1816

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

A Framework for Mapping DRL Algorithms With
Prioritized Replay Buffer Onto Heterogeneous
Platforms

Chi Zhang ¥, Yuan Meng

Abstract—Despite the recent success of Deep Reinforcement
Learning (DRL) in self-driving cars, robotics and surveillance,
training DRL agents takes tremendous amount of time and com-
putation resources. In this article, we aim to accelerate DRL with
Prioritized Replay Buffer due to its state-of-the-art performance
on various benchmarks. The computation primitives of DRL with
Prioritized Replay Buffer include environment emulation, neu-
ral network inference, sampling from Prioritized Replay Buffer,
updating Prioritized Replay Buffer and neural network training.
The speed of running these primitives varies for various DRL
algorithms such as Deep Q Network and Deep Deterministic Policy
Gradient. This makes a fixed mapping of DRL algorithms inef-
ficient. In this work, we propose a framework for mapping DRL
algorithms onto heterogeneous platforms consisting of a multi-core
CPU, a GPU and a FPGA. First, we develop specific accelerators
for each primitive on CPU, FPGA and GPU. Second, we relax the
data dependency between priority update and sampling performed
in the Prioritized Replay Buffer. By doing so, the latency caused by
data transfer between GPU, FPGA and CPU can be completely
hidden without sacrificing the rewards achieved by agents learned
using the target DRL algorithms. Finally, given a DRL algorithm
specification, our design space exploration automatically chooses
the optimal mapping of various primitives based on an analytical
performance model. On widely used benchmark environments,
our experimental results demonstrate up to 997.3 X improvement
in training throughput compared with baseline mappings on the
same heterogeneous platform. Compared with the state-of-the-art
distributed Reinforcement Learning framework RLIib, we achieve
1.06 X ~ 1005x improvement in training throughput.

Index Terms—Deep reinforcement learning, design space
exploration, FPGA, GPU, heterogeneous platform, prioritized
replay buffer.

I. INTRODUCTION

INFORCEMENT Learning (RL) [1] is widely used
Rin many application areas including self-driving cars,
robotics, surveillance, etc. [2], [3], [4]. In RL, an agent iteratively
interacts with an environment to improve its policy such that the

Manuscript received 10 July 2022; revised 27 February 2023; accepted 18
March 2023. Date of publication 5 April 2023; date of current version 8§ May
2023. This work was supported in part by NSF under Grant CNS-2009057 and
OAC-2209563, and in part by equipment and donations from AMD Xilinx.
Recommended for acceptance by M. D. Santambrogio. (Chi Zhang and Yuan
Meng contributed equally to this work.) (Corresponding author: Chi Zhang.)

Chi Zhang is with the Department of Computer Science, University of
Southern California, Los Angeles CA 90089 USA (e-mail: zhan527 @usc.edu).

Yuan Meng and Viktor Prasanna are with the Department of Electrical and
Computer Engineering, University of Southern California, Los Angeles CA
90089 USA (e-mail: ymeng643 @usc.edu; prasanna@usc.edu).

Digital Object Identifier 10.1109/TPDS.2023.3264823

, and Viktor Prasanna

, Fellow, IEEE

Weight Synchronization

1
!) L Sample 1
! Data Insertion| Prioritized Replay !
1 —_— Buffer Learner |
: Priority Update :
1 T |
: . e !
(Data CollectionLoop_ _ _ __ _________| |Training Loop _ ________________!
(a) High-level diagram
Actor Policy Network Learner
~ Weight
St‘%@w Update 0 0—-aVL
. Backward Propagation
T Action Gradients pag I
. Reward Data —» — Loss
Initial Priority —> Local Storage py-orward
ropagation

Replay Management Module Data Storage

3-ary Sum Tree
v (state, action, reward)

Root Insertion
Level 1
Read
Leaf
Index 0 1 2 3 4 5 6 7 8 0 1 2 3 4 56 7 8

(b) Details of each component. The Prioritized Replay Buffer
is further decomposed into Replay Management Module and
Data Storage.

Fig. 1. Overview of existing parallel reinforcement learning frameworks [5].

expected accumulated reward along the trajectory is maximized.
The policy is represented as a lookup table in class RL [1]
while it is represented as a neural network in Deep Reinforce-
ment Learning (DRL). Training DRL agents is extremely time
consuming as it requires a large number of data by interacting
with the environment and gradient updates to update the policy
represented as neural networks to converge (e.g., AlphaGo [4]).
The state-of-the-art parallel DRL frameworks [5], [6] employ a
general architecture consisting of parallel actors, a centralized
learner and a Prioritized Replay Buffer [7] as shown in Fig. 1(a).
Parallel actors concurrently collect data from the environment
and insert the data into the Prioritized Replay Buffer. The cen-
tralized learner samples data from the Prioritized Replay Buffer
and performs stochastic gradient descent (SGD) [8] to update
the policy. The new priorities after learning are updated by the
Prioritized Replay Buffer. The priority of each data point is
proportional to the loss function, and the sampling distribution is
proportional to the priority. The priority of each data point in the
Buffer is stored in a K -ary Sum Tree data structure [9] that can

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

perform sampling and priority update in O(log N) time, where
N is the total number of data points in the Replay Buffer. Het-
erogeneous platforms consisting of CPU, FPGA and GPU [10]
are promising to accelerate DRL algorithms. This is because
the speed of running the key DRL primitives significantly varies
among different DRL algorithms. For instance, training neural
network with small size on FPGA is faster than on CPU and on
GPU, whereas training neural network with large size is faster
on GPU than on CPU and on FPGA as shown in Section VII-C.
Sampling with small batch size is faster on FPGA than on CPU
and on GPU, whereas sampling with large batch size is faster
on GPU than on CPU and on FPGA as shown in Section VII-C.

In this work, we propose a framework for mapping DRL algo-
rithms onto heterogeneous platforms consisting of a multi-core
CPU, a GPU and a FPGA. CPU is suitable for computation
with complex control flows; GPU is suitable for computation
with large data parallelism and FPGA is suitable for computation
with abundant memory accesses and fine-grained data depen-
dencies. We propose separate accelerators for each primitive
on CPU, GPU and FPGA. We propose design space exploration
that chooses the optimal mapping in a given DRL algorithm such
that the overall training throughput is maximized. In addition,
we relax the data dependency between priority update and
sampling performed in the Prioritized Replay Buffer to hide
the data transfer latency among the heterogeneous accelerators.
Specifically, our key contributions are:

e On the CPU, we utilize OpenMP [11] to exploit data
parallelism in sampling and priority update of Prioritized
Replay Buffer. We use PyTorch [12] for neural network
training.

®* On the GPU, we develop a customized CUDA kernel
for sampling and priority update based on parallel sum
reduction. We use PyTorch with CuDNN [13] backend for
neural network training.

® On the FPGA, we develop a generic throughput-oriented
learner module that exploits both neural network model
parallelism and data parallelism. We develop a generic
accelerator template for the Replay Management Module
(RMM) that exploits bank parallelism and is scalable to
large batch size. Our proposed RMM supports parallel
insertion, parallel sampling and parallel priority updates
of the K-ary Sum Tree [9]. We optimize the performance
of the on-chip data access using:

e Specialized variable-precision fixed point data format
for storing priority values in the RMM;

e Partitioning of the K -ary Sum Tree that enables conflict-
free parallel data accesses;

® Pipelined replay operations that allow concurrent access
to multiple memory banks storing the /-ary Sum Tree.

¢ To hide the latency caused by data transfer between hetero-

geneous accelerators used for training, we relax the data

dependency between priority update and sampling in the

Prioritized Replay Buffer. We empirically show that the

performance discrepancy of the trained agents between

DRL algorithms with and without data dependency is

negligible on widely used benchmark environments.

® We propose a design space exploration and design automa-
tion workflow that optimally chooses the mapping of each

1817

component onto a CPU-GPU-FPGA heterogeneous system
given an arbitrary DRL algorithm.

e For widely used DRL algorithms including DQN [14] and
DDPG [15], the mapping generated by our framework
demonstrate up to 997.3 x speedup in training throughput
compared with baseline mappings.

II. BACKGROUND

A. WorkFlow Overview

We show a generic view of existing parallel RL workflow [5],
[6] in Fig. 1(a). It contains a data collection loop and a training
loop. The main component of the data collection loop is the
actor and the main component of the training loop is the learner.
The Prioritized Replay buffer is used to store data collected by
the actor and to sample data for the learner. The details of each
component are shown in Fig. 1(b).

