
1816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

A Framework for Mapping DRL Algorithms With

Prioritized Replay Buffer Onto Heterogeneous

Platforms
Chi Zhang , Yuan Meng , and Viktor Prasanna , Fellow, IEEE

Abstract—Despite the recent success of Deep Reinforcement
Learning (DRL) in self-driving cars, robotics and surveillance,
training DRL agents takes tremendous amount of time and com-
putation resources. In this article, we aim to accelerate DRL with
Prioritized Replay Buffer due to its state-of-the-art performance
on various benchmarks. The computation primitives of DRL with
Prioritized Replay Buffer include environment emulation, neu-
ral network inference, sampling from Prioritized Replay Buffer,
updating Prioritized Replay Buffer and neural network training.
The speed of running these primitives varies for various DRL
algorithms such as Deep Q Network and Deep Deterministic Policy
Gradient. This makes a fixed mapping of DRL algorithms inef-
ficient. In this work, we propose a framework for mapping DRL
algorithms onto heterogeneous platforms consisting of a multi-core
CPU, a GPU and a FPGA. First, we develop specific accelerators
for each primitive on CPU, FPGA and GPU. Second, we relax the
data dependency between priority update and sampling performed
in the Prioritized Replay Buffer. By doing so, the latency caused by
data transfer between GPU, FPGA and CPU can be completely
hidden without sacrificing the rewards achieved by agents learned
using the target DRL algorithms. Finally, given a DRL algorithm
specification, our design space exploration automatically chooses
the optimal mapping of various primitives based on an analytical
performance model. On widely used benchmark environments,
our experimental results demonstrate up to 997.3× improvement
in training throughput compared with baseline mappings on the
same heterogeneous platform. Compared with the state-of-the-art
distributed Reinforcement Learning framework RLlib, we achieve
1.06× ∼ 1005× improvement in training throughput.

Index Terms—Deep reinforcement learning, design space
exploration, FPGA, GPU, heterogeneous platform, prioritized
replay buffer.

I. INTRODUCTION

R
INFORCEMENT Learning (RL) [1] is widely used

in many application areas including self-driving cars,

robotics, surveillance, etc. [2], [3], [4]. In RL, an agent iteratively

interacts with an environment to improve its policy such that the

Manuscript received 10 July 2022; revised 27 February 2023; accepted 18
March 2023. Date of publication 5 April 2023; date of current version 8 May
2023. This work was supported in part by NSF under Grant CNS-2009057 and
OAC-2209563, and in part by equipment and donations from AMD Xilinx.
Recommended for acceptance by M. D. Santambrogio. (Chi Zhang and Yuan

Meng contributed equally to this work.) (Corresponding author: Chi Zhang.)

Chi Zhang is with the Department of Computer Science, University of
Southern California, Los Angeles CA 90089 USA (e-mail: zhan527@usc.edu).

Yuan Meng and Viktor Prasanna are with the Department of Electrical and
Computer Engineering, University of Southern California, Los Angeles CA
90089 USA (e-mail: ymeng643@usc.edu; prasanna@usc.edu).

Digital Object Identifier 10.1109/TPDS.2023.3264823

Fig. 1. Overview of existing parallel reinforcement learning frameworks [5].

expected accumulated reward along the trajectory is maximized.

The policy is represented as a lookup table in class RL [1]

while it is represented as a neural network in Deep Reinforce-

ment Learning (DRL). Training DRL agents is extremely time

consuming as it requires a large number of data by interacting

with the environment and gradient updates to update the policy

represented as neural networks to converge (e.g., AlphaGo [4]).

The state-of-the-art parallel DRL frameworks [5], [6] employ a

general architecture consisting of parallel actors, a centralized

learner and a Prioritized Replay Buffer [7] as shown in Fig. 1(a).

Parallel actors concurrently collect data from the environment

and insert the data into the Prioritized Replay Buffer. The cen-

tralized learner samples data from the Prioritized Replay Buffer

and performs stochastic gradient descent (SGD) [8] to update

the policy. The new priorities after learning are updated by the

Prioritized Replay Buffer. The priority of each data point is

proportional to the loss function, and the sampling distribution is

proportional to the priority. The priority of each data point in the

Buffer is stored in a K-ary Sum Tree data structure [9] that can

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1817

perform sampling and priority update in O(logN) time, where

N is the total number of data points in the Replay Buffer. Het-

erogeneous platforms consisting of CPU, FPGA and GPU [10]

are promising to accelerate DRL algorithms. This is because

the speed of running the key DRL primitives significantly varies

among different DRL algorithms. For instance, training neural

network with small size on FPGA is faster than on CPU and on

GPU, whereas training neural network with large size is faster

on GPU than on CPU and on FPGA as shown in Section VII-C.

Sampling with small batch size is faster on FPGA than on CPU

and on GPU, whereas sampling with large batch size is faster

on GPU than on CPU and on FPGA as shown in Section VII-C.

In this work, we propose a framework for mapping DRL algo-

rithms onto heterogeneous platforms consisting of a multi-core

CPU, a GPU and a FPGA. CPU is suitable for computation

with complex control flows; GPU is suitable for computation

with large data parallelism and FPGA is suitable for computation

with abundant memory accesses and fine-grained data depen-

dencies. We propose separate accelerators for each primitive

on CPU, GPU and FPGA. We propose design space exploration

that chooses the optimal mapping in a given DRL algorithm such

that the overall training throughput is maximized. In addition,

we relax the data dependency between priority update and

sampling performed in the Prioritized Replay Buffer to hide

the data transfer latency among the heterogeneous accelerators.

Specifically, our key contributions are:
� On the CPU, we utilize OpenMP [11] to exploit data

parallelism in sampling and priority update of Prioritized

Replay Buffer. We use PyTorch [12] for neural network

training.
� On the GPU, we develop a customized CUDA kernel

for sampling and priority update based on parallel sum

reduction. We use PyTorch with CuDNN [13] backend for

neural network training.
� On the FPGA, we develop a generic throughput-oriented

learner module that exploits both neural network model

parallelism and data parallelism. We develop a generic

accelerator template for the Replay Management Module

(RMM) that exploits bank parallelism and is scalable to

large batch size. Our proposed RMM supports parallel

insertion, parallel sampling and parallel priority updates

of the K-ary Sum Tree [9]. We optimize the performance

of the on-chip data access using:
� Specialized variable-precision fixed point data format

for storing priority values in the RMM;
� Partitioning of theK-ary Sum Tree that enables conflict-

free parallel data accesses;
� Pipelined replay operations that allow concurrent access

to multiple memory banks storing the K-ary Sum Tree.
� To hide the latency caused by data transfer between hetero-

geneous accelerators used for training, we relax the data

dependency between priority update and sampling in the

Prioritized Replay Buffer. We empirically show that the

performance discrepancy of the trained agents between

DRL algorithms with and without data dependency is

negligible on widely used benchmark environments.
� We propose a design space exploration and design automa-

tion workflow that optimally chooses the mapping of each

component onto a CPU-GPU-FPGA heterogeneous system

given an arbitrary DRL algorithm.
� For widely used DRL algorithms including DQN [14] and

DDPG [15], the mapping generated by our framework

demonstrate up to 997.3× speedup in training throughput

compared with baseline mappings.

II. BACKGROUND

A. WorkFlow Overview

We show a generic view of existing parallel RL workflow [5],

[6] in Fig. 1(a). It contains a data collection loop and a training

loop. The main component of the data collection loop is the

actor and the main component of the training loop is the learner.

The Prioritized Replay buffer is used to store data collected by

the actor and to sample data for the learner. The details of each

component are shown in Fig. 1(b).

