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Abstract—Detecting actions in videos have been widely applied
in on-device applications, such as cars, robots, etc. Practical
on-device videos are always untrimmed with both action and
background. It is desirable for a model to both recognize the
class of action and localize the temporal position where the action
happens. Such a task is called temporal action location (TAL),
which is always trained on the cloud where multiple untrimmed
videos are collected and labeled. It is desirable for a TAL model
to continuously and locally learn from new data, which can
directly improve the action detection precision while protect-
ing customers’ privacy. However, directly training a TAL model
on the device is nontrivial. To train a TAL model which can
precisely recognize and localize each action, tremendous video
samples with temporal annotations are required. However, anno-
tating videos frame by frame is exorbitantly time consuming and
expensive. Although weakly supervised temporal action localiza-
tion (W-TAL) has been proposed to learn from untrimmed videos
with only video-level labels, such an approach is also not suitable
for on-device learning scenarios. In practical on-device learning
applications, data are collected in streaming. For example, the
camera on the device keeps collecting video frames for hours
or days, and the actions of nearly all classes are included in
a single long video stream. Dividing such a long video stream
into multiple video segments requires lots of human effort, which
hinders the exploration of applying the TAL tasks to realistic on-
device learning applications. To enable W-TAL models to learn
from a long, untrimmed streaming video, we propose an efficient
video learning approach that can directly adapt to new environ-
ments. We first propose a self-adaptive video dividing approach
with a contrast score-based segment merging approach to con-
vert the video stream into multiple segments. Then, we explore
different sampling strategies on the TAL tasks to request as few
labels as possible. To the best of our knowledge, we are the first
attempt to directly learn from the on-device, long video stream.
Experimental results on the THUMOS’14 dataset show that the
performance of our approach is comparable to the current W-
TAL state-of-the-art (SOTA) work without any laborious manual
video splitting.

Index Terms—On-device learning, raw video stream, video
splitting free algorithm, video understanding task, weakly super-
vised temporal action localization (W-TAL).
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I. INTRODUCTION

ETECTING actions in videos have been widely applied
Din lots of on-device applications, such as autonomous
driving [1], medical care [2], intelligent surveillance [3], etc.
Practical on-device video is captured as a continuous stream
from cameras. The video is always untrimmed. Untrimmed
means the video has both multiple actions and backgrounds.
For on-device video detection, it is desirable for a model to
both recognize the class of action and localize the temporal
position where the action happens. For example, if a medical
care robot detects an elderly falling down, reporting the action
of falling down and bounding box the frames where the action
happens can help rescuers analyze the patient’s situation and
provide the most appropriate cure. Such a video detection task
is called temporal action location (TAL) and has attracted lots
of researchers’ attention [4], [5].

Although the TAL task is a practical on-device video detec-
tion task, such a task is always trained on the centralized cloud
where multiple untrimmed videos are collected and labeled.
However, when the device comes to a new environment, the
model needs to be updated for domain adaption. The process
of transmitting local video frames to the cloud, waiting for
the center to retrain the model, and receiving the new model
is inefficient and time consuming. Besides, on-device learning
can provide better privacy since users do not need to upload
data into the centralized cloud [6]. Therefore, it is desirable
for a TAL model to continuously and directly learn from local
data on the device. However, directly training a TAL model
on the device is nontrivial. To train a TAL model which can
precisely localize and recognize each action, tremendous data
are required with temporal annotations. Generating such anno-
tations requires humans to carefully watch the videos frame by
frame, which is exorbitantly time consuming. Besides, there is
no explicit boundary between actions and background which
makes it difficult to manually provide temporal annotations,
and providing such temporal annotations is prone to cause
errors [7]. Therefore, weakly supervised temporal action local-
ization (W-TAL) [8], [9], [10] has been proposed which can
learn from untrimmed videos with only video-level labels.
Although it can save lots of energy and cost, such an approach
is still not suitable for on-device scenarios because of the
following issues.