1) Data Collection Loop: The data collection loop is inside
each actor as shown in Fig. 1(b). Each actor contains an instance
of the environment, a policy network represented as a neural
network and a local storage. The environment outputs the current
state s. The policy network computes an action a given the
current state s via neural network inference. The action a is
actuated in the environment to obtain the next state s’ and a
reward 7. The policy network computes the current loss P as
the initial priority using (s,a, s, 7). After observing the next
state s, the policy network computes the next action o’ and
the data collection loop continues until the end of the training.
Each actor contains a local storage to temporarily store the
data points consisting of tuple (s, a, s, r, P) collected by the
actor. When the local storage is full, all the data points are
popped out and inserted into the Prioritized Replay Buffer [7].
The functionality of local storage is to reduce the frequency of
adding data into the Prioritized Replay Buffer. This reduces the
synchronization frequency when multiple actors add their data
concurrently.

2) Training Loop: The training loop occurs between the
learner and the Prioritized Replay Buffer. Following [5], [6],
we use a centralized learner to perform policy updates. At
each step, the learner i) samples a batch of indices via the
Replay Management Module using the probability distribution
proportional to the priorities; ii) accesses the actual data points
in the Data Storage using the sampled indices; iii) performs
forward propagation to compute the loss; iv) performs backward
propagation to compute the gradients; v) updates the weights of
the neural network using the gradients via stochastic gradient
descent (SGD) [8]; iv) sets the priorities of the sampled batch
data to the new priorities after SGD update via the Replay
Management Module.

Data dependency: 1t is worth noticing that the priorities of
the sampled batch data must be updated with the new priorities
before the sampling of the next batch of indices. Otherwise, the
next batch of indices will be sampled from the old probability
distribution and it potentially causes convergence issues.

3) Prioritized Replay Buffer: Prioritized Replay Buffer [7]
sits between the data collection loop and the training loop. It
has been proposed to sample data with probability proportional
to the current loss to speed up training [7]. It consists of a

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1818

FPGA CPU
DDR ‘ Core ‘
[wr | | psp | [BRAM| pcle|| Core || 3

Cache

[t | [psp | [BRAM] | Core |

|t | | psp | [BRAM]

‘ Core ‘

GDDR
PCle I

Diagram of target heterogeneous platform.

Fig. 2.

Data Storage and a Replay Management Module (RMM). Data
Storage is used to store data produced by the actors. At runtime,
data collected from the actors is inserted into the next available
location in the Data Storage. FIFO replacement policy is used
when the Data Storage is full. RMM manages the priority P;
associated with the ¢-th data point in the Data Storage. Prioritized
Replay Buffer supports sampling data to perform training and
priority update after each training iteration. Sampling from
the Prioritized Replay Buffer decides which samples (indices)
are used for training the neural network. During sampling, a
data point z; is selected according to the probability distribution
Pr(i) = P(i)/ >, P(i),i € [0, Sg), where P(%) is the priority
of data point ¢ and Sg is the total number of data points
in the Prioritized Replay Buffer. To do so, we first sample
x ~ U(0,1). Then, we use the cumulative density function
(cdf (i) = 75—, Pr(j),i € [0, Sg)) to derive the sample index
i = cdf ~*(z). This is equivalent to finding the minimum index
1, such that the prefix sum of the probability up to ¢ is greater
than or equal to z, the target prefix sum value:

i SE
miny " P(j) > -y P(j) (1)
j=1 j=1

Such index 7 is known as Prefix Sum Index. Priority Update
requires updating the current priorities using newly computed
priorities. This operation is performed after each training itera-
tion.

Internally, RMM is implemented as a K -ary Sum Tree [9] as
shown in Fig. 1(b). In a K-ary Sum Tree, each node has K child
nodes and the value of each node is the sum of values of its child
nodes. The i-th leaf node stores the actual priority value P;. The
worst case time complexity of sampling and priority update is
O(log N), where N is the number of leaf nodes in the tree [9].

B. Target Heterogeneous Platform

We show a high level diagram of our target heterogeneous
platform used to accelerate DRL algorithms in Fig. 2. It consists
of a multi-core CPU, a GPU and a FPGA. Each core inside the
CPU contains a L1 and L2 cache and all the cores share the same
L3 cache and the DDR memory. The GPU consists of multiple
streaming multiprocessors (SM) and a GDDR. Each SM consists
of a shared memory and multiple streaming processors. The
FPGA consists of a number of re-configurable compute units
(DSP), arithmetic units (ALU or LUT), and large distributed
on-chip SRAM.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

C. Performance Metric and Challenges

The performance metric is training throughput defined as
the number of gradient steps performed by the learner per second
(GPS). Although the data collection throughput also affects the
convergence speed of DRL algorithms, our framework allocates
fixed resources for each actor (e.g. 1 CPU core/actor) so that the
data collection throughput is in linear w.r.t the number of actors.
By fixing the data collection throughput, the convergence speed
is only affected by the training throughput [5], which is the
primary objective to maximize in our framework.

III. RELATED WORK

GORILA [16] proposes a parallel architecture of DQN [14]
to play Atari games [17]. RLIib [18] proposes high level ab-
stractions for distributed reinforcement learning built on top
of the Ray library [18]. [19] proposes parallel reinforcement
learning using MapReduce [20] framework with linear function
approximation. [9] proposes K-ary Sum Tree data structure
to improve the performance of the Replay operations. A few
recent works have focused on hardware acceleration of DRL
algorithms. A FPGA implementation of Asynchronous Advan-
tage Actor-Critic (A3C) algorithm is presented in [21]. In [22]
and [23], ahardware architecture is developed to accelerate Trust
Region Policy Optimization (TRPO) [24]. In [25], a CPU-FPGA
architecture is proposed to accelerate Deep Deterministic Policy
Gradient (DDPG) [15], which combines Deep Q-Learning with
policy optimization methods. [26] proposes an accelerator for
PPO, which utilizes separate modules for actor-critic networks.
The key advantages and disadvantages of these existing works
are summarized in Table I. Prior works either focus on develop-
ing parallel paradigm for the DRL algorithms without hardware
acceleration details ([18], [19]), or is limited to a specific DRL
algorithm acceleration ([21], [22], [23], [26]). Moreover, none of
the existing works efficiently support memory-bound primitives
such as Prioritized Replay Buffer. Due to memory bottleneck,
this creates a performance gap between the achieved throughput
by these existing frameworks and the peak throughput provided
by homogeneous platforms.

In our previous work [27], we proposed a mapping for DRL
algorithms with Prioritized Replay Buffer onto a CPU-FPGA
heterogeneous platform. The design achieves state-of-the-art
training throughput when the Prioritized Replay Buffer and the
learner fit onto the on-chip resources of the FPGA. However, it
fails to handle cases where the on-chip resources are not enough
for the Prioritized Replay Buffer and the learner. To achieve
state-of-the-art training throughput in broader scenarios, in this
paper, we propose a framework for mapping DRL algorithms
with Prioritized Replay Buffer onto CPU-GPU-FPGA hetero-
geneous platforms to achieve superior training throughput for
given DRL algorithms and their input parameters.

IV. ACCELERATOR DESIGN FOR PRIMITIVES

In this section, we discuss the accelerator design of various
primitives including actor, neural network training, Prefix Sum

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

1819

TABLE I
SUMMARY OF RELATED WORK

Available Hardware Mapping

Framework Target DRL Algorithm (Learner-RMM-Data Storage) Advantage Disadvantage
GORILA [16] DON [14]/DDPG [15] CPU-CPU-CPU/GPU-CPU-CPU Asynchronous Update Asynchronous SGD
ApeX [5] DQN [14]/DDPG [15] CPU-CPU-CPU/GPU-CPU-CPU Achieves high rewards Slow for small NN
RLIib [18] Almost all CPU-CPU-CPU/GPU-CPU-CPU Supports a wide range of algorithms Slow for small NN
[23] TRPO [24] FPGA-N/A-FPGA Specialized hardware for fast DNN training Supports only one algorithm
[25] DDPG [15] FPGA-FPGA-FPGA Specialized hardware for fast DNN training ~ Supports only one algorithm, no optimization for replay
& N Compute Prefix Sum Index using a . Legend
TU (FW) TUp: <[TU,: - MOTU, J 2 [TU,: 4-ary Sum Tree Batch size =3 f o Sum
ul refix Sum Index
o FW L1 | FW Lz IH 171 LOSS \ ‘ ‘\ BW Lz ”””” s Computation path
N f
c ;ﬁ
1 _’.6" TU4 WAL ‘ Sampled node
c
TR >TU5: WA Ly s "y Intermediate Node
[c V N g . N along sample path
| R Weight
T (1] v Gradients O O '\\‘ """ ; O O O Root node
Weig‘wt wu Reduction| Reduction
Buffer Modules Buffer Buffer
Fig. 4. Illustration of computing the Prefix Sum Index.
Fig.3. Learner Module Architecture: An example pipeline for a 2-layer neural

network. L; means i*" Layer.

Index computation and priority update on multi-core CPU, GPU
and FPGA.

A. Actor

Each actor is mapped onto a CPU core that performs envi-
ronment emulation and neural network inference. Accelerating
environment emulation is out of the scope of this paper. Our
benchmark environments utilize existing open-source software
in OpenAl gym [17]. Following [5], neural network inference is
performed on a CPU core after each environment interaction.