1) Data Collection Loop: The data collection loop is inside

each actor as shown in Fig. 1(b). Each actor contains an instance

of the environment, a policy network represented as a neural

network and a local storage. The environment outputs the current

state s. The policy network computes an action a given the

current state s via neural network inference. The action a is

actuated in the environment to obtain the next state s′ and a

reward r. The policy network computes the current loss P as

the initial priority using (s, a, s,′ r). After observing the next

state s′, the policy network computes the next action a′ and

the data collection loop continues until the end of the training.

Each actor contains a local storage to temporarily store the

data points consisting of tuple (s, a, s,′ r, P) collected by the

actor. When the local storage is full, all the data points are

popped out and inserted into the Prioritized Replay Buffer [7].

The functionality of local storage is to reduce the frequency of

adding data into the Prioritized Replay Buffer. This reduces the

synchronization frequency when multiple actors add their data

concurrently.

2) Training Loop: The training loop occurs between the

learner and the Prioritized Replay Buffer. Following [5], [6],

we use a centralized learner to perform policy updates. At

each step, the learner i) samples a batch of indices via the

Replay Management Module using the probability distribution

proportional to the priorities; ii) accesses the actual data points

in the Data Storage using the sampled indices; iii) performs

forward propagation to compute the loss; iv) performs backward

propagation to compute the gradients; v) updates the weights of

the neural network using the gradients via stochastic gradient

descent (SGD) [8]; iv) sets the priorities of the sampled batch

data to the new priorities after SGD update via the Replay

Management Module.

Data dependency: It is worth noticing that the priorities of

the sampled batch data must be updated with the new priorities

before the sampling of the next batch of indices. Otherwise, the

next batch of indices will be sampled from the old probability

distribution and it potentially causes convergence issues.

3) Prioritized Replay Buffer: Prioritized Replay Buffer [7]

sits between the data collection loop and the training loop. It

has been proposed to sample data with probability proportional

to the current loss to speed up training [7]. It consists of a

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 2. Diagram of target heterogeneous platform.

Data Storage and a Replay Management Module (RMM). Data

Storage is used to store data produced by the actors. At runtime,

data collected from the actors is inserted into the next available

location in the Data Storage. FIFO replacement policy is used

when the Data Storage is full. RMM manages the priority Pi

associated with the i-th data point in the Data Storage. Prioritized

Replay Buffer supports sampling data to perform training and

priority update after each training iteration. Sampling from

the Prioritized Replay Buffer decides which samples (indices)

are used for training the neural network. During sampling, a

data point xi is selected according to the probability distribution

Pr(i) = P (i)/
∑

i P (i), i ∈ [0, SE), where P (i) is the priority

of data point i and SE is the total number of data points

in the Prioritized Replay Buffer. To do so, we first sample

x ∼ U(0, 1). Then, we use the cumulative density function

(cdf(i) =
∑i

j=1 Pr(j), i ∈ [0, SE)) to derive the sample index

i = cdf−1(x). This is equivalent to finding the minimum index

i, such that the prefix sum of the probability up to i is greater

than or equal to x, the target prefix sum value:

min
i

i
∑

j=1

P (j) ≥ x ·

SE
∑

j=1

P (j) (1)

Such index i is known as Prefix Sum Index. Priority Update

requires updating the current priorities using newly computed

priorities. This operation is performed after each training itera-

tion.

Internally, RMM is implemented as a K-ary Sum Tree [9] as

shown in Fig. 1(b). In a K-ary Sum Tree, each node has K child

nodes and the value of each node is the sum of values of its child

nodes. The i-th leaf node stores the actual priority value Pi. The

worst case time complexity of sampling and priority update is

O(logN), where N is the number of leaf nodes in the tree [9].

B. Target Heterogeneous Platform

We show a high level diagram of our target heterogeneous

platform used to accelerate DRL algorithms in Fig. 2. It consists

of a multi-core CPU, a GPU and a FPGA. Each core inside the

CPU contains a L1 and L2 cache and all the cores share the same

L3 cache and the DDR memory. The GPU consists of multiple

streaming multiprocessors (SM) and a GDDR. Each SM consists

of a shared memory and multiple streaming processors. The

FPGA consists of a number of re-configurable compute units

(DSP), arithmetic units (ALU or LUT), and large distributed

on-chip SRAM.

C. Performance Metric and Challenges

The performance metric is training throughput defined as

the number of gradient steps performed by the learner per second

(GPS). Although the data collection throughput also affects the

convergence speed of DRL algorithms, our framework allocates

fixed resources for each actor (e.g. 1 CPU core/actor) so that the

data collection throughput is in linear w.r.t the number of actors.

By fixing the data collection throughput, the convergence speed

is only affected by the training throughput [5], which is the

primary objective to maximize in our framework.

III. RELATED WORK

GORILA [16] proposes a parallel architecture of DQN [14]

to play Atari games [17]. RLlib [18] proposes high level ab-

stractions for distributed reinforcement learning built on top

of the Ray library [18]. [19] proposes parallel reinforcement

learning using MapReduce [20] framework with linear function

approximation. [9] proposes K-ary Sum Tree data structure

to improve the performance of the Replay operations. A few

recent works have focused on hardware acceleration of DRL

algorithms. A FPGA implementation of Asynchronous Advan-

tage Actor-Critic (A3C) algorithm is presented in [21]. In [22]

and [23], a hardware architecture is developed to accelerate Trust

Region Policy Optimization (TRPO) [24]. In [25], a CPU-FPGA

architecture is proposed to accelerate Deep Deterministic Policy

Gradient (DDPG) [15], which combines Deep Q-Learning with

policy optimization methods. [26] proposes an accelerator for

PPO, which utilizes separate modules for actor-critic networks.

The key advantages and disadvantages of these existing works

are summarized in Table I. Prior works either focus on develop-

ing parallel paradigm for the DRL algorithms without hardware

acceleration details ([18], [19]), or is limited to a specific DRL

algorithm acceleration ([21], [22], [23], [26]). Moreover, none of

the existing works efficiently support memory-bound primitives

such as Prioritized Replay Buffer. Due to memory bottleneck,

this creates a performance gap between the achieved throughput

by these existing frameworks and the peak throughput provided

by homogeneous platforms.

In our previous work [27], we proposed a mapping for DRL

algorithms with Prioritized Replay Buffer onto a CPU-FPGA

heterogeneous platform. The design achieves state-of-the-art

training throughput when the Prioritized Replay Buffer and the

learner fit onto the on-chip resources of the FPGA. However, it

fails to handle cases where the on-chip resources are not enough

for the Prioritized Replay Buffer and the learner. To achieve

state-of-the-art training throughput in broader scenarios, in this

paper, we propose a framework for mapping DRL algorithms

with Prioritized Replay Buffer onto CPU-GPU-FPGA hetero-

geneous platforms to achieve superior training throughput for

given DRL algorithms and their input parameters.

IV. ACCELERATOR DESIGN FOR PRIMITIVES

In this section, we discuss the accelerator design of various

primitives including actor, neural network training, Prefix Sum

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1819

TABLE I
SUMMARY OF RELATED WORK

Fig. 3. Learner Module Architecture: An example pipeline for a 2-layer neural
network. Li means ith Layer.

Index computation and priority update on multi-core CPU, GPU

and FPGA.

A. Actor

Each actor is mapped onto a CPU core that performs envi-

ronment emulation and neural network inference. Accelerating

environment emulation is out of the scope of this paper. Our

benchmark environments utilize existing open-source software

in OpenAI gym [17]. Following [5], neural network inference is

performed on a CPU core after each environment interaction.