First, current W-TAL works [8], [9], [10] consider each
video as a learning sample with a video-level label, and
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each video only includes actions from limited classes. For
example, most videos contain actions only from one class in
THUMOS’ 14 [11] and ActivityNet [12] datasets which are
commonly used in TAL tasks. Only a few videos contain
actions from 2 or 3 classes. However, in practical on-device
applications, data are collected in streaming. The camera on
the device keeps collecting video frames in hours or days,
and the actions of nearly all classes are included in a single
long video. Separating the video into individual video segments
and providing video-level labels also requires lots of human
labeling costs. If a divided segment is too short, it cannot contain
complete action and background information which can lead
to low learning performance, and more video-level labels are
required under the same length of a stream. If the segment is
too long, it will contain actions from multiple classes which
increases the TAL learning difficulty. Besides, longer segments
mean fewer learning samples under the same length of the
streaming video, while the lack of samples may also lead to
inferior learning performance. Second, in order to provide a
video-level label for different video segments, the whole video
needs to be uploaded to the oracle of the cloud-level data center.
The whole video stream which lasts hours or days takes up tens
to hundreds of GB spaces. Transmitting such a huge amount
of data from local devices to the data center is inefficient.

To tackle the challenges and enable W-TAL learning from a
long on-device video stream without laborious manual video
splitting, we propose a self-adaptive video dividing approach
with a contrast score-based segment merging (CS-M) approach
that divides the long video stream into individual video seg-
ments during the training process. We also explore different
sampling strategies to request as few labels as possible.

Our main contributions are as follows.

1) We propose an efficient video learning approach that
can directly adapt to new environments from a single
on-device long video stream without laborious manual
video splitting. To the best of our knowledge, we are the
first attempt to explore TAL tasks in such a streaming
learning case rather than training the TAL model from
separate short untrimmed videos compared to state-of-
the-art (SOTA) works. The overview of our streaming
learning method will be introduced in Section III.

2) Based on our streaming learning workflow, we propose
a self-adaptive video dividing approach with a CS-M
approach which splits the continuous video stream into
individual video segments during the training process.
We first evenly divide the stream into segments when
the stream is collected and then apply the contrast score-
based approach to decide whether two adjacent segments
need to be merged or not to convey complete action and
background information. The approach is self-adaptive in
the training process, which will be explained in Section V.

3) We propose an interests-based sampling (IS) strategy
that selects the segments that contain more interesting
areas, i.e., the areas that are more possible to contain
actions. The discussion will be explained in Section V.

II. RELATED WORKS
A. Temporal Action Localization

In previous video learning works [13], [14], a video is
extracted into multiple frames with a certain frames per second
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(fps), and a given number of contiguous frames compose a
clip. For a trimmed clip of video that only contains a single
action, a deep neural network (DNN) model is developed to
recognize the action of the video. The TAL [4], [5] task has
been proposed to work on untrimmed videos and has attracted
lots of researchers’ attention.

Given an untrimmed video, TAL mainly solves two tasks:
1) when does the action occur, i.e., the start time and the end
time of the action and 2) what category does each action pro-
posal belong to [15]. Current SOTA works learn their TAL
models from a large number of untrimmed videos where each
video contains both actions and backgrounds. The video is
extracted into multiple frames with a given fps (e.g., 25 fps
is commonly used to extract a video into frames), and a
given number of contiguous frames compose a clip (e.g., 16
frames per clip, 64 frames per clip, etc.). In 2016, S-CNN [4]
proposed a multistage framework including a proposal network
to identify candidate segments in an untrimmed video that may
contain actions, a classification network learning one-versus-
all action classification model to serve as initialization for the
localization network, and a localization network fine-tuning
the learned classification network to localize each action
instance. AFSD [16] proposed an anchor-free TAL framework
generating only one proposal for each temporal location with-
out adjusting the predefined anchors. Although these methods
can precisely detect actions in untrimmed videos, their TAL
models need to be learned from full labeled videos with both
video-level labels and temporal annotations. However, gener-
ating such annotations requires humans to carefully watch the
videos frame by frame, which is exorbitantly time consuming
and prone to cause errors.