B. Neural Network Training

1) Algorithm Description: We consider Stochastic Gradient
Descent (SGD) [8] training algorithms composed of forward
propagation (FW), loss computation (LOSS), backward propa-
gation (BW), weight aggregation (WA) and weight update (WU)
steps.

2) Training on CPU and GPU: We use PyTorch [12] to train
neural networks on CPU and GPU. On CPU, PyTorch utilizes
OpenMP [11] to exploit intra-operation parallelism. On GPU,
PyTorch utilizes CuDNN backend to exploit massive SIMT of
GPU.

3) Training on FPGA: We carefully design the Learner Mod-
ule with the goal of minimizing the execution time of each
gradient step. The design principle of the Learner Module is
to support both pipelining across different layers of the neural
network and data parallelism (e.g., a batch of data points is
splitinto smaller batches and processed concurrently). Based on
this principle, we design a Multi-Pipeline Dataflow architecture
composed of a learner pipeline as shown in Fig. 3.

The learner pipeline for a L-layer neural network model
consists of n = 3 x L stages: FW through L layers of policy and
value networks, computing LOSS, BW through (L — 1) layers,
and WA for all the L weight tensors. Each of these stages is
mapped to aunique Tensor Unit, 7'U. Each T'U is a systolic array
of Multiply-Accumulate elements. We express all the FW, BW

and WA as general matrix multiplication (For CNN, we apply
the im2col algorithm). A T'U for FW (BW) exploit parallelism
both among different output neurons (access different weights
in parallel). A T'U for WA takes the activations generated by
FW and activation gradients generated by BW, and outputs the
weight gradients for accumulation. It exploits parallelism along
the neurons in two adjacent layers. The WU modules update
the weight buffers in FW (BW) T'U s after the accumulation of
weight gradients from all the samples in a batch is completed.
To realize data streaming between stages in a pipeline, these
modules (T'Us) are connected by FIFOs.

Let B denotes the batch size and D P (Data Parallel factor)
denotes the number of pipelines described in Fig. 3. A total
number of DP such pipelines are allocated to exploit data
parallelism in a batch. Each pipeline processes a sub-batch of
op data points, and a reduction buffer is used to average the
weight gradients obtained in each pipeline. Conceptually, for
a given batch size, higher D P achieves higher throughput for
FW-BW-WA stages, but causes larger time or area overhead
for reduction over all the pipelines. High DP can also lead
to low effective hardware utilization in each pipeline if the
resulting sub-batch size is too small to saturate the concurrency
provided by all the stages. The Data Parallel Factor (D P) needs
to be carefully chosen to achieve the best performance under
the constraints of a given FPGA device. The design space
exploration process for searching the optimal D P is described
in Section VI-A2.

C. Prefix Sum Index Computation

1) Algorithm Description: We illustrate an example of find-
ing Prefix Sum Index in Fig. 4 and Algorithm 1. The inputs
to the algorithm are the current node values v and the batch
size B. The outputs are B sampled indices using the probability
distribution according to the node values. First, we compute the
Prefix Sum as rand() x v[root], where rand() samples a random
number uniformly from [0,1]. In order to find the Prefix Sum
Index, we traverse from the root node to the leaf node level by
level as shown in Fig. 4. During the traversal of each level, we

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1820

Algorithm 1: Prefix Sum Index Computation on CPU.

1: Input: node priority values v, batch size B
2: root = getRoot();

3: #pragma omp parallel for
4:for1=0;7 < B;i++ do

5: prefixSuml[i] = rand()xv[root] {Sample prefix sum}
6: node = root; {start from root node}

7: currentVal = prefixSuml[i];

8: while !isLeaf(node) do

9: for childNode in getChildNodes(node) do

10: cumulativeSum = currentVal - v[childNode];
11: if cumulativeSum < 0O then

12: break;

13: currentVal = cumulativeSum;

14: node = childNode;

find the child node such that the cumulatively sum of the values
stored in the child nodes are greater or equal to the target prefix
sum value and continue to expand on that child node until it is
the leaf node, which is the node to sample. The time complexity
of finding Prefix Sum Index is O(K logy N), where N is the
number of elements in the replay buffer and K is the number of
child nodes of each parent in the tree.

2) Acceleration on CPU: Prefix Sum Index Computation is
a read-only operation. Thus, the Prefix Sum Index of different
data inside a batch can be computed fully in parallel. As shown
in Algorithm 1, it is realized via OpenMP [11] directives on CPU
by exploiting thread-level data parallelism via shared memory.

3) Acceleration on GPU: Accelerating batch Prefix Sum
Index computation on GPU is similar to CPU via thread-level
data parallelism. Instead of using a OpenMP [11] directives to
decorate the for loop, we compute the index for data parallelism
on GPU inside a batch using CUDA thread and block index:

i = threadldx.x + (blockIdx.x x blockDim.x))

Due to kernel launch overhead, the advantage of accelerating
Prefix Sum Index computation on GPU is only observable when
the batch size B is large. For small batch sizes, it is even slower
than running on CPU using a single thread.

4) Acceleration on FPGA: The primary objectives of the
FPGA-based RMM design are: (1) providing sufficient memory
bandwidth to alleviate the communication bottleneck in per-
forming low-arithmetic replay operations. (2) overlapping the
Sum Tree traversals of different data points in a batch, and
overlapping computation with data accesses using hardware
pipelining. To achieve objective (1), we store the complete
K-ary Sum Tree data structure using the on-chip SRAM on the
FPGA. A typical Prioritized Replay Buffer contains 1 million
data points [14]. The number of nodes in a K-ary Sum Tree
is at most 2 million when K = 2, which can fit the available
on-chip memory of most state-of-the-art FPGAs [28], [29]. The
nodes of the Sum Tree are ordered by the tree level. Each SRAM
bank provide single-cycle access to any data element through
a read/write port. Nodes on different tree levels are stored in
separate SRAM banks. In any FPGA cycle, all the sampling
and update stages can concurrently access different tree levels

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Read TD
from learner
1
2
3

Memoization

Levg[parent(i,d)]
Buffer i

Level d sampler | | FE"NE\ [evel d updater
2 . bank(s)
(el Leveld +1
; Leveld +1
Lev.el d + 1 Bank(s) Level d + 1 Sampler | | (i,d + 1) " Updater EB:’nk‘s'

L

Fig. 5. Replay Samplers and Updaters.

of the K-ary Sum Tree, ensuring no bank conflict and stall-free
pipelining explained in the following. To achieve objective (2),
we apply pipelining to both sampling and update processes. Sup-
pose H is the height of the tree. A sampling pipeline sequentially
process prefix-sum on H tree levels using H pipeline stages.
As shown in Fig. 5, the samplers are connected by FIFOs, each
responsible for traversing up to K sibling nodes in the same level.
The parallelism provided by all the samplers is fully utilized for
concurrently processing different samples at different tree levels.
At each sampler, a register is used to track the accumulated
priority while traversing the child nodes. The target child node
index and remaining priority values are passed onto the next
sampler when the threshold shown in line 11 of Algorithm 1
is reached. At the leaf level, the index where the accumulated
priority sum reaches the target prefixSum (line 5 of Algorithm
1) is the minimum index ¢ satisfying (1)); Thus, the data point
at index ¢ should be sampled.

We further exploit data parallelism among different banks by
partitioning a sum tree into S' sub-trees rooted at the nodes in
the first log}q(tree levels, and assign a pipeline to each sub-tree.
The shared priority prefix sums managed by the first logi tree
levels are broadcast to all the pipelines. The rest of the tree nodes
are local to each pipeline and stored in separate banks, such that
data points in a batch can be processed concurrently by different
pipelines if their target prefix-sum fall into different sub-trees.
We refer to the number of RMM sampling(update) pipelines, .5,
as the bank parallel factor.

HLS (High level synthesis)-generated [30] floating point
accumulator takes multiple cycles to compute [31], introduc-
ing loop-carried dependency in the prefix sum accumulation
computation. This leads to pipeline stalls and prevents us from
efficiently overlapping computation with data accesses as stated
in objective (2). To workaround such inefficiency, we use fixed-
point arithmetic that only requires single-cycle accumulation.
We introduce a variable-precision fixed-point representation
scheme specialized for storing the Sum Tree. We first identify
the upper bound of the sum of the priorities. The upper bound is
used to decide the range and integer bit-width of the register for
storing the tree root. Each of the subsequent levels adopts integer
bit-width of W, = W}*"*"" —log, K to avoid any overflow in
calculating the sum of all its K child values. This representation
scheme does not affect the sampling outcome compared with
using floating point representation.

D. Priority Update

1) Algorithm Description: The inputs of one priority update
are a batch of indices, a batch of new priorities associated with

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

Legend

Priority Update using a
4-ary Sum Tree

Batch size = 3
Priority change
propagation path

’ Node with
update values

Intermediate Node
requiring update

O Root node

Fig. 6. Illustration of updating the K-ary Sum Tree.