B. Neural Network Training

1) Algorithm Description: We consider Stochastic Gradient

Descent (SGD) [8] training algorithms composed of forward

propagation (FW), loss computation (LOSS), backward propa-

gation (BW), weight aggregation (WA) and weight update (WU)

steps.

2) Training on CPU and GPU: We use PyTorch [12] to train

neural networks on CPU and GPU. On CPU, PyTorch utilizes

OpenMP [11] to exploit intra-operation parallelism. On GPU,

PyTorch utilizes CuDNN backend to exploit massive SIMT of

GPU.

3) Training on FPGA: We carefully design the Learner Mod-

ule with the goal of minimizing the execution time of each

gradient step. The design principle of the Learner Module is

to support both pipelining across different layers of the neural

network and data parallelism (e.g., a batch of data points is

split into smaller batches and processed concurrently). Based on

this principle, we design a Multi-Pipeline Dataflow architecture

composed of a learner pipeline as shown in Fig. 3.

The learner pipeline for a L-layer neural network model

consists ofn = 3× L stages: FW throughL layers of policy and

value networks, computing LOSS, BW through (L− 1) layers,

and WA for all the L weight tensors. Each of these stages is

mapped to a unique Tensor Unit,TU . EachTU is a systolic array

of Multiply-Accumulate elements. We express all the FW, BW

Fig. 4. Illustration of computing the Prefix Sum Index.

and WA as general matrix multiplication (For CNN, we apply

the im2col algorithm). A TU for FW (BW) exploit parallelism

both among different output neurons (access different weights

in parallel). A TU for WA takes the activations generated by

FW and activation gradients generated by BW, and outputs the

weight gradients for accumulation. It exploits parallelism along

the neurons in two adjacent layers. The WU modules update

the weight buffers in FW (BW) TUs after the accumulation of

weight gradients from all the samples in a batch is completed.

To realize data streaming between stages in a pipeline, these

modules (TUs) are connected by FIFOs.

Let B denotes the batch size and DP (Data Parallel factor)

denotes the number of pipelines described in Fig. 3. A total

number of DP such pipelines are allocated to exploit data

parallelism in a batch. Each pipeline processes a sub-batch of
B
DP

data points, and a reduction buffer is used to average the

weight gradients obtained in each pipeline. Conceptually, for

a given batch size, higher DP achieves higher throughput for

FW-BW-WA stages, but causes larger time or area overhead

for reduction over all the pipelines. High DP can also lead

to low effective hardware utilization in each pipeline if the

resulting sub-batch size is too small to saturate the concurrency

provided by all the stages. The Data Parallel Factor (DP) needs

to be carefully chosen to achieve the best performance under

the constraints of a given FPGA device. The design space

exploration process for searching the optimal DP is described

in Section VI-A2.

C. Prefix Sum Index Computation

1) Algorithm Description: We illustrate an example of find-

ing Prefix Sum Index in Fig. 4 and Algorithm 1. The inputs

to the algorithm are the current node values v and the batch

size B. The outputs are B sampled indices using the probability

distribution according to the node values. First, we compute the

Prefix Sum as rand()×v[root], where rand() samples a random

number uniformly from [0,1]. In order to find the Prefix Sum

Index, we traverse from the root node to the leaf node level by

level as shown in Fig. 4. During the traversal of each level, we

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Algorithm 1: Prefix Sum Index Computation on CPU.

1: Input: node priority values v, batch size B
2: root = getRoot();

3: #pragma omp parallel for

4: for i = 0; i < B; i++ do

5: prefixSum[i] = rand()×v[root] {Sample prefix sum}

6: node = root; {start from root node}

7: currentVal = prefixSum[i];

8: while !isLeaf(node) do

9: for childNode in getChildNodes(node) do

10: cumulativeSum = currentVal - v[childNode];

11: if cumulativeSum ≤ 0 then

12: break;

13: currentVal = cumulativeSum;

14: node = childNode;

find the child node such that the cumulatively sum of the values

stored in the child nodes are greater or equal to the target prefix

sum value and continue to expand on that child node until it is

the leaf node, which is the node to sample. The time complexity

of finding Prefix Sum Index is O(K logK N), where N is the

number of elements in the replay buffer and K is the number of

child nodes of each parent in the tree.

2) Acceleration on CPU: Prefix Sum Index Computation is

a read-only operation. Thus, the Prefix Sum Index of different

data inside a batch can be computed fully in parallel. As shown

in Algorithm 1, it is realized via OpenMP [11] directives on CPU

by exploiting thread-level data parallelism via shared memory.

3) Acceleration on GPU: Accelerating batch Prefix Sum

Index computation on GPU is similar to CPU via thread-level

data parallelism. Instead of using a OpenMP [11] directives to

decorate the for loop, we compute the index for data parallelism

on GPU inside a batch using CUDA thread and block index:

i = threadIdx.x + (blockIdx.x × blockDim.x) (2)

Due to kernel launch overhead, the advantage of accelerating

Prefix Sum Index computation on GPU is only observable when

the batch size B is large. For small batch sizes, it is even slower

than running on CPU using a single thread.

4) Acceleration on FPGA: The primary objectives of the

FPGA-based RMM design are: (1) providing sufficient memory

bandwidth to alleviate the communication bottleneck in per-

forming low-arithmetic replay operations. (2) overlapping the

Sum Tree traversals of different data points in a batch, and

overlapping computation with data accesses using hardware

pipelining. To achieve objective (1), we store the complete

K-ary Sum Tree data structure using the on-chip SRAM on the

FPGA. A typical Prioritized Replay Buffer contains 1 million

data points [14]. The number of nodes in a K-ary Sum Tree

is at most 2 million when K = 2, which can fit the available

on-chip memory of most state-of-the-art FPGAs [28], [29]. The

nodes of the Sum Tree are ordered by the tree level. Each SRAM

bank provide single-cycle access to any data element through

a read/write port. Nodes on different tree levels are stored in

separate SRAM banks. In any FPGA cycle, all the sampling

and update stages can concurrently access different tree levels

Fig. 5. Replay Samplers and Updaters.

of the K-ary Sum Tree, ensuring no bank conflict and stall-free

pipelining explained in the following. To achieve objective (2),

we apply pipelining to both sampling and update processes. Sup-

poseH is the height of the tree. A sampling pipeline sequentially

process prefix-sum on H tree levels using H pipeline stages.

As shown in Fig. 5, the samplers are connected by FIFOs, each

responsible for traversing up toK sibling nodes in the same level.

The parallelism provided by all the samplers is fully utilized for

concurrently processing different samples at different tree levels.

At each sampler, a register is used to track the accumulated

priority while traversing the child nodes. The target child node

index and remaining priority values are passed onto the next

sampler when the threshold shown in line 11 of Algorithm 1

is reached. At the leaf level, the index where the accumulated

priority sum reaches the target prefixSum (line 5 of Algorithm

1) is the minimum index i satisfying (1)); Thus, the data point

at index i should be sampled.

We further exploit data parallelism among different banks by

partitioning a sum tree into S sub-trees rooted at the nodes in

the first logSK tree levels, and assign a pipeline to each sub-tree.

The shared priority prefix sums managed by the first logSK tree

levels are broadcast to all the pipelines. The rest of the tree nodes

are local to each pipeline and stored in separate banks, such that

data points in a batch can be processed concurrently by different

pipelines if their target prefix-sum fall into different sub-trees.

We refer to the number of RMM sampling(update) pipelines, S,

as the bank parallel factor.

