dependencies between workers accessing the same tree node dur-
ing Selection. VL is recovered later in BackUp. We define in-tree
operations as all the arithmetic operations that access the tree in
Selection (including applying VL), Expansion, and Backup:
• Selection (traversed edges 𝐸𝑡 ):
– Read from tree levels: 𝑠 ← arg max

𝑠∈Children(𝑠 )
{𝑢𝑐𝑡 (𝑠, 𝑠)}

– Apply Virtual Loss (𝑉𝐿): 𝑢𝑐𝑡 (𝑠, 𝑠)− = 𝑉𝐿;
– Node jumping: 𝑠 ← 𝑠; 𝐸𝑡 [𝑖].append(𝑠, 𝑠);
• Node Insertion in Expansion (𝑠′):
– InsertNode(𝑠′), InsertEdge(𝑠, 𝑠′);
• BackUp (𝐸𝑡 , reward 𝑅):
– tree.UpdateEdges(𝑅, 𝑉𝐿, 𝑢𝑐𝑡 (𝐸𝑡 ))

Table 1: MCTS phases

Operations Description
The Selection phase iteratively selects 𝑠 ←

arg max
𝑠∈Children(𝑠 )

{𝑢𝑐𝑡 (𝑠, 𝑠 ) } until reaching a leaf,

where 𝑢𝑐𝑡 (𝑠, 𝑠 ) = 𝑉𝑠 + 𝛽
√︃

ln𝑁𝑠
𝑁𝑠

* [3].
When leaf node 𝑠 is selected, the Expansion
phase runs a 1-step simulation from 𝑠 to reach
a new state, inserts a new child node 𝑠′ to
represent the new state, and creates an edge
(𝑠, 𝑠′ ) . The Simulation phase runs local sim-
ulation from 𝑠′ until termination, and returns
a reward𝑉 .

The BackUp phase uses the received 𝑉 to
update the𝑉𝑠 term of𝑢𝑐𝑡 for all the traversed
edges during Selection.

Note: *𝑉𝑠 is the average expected reward that can be received through 𝑠 ,
and 𝑁𝑠 (𝑁𝑠 ) denotes the number of times the nodes 𝑠 (𝑠) has been visited.
𝑢𝑐𝑡 (𝑠, 𝑠 ) is the weight of the edge (𝑠, 𝑠). 𝛽 is a parameter controlling the
tradeoff between exploitation (first term) and exploration (second term)
[3].

2.3 Performance Analysis and Challenges
2.3.1 Acceleration on general-purpose processors. The MCTS sys-
tem throughput is described as the number of worker-Iterations per-
formed Per Second, or 𝐼𝑃𝑆 . A worker-Iteration is composed of the
four phases (Table 1) conducted by a single worker. In tree-parallel
MCTS, during each iteration, the number of in-tree operations and
the number application-specific simulations are fixed. Therefore,
𝐼𝑃𝑆 is upper-bounded by:

𝐼𝑃𝑆upper bound =𝑚𝑖𝑛 (𝑃𝑇𝑠𝑖𝑚, 𝑃𝑇𝑖𝑛−𝑡𝑟𝑒𝑒 ) (1)

where 𝑃𝑇𝑠𝑖𝑚 is the peak throughput of simulations (number of sim-
ulations performed per second) by all the workers, and 𝑃𝑇𝑖𝑛−𝑡𝑟𝑒𝑒 is
the peak throughput of the in-tree operations (number of Selection-
Expansion-Backup performed per second) by all the workers. The
simulation by all the workers are completely independent. Assum-
ing there are 𝑝 workers, 𝑃𝑇𝑠𝑖𝑚 can be modeled as the total number
of workers divided by the latency of single-worker simulation:
𝑃𝑇𝑠𝑖𝑚 =

𝑝

𝑇𝑠𝑖𝑚
. On the other hand, in the in-tree operations, all the

workers are serialized at the root node for Selection and Update. We
denote the amortized time interval between any two consecutive
workers that access the root node as 𝐼𝑡𝑣 . The peak throughput of the
in-tree operations is thus bound by 𝐼𝑡𝑣 : 𝑃𝑇𝑖𝑛−𝑡𝑟𝑒𝑒 ≤ 𝑝

𝑝×𝐼𝑡𝑣 = 1
𝐼𝑡𝑣

.
This poses a constant upper-bound that prevent the system through-
put from linearly increasing as the number of workers 𝑝 scale up. In
Fig. 1, we show the performance analysis based on Equation 1 using
a classical control benchmark on a 128-core CPU. The line plots
show the peak performance bound and the blue area is the range of
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Figure 1: MCTS system performance on CPUs

actual 𝐼𝑃𝑆 achieved. Note that the 𝐼𝑃𝑆 for a specific 𝑝 spans a range
as it depends on the specific execution model (details discussed in
Section 3.1).

2.3.2 FPGA acceleration of MCTS. A key perspective of efficiently
balancing exploration-exploitation tradeoff in MCTS is the dynamic
construction of its tree policy. The pattern of the tree growth is de-
termined at runtime by the random simulations. While it is simple
to perform dynamic tree management using runtime dynamic mem-
ory allocation on CPUs, this is a challenging task on FPGAs. This
is due to the FPGA bitstream’s nature of static memory assignation.
A naive method of dynamically re-allocating memory blocks for
the growing tree at runtime is through hardware reconfiguration,
which causes unnecessary and large time overhead in the end-to-
end MCTS execution. We are motivated to address this challenge
by proposing the first dynamic MCTS accelerator design without
the need for hardware reconfiguration.

3 RELATEDWORK
3.1 Parallel MCTS: General-Purpose Processors
Several parallel MCTS algorithms have been developed to increase
the throughput while reducing the negative impact on algorithm
performance in terms of obtained rewards [4, 5, 11, 12]. Tree-Parallel
MCTS and its variants benefit significantly from their superior
algorithm performance compared with the other parallel methods
[5, 13–15]. It has been adopted in various successful applications
such as Go [20], Dou-di-zhu [23], and Atari games [13]. Therefore,
Tree-Parallel MCTS is our target parallel approach for this work.

Existing Tree-Parallel MCTS on CPU can be categorized into
two parallel execution models: multi-threaded tree traversal [5]
and single-thread tree traversal [13].