1821

TABLE II
PROCESSING UNIT FOR ALL THE DRL COMPONENTS

Processing Input Queue Processing Output Queue
Unit Data Kernel Data
. Environment Step &
Actor ‘ DNN Weights ‘ DNN Inference ‘ Samples
Learner | Samples ‘ DNN Training | DNN Weights
RMM TD Error from DNN Prl_orl_ty Updatg or Indices
Inference or Training Priority Sampling
Data Samples or Data Insertion or Samples
Storage Indices Data Sampling P

Algorithm 2: Priority Update on CPU.

1: Input: a batch of indexes idx, a batch of new priorities
p, node values v.
2: #pragma omp parallel for
3:fori=0;i < B;i++do
node = getNodeFromlIndex(idz|i]); {get node}
Ali] = getValue(node) - p[i]; {priority change}
while node != getRoot() do
#pragma omp atomic
v[node] += A[i];
node = getParent(node);

R A

each index and the node values. The output is the node values
with updated priorities. An example with batch size equal to
3 is shown in Fig. 6. To update the priority of each data, we
update the node values from the leaf node to the root node as
illustrated by the propagation path in Fig. 6. We compute the
change of priority values at the leaf node and iteratively update
the intermediate nodes. The time complexity of priority update
of each data is O(logx N), where N is the number of elements
in the replay buffer and K is the number of child nodes of each
parent in the tree.

2) Acceleration on CPU: We utilize thread-level data paral-
lelism via OpenMP directives for acceleration on CPU as shown
in Algorithm 2. As opposed to Prefix Sum Index computation,
priority updates of different data in a batch share the same
underlying data structure. Thus, it is important to make sure
no data race happens during the parallel update. To do so, we
use OpenMP atomic directive as shown in line 7 in Algorithm 2.

Remarks: It is worth noticing that the data parallelism of
priority updates reduces as the computation level approaches
the root and it is fully serialized at the root level. The perfor-
mance of priority update on CPU is hindered due to poor cache
performance. This is because when a thread updates the shared
memory in its cache, the other threads on different cores have to
invalidate their cache and load the data from main memory. This
significantly impairs the performance of thread-level parallelism
on CPU.

3) Acceleration on GPU: The thread id of data parallelism on
GPU is computed in (2). We use at omicAdd to perform atomic
updates on GPU. The performance of GPU-based acceleration is
also limited by the expensive, frequent and unavoidable atomic
operations when updating the priority values at the root level of
the tree.

4) Acceleration on FPGA: For the FPGA-accelerated prior-
ity update operations, in each pipeline, H updaters concurrently

update the sum values at each level using the loss obtained at
the actors or the learners. To eliminate computation overhead of
updaters in back-tracking the Sum Tree, we apply Memoization
technique that dedicates a light-weight buffer (Fig. 5) to store
the traversed path. This buffer only needs to store I — 1 node
indices for each data point, as its H — 1 parents during sampling
are tracked, where H is the number of updaters.

On CPU and GPU, low arithmetic intensity of the priority
update operation limits their achievable performance by exter-
nal memory bandwidth. Also, updating across levels requires
non-streaming (high latency) accesses to discontinuous external
memory locations (~140 cycles for CPU DDR4 [32], 80~150
cycles for GPU GDDRG6 [33]). We exploit the on-chip SRAM
on FPGA to circumvent these limitations.

V. OVERALL SYSTEM DESIGN

Given the optimized accelerators for each primitive, the
objective of the overall system design is to i) relax the data
dependency as noted in Section II-A2 to maximize the training
throughput; ii) design efficient data transfer mechanism between
heterogeneous platforms such that the data transfer latency is
completely hidden.

A. Data-Dependency Relaxed Training Loop

As mentioned in Section II-A2, sampling next batch cannot
be performed until the new priorities of the previous batch are
updated. In this case, sampling, training and priority update are
executed sequentially. If this data dependency in the training
loop can be removed, sampling, training and priority update
can be executed in parallel and it will significantly improve
the training throughput. However, it is important that the DRL
performance degradation caused by removing the data depen-
dency is negligible in terms of rewards, which is verified by the
experimental results in Section VII-B

B. Data Transfer System Design

We view each key component in a DRL system as a Processing
Unit composed of an input queue, a processing kernel, and an
output queue. The detailed Processing Unit compositions of each
key component in a DRL is shown in Table II. Each Processing
Unit is hosted by a CPU thread, while the processing kernel can
be mapped to an accelerator (GPU or FPGA) in a heterogeneous
system. The goal of our data transfer system is to enable fast
and atomic data transfers both within a Processing Unit (e.g.,

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1822

Policy/Value Weight Queue

Actor I
Initial Priority| Updated
Data Prefix Sum (write) Priori
Insertion Index [Read) | 4 | (Write)
{Write)
. " Replay . Priority
Request anagemen Request
Queue Module Queue
Data
Storage » Learner
Data Queue
Fig. 7. Interactions among various Processing Units.

communication between the host CPU thread and the processing
kernel on an accelerator), and among different Processing Units.

The interactions between Processing Units is shown in Fig. 7.
The synchronization inside the Learner and the Prioritized Re-
play Buffer are managed by the accelerators they are mapped
to. Let IV be the number of Actor threads running on CPU. We
allocate 3 more CPU threads, one for the Learner, one for the
RMM and one for the Data Storage. These CPU threads are
responsible for coordinating data transfer between the Actors,
the Learner and the Data Storage. Specifically, First-in-First-out
(FIFO) queues are used to realize concurrent and asynchronous
communication among the host threads. Each queue has a pro-
ducer end (tail) and a consumer end (head). For queues with
multiple producers (e.g., the Data Storage Request Queue is
shared by all the Actor threads and the RMM thread), a mutex is
used to ensure atomic access to the tail. When two components
connected by a queue are both mapped to the host CPU, the
data communication between them is simply implemented using
a shared queue described as above. When two components
connected by a queue are mapped to the same accelerator device
(e.g. both RMM and Learner are mapped to an FPGA), the queue
is implemented using the on-chip resources of the accelerator.
When two components connected by a queue are mapped to
a CPU and an accelerator, the shared queue only stores the
pointers of the data. The actual data transfer from the host to
the device and from the device to the host is performed inside
each Processing Unit.

VI. DESIGN SPACE EXPLORATION

The objective of design space exploration (DSE) is to maxi-
mize the system training throughput in terms of the number of
gradient steps performed per second by mapping each compo-
nent depicted in Fig. 7 onto appropriate devices. This section
describes our DSE workflow through three steps (Fig. 8):

1) Profiling of the Performance of the Primitives. Given a
DRL algorithm, it outputs the performance of each prim-
itive under various mapping assumptions using an analyt-
ical performance model (on FPGA) or by profiling using
real hardware (on CPU and GPU). The results populate a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Primitive-Platform Performance Table. It also determines
the required hardware parameters on the FPGA device.

2) Mapping of Primitives: It constructs the complete map-
ping space by taking inputs from the performance table,
prunes the mapping space and outputs the optimal primi-
tive mapping that achieves the highest training throughput.

3) Template Instantiation: It takes the primitive mapping
results and hardware parameters as inputs, and populate a
host template using a primitive code base to generate an
end-to-end implementation.

A. Profiling the Performance of the Primitives

The given parameters of DRL algorithms include: i) RMM:
the depth D, the number of child nodes of a parent node F
and the total number of data points of the Prioritized Replay
Buffer; ii) learner: the batch size B used in training; iii) learner:
the architecture of the neural network. Both the RMM and the
learner can be mapped onto either CPU, GPU and FPGA.

1) Profiling of Primitive on CPU and GPU: On CPU and
GPU, we profile the execution time of a single batched neu-
ral network training step Tg(ZZ(GPU), batched Prefix Sum
Index computation TCPU(GPU), and batched priority update

prefix
Tﬁiﬂﬁpm. Profiling on the GPU are performed under the

assumption that only one of the RMM or the learner is ac-
celerated by the GPU. It indicates that all the available GPU
resources can be allocated to exploit its maximum data par-
allelism. This means that the GPU profiling results represent
a Processing Kernel’s peak performance that can be obtained
on the GPU, and the actual performance may be lower if two
Processing Kernels sequentially share the same GPU resource
(i.e., when both learner and RMM operations are mapped to
the GPU).

2) Architecture Exploration on FPGA: On FPGA, we de-
velop cycle-accurate performance models for the RMM and the
learner based on their input parameters. Using these models, we
obtain the optimal hardware configurations that maximizes the
training throughput and use the results to guide the rest of the
DSE.

In modern multi-die FPGAs, an FPGA chip is built by a
manufacturing process that combines multiple Super-Logic Re-
gions (SLRs) components (i.e., dies) mounted on a passive
Silicon Interposer [28]. During place and route of our design,
cross-SLR routing results in long wires that reduces operating
clock frequency. To better port our design to modern FPGAs
composed of multiple SLRs, we limit the resource constraint to
1 SLR for the RMM and the rest of them for the learner. This
helps in ensuring fast routing and higher clock frequency of the
design.