HLS (High level synthesis)-generated [30] floating point

accumulator takes multiple cycles to compute [31], introduc-

ing loop-carried dependency in the prefix sum accumulation

computation. This leads to pipeline stalls and prevents us from

efficiently overlapping computation with data accesses as stated

in objective (2). To workaround such inefficiency, we use fixed-

point arithmetic that only requires single-cycle accumulation.

We introduce a variable-precision fixed-point representation

scheme specialized for storing the Sum Tree. We first identify

the upper bound of the sum of the priorities. The upper bound is

used to decide the range and integer bit-width of the register for

storing the tree root. Each of the subsequent levels adopts integer

bit-width of Wb = W parent
b − log2 K to avoid any overflow in

calculating the sum of all its K child values. This representation

scheme does not affect the sampling outcome compared with

using floating point representation.

D. Priority Update

1) Algorithm Description: The inputs of one priority update

are a batch of indices, a batch of new priorities associated with

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1821

Fig. 6. Illustration of updating the K-ary Sum Tree.

Algorithm 2: Priority Update on CPU.

1: Input: a batch of indexes idx, a batch of new priorities

p, node values v.

2: #pragma omp parallel for

3: for i = 0; i < B; i++ do

4: node = getNodeFromIndex(idx[i]); {get node}

5: ∆[i] = getValue(node) - p[i]; {priority change}

6: while node != getRoot() do

7: #pragma omp atomic

8: v[node] += ∆[i];
9: node = getParent(node);

each index and the node values. The output is the node values

with updated priorities. An example with batch size equal to

3 is shown in Fig. 6. To update the priority of each data, we

update the node values from the leaf node to the root node as

illustrated by the propagation path in Fig. 6. We compute the

change of priority values at the leaf node and iteratively update

the intermediate nodes. The time complexity of priority update

of each data is O(logK N), where N is the number of elements

in the replay buffer and K is the number of child nodes of each

parent in the tree.

2) Acceleration on CPU: We utilize thread-level data paral-

lelism via OpenMP directives for acceleration on CPU as shown

in Algorithm 2. As opposed to Prefix Sum Index computation,

priority updates of different data in a batch share the same

underlying data structure. Thus, it is important to make sure

no data race happens during the parallel update. To do so, we

use OpenMP atomic directive as shown in line 7 in Algorithm 2.

Remarks: It is worth noticing that the data parallelism of

priority updates reduces as the computation level approaches

the root and it is fully serialized at the root level. The perfor-

mance of priority update on CPU is hindered due to poor cache

performance. This is because when a thread updates the shared

memory in its cache, the other threads on different cores have to

invalidate their cache and load the data from main memory. This

significantly impairs the performance of thread-level parallelism

on CPU.

3) Acceleration on GPU: The thread id of data parallelism on

GPU is computed in (2). We useatomicAdd to perform atomic

updates on GPU. The performance of GPU-based acceleration is

also limited by the expensive, frequent and unavoidable atomic

operations when updating the priority values at the root level of

the tree.

4) Acceleration on FPGA: For the FPGA-accelerated prior-

ity update operations, in each pipeline, H updaters concurrently

TABLE II
PROCESSING UNIT FOR ALL THE DRL COMPONENTS

update the sum values at each level using the loss obtained at

the actors or the learners. To eliminate computation overhead of

updaters in back-tracking the Sum Tree, we apply Memoization

technique that dedicates a light-weight buffer (Fig. 5) to store

the traversed path. This buffer only needs to store H − 1 node

indices for each data point, as itsH − 1 parents during sampling

are tracked, where H is the number of updaters.

On CPU and GPU, low arithmetic intensity of the priority

update operation limits their achievable performance by exter-

nal memory bandwidth. Also, updating across levels requires

non-streaming (high latency) accesses to discontinuous external

memory locations (∼140 cycles for CPU DDR4 [32], 80∼150

cycles for GPU GDDR6 [33]). We exploit the on-chip SRAM

on FPGA to circumvent these limitations.

V. OVERALL SYSTEM DESIGN

Given the optimized accelerators for each primitive, the

objective of the overall system design is to i) relax the data

dependency as noted in Section II-A2 to maximize the training

throughput; ii) design efficient data transfer mechanism between

heterogeneous platforms such that the data transfer latency is

completely hidden.

A. Data-Dependency Relaxed Training Loop

As mentioned in Section II-A2, sampling next batch cannot

be performed until the new priorities of the previous batch are

updated. In this case, sampling, training and priority update are

executed sequentially. If this data dependency in the training

loop can be removed, sampling, training and priority update

can be executed in parallel and it will significantly improve

the training throughput. However, it is important that the DRL

performance degradation caused by removing the data depen-

dency is negligible in terms of rewards, which is verified by the

experimental results in Section VII-B

B. Data Transfer System Design

We view each key component in a DRL system as a Processing

Unit composed of an input queue, a processing kernel, and an

output queue. The detailed Processing Unit compositions of each

key component in a DRL is shown in Table II. Each Processing

Unit is hosted by a CPU thread, while the processing kernel can

be mapped to an accelerator (GPU or FPGA) in a heterogeneous

system. The goal of our data transfer system is to enable fast

and atomic data transfers both within a Processing Unit (e.g.,

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 7. Interactions among various Processing Units.

communication between the host CPU thread and the processing

kernel on an accelerator), and among different Processing Units.

The interactions between Processing Units is shown in Fig. 7.

The synchronization inside the Learner and the Prioritized Re-

play Buffer are managed by the accelerators they are mapped

to. Let N be the number of Actor threads running on CPU. We

allocate 3 more CPU threads, one for the Learner, one for the

RMM and one for the Data Storage. These CPU threads are

responsible for coordinating data transfer between the Actors,

the Learner and the Data Storage. Specifically, First-in-First-out

(FIFO) queues are used to realize concurrent and asynchronous

communication among the host threads. Each queue has a pro-

ducer end (tail) and a consumer end (head). For queues with

multiple producers (e.g., the Data Storage Request Queue is

shared by all the Actor threads and the RMM thread), a mutex is

used to ensure atomic access to the tail. When two components

connected by a queue are both mapped to the host CPU, the

data communication between them is simply implemented using

a shared queue described as above. When two components

connected by a queue are mapped to the same accelerator device

(e.g. both RMM and Learner are mapped to an FPGA), the queue

is implemented using the on-chip resources of the accelerator.

When two components connected by a queue are mapped to

a CPU and an accelerator, the shared queue only stores the

pointers of the data. The actual data transfer from the host to

the device and from the device to the host is performed inside

each Processing Unit.

VI. DESIGN SPACE EXPLORATION

The objective of design space exploration (DSE) is to maxi-

mize the system training throughput in terms of the number of

gradient steps performed per second by mapping each compo-

nent depicted in Fig. 7 onto appropriate devices. This section

describes our DSE workflow through three steps (Fig. 8):

1) Profiling of the Performance of the Primitives. Given a

DRL algorithm, it outputs the performance of each prim-

itive under various mapping assumptions using an analyt-

ical performance model (on FPGA) or by profiling using

real hardware (on CPU and GPU). The results populate a

Primitive-Platform Performance Table. It also determines

the required hardware parameters on the FPGA device.

2) Mapping of Primitives: It constructs the complete map-

ping space by taking inputs from the performance table,

prunes the mapping space and outputs the optimal primi-

tive mapping that achieves the highest training throughput.

3) Template Instantiation: It takes the primitive mapping

results and hardware parameters as inputs, and populate a

host template using a primitive code base to generate an

end-to-end implementation.