To reduce the human efforts in providing temporal annota-
tions, weakly supervised TAL has been proposed to learn from
untrimmed videos with only video-level labels. W-TALC [8]
proposed a framework with subnetworks: the two-stream-
based feature extractor network and a weakly supervised
module. The feature extractor used the I3D [17] network pre-
trained on the Kinetics dataset [17] as the backbones to extract
RGB and optical features. The weakly supervised module
took the frozen features as the input and got improved by
minimizing the multiple instance learning loss (MILL) and
the co-activity similarity loss (CASL). Contrastive learning
(CL) [18], [19] further advances W-TAL. CL learns representa-
tions from unsupervised data by minimizing noise contrastive
estimation (NCE) [20] loss between negative pairs and positive
pairs, i.e., minimizing the distance of features from associated
data and maximizing the distance of features from distinctive
data, By adopting CL, W-TAL works began to distinguish the
boundary of action and background without frame-level anno-
tations. For example, CoLA [9] is the first to introduce NCE to
W-TAL tasks. It proposed a Hard & Easy Snippet Mining strat-
egy to select clips of easy action (EA), easy background (EB),
hard action (HA), and hard background (HB) and proposed a
snippet contrast (SniCo) loss to enable the embedded features
of HA closer to that of EA and the embedded features of
HB closer to that of EB. Although the W-TAL works have
improved a lot without requesting temporal annotations, it is
still difficult to imply W-TAL in on-device applications. In on-
device learning scenarios, the camera keeps collecting video
frames for hours or days. Unlike previous works that a TAL
model is learned from separate videos with actions of limited
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categories, such a long video stream collected from the local
camera may contain actions of many categories. Separating
the video into individual video segments and providing video-
level labels also requires lots of human costs. In addition, in
order to provide video-level labels, all the videos need to be
first uploaded to the cloud data center to enable access from
the oracle, i.e., human annotators. The upload process takes
up lots of transmission time and storage space.

To reduce the cost and effort in annotation, several works
have been proposed to learn the TAL model from both labeled
and unlabeled data. For example, Ji et al. [21] proposed a
semi-supervised learning algorithm that outperformed the fully
supervised baseline with only 60% of the videos fully labeled.
Shi et al. [22] introduced a semi-supervised action detection
task with a mixture of fully labeled, weakly labeled, and
unlabeled data. Gong et al. [7] proposed a two-step “clus-
tering + localization” iterative procedure and became the first
attempt to explore the TAL task under an unsupervised set-
ting. However, this approach requires mapping each cluster
to the action class in the testing step. Besides, same with W-
TAL tasks, all of the above-mentioned works are learned from
separate untrimmed videos and fail to consider the realistic on-
device scenarios where the data is collected in a single long
stream video without laborious manual splitting.

B. Streaming Learning

Different from conventional training in the cloud data cen-
ter, it is desirable for local devices to continuously learn from
the newly generated streaming data. The tremendous input
images are generated frame by frame with high frequency,
and local devices do not have enough data storage space to
store all the images. A desirable way is to streamline the cap-
tured video and learn from the single pass of the streamline.
Therefore, streaming learning can not use the conventional
DNNs for two reasons: 1) conventional DNNs require large
storage space to store the entire dataset, and multiple epochs
of backpropagation and feedforward are performed on the
entire dataset and 2) non-iid (independent and identically dis-
tributed) data will cause catastrophic forgetting [23]. To solve
these problems, Hayes et al. [23] explored different memory
rehearsal approaches which sampled the incoming data and
mixed the new samples with buffered samples. However, this
work is based on supervised learning. If deployed in realistic
scenarios, supervised learning means acquiring labels for the
local devices from the cloud oracle. This will incur a long
latency in the transmission and usually cannot meet the real-
time requirement. To learn from the unlabeled data stream,
Wu et al. [24] applied CL for representation learning and
proposed a framework with contrast scoring to automatically
select the most representative data from the unlabeled input
stream. However, what they solve is to apply streaming learn-
ing for image classification tasks, i.e., non-iid problems, and
they fail to discuss how to apply streaming learning on TAL
tasks.