The execution time of Prefix Sum Index computation with
batch size B can be computed as % x F FPGA cycles, and
the execution time of priority update with batch size B can be
computed as g FPGA cycles, where S is the bank parallel factor
as mentioned in Section IV-C4. We set the bank parallel factor S
to be proportional to the batch size for scalable acceleration. To
fully utilize the parallelism provided by H stages, if B < H, we

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

1823

CPU Primitive
/ Performance \
DRL Algorith P Profil GPU Primiti { primitive- " | T
orithm rimitive Profiler rimitive H | i imiti i !
Specif:%cations and Predictor Performance : Pe':}gtffff\gnce ! Ahlllgaopr’iatll:rgn i/:lar;;:;:; IrEr:r?tiZieer [Host and Data |
\ | Table i T i Transfer Template |
FPGA Performance I ™
Modeling | Primitive i
Architecture | Code Base |
Exploration S —fr st

Hardware Parameters

Fig. 8. Design space exploration and automation workflow.

use only a single pipeline (S = 1). As the batch size B increases,
we increase the S until reaching the resource bound in an SLR.

The overall learner latency Ticarner = Tpipetine + T of a
single gradient step is determined by D P (number of learner
pipelines), PI = % (the sub-batch size processed by each
pipeline), and computation resources allocated to the pipeline
stages. To minimize 7jcqrner, OUr architecture exploration
methodology follows two steps:

>a). Pipeline Local Optimization: The latency of a pipeline
is computed as Tpiperine = (PI +n — 1) X T}44. The perfor-
mance is bounded by the latency of the slowest pipeline stage,
Trax = maxi_,T;. For given n and PI, to minimize Tpeline,
Tnaz Deeds to be minimized. This means that the latencies
of all n stages need to be balanced. Therefore, we allocate
computation resources (DSP units) to each Tensor Unit TU
proportional to the number of multiply-add operations in each
DNN layer propagation. Specifically, we derive a ratio ;.. .1,
for n stages, normalized to the stage with minimum number of
operations. The total number of DSPs allocated to i-th Tensor
UnitTU;, i € [1...n])isr; x f, where f is a factor that controls
the total amount of DSPs allocated to a learner pipeline. f is
derived in Step b).

b). Global Optimization: The second part of the learner
latency, Ty, captures the latency of reduction over DP in-
termediate weight gradients and the latency of WU for all
weight tensors: Ty = Z;‘:l(DP x size(W;))/(rwu x f).
Note that ry ¢y x f is the total number of DSPs allocated to
the WU stage. To exploit the maximum parallelism in WU, we
let ry to be consistent with the number of SRAM banks for
storing the weights. Given a training batch size B, we determine
the optimal combination of PI and DP by searching for all
possible combinations in B steps and applying steps a) and b)
described above to obtain the minimum 7j¢q,¢, parameterized

with f: argmin(Tpipetine + Two) Then, we increment f until
DP,PI
one of the resource constraints (available number of DSPs,

SRAM banks, Look-Up Tables) is reached.

3) Primitive-Platform Performance Table: The output of the
Primitive Profiler is a 3 x 2 table. The 2 columns in the table
refer to the RMM and the Learner. The 3 rows refer to the 3
devices. Each table entry stores the throughput of processing a
batch of data, TPP'%/°™™ where primitive=RMM or Learner.

primitive’
Note that TPI e = BTV where B is the batch
size and Tff?ﬁi‘;;ﬁ is the total execution time of the primitive

on the platform (for RMM, this is the sum of sampling and
update execution time in each DRL gradient step).

Algorithm 3: Mapping Algorithm.

1: Input: Primitive-Platform Performance Table PT'able,
where each table entry TP/ denotes the achieved
throughput of primitive ¢ on device j.

2: Output: Mapping assignment vector D, where each
entry D; denotes the optimal device for performing
primitive q.

:# Step 1,2: Primitive Mappings

: for ¢ in [Learner, RMM] do

D; = argmazx;{TP]}

if Dpcamer == GPU and T PR} > T PSPV
PTable.remove(T PSEY

: OutPUt D Learner> DRMM
9:# Step 3: Memory Component Mapping

10: Initialize Dpaga storage; min _ traffic<— oo

11: C‘RMM — B; CLearner +— B x E; C'Actor — Nactor x E

12: for ¢ in [Learner, Actors,,RMM] do

13: Total data traffic = Z;,i{iuamer’Amrs’RMM} Cy

14: if Total data traffic < min _ traffic then

15: min _ traffic <— Total data traffic; Dpya sworage <— D

16: OutPUt D Data Storage

then

B. Mapping Algorithm

Given a Primitive-Platform Performance Table, the Mapping
Algorithm first determine the best mapping of the computation
primitives to maximize the achievable peak training through-
put. Then it places the memory component (Data Storage) to
minimize the required data traffic in the system.

The achievable training throughput can be estimated as the
minimum of the throughput among the learner, the priority up-
date and Prefix Sum Index computation. Therefore, the objective
is to search for a combination of platform assignment to the
primitives, such that

argmaxde'uicel,Z {mll’l (Tpgzgi(:elﬂ TPI%(])\i/)[lJG;Q)} (3)
We take a greedy approach to optimize the overall metric (gradi-
ent steps performed per second) following three steps as shown
in Algorithm 3:

Step 1. We map the learner to the platform yielding the highest
training throughput. We prove that T Ppeqrner 1S the upper-
bound of the achievable system throughput by enumeration
method: (1) If for some RMM mapping platform, 7' Pryras >

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1824

T Preqrner, according to (3), the achievable system through-
put equals T'Pregrner- (2) Else if TPrarar < T Pregrner, the
achievable system throughput is bound by RMM, thus lower
than T'Preqrner. While this maximizes the theoretical system
throughput upper-bound, we still need to ensure that the system
throughput is not bottlenecked by the RMM throughput. Step
2. We then map the RMM to the platform yielding highest
replay operation throughput. Note that if the learner is mapped to
GPU in the previous step, and achievable RMM throughput on a
non-GPU devices is higher than the learner throughput (making
learner the bottleneck in the system), we prune out the option of
GPU for RMM (Algorithm 3 line 6-7). This is because letting
RMM and learner share GPU resources will further reduce
learner throughput from B/TSEY o B/(TGEY + TSHY,).
On CPU and FPGA, this problem does not occur. Pre-defined
hardware constraint for RMM (1 thread on CPU, 1 SLR on
FPGA) ensures that RMM does not share hardware resource
with the learner, thus cannot affect T'Pr,cqrner-

Step 3. Step 1 and Step 2 produce the Dy eamer and Dryvm
in the assignment vector. We decide the device assignment of
the memory component, i.e., the Data Storage. The total data
traffic to the Data Storage during each gradient step is B words
of sampling indices from the Drmm, B X E words of sampled
data to the Dy cumer (I 15 the size of each data point stored in the
Data Storage), and Nt X E words of inserted data from the
actors running on CPU threads. These remote communication
costs are denoted as C' in Algorithm 3 line 11. We place the Data
Storage on the device that yield the minimum total data traffic in
remote communication with primitives on other heterogeneous
devices (Algorithm 3 line 9-16). Overall, assuming there are m
primitives to be deployed on n heterogeneous devices, the time
complexity for the Mapping Algorithm is O(m(m + n)).

C. Template Instantiation

We develop a code base composed of (1) the complete CPU
multi-thread host program template with the Inter-Processing
Unit Data Transfer system, (2) the host program for interfacing
a host CPU thread with a Processing Kernel on the accelerator
(Intra-Processing Unit Data Transfer) under its various primitive
mapping, and (3) the kernel programs on the accelerators under
various mapping options (GPU and FPGA). As shown in Fig. 8,
a Template Instantiater draws the device assignment result of
primitive mapping from the Mapping Algorithm, and use it to
obtain the parameterized code snippets (2) and (3) for each
assigned accelerator from the code base. After compiling (3) to
generate kernel executable (or bitstreams), the host code snippets
in (2) are then filled into (1) the host program template, for an
end-to-end complete implementation.