A. Profiling the Performance of the Primitives

The given parameters of DRL algorithms include: i) RMM:

the depth D, the number of child nodes of a parent node F
and the total number of data points of the Prioritized Replay

Buffer; ii) learner: the batch size B used in training; iii) learner:

the architecture of the neural network. Both the RMM and the

learner can be mapped onto either CPU, GPU and FPGA.

1) Profiling of Primitive on CPU and GPU: On CPU and

GPU, we profile the execution time of a single batched neu-

ral network training step T
CPU(GPU)
train , batched Prefix Sum

Index computation T
CPU(GPU)
prefix , and batched priority update

T
CPU(GPU)
priority . Profiling on the GPU are performed under the

assumption that only one of the RMM or the learner is ac-

celerated by the GPU. It indicates that all the available GPU

resources can be allocated to exploit its maximum data par-

allelism. This means that the GPU profiling results represent

a Processing Kernel’s peak performance that can be obtained

on the GPU, and the actual performance may be lower if two

Processing Kernels sequentially share the same GPU resource

(i.e., when both learner and RMM operations are mapped to

the GPU).

2) Architecture Exploration on FPGA: On FPGA, we de-

velop cycle-accurate performance models for the RMM and the

learner based on their input parameters. Using these models, we

obtain the optimal hardware configurations that maximizes the

training throughput and use the results to guide the rest of the

DSE.

In modern multi-die FPGAs, an FPGA chip is built by a

manufacturing process that combines multiple Super-Logic Re-

gions (SLRs) components (i.e., dies) mounted on a passive

Silicon Interposer [28]. During place and route of our design,

cross-SLR routing results in long wires that reduces operating

clock frequency. To better port our design to modern FPGAs

composed of multiple SLRs, we limit the resource constraint to

1 SLR for the RMM and the rest of them for the learner. This

helps in ensuring fast routing and higher clock frequency of the

design.

The execution time of Prefix Sum Index computation with

batch size B can be computed as B
S
× F FPGA cycles, and

the execution time of priority update with batch size B can be

computed as B
S

FPGA cycles, whereS is the bank parallel factor

as mentioned in Section IV-C4. We set the bank parallel factor S
to be proportional to the batch size for scalable acceleration. To

fully utilize the parallelism provided by H stages, if B ≤ H , we

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1823

Fig. 8. Design space exploration and automation workflow.

use only a single pipeline (S = 1). As the batch sizeB increases,

we increase the S until reaching the resource bound in an SLR.

The overall learner latency Tlearner = Tpipeline + TWU of a

single gradient step is determined by DP (number of learner

pipelines), PI = B
DP

(the sub-batch size processed by each

pipeline), and computation resources allocated to the pipeline

stages. To minimize Tlearner, our architecture exploration

methodology follows two steps:

>a). Pipeline Local Optimization: The latency of a pipeline

is computed as Tpipeline = (PI + n− 1)× Tmax. The perfor-

mance is bounded by the latency of the slowest pipeline stage,

Tmax = maxn
i=1Ti. For given n and PI , to minimize Tpipeline,

Tmax needs to be minimized. This means that the latencies

of all n stages need to be balanced. Therefore, we allocate

computation resources (DSP units) to each Tensor Unit TU
proportional to the number of multiply-add operations in each

DNN layer propagation. Specifically, we derive a ratio r1. . .rn
for n stages, normalized to the stage with minimum number of

operations. The total number of DSPs allocated to i-th Tensor

Unit TUi, i ∈ [1. . .n]) is ri × f , where f is a factor that controls

the total amount of DSPs allocated to a learner pipeline. f is

derived in Step b).

b). Global Optimization: The second part of the learner

latency, TWU , captures the latency of reduction over DP in-

termediate weight gradients and the latency of WU for all

weight tensors: TWU =
∑L

j=1(DP × size(Wj))/(rWU × f).
Note that rWU × f is the total number of DSPs allocated to

the WU stage. To exploit the maximum parallelism in WU, we

let rWU to be consistent with the number of SRAM banks for

storing the weights. Given a training batch size B, we determine

the optimal combination of PI and DP by searching for all

possible combinations in B steps and applying steps a) and b)

described above to obtain the minimum Tlearner parameterized

with f : argmin
DP,PI

(Tpipeline + TWU) Then, we increment f until

one of the resource constraints (available number of DSPs,

SRAM banks, Look-Up Tables) is reached.

3) Primitive-Platform Performance Table: The output of the

Primitive Profiler is a 3× 2 table. The 2 columns in the table

refer to the RMM and the Learner. The 3 rows refer to the 3

devices. Each table entry stores the throughput of processing a

batch of data,TP platform
primitive , where primitive=RMM or Learner.

Note that TP platform
primitive = B/T platform

primitive , where B is the batch

size and T platform
primitive is the total execution time of the primitive

on the platform (for RMM, this is the sum of sampling and

update execution time in each DRL gradient step).

Algorithm 3: Mapping Algorithm.

1: Input: Primitive-Platform Performance Table PTable,

where each table entry TP j
i denotes the achieved

throughput of primitive i on device j.

2: Output: Mapping assignment vector D, where each

entry Di denotes the optimal device for performing

primitive i.
3: # Step 1,2: Primitive Mappings

4: for i in [Learner, RMM] do

5: Di = argmaxj{TP
j
i }

6: if DLearner == GPU and TP FPGA
RMM ≥ TPGPU

Learner then

7: PTable.remove(TPGPU
RMM)

8: Output DLearner, DRMM

9: # Step 3: Memory Component Mapping

10: Initialize DData Storage; min _ traffic← ∞
11: CRMM ← B; CLearner ← B × E; CActor ← Nactor × E
12: for i in [Learner, Actors, RMM] do

13: Total data traffic =
∑i′∈{Learner,Actors,RMM}

i′ 	=i Ci′

14: if Total data traffic < min _ traffic then

15: min _ traffic ← Total data traffic; DData Storage ← Di

16: Output DData Storage

B. Mapping Algorithm

Given a Primitive-Platform Performance Table, the Mapping

Algorithm first determine the best mapping of the computation

primitives to maximize the achievable peak training through-

put. Then it places the memory component (Data Storage) to

minimize the required data traffic in the system.

The achievable training throughput can be estimated as the

minimum of the throughput among the learner, the priority up-

date and Prefix Sum Index computation. Therefore, the objective

is to search for a combination of platform assignment to the

primitives, such that

argmaxdevice1,2

{

min
(

TP device1
Learner, TP

device2
RMM

)}

(3)

We take a greedy approach to optimize the overall metric (gradi-

ent steps performed per second) following three steps as shown

in Algorithm 3:

Step 1. We map the learner to the platform yielding the highest

training throughput. We prove that TPLearner is the upper-

bound of the achievable system throughput by enumeration

method: (1) If for some RMM mapping platform, TPRMM >

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TPLearner, according to (3), the achievable system through-

put equals TPLearner. (2) Else if TPRMM ≤ TPLearner, the

achievable system throughput is bound by RMM, thus lower

than TPLearner. While this maximizes the theoretical system

throughput upper-bound, we still need to ensure that the system

throughput is not bottlenecked by the RMM throughput. Step

2. We then map the RMM to the platform yielding highest

replay operation throughput. Note that if the learner is mapped to

GPU in the previous step, and achievable RMM throughput on a

non-GPU devices is higher than the learner throughput (making

learner the bottleneck in the system), we prune out the option of

GPU for RMM (Algorithm 3 line 6-7). This is because letting

RMM and learner share GPU resources will further reduce

learner throughput from B/TGPU
train to B/(TGPU

train + TGPU
RMM).