• In multi-threaded tree traversal, each worker accessing the
tree is assigned a separate thread, and local mutex at each
tree node is used for accessing the shared tree. The main
disadvantage of this method is that multiple threads com-
municate through the DDR memory which lead to high 𝐼𝑡𝑣
dominated by DDR access time (hundreds of CPU cycles
[1, 7]).
• In single-thread tree traversal, only a single master thread is
assigned for performing in-tree operations exclusively, and
multiple worker threads perform simulations exclusively. It
has the advantage of low-latency memory access time since
the tree can be managed in the local memory (e.g. last-level
cache). It also achieves higher IPS than multi-threaded tree
traversal, because the in-tree operations can be overlapped
with simulations. However, 𝐼𝑡𝑣 between workers is still large

because all the workers are serialized, and the system per-
formance cannot scale well even with a small number of
workers (as shown in Figure 1, the master thread for in-tree
operations becomes the bottleneck at 𝑝 = 16).

In this work, we are motivated to achieve better system through-
put and scalability compared with the existing implementations
discussed above.

3.2 Hardware-Accelerated MCTS
[8, 17] design Blokus Duo Game solvers on FPGA that uses MCTS.
Their accelerators target Blokus Duo game only and implement the
simulator circuit on FPGA. It is difficult for their designs to gen-
eralize to various applications due to the lack of general-purpose
simulators provided by CPU processors. [14] proposed to accelerate
MCTS in CPU-FPGA heterogeneous systems, and developed FPGA
accelerator for in-tree operations. However, the accelerator design
in [14] requires static memory allocation for a full tree at compile
time. This is because it assumes a static one-to-one association
between the topological ordering of tree nodes with the on-chip
memory addresses. As the memory requirement for the full tree in-
creases exponentially wrt the tree height, the supported tree height
is extremely limited on FPGAs which typically have limited on-chip
resources. This constrain the asymptotically growing characteristic
the tree, thus affecting the domain-specific algorithm performance
of MCTS algorithms. In summary, none of the existing FPGA design
support dynamic tree management which is critical in achieving
high algorithm performance. In this work, we aim to bridge this
gap by supporting dynamic tree management while maintaining
high system throughput.

4 ACCELERATOR DESIGN
4.1 Overview
4.1.1 Data Structure and Operations. The MCTS tree is maintained
on-chip of the FPGA accelerator. In the MCTS tree data structure,
each node is associated with an ID based on insertion order, its
number of visits, and the average reward gained by visiting it.
Each edge has a parent ID, a child ID and a weight (UCT value).
Assuming there are 𝑝 workers, the accelerator performs all their
in-tree operations (BackUp, Selection, and Node Insertion as listed
in Section 2.2). Note that the application-specific environmental
states are stored in the CPU memory rather than FPGA memory,
and the rest of the Expansion phase including 1-Step simulation
and environmental state management are also performed on the
CPU instead of the FPGA (further discussed in Sec. 5.1).

4.1.2 Accelerator Overview. The overview of the accelerator is de-
picted in Fig. 2. The key idea of the accelerator design is to exploit
pipeline parallelism among the workers that propagate through
multiple stages, each stage operating on a certain tree level stored in
on-chip SRAM. Assuming the maximum tree height is 𝐷 , a pipeline
is allocated with 𝐷 pipeline stages, each stage equipped with an
Inserter, a Selector and an Updater corresponding to operations on
a tree level. Worker requests for the in-tree operations are streamed
into the compute units (Inserter, Selector or Updater) from the PCIe
Interface. Upon the completion of Selection and Node Insertion
requests, The pipeline outputs requests for simulation back to the
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Figure 2: Accelerator Design: Overview

PCIe. The pipeline require read/write accesses to 𝑌 on-chip SRAM
banks that store the tree through a custom Stage-Bank Intercon-
nection. Each DRAM bank stores multiple tree node entries. The
content of a node entry 𝑠 stored in the SRAM banks is listed in the
following, assuming 𝐹 is the fanout of the tree:
• 𝑠 .𝐼𝐷 , number of visits 𝑁 (𝑠)
• [𝑢𝑐𝑡 (𝑠, 𝑠′0), ..., 𝑢𝑐𝑡 (𝑠, 𝑠

′
𝐹
)]

• [Bank Index(𝑠′0), ..., Bank Index(𝑠′
𝐹
)],

[Node Index(𝑠′0), ...,Node Index(𝑠
′
𝐹
)]

In the above list, 𝑁 (𝑠) and 𝑢𝑐𝑡 are updated by the Selectors; Bank
Index (𝑠) denotes the ID of the SRAM bank that stores node entry 𝑠 ,
and Node Index(𝑠) denotes the address of node entry 𝑠 in its bank.
Bank Indices and Node Indices are only assigned once by Inserters
in each MCTS agent step.

As motivated in Sec. 2, the key objectives of the accelerator de-
sign are to (1) support dynamic run-time accesses to the tree nodes
by the pipeline, and (2) ensure high performance by minimizing
the 𝐼𝑡𝑣 between workers, where 𝐼𝑡𝑣 is composed of the propagation
time in the Stage-Bank Interconnection and the Selector Compute
time (Section 4.3). We realize objective (1) through a custom inter-
connection as discussed in Section 4.2. In Objective (2), we develop a
novel bank assignment algorithm for tree construction to improve
the throughput of in-tree operations by reducing the bank con-
flicts in the interconnection, and several hardware optimizations to
improve the time performance of the Selector.

4.2 Stage-Bank Interconnection
For completely run-time dynamic tree management, the shape and
topological ordering of tree nodes are not known at compile time,
and are different for everyMCTS agent step. For this reason, it is not
practical to determine a fixed access pattern from the pipeline stages
to the SRAMbanks storing the tree nodes at compile time. Therefore,
to avoid expensive run-time re-configuration between consecutive
MCTS agent steps, an all-to-all interconnection between the stages
and SRAM banks is required to support arbitrary run-time access
patterns. An intuitive solution to meet this requirement is to build
an all-to-all broadcast network that routes from all the stages to all
the banks. However, this solution is not scalable to large or deep
trees. Assuming the total number of SRAM banks used to store the
tree is 𝑌 , the maximum height supported for the MCTS tree is 𝐷 ,
the total area consumption of the all-to-all fully-connected network
is𝑂 (𝐷𝑌 ). This is impractical to implement on typical FPGA devices

with limited on-chip resources. For example, such a design cannot
be produced even for a tree height 𝐷 = 32 when targeting a small
MCTS tree stored in 256 SRAM banks.