VII. EXPERIMENTS

Our experiments aim to demonstrate i) the DRL performance
in terms of rewards achieved by our framework is the same as
the serial version of the corresponding DRL algorithm; ii) the
execution time of each primitive varies w.r.t the input parameters
including batch size, neural network architecture; ii) the superi-
ority of the mapping generated by our framework compared with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE III
OVERVIEW OF BENCHMARK ENVIRONMENTS, DRL ALGORITHMS AND NEURAL
NETWORK ARCHITECTURES
Environment Algo |S| Al NN Architecture = MACs
3-layer MLP
CartPole DDPG 4 1 hidden size 8 137
3-layer MLP
Hopper DDPG 11 3 hidden size 256 70.1K
Pong DQON 84 x 84 6 ConvNet in [14] 18.8M
TABLE IV
SPECIFICATIONS OF THE HETEROGENEOUS DEVICES
CPU GPU FPGA
Process 14 nm 16 nm 16 nm
DDR/HBM
Bandwidth 89 GB/s 550.0 GB/s 77 GB/s
Last-Level Cachce/
SRAM size 8 MB 3 MB 35 MB
Peak Performance
(TOPS) 0.04 (FP32) 12.15 (FP32) 0.68 (INT32)
I

(a) CartPole

Fig. 9. Benchmark software environments.

other mappings on various benchmark environments solved by
different DRL algorithms.

A. Experimental Setup

Hardware Platform and Toolchain: Our experiments are con-
ducted using Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz with
56 cores, a Nvidia TITAN Xp GPU and a Xilinx Alveo U200
accelerator board. PCle is used to connect the CPU with GPU,
and CPU with FPGA, both with bandwidth 16 GB/s. We de-
velop a parameterized FPGA kernel template using High-Level
Synthesis (HLS) for quick customization and easy integration
with domain-specific frameworks (e.g., Pytorch [12]). We follow
the VITIS hardware development flow for bitstream generation.
OpenCL is used to implement the data transfer between the host
and the FPGA. Primitives on the CPU and GPU are developed
using C++ and CUDA, respectively. The detailed specifications
of heterogeneous devices are summarized in Table I'V.

Benchmarking Software Environment: We select 3 benchmark
environments including classic control task CartPole, MuJoCo
task Hopper and Atari games Pong in the OpenAl gym software
simulation environment [17]. The size of the observation space
and the action space is shown in Table III.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

e CartPole: As shown in Fig. 9(a), there is a pendulum placed
upright on the cart. The objective is to balance the pole
by pushing the cart to the left and right. The observation
consists of the position and the velocity of the cart and
pole.

e Hopper: As shown in Fig. 9(b), the hopper is a two-
dimensional robot consisting of four main parts: i) the torso
at the top; ii) the thigh in the middle; iii) the leg in the
bottom; iv) and a single foot on which the entire body
rests. The objective is to apply forces on the three hinges
connecting the four body parts such that the hopper moves
as fast as possible.

e Pong: As shown in Fig. 9(c), the objective of Pong is
to control your paddle to bounce the ball below your
opponent’s paddle.

The DRL algorithms used to solve each environment and
the neural network architectures are shown in Table III, where
|S| denotes the dimension of state space and |.A| denotes the
dimension of action space.

Hyper-parameters: The number of actors are set to 16 for all
environments according to existing work [5]. The number of
child nodes per parent node K used in the Sum Tree implemen-
tation is set to 2 for simplicity. The sizes of the Data and Priority
Request Queues are 1024. The size for Data Queue is 200 (10)
for Pong (Hopper).

B. DRL Algorithm Performance

As discussed in Section V-A, the training throughput benefits
from the data-dependency relaxed training loop, which removes
the data dependency between sampling of the next batch data
and the priority update of the previous batch data. The objective
is to pre-sample batches of data such that the learner never waits.
However, this may cause degradation of the reward performance.
We denote the number of pre-sampled batches as D. D is
the primary parameter that controls the degree of dependency
relaxation. In order to empirically investigate the relationship
between D and the achieved accumulated rewards, we train
several agents with 5 different random seeds for each benchmark
environment using the optimal mapping. We show the achieved
accumulated rewards along the trajectory versus the total number
of environmental interactions of each environment with various
number of pre-sampled batches in Fig. 10. As D increases, it
may impact the reward performance because the staleness of
the priority distribution becomes more severe, as evident in the
case when D = 200 for Hopper. Still, we observe that the per-
formance degradation is consistently negligible with D = 50. In
practice, we set D = 50 for all the three environments. By doing
S0, it improves the training throughput as the sampler does not
have to wait for the updated priorities of the previous sampled
batch while the rewards are not negatively impacted.

C. Primitive Acceleration Performance

We profile the performance of various primitives including
neural network training in Fig. 11, Prefix Sum Index computa-
tion and priority update in Fig. 12.

1825

Number of Pre-sampled Batches

— 1 — 10 — 50 — 200
Pong
o
&
o 10
w
i
@ 0
&
© -10
2
<< -20
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
TotalEnvinteracts le6
Hopper
o
&
o 3000
w
=]
(%]
@ 2000
[
[=2]
© 1000
2
4
0.0 0.2 0.4 0.6 0.8 1.0
TotalEnvinteracts le6
CartPole
o
& 500
o
w
0 400
@
&
E300
[
Z 200
0 50000 100000 150000 200000 250000

TotalEnvinteracts

Fig. 10. Reward of RL agents trained in benchmark environments with various
number of pre-sampled batches (D). The curve shows the mean, and the shaded
area shows the standard deviation of 5 runs with different random seeds.

Training primitive: The number of CPU threads used for
training on CPU is 16. We observe that the training performance
of FPGA dominates over CPU and GPU when the arithmetic
intensity is low. (e.g., when the size of the neural network is small
as in CartPole or when the batch size is less than 128 in Hopper
and less than 16 in Pong). The training performance of GPU
dominates over CPU and FPGA when the arithmetic intensity
is high (e.g., when the batch size in Hopper is larger than 1024
and the batch size in Pong is larger than 16). This is because
the kernel and memory overhead of GPU are not negligible
when the arithmetic intensity is low. The high memory access
latency with low data re-use in smaller batch size training makes
the SIMT computation power of GPU severely unsaturated.
The superiority of training performance on FPGA arises from
our high throughput customized hardware design. However, the
execution time of training primitive on GPU starts to outperform
that on FPGA when the batch size increases due to negligible
kernel launch overhead and higher clock frequency.

Prefix Sum Index computation: On CPU, we observe that the
execution time of Prefix Sum Index computation decreases as
the number of CPU threads increases. This is because Prefix
Sum Index computation is a read-only operation that each com-
putation inside a batch can be executed in parallel. On GPU, the
execution time is almost the same when the batch size increases.
This indicates that the computation of Prefix Sum Index is
bound by the kernel launch overhead and fails to saturate the
GPU’s SIMT power. On FPGA, we observe a linear increase
in the execution time as batch size increases above 1024 as the
number of sampling and update pipelines reach the resource

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1826

cpu B fpga gpu
env=CartPole, MACS=137 env=Hopper, MACS=70K env=Pong, MACS=18M

B £ B
91 = — o8
L L [
£ E o £
594 i 5,
c c c
] .0 9
2o B 2o
gl a 3

N S 00 ©O N < 00 © AN < N < 00 © N S 0 © N < ©o o o <t o

medRZggesg medR&gzez g = 8§ &

— N < O © — AN < 0 © B
S = Batch size
Batch size Batch size
Fig. 11. Execution time (in milliseconds) of a single neural network training step in benchmark environments of various batch sizes on various hardware platforms.
H cpu-l N cpud B cpu-8 B cpu-16 B gpu fpga
Prefix Sum Index Computation
- 2
E 2
o 2V
E 92
= 27!
Q2 96
5 5-8
W] 2712
64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Priority Update
o o
E 2
2
£ %7 |
5 276
5 28
9 2710
I.I>j 2712
64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Batch size
Fig. 12. Execution time (in milliseconds) of a single Prefix Sum Index computation and priority update of various batch sizes on various hardware platforms.

The number after “cpu” denotes the number of threads using in OpenMP [11].

bound of an SLR. For batch sizes smaller than 1024, the increase
in RMM operations latency is not as sever because we scale
up bank parallelism with increasing batch sizes to make the
performance more salable. For Prefix Sum Index computation,
GPU is more salable to larger batch sizes since there are no
data-dependency between obtaining samples within a batch and
they can be executed in a SIMD manner. Compared to GPU,
the FPGA Prefix Sum performance ranges from 41x speedup
to 4.6 x speed-down over all the batch sizes.

Priority update: Different than Prefix Sum Index computation
where different samples in a batch are independent, in Priority
Update computation, multiple update requests poses write-after-
write data access dependencies at the root. The execution time
improvement of priority update is almost negligible or negatively
affected when the number of CPU threads increases. This is due
to the poor cache performance caused by memory access conflict
as discussed in Section IV-D2. The execution time of priority
update on GPU increases in linear as batch size increases due
to the inevitable serial execution at root node and high mem-
ory access latency that cannot be hidden by computation. On
the other hand, FPGA-based implementation features hardware

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

pipelining and single-cycle on-chip data accesses to maximize
the throughput of the serial execution. This leads to consistent
superior performance of priority update of all the batch sizes
(11 ~ 98x speedup compared to GPU) as shown in Fig. 12.

Overall, we observe that the optimal mapping of all the
primitives vary as the input algorithm configurations change.
This makes a fixed mapping of DRL algorithms in efficient and
motivate the necessity to automatically generate the mapping
based on the inputs.