On CPU and FPGA, this problem does not occur. Pre-defined

hardware constraint for RMM (1 thread on CPU, 1 SLR on

FPGA) ensures that RMM does not share hardware resource

with the learner, thus cannot affect TPLearner.

Step 3. Step 1 and Step 2 produce the DLearner and DRMM

in the assignment vector. We decide the device assignment of

the memory component, i.e., the Data Storage. The total data

traffic to the Data Storage during each gradient step is B words

of sampling indices from the DRMM, B × E words of sampled

data to the DLearner (E is the size of each data point stored in the

Data Storage), and Nactor × E words of inserted data from the

actors running on CPU threads. These remote communication

costs are denoted as C in Algorithm 3 line 11. We place the Data

Storage on the device that yield the minimum total data traffic in

remote communication with primitives on other heterogeneous

devices (Algorithm 3 line 9-16). Overall, assuming there are m
primitives to be deployed on n heterogeneous devices, the time

complexity for the Mapping Algorithm is O(m(m+ n)).

C. Template Instantiation

We develop a code base composed of (1) the complete CPU

multi-thread host program template with the Inter-Processing

Unit Data Transfer system, (2) the host program for interfacing

a host CPU thread with a Processing Kernel on the accelerator

(Intra-Processing Unit Data Transfer) under its various primitive

mapping, and (3) the kernel programs on the accelerators under

various mapping options (GPU and FPGA). As shown in Fig. 8,

a Template Instantiater draws the device assignment result of

primitive mapping from the Mapping Algorithm, and use it to

obtain the parameterized code snippets (2) and (3) for each

assigned accelerator from the code base. After compiling (3) to

generate kernel executable (or bitstreams), the host code snippets

in (2) are then filled into (1) the host program template, for an

end-to-end complete implementation.

VII. EXPERIMENTS

Our experiments aim to demonstrate i) the DRL performance

in terms of rewards achieved by our framework is the same as

the serial version of the corresponding DRL algorithm; ii) the

execution time of each primitive varies w.r.t the input parameters

including batch size, neural network architecture; ii) the superi-

ority of the mapping generated by our framework compared with

TABLE III
OVERVIEW OF BENCHMARK ENVIRONMENTS, DRL ALGORITHMS AND NEURAL

NETWORK ARCHITECTURES

TABLE IV
SPECIFICATIONS OF THE HETEROGENEOUS DEVICES

Fig. 9. Benchmark software environments.

other mappings on various benchmark environments solved by

different DRL algorithms.

A. Experimental Setup

Hardware Platform and Toolchain: Our experiments are con-

ducted using Intel(R) Xeon(R) Gold 5120 CPU@ 2.20 GHz with

56 cores, a Nvidia TITAN Xp GPU and a Xilinx Alveo U200

accelerator board. PCIe is used to connect the CPU with GPU,

and CPU with FPGA, both with bandwidth 16 GB/s. We de-

velop a parameterized FPGA kernel template using High-Level

Synthesis (HLS) for quick customization and easy integration

with domain-specific frameworks (e.g., Pytorch [12]). We follow

the VITIS hardware development flow for bitstream generation.

OpenCL is used to implement the data transfer between the host

and the FPGA. Primitives on the CPU and GPU are developed

using C++ and CUDA, respectively. The detailed specifications

of heterogeneous devices are summarized in Table IV.

Benchmarking Software Environment: We select 3 benchmark

environments including classic control task CartPole, MuJoCo

task Hopper and Atari games Pong in the OpenAI gym software

simulation environment [17]. The size of the observation space

and the action space is shown in Table III.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1825

� CartPole: As shown in Fig. 9(a), there is a pendulum placed

upright on the cart. The objective is to balance the pole

by pushing the cart to the left and right. The observation

consists of the position and the velocity of the cart and

pole.
� Hopper: As shown in Fig. 9(b), the hopper is a two-

dimensional robot consisting of four main parts: i) the torso

at the top; ii) the thigh in the middle; iii) the leg in the

bottom; iv) and a single foot on which the entire body

rests. The objective is to apply forces on the three hinges

connecting the four body parts such that the hopper moves

as fast as possible.
� Pong: As shown in Fig. 9(c), the objective of Pong is

to control your paddle to bounce the ball below your

opponent’s paddle.

The DRL algorithms used to solve each environment and

the neural network architectures are shown in Table III, where

|S| denotes the dimension of state space and |A| denotes the

dimension of action space.

Hyper-parameters: The number of actors are set to 16 for all

environments according to existing work [5]. The number of

child nodes per parent node K used in the Sum Tree implemen-

tation is set to 2 for simplicity. The sizes of the Data and Priority

Request Queues are 1024. The size for Data Queue is 200 (10)

for Pong (Hopper).

B. DRL Algorithm Performance

As discussed in Section V-A, the training throughput benefits

from the data-dependency relaxed training loop, which removes

the data dependency between sampling of the next batch data

and the priority update of the previous batch data. The objective

is to pre-sample batches of data such that the learner never waits.

However, this may cause degradation of the reward performance.

We denote the number of pre-sampled batches as D. D is

the primary parameter that controls the degree of dependency

relaxation. In order to empirically investigate the relationship

between D and the achieved accumulated rewards, we train

several agents with 5 different random seeds for each benchmark

environment using the optimal mapping. We show the achieved

accumulated rewards along the trajectory versus the total number

of environmental interactions of each environment with various

number of pre-sampled batches in Fig. 10. As D increases, it

may impact the reward performance because the staleness of

the priority distribution becomes more severe, as evident in the

case when D = 200 for Hopper. Still, we observe that the per-

formance degradation is consistently negligible withD = 50. In

practice, we setD = 50 for all the three environments. By doing

so, it improves the training throughput as the sampler does not

have to wait for the updated priorities of the previous sampled

batch while the rewards are not negatively impacted.

C. Primitive Acceleration Performance

We profile the performance of various primitives including

neural network training in Fig. 11, Prefix Sum Index computa-

tion and priority update in Fig. 12.

Fig. 10. Reward of RL agents trained in benchmark environments with various
number of pre-sampled batches (D). The curve shows the mean, and the shaded
area shows the standard deviation of 5 runs with different random seeds.

Training primitive: The number of CPU threads used for

training on CPU is 16. We observe that the training performance

of FPGA dominates over CPU and GPU when the arithmetic

intensity is low. (e.g., when the size of the neural network is small

as in CartPole or when the batch size is less than 128 in Hopper

and less than 16 in Pong). The training performance of GPU

dominates over CPU and FPGA when the arithmetic intensity

is high (e.g., when the batch size in Hopper is larger than 1024

and the batch size in Pong is larger than 16). This is because

the kernel and memory overhead of GPU are not negligible

when the arithmetic intensity is low. The high memory access

latency with low data re-use in smaller batch size training makes

the SIMT computation power of GPU severely unsaturated.

The superiority of training performance on FPGA arises from

our high throughput customized hardware design. However, the

execution time of training primitive on GPU starts to outperform

that on FPGA when the batch size increases due to negligible

kernel launch overhead and higher clock frequency.

Prefix Sum Index computation: On CPU, we observe that the

execution time of Prefix Sum Index computation decreases as

the number of CPU threads increases. This is because Prefix

Sum Index computation is a read-only operation that each com-

putation inside a batch can be executed in parallel. On GPU, the

execution time is almost the same when the batch size increases.

This indicates that the computation of Prefix Sum Index is

bound by the kernel launch overhead and fails to saturate the

GPU’s SIMT power. On FPGA, we observe a linear increase

in the execution time as batch size increases above 1024 as the

number of sampling and update pipelines reach the resource

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 11. Execution time (in milliseconds) of a single neural network training step in benchmark environments of various batch sizes on various hardware platforms.