We propose an area-efficient solution that can be better scaled
to MCTS tree with large heights, while maintaining the capability
of all-to-all interconnection for fully dynamic accesses by the com-
pute units. The design of our Stage-Bank Interconnection follows a
butterfly network pattern, as shown in Fig. 3.

Figure 3: Example Custom Butterfly-based Interconnection:
𝐷 = 4, 𝑌 = 8

Algorithm 1 Stage-Bank Routing from stage 𝑖, 𝑖 ∈ [0, 𝐷)
Input: Binary representation of target SRAM bank index 𝑖𝑑𝑥 ;
Output: A sequence of request-routing actions to SWC{𝑥, 𝑦} with the goal of accessing

bank 𝑖𝑑𝑥 , where 𝑥 ∈ [0, log𝐷 ) ; 𝑦 ∈ [0, 𝐷 ) ;
1: SWC{𝑥, 𝑦}← SWC{0, 𝑖}
2: for 𝑥 ∈ [0, ..., log𝐷 − 1) do ⊲ bit 0 (log𝐷 − 1) is the LSB (MSB)
3: if 𝑖𝑑𝑥 .bit[𝑥]== 0 then ⊲ Route Up
4: if 0 <= 𝑦%(2𝑥+1 ) < 2𝑥 then SWC{𝑥, 𝑦}← SWC{𝑥 + 1, 𝑦};
5: else: SWC{𝑥, 𝑦}← SWC{𝑥 + 1, 𝑦 − 2𝑥 };
6: else ⊲ Route Down
7: if 2𝑥 <= 𝑦%(2𝑥+1 ) < 2𝑥+1 then SWC{𝑥, 𝑦}← SWC{𝑥 + 1, 𝑦};
8: else: SWC{𝑥, 𝑦}← SWC{𝑥 + 1, 𝑦 + 2𝑥 };

The first part of the Stage-Bank Interconnection is a complete
butterfly network with 𝐷 input ports and 𝐷 output ports that com-
municate the in-tree operation requests. The second part is a broad-
cast network from 𝐷 switches to 𝑌 banks, which can be viewed
as 𝐷 independent 1−to−⌈𝑌

𝐷
⌉ connection units, and they facilitate

processing the in-tree operation requests by providing read/write
accesses to the memory banks. Our design reduced the area re-
quirement to𝑂 (𝐷 log𝐷 +𝑌 ) while supporting the any-to-any fully
connected access pattern which is essential for dynamic tree man-
agement. The routing algorithm is shown in Algorithm 1. Note
that while our implementation of the Stage-Bank Interconnection
can handle routing congestions, these congestions could negatively
affect the throughput of in-tree operations. We further discuss opti-
mizations to alleviate such performance degrade in Section 4.3.

4.3 Algorithm-Hardware Co-Optimizations
With the basic design discussed above, we derive the 𝐼𝑡𝑣 between
consecutive workers performing in-tree operations as the interval
between consecutive workers making Selection requests. This is the
sum of interconnection propagation time and the Selector compute
time (i.e., latency for 𝐹−way comparison and applying virtual loss,
where 𝐹 is the fanout of the MCTS tree). Note that for both Node
Insertion and Update requests, the interval between workers is
much smaller than that for the Selection requests. This is because
neither the Node Insertion nor the Update have RAW dependency
between accessing different tree levels, such that 𝑂 (1) interval
between workers can be easily achieved. On the other hand, the

238



A Framework for Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform via on-chip Dynamic Tree ManagementFPGA ’23, February 12–14, 2023, Monterey, CA, USA

Selection request of a subsequent worker can only be processed
after the completion of 𝑓 −way comparison and virtual loss update
by its previous worker, so the overall 𝐼𝑡𝑣 is equivalent to the interval
between consecutive workers’ Selection requests.

In the formulation of 𝐼𝑡𝑣 , the interconnection propagation time
can be further decomposed into single-worker latency and overhead
from butterfly network congestions. We show the time complexity
𝑇 () and the worst-case time complexity 𝑂 () of these components
of 𝐼𝑡𝑣 in Equation 2:

𝐼𝑡𝑣 = 𝑇interconnection +𝑇selector︸   ︷︷   ︸
𝑂 (𝐹 )

,

where𝑇interconnection = 𝑇butterfly︸    ︷︷    ︸
𝑇 (log𝐷 )

+𝑇congestions︸       ︷︷       ︸
𝑂 (𝐷 )

(2)

Based on the above analysis, we show our novel algorithm-hardware
co-optimizations for reducing the time complexity of 𝑇selector (la-
tency of computing 𝐹 -way comparison, discussed in Section 4.3.2)
and 𝑇congestions (latency overhead from congestion of multiple Se-
lection requests on the same interconnection switch, discussed in
Section 4.3.1).

4.3.1 Dynamic Node Insertion Algorithm: Minimizing Interconnec-
tion Propagation Time. A potential bottleneck in the 𝐼𝑡𝑣 time com-
plexity is the time overhead from handling congestions by serial-
izing the Selection requests at a certain bank or interconnection
switch. The data layout of the tree (i.e., the bank assignment of
each node entry during Node Insertion) plays a critical role in the
number of congestions in the butterfly network during the process
of Selection requests. In a basic scenario where the node entries
are simply stacked into the banks one by one in their insertion
order without any constraints, it is possible for node entries belong-
ing to different tree levels to be stored in the same bank. In this
case, all the 𝐷 Selection requests in the Selection pipeline could col-
lide on the same output switch in the butterfly network (although
they are all independent requests by different workers) such that
𝑇congestions = 𝐷 cycles. To avoid such scenario, we first put a con-
straint on the Node Insertion logic to ensure that nodes inserted
on different tree levels cannot share the same bank (𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1).
While this avoids the scenario of requests colliding on the same
bank, it cannot avoid all the switch collisions, since multiple banks
are connected to the same output port of the butterfly network part
in the Stage-Bank Interconnection. To minimize𝑇congestions for any
given number of stages and SRAM banks, we propose a bank as-
signment algorithm for Node Insertion that minimizes the total
number of switch congestions in Selection, based on the butterfly
network properties, as shown in Algorithm 2. The intuition behind
the proposed algorithm is as follows: We keep track of all the es-
tablished routing paths using a scratchpad. When a new routing
path is constructed by inserting a node into a new bank, we use the
scratchpad information to select the bank that minimizes the total
number of potential congestions with existing routing paths.