D. System Mapping and Performance Analysis

In the bar plots of Fig. 13, we show the achieved system
throughput for the three benchmarks under different batch sizes
and mappings, and in the line plot we show the theoretical
optimal training throughput. The theoretical optimal training
throughput is the maximum throughput of the training primitive
among various mappings of the learner. It is achieved when i) the
learner is mapped onto the platform with lowest execution time
of the neural network training primitive; ii) the mapping of RMM
doesn’t slowdown the training throughput; iii) the overhead

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS 1827

CPU-CPU CPU-FPGA GPU-GPU FPGA-CPU FPGA-FPGA
B CPU-GPU s GPU-CPU BN GPU-FPGA s FPGA-GPU
env=CartPole ?‘E o2 env=Hopper env=Pong

Heo
~~

28

2-1

[Sv] [Sv]

=
—
—
—
——
—
—
—

0 20

Training throughput (GPS)
(8]

Tra|ning throughput (
—.
_5

1
— |
Training throughput (GPS)
N N
—
i
1
—
1
1
1
1
]

256 2048
Batch size

16384 256 2048

Batch size

16384
Batch size

Fig. 13. The training throughput in gradient steps per second (GPS) of various batch sizes in various mappings. The mapping “X-Y”* denotes that the learner is
mapped onto “X” and Replay Management Module is mapped onto “Y”. The line plot shows the theoretical optimal performance given environment and batch
size.

TABLE V
SYSTEM DSE RESULT FOR VARIOUS CONFIGURATIONS AND THE RANGES OF RESULTING SPEEDUPS

env=CartPole env=Hopper env=Pong
DNN MACS=137 DNN MACS=70K DNN MACS=18M
Batch size 32 256 2048 16384 32 256 2048 16384 32 64 256
Optimal Mapping F-F-F F-F-F FFF FFF FFF GCG GCG GFG GCG GCG GCC
2nd Best Baseline Mapping F-C-F F-GF FCF GFG FCF GCG GGG GCG GGG GGG GGG
& Our Speedup &12x & 3.6x &T7.2x &3.1x &T7.2x &1.03X & 1.77x & 1.73x & 1.67x & 1.54x & 1.93x

Worst Baseline Mapping G-G-G G-G-G G-G-G CCC GGG GGG FCF FCF CCC CCC CCC
& Our Speedup & 997.3x & 240.5% & 316x & 6.68% & 7.71x & 1.81x & 10.5x & 66x & 100.9x & 149.8x & 197.6%
Note 1: The “Optimal” configuration refers to the optimal mapping returned by our proposed framework. The “2™¢ Best” (“Worst”)

configuration is obtained by using the mapping that yields the highest (lowest) throughput OTHER THAN the optimal mapping.
Note 2: All the mappings are device specifications for Learner-RMM-Data Storage. F, C and G stands for FPGA, CPU, and GPU.

TABLE VI
DESIGN PARAMETERS AND RESOURCE ALLOCATION FROM FPGA
ARCHITECTURE EXPLORATION

Pipeline|Data Paralle] RMM Bank # SLR
FPGA Factor Factor Parallelism| Constraint
Hardware | (PI) (DP) (S) (RMM, Learner)
Parameters‘ BS/2 ‘ 5 ‘ 132 ‘ 2]
Resources | SRAM | REG | LUT | DSP
RMM 4.5MB 263K 181K 1280
(S=32) | (12.8%) (11%) (15%) (18%)
DON |17.6MB 994K 615K 4315
Learner | (51%) (42%) (52%) (64%)
DDPG |12.3MB 782K 721K 2557
Learner | (35%) (33%) (46%) (38%)

from thread-level synchronization of the data transfer queues
is negligible to the system throughput. As shown in Fig. 13, the
difference of the achieved performance using our system DSE
to the theoretical optimum is within 5% as shown in the line plot
in Fig. 13.

Accordingly with each configuration in Fig. 13, Table V
shows their optimal mapping returned by the system DSE Map-
ping Algorithm, along with the ranges of speedups shown by
the 2" best and worst baseline mappings. Table VI shows the
hardware parameters returned by the Architecture Exploration
when FPGA is used. For the CartPole benchmark, when both
the DNN and batch sizes are small, both training and RMM
operations are mapped on FPGA as it outperforms GPU. As

the batch size increases (i.e., batch size B > 2048), the learner
gradient step execution time becomes larger, such that the la-
tency of RMM operations can be hidden using either GPU
or FPGA. Our Mapping Algorithm chooses the mapping that
minimizes the total number of devices and the amount of data
communication, so it still maps both RMM and learner to the
FPGA. In the Hopper benchmark, the same observation also
applies to the medium-sized DNN when the batch size is small.
As the batch size further increases, GPU outperforms FPGA
on training due to its superior amount of parallel resources and
higher frequency. As the learner is mapped to GPU for B > 256,
although FPGA outperforms CPU for the RMM operations, the
learner is the bottleneck and assigning RMM to either CPU
or FPGA yields the same overall throughput. However, when
the batch size reaches a threshold (B = 16384) where the CPU
RMM operation latency can no longer be hidden by the learner,
mapping the RMM to FPGA has obvious improvement over
other baselines. For large DNN and batch size in the Pong
game benchmark, the learner is consistently mapped to GPU
due to its superior training performance. Even with slower
RMM performance on CPU than FPGA, the learner remains the
bottleneck of the system, so we map it to CPU for minimized
number of devices and communication requirements.

We observe that all the three devices (CPU-GPU-FPGA)
should be used for optimal system performance when the DNN is
small and batch size is large (e.g., The Hopper benchmark using
3-layer MLP with batch size 16384). This is because large batch
training favors GPU over CPU and FPGA, while large batch

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

1828

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

mmm RLlib s Ours
E) Pong ;_(5 Hopper E CartPole
92.2X 102 o <}
5 2x10 El 210°
g 2 2.0 g
5,1.8% 10 5,10 S
: : g 310
g 1.6x10 g g
A | ' .
£ 0 - i - _H
= 64 256 = 32 256 2048 16384 32 256 2048 16384
Batch size Batch size Batch size

Fig. 14.
the optimal mapping by our proposed framework.

RMM operations can only be effectively accelerated without
reducing system throughput on the FPGA (mapping RMM to
CPU will shift the bottleneck from training to RMM operations,
and mapping RMM to GPU will take over the resources for
the learner, lowering the training throughput by about 30%).
Compared with baseline mappings, our CPU-GPU-FPGA sys-
tem achieves up to 11 x higher throughput. In all the benchmarks
and baselines, our framework achieves up to 997.3 x speedup.

E. Comparison With State-of-The-Art

In the bar plots of Fig. 14, we show the training throughput in
gradient steps per second (GPS) for various batch sizes between
the state-of-the-art distributed RL framework RLIib [18] and
the optimal mapping returned by our proposed framework for
the benchmark environments described in Section VII-A. The
mapping of Data Storage and RMM can only be on CPU in
RLIib [18]. The mapping of Learner can be on CPU or GPU.
We measure the training throughput of both mappings and report
the higher value as the training throughput of RLIib in Fig. 14.
For Pong, our framework improves the training throughput by
1.06x ~ 1.14x. This is because the neural network architecture
is a Convolutional Neural Network (CNN); the training time of
the neural network dominates the overall training throughput.
Both our framework and RLIib utilize Pytorch [12] backend
to train neural networks. For Hopper, our framework improves
the training throughput by 1.31x ~ 6.39x. As the batch size
increases, the speedup decreases. This is due to the neural
network training dominates the overall training throughput. For
CartPole, our framework improves RLIib up to 1005x. This is
because in CartPole, all the components of our framework are
mapped on the FPGA. This enables on-chip data storage and
data transfer that significantly improves the training throughput.
In general, we found that RLIib only optimizes large scale RL
tasks while our framework optimizes RL tasks for all the scales.

Table VII shows the total power consumption of the complete
system using our framework and the state-of-the-art implemen-
tation (RLIib). The power is the sum of the operating Thermal
Design Power for the CPU and DDRs, the power reported
by the Nvidia runtime profiler for the GPU, and the power
reported using Vivado after place-and-route for the FPGA. The
reported power consumptions for the benchmarks are evaluated
at the largest batch size (16384 for CartPole and Hopper, 256
for Pong). Note that the mapping used by our framework and
RLIib are different. For example, for the Hopper benchmark,

The training throughput in gradient steps per second (GPS) of various batch sizes between the state-of-the-art distributed RL framework RLIib [18] and

TABLE VII
POWER AND POWER EFFICIENCY OF SELECTED BENCHMARKS

RLIib
(GPS/
Watt)

Ours
(GPS/
Watt)

RLIib
(Watts)

Ours

Benchmarks (Watts)

Mapping (Learner-
Pong, DQN|RMM-Data Storage)

| Total System Power| 565.3 |0.246| 564 | 0.23

G-C-C ‘ G-C-C

Mapping (Learner-
Hopper, DDPG|RMM-Data Storage)

| Total System Power| 237.2 | 1.598 | 228 | 0.87

G-F-G ‘ G-G-C

Mapping (Learner-
CartPole, DDPG|RMM-Data Storage)

| Total System Power| 217.5 | 7.012| 220 |1.841

F-F-F ‘ c-C-C

our framework consumes slightly higher total power due to
the additional FPGA component compared with RLIlib map-
ping. The throughput improvement from our mapping is much
larger than the increase in the power consumption. This leads
to up to 3.8 times higher power efficiency (in terms of GPS
per Watt).