To the best of our knowledge, none of the TAL works have
considered learning from the streaming data. Different from
image classification where the whole DNN model is updated
after new data is coming, most TAL designs [7], [8], [9] have
frozen the encoder of the 3D-DNN and directly used the
extracted RGB features and optical flow features as inputs.
Therefore, it is feasible for local devices to store all the
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extracted features which have been collected for hours or days.
However, unlike the image classification task, the main chal-
lenge is not on how to deal with the non-iid problem, but how
to identify an individual learning sample. In image classifi-
cation, each frame is a learning example that can be simply
identified. For a long video stream, there is no explicit method-
ology on how to divide the video stream into separate video
segments that can benefit the training performance. Manually
dividing the video stream which lasts hours or days requires
laborious human efforts, and there is also no guarantee that
manual splitting can benefit the learning performance. Besides,
when data comes in a streaming fashion, only the extracted
features and important clips are collected. It is not desired
that dedicated experts from the cloud oracle keep observing
the input stream and split the stream into individual videos in
real time when the on-device system is operating. Therefore, a
new approach is required to directly learn from the on-device,
long video stream without laborious manual video splitting for
the TAL task.

C. Active Learning

Apart from dividing the video stream into individual video
segments, it is also challenging to sample the most repre-
sentative segments to request labels to release the labeling
labor and transmission requirement. Active learning (AL) [25]
is a method aiming to select the most useful samples from
the unlabeled dataset and hand it over to the oracle for
labeling to reduce the cost of labeling while still maintain-
ing performance. AL can be categorized into stream-based
sampling and pool-based sampling. The former makes an inde-
pendent judgment on whether the incoming sample in the data
stream needs to query the labels, while the latter chooses the
best query samples based on the evaluation and ranking of the
whole unlabeled pool [25]. Currently, the uncertainty-based
approach [25], which samples the most uncertain samples to
form a batch query set, is commonly used in AL applica-
tions. Information entropy [26] is a commonly used metric
to measure the prediction uncertainty of a sample. To con-
sider the data distribution of the samples, Exploration-P [27]
added a redundancy which is represented by the similarity
between the current sample and the selected sample set to
the entropy. However, unlike classification tasks which pro-
vide only one classification prediction for each sample, the
TAL tasks generate both classification predictions and action-
background predictions for each clip of a video segment.
Therefore, directly applying the AL strategies may not lead
to superior performance.

To ease the large-scale data dependence of current TAL
methods, Heilbron er al. [28] developed a learner to bootstrap
the active selection function from the existing data. Estimated
by a testing set, the selection function can be learned to pick
samples that improve the attention module of a TAL model
at the most. However, providing fully labeled annotations for
the selected sample and the testing set also costs lots of
human effort. Like other AL works, such an approach requires
requesting labels from the oracle after every training iteration
and it is impractical for the cloud oracle to provide labels to
the local devices in real time. Therefore, in realistic on-device
scenarios, it is desirable to develop a new sampling strategy
that selects the most representative video segments only once
at the beginning of the training process.
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Fig. 1. Our baseline method CoLA [9]. It learns from precollected video
files and cannot directly be applied to on-device learning from a video stream.

III. FRAMEWORK OVERVIEW

We first introduce a conventional W-TAL method as our
baseline in Section III-A. Since this baseline method is
designed for learning from precollected videos (organized as
separate video files) and cannot be directly applied to learn-
ing from a video stream, we then present a stream learning
workflow and discuss two challenges of learning from the
video stream in Section III-B, which will be addressed by
our methods in Sections IV and V, respectively.

A. Revisiting Video Learning

In this article, we adopt CoLA [9] as our baseline method.
CoLA utilizes CL to distinguish between action and back-
ground clips during the training process. We also use its TAL
model as our DNN backbone.