Our proposed bank assignment algorithm avoids exhaustively
checking every pair of stage-bank connections. This is done by tak-
ing advantage of the recursive property of butterfly network struc-
ture and its routing algorithm 1: at every switch group (i.e. intercon-
nection layer) 𝑥 , the request from a given input port 𝑠𝑟𝑐 can only col-
lide with the request from another input port 𝑠𝑟𝑐𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡

Algorithm 2 Bank Assignment Algorithm for Node Insertion
Input: Node Insertion stage (tree level) id 𝑠𝑟𝑐 ;
Input: Scratchpad Memory 𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜 [bank id]={stage id, 𝑏𝑜𝑜𝑙 𝑓 𝑢𝑙𝑙 }; ⊲

𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜 tracks the tree level (stage) of the nodes stored in a bank
Input: Scratchpad Memory 𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 [stage id]={list of destination port id}; ⊲

𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 tracks all the destination ports that a stage routes to
Output: The bank id 𝑑𝑒𝑠𝑡𝑂𝑃𝑇 that minimizes𝑇congestions ;
1: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑛𝑘 ← 𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 [𝑠𝑟𝑐 ] [−1] ⊲ Most recent accessed bank
2: if !𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑛𝑘 ] .𝑓 𝑢𝑙𝑙 then
3: 𝑑𝑒𝑠𝑡𝑂𝑃𝑇 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑎𝑛𝑘 ; Update 𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜 [𝑑𝑒𝑠𝑡𝑂𝑃𝑇 ] .𝑓 𝑢𝑙𝑙
4: ⊲ Inserting to existing bank under𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1
5: else
6: 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 ←∞
7: for 𝐵𝑎𝑛𝑘𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in 𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜 with stage id==Null do
8: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 ← 0
9: for 𝑥 ∈ [0, ..., log𝐷 − 1) do ⊲ bit 0 is the LSB
10: 𝑠𝑟𝑐𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ← 𝑠𝑟𝑐.toggle[𝑏𝑖𝑡 (𝑥 ) ]
11: if ∃𝐵𝑎𝑛𝑘𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ∈ 𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 [𝑠𝑟𝑐𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ]
12: such that 𝐵𝑎𝑛𝑘𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 .𝑏𝑖𝑡 (log𝐷 − 𝑥 ) ==
13: 𝐵𝑎𝑛𝑘𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 .𝑏𝑖𝑡 (log𝐷 − 𝑥 ) then
14: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 + +
15: ⊲ Identified congestion at Switch Group 𝑥
16: if 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 <=𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 then
17: 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡
18: 𝑑𝑒𝑠𝑡𝑂𝑃𝑇 ← 𝐵𝑎𝑛𝑘𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

return 𝑑𝑒𝑠𝑡𝑂𝑃𝑇

if bit 𝑥 is the only different bit in the binary representations of
both input ports (Algorithm 2 line 10), and the said collision can
be checked by comparing bit log𝐷 − 𝑥 of their destination out-
put ports (this is same as bit log𝐷 − 𝑥 of the target bank index,
Algorithm 2 line 11-13). We denote the number of input/output
ports to the Stage-Bank Interconnection as 𝐷 (this is equivalent
to the number of pipeline stages and the tree height), and the to-
tal number of nodes in the tree as 𝑋 . Each node insertion into an
existing bank takes 1 cycle (Algorithm 2 line 3). Each node inser-
tion identifying a new bank assignment takes 𝑂 (𝑌 log𝐷) cycles.
Overall, for a complete tree construction in a MCTS agent step,
the amortized time complexity of the bank assignment algorithm
for each node is (1+𝑌 )𝑌 log𝐷

2 × 1
𝑋

cycles. The scratchpad memory
𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜, 𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 are dynamically filled and used by the bank
assignment logic. Their memory overhead are O(𝑌 ) for 𝐵𝑎𝑛𝑘𝐼𝑛𝑓 𝑜
and O(𝐷𝑌/2) for 𝑆𝑡𝑎𝑔𝑒𝐼𝑛𝑓 𝑜 . In typical MCTS benchmarks,𝐷 ranges
from 8 to 32 and 𝑋 ranges from 500 to 10K. Based on these param-
eters, the amortized single Node Insertion latency is only 1.02 to
20 cycles. Overall, our bank assignment algorithm optimization
trade for low 𝐼𝑡𝑣 during Selection by introducing latency overhead
during Node Insertion. Algorithm 2 benefits the system throughput
by reducing 𝐼𝑡𝑣 between workers. Although it has the tradeoff of
increasing the Node Insertion latency, this latency can be hidden
in the heterogeneous system using our parallel execution model
(Section 6.3).

4.3.2 Hardware Optimization: Minimizing Selector Compute Time.
Given a tree with Fanout 𝐹 , each Selector can identify the best child
node in 𝐹 cycles using one comparator. To reduce 𝑇selector and
improve the selector performance scalability to large 𝐹 , we use a
hierarchical comparison-lookup design for low latency. Specifically,
we define a comparison-lookup factor 𝑓 , and recursively divide the
𝐹 𝑢𝑐𝑡 values into 𝑓 groups until each group is of size <= 𝑓 . Within
each group, we obtain the maximum of 𝑓 𝑢𝑐𝑡 values in a single cycle
using a comparison-lookup unit. The design is shown in Figure 4.
Each comparison-lookup unit has 𝐶 𝑓

2 =
𝑓 !

(𝑓 −2)!2! comparators. Each
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comparator outputs a 1-bit comparison result of a unique pair of
𝑢𝑐𝑡 values. The concatenation of these results (a 𝐶 𝑓

2 -bit number) is

used to index a Look-Up table (size 2𝐶
𝑓

2 ) that outputs the best child
index 𝑠 (with the maximum 𝑢𝑐𝑡 value). This design allows latency
of ⌈log𝑓 𝐹 ⌉-cycle response to any changes in 𝐹 input 𝑢𝑐𝑡 values.
This design is allocated in every Selector to concurrently process
the Selection requests by different workers. 𝑓 should be tuned for
the optimal performance within the FPGA resource constraint.

butter
Figure 4: Example Comparison-LookUp Design: 𝐹 = 9, 𝑓 = 3

4.3.3 Other Optimizations.
Shift Register: After the Selection request accessing a certain tree
level is completed at the output port of the Stage-Bank Interconnec-
tion, the workers propagate to the next pipeline stage by populating
a shift-register array. The array collects the request processed at
every tree level, and shifts by one tree level to serves as the input
to the next-round Selection requests. Upon every shift-register op-
eration of the array, one output Expansion-Simulation request is
popped from the array and sent to the PCIe interface.