VIII. Di1SCUSSION & CONCLUSION

In a real-world scenario (e.g., robots, self-driving cars), the
RL trial-and-errors require a large amount of training episodes,
which can damage the physical agent devices such as the robots
or cars if directed by unsafe policies [25]. Therefore, the typical
workflow of applying Deep RL constitutes of two phases: the
development phase (i.e., Training-in-Simulation) that uses a
software simulator without actually deploying the agent in the
field, and the deployment phase that executes the agent devices in
areal-world environment. In the Training-in-Simulation (devel-
opment) phase, the policy training is usually done by interfacing
the policy model with simulation environments installed on a
multi-core CPU. This process is extremely time-consuming as it
involves a magnitude more than millions of sequential iterations,
and takes days to months to complete [1]. On the other hand, the
deployment is largely dominated by policy inference and only
few iterations of on-line learning. Our work targets speeding
up the Training-in-Simulation phase, and can largely reduce the
production time before deployment.

In this work, we proposed a framework for optimizing DRL
algorithms with Prioritized Replay Buffer to achieve the opti-
mal training throughput based on the input specifications and

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FRAMEWORK FOR MAPPING DRL ALGORITHMS WITH PRIORITIZED REPLAY BUFFER ONTO HETEROGENEOUS PLATFORMS

heterogeneous hardware configurations. We proposed separate
accelerators for each primitives on multi-core CPU, FPGA and
GPU. Then, we proposed data-dependency relaxed training loop
to maximize the training throughput without affecting the DRL
performance. Our experimental results verified our claims. Fu-
ture work includes developing mapping framework for other
DRL algorithms without Prioritized Replay Buffer.

ACKNOWLEDGMENTS

Seed funding from Ershaghi Center for Energy Transition is
gratefully acknowledged.

REFERENCES

[1] L. P. Kaelbling et al., “Reinforcement learning: A survey,” J. Artf. Intell.
Res., vol. 4, pp. 237-285, 1996.

[2] K. Chatzilygeroudis et al., “Black-box data-efficient policy search for
robotics,” in Proc. IEEE RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 51-58.

[3] O. Vinyals et al., “AlphaStar: Mastering the real-time strategy game
starcraft I1,” DeepMind Blog, vol. 2, p. 20, 2019.

[4] D. Silver et al., “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, pp. 484-503, 2016. [Online]. Available: http:
//www.nature.com/nature/journal/v529/n7587/full/nature 16961 .html

[5] D. Horgan et al., “Distributed prioritized experience replay,” 2018,
arXiv:1803.00933.

[6] L. Espeholt et al., “SEED RL: Scalable and efficient deep-R1 with accel-
erated central inference,” 1910, arXiv:1910.06591.

[7]1 T. Schaul et al., “Prioritized experience replay,” 2015, arXiv:1511.05952.

[8] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, pp. 400407, 1951.

[9] C.Zhang et al., “Parallel actors and learners: A framework for generating

scalable RL implementations,” 2021, arXiv:2110.01101.

Intel, “Oneapi for heterogeneous cloud,” 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical/

comparing-cpus-gpus-and-fpgas-for-oneapi.html

OpenMP Architecture Review Board, “OpenMP application program in-

terface version 3.0,” May 2008. [Online]. Available: http://www.openmp.

org/mp-documents/spec30.pdf

A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,

pp. 8024-8035, [Online]. Available: http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,”

2014, arXiv:1410.0759.

V. Mnih et al., “Playing atari with deep reinforcement learning,”

2013, arXiv:1312.5602.

T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-

ing,” 2016, arXiv:1509.02971.

A. Nair et al., “Massively parallel methods for deep reinforcement learn-

ing,” 2015, arXiv:1507.04296.

G. Brockman et al., “OpenAl gym,” 2016, arXiv:1606.01540.

E. Liang et al., “Ray RLIib: A composable and scalable reinforcement

learning library,” 2017, arXiv:1712.09381.

Y. Li and D. Schuurmans, “MapReduce for parallel reinforcement learn-

ing,” in Recent Advances in Reinforcement Learning, S. Sanner and M.

Hutter Eds., Berlin, Germany: Springer, 2012, pp. 309-320.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008,

doi: 10.1145/1327452.1327492.

H. Cho et al., “FA3C: FPGA-accelerated deep reinforcement learning,”

in Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating

Syst., 2019, pp. 499-513.

S. Shao and W. Luk, “Customised pearlmutter propagation: A hardware

architecture for trust region policy optimisation,” in Proc. IEEE 27th Int.

Conf. Field Programmable Log. Appl., 2017, pp. 1-6.

S. Shao et al., “Towards hardware accelerated reinforcement learning

for application-specific robotic control,” in Proc. IEEE 29th Int. Conf.

Application-Specific Syst. Architectures Processors, 2018, pp. 1-8.

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]
[18]

[19]

[21]

[22]

[23]

1829

[24] J. Schulman et al.,

arXiv:1502.05477.

C. Guo et al., “Customisable control policy learning for robotics,” in Proc.

IEEE 30th Int. Conf. Application-Specific Syst. Architectures Processors,

2019, pp. 91-98.

Y. Meng et al., “Accelerating proximal policy optimization on CPU-FPGA

heterogeneous platforms,” in Proc. IEEE 28th Annu. Int. Symp. Field-

Programmable Custom Comput. Machines, 2020, pp. 19-27.

Y. Meng et al., “FPGA acceleration of deep reinforcement learning using

on-chip replay management,” in Proc. 19th ACM Int. Conf. Comput.

Front. New York, NY, USA: Association for Computing Machinery, 2022,

pp. 4048, doi: 10.1145/3528416.3530227.

“Large FPGA methodology guide,” 2012. [Online]. Available: https:

/Iwww.xilinx.com/support/documentation/sw_manuals/xilinx14_7/

ug872_largefpga.pdf

“Intel stratix 10 MX FPGAS,” [Online]. Available: https://www.intel.com/

content/www/us/en/products/programmable/sip/stratix- 10-mx.html

R. Nane et al., “A survey and evaluation of FPGA high-level synthesis

tools,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35,

pp. 1591-1604, Oct. 2016.

[31] J.de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations
of high-level synthesis codes for high-performance computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1014-1029, May 2021.

“Trust region policy optimization,” 2015,

[25]

[26]

[27]

(28]

[29]

[30]

[32] Intel, “Skylake specification,” 2018. [Online]. Available: https://www.7-
cpu.com/cpu/Skylake.html
[33] Intel, “GPU memory latency’s impact, and updated test,” 2021. [On-

line]. Available: https://chipsandcheese.com/2021/05/13/gpu-memory-
latencys-impact-and-updated-test/

Chi Zhang received the bachelor of engineering de-
gree from Southeast University, Nanjing, China, and
the master of science degree in electrical engineering
from the University of Southern California. He is
currently working toward the PhD degree in computer
science with the University of Southern California
under the supervision of professor Viktor Prasanna.
His primary research interests include parallel rein-
forcement learning.

Yuan Meng received the BS degree in electrical and
computer engineering from Rensselaer Polytechnic
Institute. She is currently working toward the PhD
degree in computer engineering with the University
of Southern California. She is recipient of Annenberg
Fellowship with Ming Hsieh Department of Electrical
and Computer Engineering. Her research interests
include parallel computing, hardware acceleration,
and machine learning.

Viktor K. Prasanna (Fellow, IEEE) received the BS
degree in electronics engineering from the Bangalore
University, the MS degree from the School of Au-
tomation, Indian Institute of Science, and the PhD
degree in computer science from the Pennsylvania
State University. He is Charles Lee Powell Chair
in engineering with the Ming Hsieh Department of
Electrical and Computer Engineering and professor
of computer science with the University of Southern
California. His research interests include parallel and
distributed systems, reconfigurable computing, and
applied ML. He serves as the director of the Center for Energy Informatics,
USC. He is the steering chair of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS) and the IEEE International Conference on High
Performance Computing (HiPC). He received 2009 Outstanding Engineering
Alumnus Award from the Pennsylvania State University, and the 2015 W.
Wallace McDowell Award from the IEEE Computer Society for his contributions
to reconfigurable computing.

Authorized licensed use limited to: University of Southern California. Downloaded on October 01,2023 at 18:28:38 UTC from IEEE Xplore. Restrictions apply.