Fig. 12. Execution time (in milliseconds) of a single Prefix Sum Index computation and priority update of various batch sizes on various hardware platforms.
The number after “cpu” denotes the number of threads using in OpenMP [11].

bound of an SLR. For batch sizes smaller than 1024, the increase

in RMM operations latency is not as sever because we scale

up bank parallelism with increasing batch sizes to make the

performance more salable. For Prefix Sum Index computation,

GPU is more salable to larger batch sizes since there are no

data-dependency between obtaining samples within a batch and

they can be executed in a SIMD manner. Compared to GPU,

the FPGA Prefix Sum performance ranges from 41× speedup

to 4.6× speed-down over all the batch sizes.

Priority update: Different than Prefix Sum Index computation

where different samples in a batch are independent, in Priority

Update computation, multiple update requests poses write-after-

write data access dependencies at the root. The execution time

improvement of priority update is almost negligible or negatively

affected when the number of CPU threads increases. This is due

to the poor cache performance caused by memory access conflict

as discussed in Section IV-D2. The execution time of priority

update on GPU increases in linear as batch size increases due

to the inevitable serial execution at root node and high mem-

ory access latency that cannot be hidden by computation. On

the other hand, FPGA-based implementation features hardware

pipelining and single-cycle on-chip data accesses to maximize

the throughput of the serial execution. This leads to consistent

superior performance of priority update of all the batch sizes

(11 ∼ 98× speedup compared to GPU) as shown in Fig. 12.

Overall, we observe that the optimal mapping of all the

primitives vary as the input algorithm configurations change.

This makes a fixed mapping of DRL algorithms in efficient and

motivate the necessity to automatically generate the mapping

based on the inputs.

D. System Mapping and Performance Analysis

In the bar plots of Fig. 13, we show the achieved system

throughput for the three benchmarks under different batch sizes

and mappings, and in the line plot we show the theoretical

optimal training throughput. The theoretical optimal training

throughput is the maximum throughput of the training primitive

among various mappings of the learner. It is achieved when i) the

learner is mapped onto the platform with lowest execution time

of the neural network training primitive; ii) the mapping of RMM

doesn’t slowdown the training throughput; iii) the overhead

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1827

Fig. 13. The training throughput in gradient steps per second (GPS) of various batch sizes in various mappings. The mapping “X-Y” denotes that the learner is
mapped onto “X” and Replay Management Module is mapped onto “Y”. The line plot shows the theoretical optimal performance given environment and batch
size.

TABLE V
SYSTEM DSE RESULT FOR VARIOUS CONFIGURATIONS AND THE RANGES OF RESULTING SPEEDUPS

TABLE VI
DESIGN PARAMETERS AND RESOURCE ALLOCATION FROM FPGA

ARCHITECTURE EXPLORATION

from thread-level synchronization of the data transfer queues

is negligible to the system throughput. As shown in Fig. 13, the

difference of the achieved performance using our system DSE

to the theoretical optimum is within 5% as shown in the line plot

in Fig. 13.

Accordingly with each configuration in Fig. 13, Table V

shows their optimal mapping returned by the system DSE Map-

ping Algorithm, along with the ranges of speedups shown by

the 2nd best and worst baseline mappings. Table VI shows the

hardware parameters returned by the Architecture Exploration

when FPGA is used. For the CartPole benchmark, when both

the DNN and batch sizes are small, both training and RMM

operations are mapped on FPGA as it outperforms GPU. As

the batch size increases (i.e., batch size B > 2048), the learner

gradient step execution time becomes larger, such that the la-

tency of RMM operations can be hidden using either GPU

or FPGA. Our Mapping Algorithm chooses the mapping that

minimizes the total number of devices and the amount of data

communication, so it still maps both RMM and learner to the

FPGA. In the Hopper benchmark, the same observation also

applies to the medium-sized DNN when the batch size is small.

As the batch size further increases, GPU outperforms FPGA

on training due to its superior amount of parallel resources and

higher frequency. As the learner is mapped to GPU forB > 256,

although FPGA outperforms CPU for the RMM operations, the

learner is the bottleneck and assigning RMM to either CPU

or FPGA yields the same overall throughput. However, when

the batch size reaches a threshold (B = 16384) where the CPU

RMM operation latency can no longer be hidden by the learner,

mapping the RMM to FPGA has obvious improvement over

other baselines. For large DNN and batch size in the Pong

game benchmark, the learner is consistently mapped to GPU

due to its superior training performance. Even with slower

RMM performance on CPU than FPGA, the learner remains the

bottleneck of the system, so we map it to CPU for minimized

number of devices and communication requirements.

We observe that all the three devices (CPU-GPU-FPGA)

should be used for optimal system performance when the DNN is

small and batch size is large (e.g., The Hopper benchmark using

3-layer MLP with batch size 16384). This is because large batch

training favors GPU over CPU and FPGA, while large batch

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 14. The training throughput in gradient steps per second (GPS) of various batch sizes between the state-of-the-art distributed RL framework RLlib [18] and
the optimal mapping by our proposed framework.

RMM operations can only be effectively accelerated without

reducing system throughput on the FPGA (mapping RMM to

CPU will shift the bottleneck from training to RMM operations,

and mapping RMM to GPU will take over the resources for

the learner, lowering the training throughput by about 30%).

Compared with baseline mappings, our CPU-GPU-FPGA sys-

tem achieves up to 11× higher throughput. In all the benchmarks

and baselines, our framework achieves up to 997.3× speedup.

E. Comparison With State-of-The-Art

In the bar plots of Fig. 14, we show the training throughput in

gradient steps per second (GPS) for various batch sizes between

the state-of-the-art distributed RL framework RLlib [18] and

the optimal mapping returned by our proposed framework for

the benchmark environments described in Section VII-A. The

mapping of Data Storage and RMM can only be on CPU in

RLlib [18]. The mapping of Learner can be on CPU or GPU.

We measure the training throughput of both mappings and report

the higher value as the training throughput of RLlib in Fig. 14.

For Pong, our framework improves the training throughput by

1.06× ∼ 1.14×. This is because the neural network architecture

is a Convolutional Neural Network (CNN); the training time of

the neural network dominates the overall training throughput.

Both our framework and RLlib utilize Pytorch [12] backend

to train neural networks. For Hopper, our framework improves

the training throughput by 1.31× ∼ 6.39×. As the batch size

increases, the speedup decreases. This is due to the neural

network training dominates the overall training throughput. For

CartPole, our framework improves RLlib up to 1005×. This is

because in CartPole, all the components of our framework are

mapped on the FPGA. This enables on-chip data storage and

data transfer that significantly improves the training throughput.

In general, we found that RLlib only optimizes large scale RL

tasks while our framework optimizes RL tasks for all the scales.

Table VII shows the total power consumption of the complete

system using our framework and the state-of-the-art implemen-

tation (RLlib). The power is the sum of the operating Thermal

Design Power for the CPU and DDRs, the power reported

by the Nvidia runtime profiler for the GPU, and the power

reported using Vivado after place-and-route for the FPGA. The

reported power consumptions for the benchmarks are evaluated

at the largest batch size (16384 for CartPole and Hopper, 256

for Pong). Note that the mapping used by our framework and

RLlib are different. For example, for the Hopper benchmark,

TABLE VII
POWER AND POWER EFFICIENCY OF SELECTED BENCHMARKS

our framework consumes slightly higher total power due to

the additional FPGA component compared with RLlib map-

ping. The throughput improvement from our mapping is much

larger than the increase in the power consumption. This leads

to up to 3.8 times higher power efficiency (in terms of GPS

per Watt).