Memoization for BackUp: To eliminate the 𝑂 (𝐷) overhead
of sequentially back-tracing from leaf to node in BackUp of each
worker, we allocate 𝑌 updaters, one associated with every bank,
and let the update operation in all the tree levels perform in a data-
parallel manner. A BackUp Memoization Buffer with size of 𝐷 − 1
words is associated with each worker to memorize the node entries
to be updated in BackUp during Selection. Thus for each worker,
BackUp can be completed in 2 cycles.

5 FRAMEWORK SPECIFICATIONS
Our framework takes a benchmark software simulator, MCTS tree
specifications, and CPU-FPGA platform specifications as inputs.
It outputs the end-to-end mapping of the Tree-parallel MCTS on
the given heterogeneous platform. It is composed of a parallel
execution model that defines the primitives executed on each pro-
cessor/accelerator and their interactions (Section 5.1), and a tool
flow for generating FPGA bitstream and interfacing heterogeneous
programming languages (Section 5.2).

5.1 Hybrid Parallel Execution Model
As introduced in Section 3.1, both existing CPU execution mod-
els (multi-threaded and single-thread tree traversals) have their
tradeoffs. In this work, using our FPGA accelerator, we propose
a hybrid parallel execution model that outperforms both existing
execution models. The proposed hybrid execution model allows
low-latency on-chip memory accesses and concurrent in-tree op-
erations on FPGA that outperforms the multi-threaded CPU tree

traversal, while keeping the advantage of high-throughput simula-
tion of single-thread tree traversal. This is achieved by preventing
the in-tree operations from occupying the simulation threads. Our
execution model uses a task decomposition scheme consistent with
existing work [14] to reduce the CPU-FPGA data traffic and FPGA
on-chip memory consumption - the system dynamically maintains
two memory components: The MCTS tree and State Table. The
MCTS tree is stored on the FPGA (Section 4.1.2) and its node en-
tries do not store the environment states. The State Table is stored
in the CPU DRAM. It is implemented as a table with 𝑋 entries (𝑋
is the tree size), where the index of each entry is a unique node
index maintained in the MCTS tree, and the value is an application-
specific environment state represented by that node.

The high-level heterogeneous system architecture of our frame-
work is shown in Figure 6. We use a master-worker architecture
to implement parallel MCTS under our hybrid execution model
with the following considerations: First, the simulation operations
during Expansion and Simulation phases are application-specific,
worker-independent, and usually more time-consuming compared
to the in-tree operations. So, they are implemented on the CPU in
a data-parallel fashion using multiple worker threads. Second, a
centralized Master FPGA Thread hosting a pipelined accelerator is
dedicated for high-throughput in-tree operations using localized
fast on-chip memory. This also prevents the in-tree operations from
occupying and blocking the simulation processes.
5.1.1 Master FPGA thread and Simulation threads: Workflow. The
execution workflow of the FPGA kernel, and each CPU thread
is summarized in Figure 5. The Master FPGA Thread (1) serves
as the host program for the FPGA accelerator, and (2) is used for
coordinating and scheduling worker requests among the Simula-
tion threads. The Master FPGA Thread is critical in overlapping
in-tree operations with simulations. As shown in Figure 5-(b), the
master process repeatedly executes the in-tree operations using
the FPGA accelerator and assigns Expansion-Simulation tasks to
different Worker Simulation Threads through the shared Exp-Sim
request buffer (the buffer is implemented as a thread-safe queue). It
collects the Update-Selection requests returned by the Worker Sim-
ulation Threads to update the MCTS tree statistics. The CPU-FPGA
data communication and the communication between master and
worker threads are asynchronous, allowing the in-tree operations
and simulation by different workers to overlap. As shown in Figure
5-(a), after the pipelined processing of Update-Selection requests,
the node IDs to be expanded can be generated before deciding the
bank assignment of inserted nodes using Algorithm 2. Therefore,
the Exp-Sim requests can be sent to CPU in the same time the Node
Insertion is executed on the FPGA, hiding the additional overhead
introduced by our algorithm optimization for the Node Insertion.
The Worker Simulation Thread process is shown in Figure 5-(c).
Note that The State Table allows fully data-parallel operations by
all the simulation threads and does not incur additional synchro-
nization between threads.

5.1.2 Dependency-Relaxed Task Scheduling. In synchronous tree-
parallel MCTS, a barrier is put after the BackUp to make sure
updates by all the workers are completed before the Selection in
the next iteration can start. In practice, although this allows all the
workers to access the most up-to-date statistics of the 𝑢𝑐𝑡 values
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Figure 5: Hybrid Parallel Execution Model workflow. Exp-Sim denotes Expansionm and Simulation; Upd-Sel denotes Update
(i.e., node updates in Back-Up) and Selection.

Figure 6: Heterogeneous System Overview. Global Memory
is the CPU DRAM.

in the MCTS tree, it leads to idling of the FPGA hardware in the
Selection pipeline. To alleviate this idling, we relax the dependency
between different workers in adjacent iterations. Specifically, in-
stead of having all the 𝑝 workers waiting for the completion of
BackUp by all the workers in the previous iteration, we only make
sure each individual worker waits for the completion of BackUp
by itself in the previous iteration before beginning Selection of its
next iteration. This dependency-relaxed task scheduling can result
in staleness of the tree policy by up to 𝑝 updates behind, compared
to the tree policy constructed with the barrier after BackUp. This
effect on the algorithm performance is trivial because 𝑝 (usually
tens to hundreds) is usually much smaller than the total number of
iterations in a MCTS agent step (up to tens of thousands).

5.2 Framework Workflow
Figure 7 summarizes the design tool flow in our framework. The
tool is composed a DSE (Design Space Exploration) Engine, an accel-
erator code generator, and System API (Application Programming
Interface) for interfacing between the FPGA kernel, the Master
FPGA thread and the simulation threads in high-level language
(Python) under our proposed hybrid execution model. The inputs
to the framework include configuration files describing the MCTS
Tree and the FPGA hardware given at compile time, and command
line arguments specifying the benchmark environment and number
of workers given at run time. The output is an executable Python
program that performs the specified MCTS application on a CPU-
FPGA platform. The DSE engine and the API are discussed in detail
in Section 5.2.1 and 5.2.2, respectively.

Figure 7: Framework Design Tool Flow

5.2.1 FPGA Accelerator Generation. The input MCTS tree specifi-
cations include the tree height limit𝐷 , fanout of the tree (i.e., action
space) 𝐹 , and the iteration budget (tree size limit) 𝑋 . Our proposed
FPGA accelerator has two major design parameters: the Stage-Bank
interconnection configuration, 𝑀 , and the Comparison-lookup fac-
tor, 𝑓 . The interconnection configuration has twomodes: “butterfly"
specifies the custom Butterfly-based Interconnection (Section 4.2).
“all-to-all" specifies an all-to-all connection between the stages and
banks yielding the optimal (1-cycle) bank access latency. 𝑓 is an
integer factor (Section 4.3.2). The DSE engine determines these
design parameters with the goal of minimizing 𝐼𝑡𝑣 (Equation 2).

𝑇selector = log𝑓 𝐹

𝑇interconnection =

{
log2 𝐷 if𝑀=“butterfly"

1 if𝑀=“all-to-all"

𝑅selector =

(
𝐶

𝑓

2 × 𝑅comparator + 𝑅Lookup

) ∑log𝑓 𝐹−1
𝑛=0 𝑓 𝑛

𝑅interconnection =

{
(𝐷 × log2 𝐷 +𝑌 ) × 𝑅buffer if𝑀=“butterfly"
𝐷 × 𝑌 × 𝑅buffer if𝑀=“all-to-all"

(3)

Based on the above models, our DSE engine search for the global
optimal design point on a target FPGA that satisfies Equation 4:

𝑀, 𝑓 = argmin{𝐷 × 𝑇selector +𝑇interconnection }
such that 𝐷 × 𝑅selector + 𝑅interconnection < 𝑅FPGA
where M ∈ {“butterfly", “all-to-all"}, 𝑓 ∈ [1, 𝐹 ]

(4)

In Equations 3 and 4, 𝑅FPGA denotes the available set of FPGA
resource (DSP, LUT, SRAM, etc.) and 𝑅module denotes the resource
consumption of a module. 𝑇module denotes the latency (number of
FPGA cycles) to process a request using the module. After the Stage-
Bank interconnection configuration and the Comparison-lookup
factor are determined, they are used by an FPGA Kernel Generator
script to produce the HLS code and compile the code into an FPGA
bitstream.
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5.2.2 System API. Our framework need to link across heteroge-
neous programming languages of CPU and FPGA. Specifically, state-
of-the-art AI bench-marking simulators executed on CPU need to
be invoked in high-level libraries using Python [2, 21], while our
FPGAKernel are described and hosted using HLS (C++) code. There-
fore, an API is needed for the CPU-FPGA runtime system to port the
FPGA Kernel initiation and communication protocols into Python
functions. Table 2 summarizes the API functions provided by our
framework. The listed functions are called from a main program
executed on the CPU master thread. For the functions interfacing
with FPGA (rows 1, 3, 6, 7 of Table 2), we use the Pybind library [9]
to develop Python wrappers for our HLS C++ host code.

Table 2: API functions
API Functions Description

Init() Initialize the platform with FPGA bitstream, Initialize the
benchmarking environment for simulation

MCTS_Parameters() Set the MCTS tree parameters and number of workers

LoadKrnlParameters() Generate and Load the static content of the
Comparison-LookUp Tables on FPGA

AssignExpSimTasks()
Check the parallel worker pool and execute thread-safe protocol for
sending Expansion-Simulation requests from the master thread to
a worker simulation thread

CollectSimTasks()
Check the parallel worker pool and execute thread-safe protocol for
receiving Update-Selection requests from a worker simulation thread
to the master thread

SendInTreeRequests() Send the Update-Selection requests from the master thread to FPGA

ReceiveSimRequests() Receive the Expansion-Simulation requests from FPGA to
the master thread

6 EVALUATION
The objectives of our work are to support dynamic in-tree opera-
tions with low interval (𝐼𝑡𝑣) between workers, and to improve the
scalability compared to CPU-only systems. In the following subsec-
tion, we evaluate a). How the proposed dynamic tree management
affects the performance of In-tree operations (Section 6.2); b) How
the proposed parallel execution model affects the system through-
put (Section 6.3); c). The MCTS algorithm performance using our
framework (Section 6.4).

6.1 Implementation Specifications
Benchmark environments: We evaluate our framework on Atari
games, a classic benchmark for evaluating reinforcement learning
and planning algorithms [6]. We choose three benchmarks: Carni-
val, Pong, both with action space (i.e., fanout 𝐹 of the tree) 6, and
Alien with action space 18. For these games, both the Simulation
and the 1-step simulation in Expansion use OpenAI-gym library.
We set the MCTS tree size limit (𝑋 ) as 10𝐾 for all our experiments
as consistent with state-of-the-art implementations.

Platforms: Our CPU baseline experiments are conducted on an
AMD EPYC 7763 64-Core Processor server with 2 sockets (256 hard-
ware threads in total) at 1.5 GHz. The CPU-FPGA platform consists
of the same CPU and a Xilinx Alveo U200 board [24] connected
by PCIe. In all the experiments, 𝑝 denotes the number of workers,
each worker uses a CPU worker Simulation thread. We use two
CPU-only baseline implementations that follow multi-threaded and
single-thread tree traversal execution models, respectively. Both
are implemented using the Python Multiprocessing class.

FPGA Implementation specifications: We develop the FPGA
kernel template using High-Level Synthesis (HLS). We follow VITIS
development flow [10] for bitstream generation. OpenCL [16] is

used to implement the data transfer between the CPU and FPGA.
The FPGA kernel code generator takes less than 3 seconds to gen-
erate the HLS code for any of our test cases.

The resource utilization of our accelerator for both benchmarks
are shown in Table 3. Note that the Carnival and Pong bench-
marks use the same hardware configuration because they have
the same tree fanout 𝐹 and tree size 𝑋 . The resource consumption
bottleneck is in LUTs since both the interconnection and the selec-
tor comparison-lookup modules compete for the LUT resources.
Specifically, the LUT consumption in the butterfly interconnec-
tion ∝ 𝐷 log(𝐷), and LUT consumption in the selectors also grows
asymptotically with increasing 𝐹 and 𝐷 (Equation 3). The largest
design that we can place on the target FPGA is the Alien benchmark
with 𝐹 = 18, 𝐷 = 32, which uses up to ∼ 50% of the available LUTs.