VIII. DISCUSSION & CONCLUSION

In a real-world scenario (e.g., robots, self-driving cars), the

RL trial-and-errors require a large amount of training episodes,

which can damage the physical agent devices such as the robots

or cars if directed by unsafe policies [25]. Therefore, the typical

workflow of applying Deep RL constitutes of two phases: the

development phase (i.e., Training-in-Simulation) that uses a

software simulator without actually deploying the agent in the

field, and the deployment phase that executes the agent devices in

a real-world environment. In the Training-in-Simulation (devel-

opment) phase, the policy training is usually done by interfacing

the policy model with simulation environments installed on a

multi-core CPU. This process is extremely time-consuming as it

involves a magnitude more than millions of sequential iterations,

and takes days to months to complete [1]. On the other hand, the

deployment is largely dominated by policy inference and only

few iterations of on-line learning. Our work targets speeding

up the Training-in-Simulation phase, and can largely reduce the

production time before deployment.

In this work, we proposed a framework for optimizing DRL

algorithms with Prioritized Replay Buffer to achieve the opti-

mal training throughput based on the input specifications and

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1829

heterogeneous hardware configurations. We proposed separate

accelerators for each primitives on multi-core CPU, FPGA and

GPU. Then, we proposed data-dependency relaxed training loop

to maximize the training throughput without affecting the DRL

performance. Our experimental results verified our claims. Fu-

ture work includes developing mapping framework for other

DRL algorithms without Prioritized Replay Buffer.

ACKNOWLEDGMENTS

Seed funding from Ershaghi Center for Energy Transition is

gratefully acknowledged.

REFERENCES

[1] L. P. Kaelbling et al., “Reinforcement learning: A survey,” J. Artf. Intell.

Res., vol. 4, pp. 237–285, 1996.
[2] K. Chatzilygeroudis et al., “Black-box data-efficient policy search for

robotics,” in Proc. IEEE RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 51–58.

[3] O. Vinyals et al., “AlphaStar: Mastering the real-time strategy game
starcraft II,” DeepMind Blog, vol. 2, p. 20, 2019.

[4] D. Silver et al., “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, pp. 484–503, 2016. [Online]. Available: http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[5] D. Horgan et al., “Distributed prioritized experience replay,” 2018,
arXiv:1803.00933.

[6] L. Espeholt et al., “SEED RL: Scalable and efficient deep-Rl with accel-
erated central inference,” 1910, arXiv:1910.06591.

[7] T. Schaul et al., “Prioritized experience replay,” 2015, arXiv:1511.05952.
[8] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.

Math. Statist., vol. 22, pp. 400–407, 1951.
[9] C. Zhang et al., “Parallel actors and learners: A framework for generating

scalable RL implementations,” 2021, arXiv:2110.01101.
[10] Intel, “Oneapi for heterogeneous cloud,” 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical/
comparing-cpus-gpus-and-fpgas-for-oneapi.html

[11] OpenMP Architecture Review Board, “OpenMP application program in-
terface version 3.0,” May 2008. [Online]. Available: http://www.openmp.
org/mp-documents/spec30.pdf

[12] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 8024–8035, [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[13] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

[14] V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

[15] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2016, arXiv:1509.02971.

[16] A. Nair et al., “Massively parallel methods for deep reinforcement learn-
ing,” 2015, arXiv:1507.04296.

[17] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[18] E. Liang et al., “Ray RLlib: A composable and scalable reinforcement

learning library,” 2017, arXiv:1712.09381.
[19] Y. Li and D. Schuurmans, “MapReduce for parallel reinforcement learn-

ing,” in Recent Advances in Reinforcement Learning, S. Sanner and M.
Hutter Eds., Berlin, Germany: Springer, 2012, pp. 309–320.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008,
doi: 10.1145/1327452.1327492.

[21] H. Cho et al., “FA3C: FPGA-accelerated deep reinforcement learning,”
in Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating

Syst., 2019, pp. 499–513.
[22] S. Shao and W. Luk, “Customised pearlmutter propagation: A hardware

architecture for trust region policy optimisation,” in Proc. IEEE 27th Int.

Conf. Field Programmable Log. Appl., 2017, pp. 1–6.
[23] S. Shao et al., “Towards hardware accelerated reinforcement learning

for application-specific robotic control,” in Proc. IEEE 29th Int. Conf.

Application-Specific Syst. Architectures Processors, 2018, pp. 1–8.

[24] J. Schulman et al., “Trust region policy optimization,” 2015,
arXiv:1502.05477.

[25] C. Guo et al., “Customisable control policy learning for robotics,” in Proc.

IEEE 30th Int. Conf. Application-Specific Syst. Architectures Processors,
2019, pp. 91–98.

[26] Y. Meng et al., “Accelerating proximal policy optimization on CPU-FPGA
heterogeneous platforms,” in Proc. IEEE 28th Annu. Int. Symp. Field-

Programmable Custom Comput. Machines, 2020, pp. 19–27.
[27] Y. Meng et al., “FPGA acceleration of deep reinforcement learning using

on-chip replay management,” in Proc. 19th ACM Int. Conf. Comput.

Front. New York, NY, USA: Association for Computing Machinery, 2022,
pp. 40–48, doi: 10.1145/3528416.3530227.

[28] “Large FPGA methodology guide,” 2012. [Online]. Available: https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/
ug872_largefpga.pdf

[29] “Intel stratix 10 MX FPGAS,” [Online]. Available: https://www.intel.com/
content/www/us/en/products/programmable/sip/stratix-10-mx.html

[30] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35,
pp. 1591–1604, Oct. 2016.

[31] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations
of high-level synthesis codes for high-performance computing,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, May 2021.
[32] Intel, “Skylake specification,” 2018. [Online]. Available: https://www.7-

cpu.com/cpu/Skylake.html
[33] Intel, “GPU memory latency’s impact, and updated test,” 2021. [On-

line]. Available: https://chipsandcheese.com/2021/05/13/gpu-memory-
latencys-impact-and-updated-test/

Chi Zhang received the bachelor of engineering de-
gree from Southeast University, Nanjing, China, and
the master of science degree in electrical engineering
from the University of Southern California. He is
currently working toward the PhD degree in computer
science with the University of Southern California
under the supervision of professor Viktor Prasanna.
His primary research interests include parallel rein-
forcement learning.

Yuan Meng received the BS degree in electrical and
computer engineering from Rensselaer Polytechnic
Institute. She is currently working toward the PhD
degree in computer engineering with the University
of Southern California. She is recipient of Annenberg
Fellowship with Ming Hsieh Department of Electrical
and Computer Engineering. Her research interests
include parallel computing, hardware acceleration,
and machine learning.

Viktor K. Prasanna (Fellow, IEEE) received the BS
degree in electronics engineering from the Bangalore
University, the MS degree from the School of Au-
tomation, Indian Institute of Science, and the PhD
degree in computer science from the Pennsylvania
State University. He is Charles Lee Powell Chair
in engineering with the Ming Hsieh Department of
Electrical and Computer Engineering and professor
of computer science with the University of Southern
California. His research interests include parallel and
distributed systems, reconfigurable computing, and

applied ML. He serves as the director of the Center for Energy Informatics,
USC. He is the steering chair of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS) and the IEEE International Conference on High
Performance Computing (HiPC). He received 2009 Outstanding Engineering
Alumnus Award from the Pennsylvania State University, and the 2015 W.
Wallace McDowell Award from the IEEE Computer Society for his contributions
to reconfigurable computing.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