Our design achieves 250MHz operating frequency. For𝐷 ≤ 4, all-
to-all interconnection is chosen by the DSE engine. As 𝐷 increases,
butterfly-based interconnection is chosen. For both interconnection
configurations, the critical path is in the switches of the stage-
bank interconnection. The critical wire length is expected to grow
with increasing 𝐷 . For the largest 𝐷 we can place on the target
FPGA board (𝐷 = 32), the design is able to achieve single-cycle
interconnection layer propagation operating at 250MHz. For larger
𝐷 , inserting a register on the critical wire can help maintain high
operating frequency.

Table 3: FPGA Resource Consumption
Benchmarks SRAM DSP FF LUT
Carnival,
Pong

1.7∼1.88 MB
(4.9\%∼5.4%)

289∼385
(4.9\%∼6.5%)

151∼204K
(8.5\%∼11.5%)

121∼179K
(13.9\%∼20.6%)

Alien
5.01∼5.43 MB
(14.4\%∼15.8%)

273∼385
(4.7\%∼6.5%)

181∼401K
(10.1\%∼22.5%)

162∼418K
(19.2\%∼48%)

Note: 𝐷 = 8 ∼ 32 for all the benchmarks. Number of SRAM banks (𝑌 ) is set to
128 for all the test cases.

6.2 Performance of In-tree Operations
As discussed in Section 2.3 and 4.3, the serial time interval (𝐼𝑡𝑣) be-
tween two workers sharing access to the tree determines the upper-
bound of the system throughput when scaling to large number of
workers. The lower the 𝐼𝑡𝑣 is, the higher scalability is achieved.

Effect of Dynamic Algorithm Optimization: In Table 4, com-
paring the rows labeled “Ours (Dynamic)" with the rows “Ours
(without Alg. 2)", it can be observed that our algorithm optimiza-
tion reduces 𝐼𝑡𝑣 to 1

5 of its baseline value. The tradeoff of this
optimization is in the longer time overhead for node insertion; how-
ever, this can be hidden in our parallel execution model (see Section
6.3).

Comparison with state-of-the-art: We compare 𝐼𝑡𝑣 of our de-
sign with existing work [14]. [14] developed a pipelined accelerator
for in-tree operations with static memory allocation for a full tree.
We point out that the key difference of this work compared with
[14] is that our proposed design is capable of supporting dynamic
construction of arbitrary-shaped tree at run-time. We test our ac-
celerator and the baseline accelerator ([14]) by feeding synthetic
sequence of in-tree operations generated in an entire episode of
agent steps, with various tree shape constraints parameterized by
the tree height limit 𝐷 . As shown in Table 4, our design supports
various shapes since we do not set compile-time constraints on the
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one-to-one correspondence between the topological location of the
tree nodes and SRAM addresses.

Higher 𝐼𝑡𝑣 on Alien compared with the other benchmarks is due
to its larger tree fanout, making the comparison-lookup latency
higher. Our design shows higher 𝐼𝑡𝑣 on narrower trees (large 𝐷)
compared with wider trees (small 𝐷). This is because the butterfly-
based interconnection leads to 𝐼𝑡𝑣 ≥ log𝐷 cycles. On the other
hand, because [14] only pre-allocates SRAM banks for a complete
tree and constrains the nodes into their corresponding SRAM ad-
dresses, the maximum tree height is limited to log𝐹 𝑆 , where 𝑆 is the
largest number of node entries that can be stored on-chip. This limit
is as low as 8 for Carnival and Pong, and 4 for Alien. In summary,
our design can support a larger variety of tree shapes with different
tree depth limits, whereas [14] can only support small tree depth,
as summarized in Table 4.

Table 4: 𝐼𝑡𝑣 of Dynamic vs Static Tree Management

Benchmarks In-Tree Ops
Accelerator

Tree Shape Constraints
𝐷=8 𝐷=16 𝐷=32

Carnival Ours (Dynamic) 𝐼𝑡𝑣=3.2 𝐼𝑡𝑣=3.5 𝐼𝑡𝑣=9.7
Ours (w/o Alg. 2) 𝐼𝑡𝑣=8.1 𝐼𝑡𝑣=17.6 𝐼𝑡𝑣=36.4

[14] (Static) 𝐼𝑡𝑣=2 No Support No Support
𝐷=8 𝐷=16 𝐷=32

Pong Ours (Dynamic) 𝐼𝑡𝑣=3.3 𝐼𝑡𝑣=3.7 𝐼𝑡𝑣=9.4
Ours (w/o Alg. 2) 𝐼𝑡𝑣=8.5 𝐼𝑡𝑣=16.9 𝐼𝑡𝑣=34.1

[14] (Static) 𝐼𝑡𝑣=2 No Support No Support
𝐷=4 𝐷=16 𝐷=32

Alien Ours (Dynamic) 𝐼𝑡𝑣=4.3 𝐼𝑡𝑣=4.7 𝐼𝑡𝑣=10.5
Ours (w/o Alg. 2) ¯𝐼𝑡𝑣=7.3 𝐼𝑡𝑣=18.2 ¯𝐼𝑡𝑣=37.8

[14] (Static) 𝐼𝑡𝑣=3 No Support No Support

Note: 𝐼𝑡𝑣 is the average number of cycles over all the iterations in an
agent step. The rows labeled “w/o Alg. 2" describes a baseline design
without the bank assignment algorithm for node insertion (instead, a
simple heuristic for inserting the node to the next empty bank is used).

Comparisonwith CPU baselines:Our framework using FPGA
lead to additional communication overhead through PCIe, com-
pared with CPU-only baselines. Therefore, we measure the end-to-
end latency of in-tree operations including the PCIe data transfer
time. The PCIe data transfer time is obtained using Xilinx Run-
time (XRT) Profiler [25]. The CPU-only baselines include the multi-
threaded tree traversal and single-thread tree traversal. We first
observe that on the CPU, the multi-threaded implementation does
not significantly outperform single-thread implementation. This
is because threads must be serialized at root-level, where the root-
child nodes must be protected by a mutex to ensure only one thread
can access it at a time. The sequential time interval between pair
of consecutive threads accessing the shared root-children is domi-
nated by the high latency access to the CPU shared memory (DDR),
which cannot be reduced by increasing 𝑝 . On the other hand, the
single-thread implementation only allows a master thread to ac-
cess the tree, so the tree can be accessed with lower latency in its
local memory (cache). This is at the cost of serializing the in-tree
operations by all the workers. For both benchmarks, the FPGA ac-
celerator leads to lower latency than CPU, and consistently shows
higher speedup compared with CPU at larger number of workers.
The PCIe overhead increases very little as 𝑝 increases, because the
reduced PCIe data transfer time is negligible compared with the
fixed PCIe initiation latency (∼ 0.04 ms).

Figure 8: Latency of in-tree operations. Y-axes are in log scale
for better visualization.

6.3 MCTS System Throughput
Figure 9 shows the timeline of the operations on the FPGA, the
CPU master thread and one CPU worker Simulation thread in each
iteration of our framework. We observe that the node insertion pro-
cess with our bank assignment algorithm optimization (Algorithm
2) can be completely hidden by the simulation process. We also
observe that the overhead for managing the request buffers and
queues for communication between the master thread and worker
simulation threads on CPU are small, and they can be overlapped
with the simulation processes as they are fetched on-the-fly. This
means that these overheads will not become bottlenecks that can
hinder system scalability to large number of workers.

Figure 9: Timeline of the parallel execution in [14] and our
framework. 𝑝=128.

The achieved system throughput in 𝐼𝑃𝑆 (worker-Iterations pro-
cessed per second) is plotted in Figure 10.

Comparison with state-of-the-art:We compare our system
execution timeline with the state-of-the-art [14], as shown in Figure
9. Note that [14] adopts a different execution model where the PCIe
communication and State Table accesses are blocking (implicit bar-
riers are present before and after PCIe data transfer). On the other
hand, our execution model allows overlapping the communication
with the Selection and Node Insertion processes on FPGA. While
the in-tree operation latency of our design is higher than those in
[14], its effect on the system throughput is very small, since the
accelerated FPGA kernels lead to small (≤ 10%) overheads in each
iteration. As a result, the achieved throughputs in [14] and in this
work are close to the peak simulation throughputs 𝑝

𝑇𝑠𝑖𝑚
.

Comparison with CPU baselines: In both CPU-only system
execution models, the throughput can linearly scale up with in-
creasing 𝑝 until the total latency of serialized in-tree operations
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Figure 10: System Throughput Comparison. 𝐷=32.

become the bottleneck (For single-thread tree traversal, in-tree op-
erations by workers are completely serialized. For multi-threaded
tree traversal, in-tree operations by workers are serialized by the
overhead of communicating root-level information across different
threads through DDR memory). This threshold is 𝑝 =16, 32 and 64
on the Carnival, Alien, and Pong benchmarks, respectively. The
value of the threshold is affected by the ratio of the in-tree oper-
ations time to the simulation time. On the CPU, for benchmarks
with lower simulation latency, the faster in-tree operations become
the bottleneck as 𝑝 scales up. For 𝑝 larger than this threshold, the
𝐼𝑃𝑆 no longer scales up. By reducing 𝐼𝑡𝑣 between workers, the
proposed hybrid parallel execution model that leverages FPGA ac-
celeration alleviates the bottleneck imposed by in-tree operations.
In our CPU-FPGA system, higher system throughput improvements
are consistently observed for larger 𝑝 , as evident in Figure 10. Over-
all, we obtain up to 2.8×, 5.14× and 6.8× higher throughput for the
three benchmarks compared with the CPU-only baselines.

6.4 MCTS algorithm performance
The bar plots in Figure 11 show the total accumulative rewards
gained using our framework, an existing CPU-FPGA baseline [14],
and the CPU baseline with the same number of simulations. The
tree height limit is set to 𝐷 = 32 for both benchmarks in this work
and the CPU baseline, while 𝐷 = 4(8) for Alien(Carnival) in the
existing work [14].

Comparison with CPU baselines: For the CPU-only baseline,
we only show the rewards from the single-thread tree traversal as it
is very close to the rewards using multi-threaded tree traversal (the
average difference is within 2%). Overall, our framework achieves
similar algorithm performance in terms of rewards gained in an
episode compared to the CPU baseline, with better scalability to
large number of workers (shown by lower time per agent step in the
line plots). We also show that the dependency-relaxation (Section
5.1.2) improves speed without significantly affecting algorithm per-
formance. This is shown in Figure 11 by comparing our execution
model (async.) with a synchronous version (sync.) that enforces
the dependency of Selection upon all the worker Backups in the
previous iteration.

Comparison with state-of-the-art: As shown in Figure 11, in
the Alien and Carnival benchmarks, the rewards achieved by our
framework are significantly higher than the rewards achieved in
[14]. This is due to the ability of the proposed design to dynamically
adjust the tree shape constructed. For the Pong benchmark, the
rewards obtained over all the baselines do not show a significant
difference; They are saturated at 21. This is because the agent wins
the game and terminates it once it hits the score of 21 without
letting the enemy hit the same score. We still notice a disadvantage
of [14] in terms of the achieved score compared with this work and
the CPU baselines. In our FPGA-based design, achieving higher al-
gorithm performance comes at the cost of the additional overheads
from interconnection routing and the node insertion algorithm.
However, because the node insertion overheads can be completely
hidden using our proposed execution model, the time per agent
step achieved by our framework is very close to that of [14].

Figure 11: Rewards under various frameworks. async.(sync.)
stands for execution with(without) dependency-relaxation.

7 CONCLUSION AND FUTUREWORK
In this work, we proposed an algorithm-hardware co-optimized
accelerator design for in-tree operations in MCTS. Our design ad-
dressed the limitation in the state-of-the-art accelerator by support-
ing dynamic tree construction and management, while maintaining
the high throughput and scalability with a hybrid parallel system
execution model targeting CPU-FPGA heterogeneous platform.

Parallel MCTS also leads to many further research opportunities.
For example, heterogeneous hardware acceleration can be exploited
for deep learning guided MCTS where the system integrates DNN
inference and training in the loop. Additionally, new MCTS paral-
lelization approaches can be explored to reduce data race between
workers in Tree-Parallel MCTS and enable efficient implementa-
tions on data-parallel and distributed platforms.
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