The CoLA framework is shown in Fig. 1. In TAL tasks,
a DNN model is learned from a set of untrimmed videos.
In CoLA [9], RGB frames and optical flow were extracted
from each video with 25 fps. The RGB frame stream and
optical flow stream of a video were divided uniformly into
nonoverlapping clips where each clip included 16 frames. The
encoder of a pretrained 3D-convolutional neural network (3D-
CNN), I3D, was used to extract RGB features and optical
flow features. The RGB and optical flow features of each clip
were concatenated, and a fixed number of T clips of features
were sampled as input features I7 P! due to the variation of
video length. The embedded features E7*P? were extracted
from I7*P! by fully connected (FC) layers. Then, a classifier
was applied to generate the temporal class activation sequence
(T-CAS) ACTISXC, where C was the number of action categories
of the dataset. The T-CAS was summed along the channel
dimension to obtain a class-agnostic aggregation actionness
Agcfl. For localization, by comparing with a threshold, the
action attention value for Agfg‘ of each clip was converted
into a binary value, and the binary value sequence AbTiil was
used to distinguish actions and background. For classifica-
tion, clips with top-k highest action attention values from
Aggfl were selected, and the mean of their classification results
served as video-level predictions. During the training phase,
the video-level labels were provided, and the action loss L,
was calculated by the cross-entropy function. A Hard & Easy
Snipped Mining strategy was explored to select embedded fea-
tures of EA, EB, HA, and HB, where EA and EB were from
clips with top-k highest and lowest action attention values,
respectively. HA and HB were from boundary-adjacent clips
that were hard to distinguish, but HA was located to be closer

to EA, while HB was located to be closer to EB. Since HA
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was closer to EA, HA was more likely to be an action and
should share similar embedded features with EA. Similarly,
the embedded features of HB were also supposed to be simi-
lar to that of EB. Based on such observation, the SniCo loss Lg
was computed in (1). In (1), E,_xna o+ xeA —~xeBL(X, X7, x7)
represented the NCE loss between HA, EA, and EB. The
NCE loss is a loss function used in CL, which can be com-
puted in (2). In (2), x and x* are extracted features that are
considered to be similar. For example, in CL-based image clas-
sification tasks [18], [19], the inputs generated from the same
image via different data augmentation should have similar fea-
tures extracted by the CNN encoder. Such features are defined
as positive pairs. Similarly, features extracted from different
images should be distinguished. Such features are defined as
negative pairs which are represented as x and x~. The tem-
perature T is a constant parameter that is selected as 0.07 in
CoLA. CoLA aimed at distinguishing boundary-adjacent clips
so that the embedded features of HA should be similar to the
embedded features of EA, and the embedded features of HB
should be similar to that of EB. Therefore, in (1), CoLA used
the mean of embedded features (i.e., the mean of ETXD2 op
the time dimension) of HA and the mean of embedded fea-
tures of EA as positive pairs. The mean of embedded features
of HA and all the EB embedded features were considered
as negative pairs. Similarly, E, _yup .+ xep - xEal(x, xT, x7)
represented the NCE loss between HB, EB, and EA, where the
mean of HB embedded features and the mean of EB embed-
ded features were considered as positive pairs, while the mean
of HB embedded features and EA embedded features were
considered as negative pairs

Ly = ExwaA,XJr,VxEA’X—NXEBl(X, xt, x_)
+ EXNXHB_X+NxEB’x—~XEAl(x, x+,x_) @))

I(x.x*,x7) = ~lo exp( - x7/7)
xxT,x7)=— )
s exp(xT - xt/7) + Zf:l exp(x” - x5 /7)
2

In the testing phase, the CoLA model first generated T-CAS
and aggregated top-k classification scores to get the video-
level prediction. Then, it selected candidate proposals (i.e.,
contiguous clips that may contain action) by picking up clips
with action attention values and classification scores higher
than a set of thresholds. Finally, nonmaximum suppression
(NMS) was applied to remove duplicated proposals.

B. Overview of On-Device Learning From Video Stream

Unlike CoLA [9] and other TAL works which are learned
from a set of manually separated video files, we explore learn-
ing from a long and raw video stream directly captured by
on-device cameras. The video stream contains all action and
background instances without laborious manual splitting.

The proposed streaming learning workflow is shown in
Fig. 2 and it has three steps. In the first step, the camera
keeps collecting streaming data which will be stored directly
on the local device. Considering our on-device camera col-
lects hours of a video stream which can be converted to RGB
frames and optical flows with 25 fps, and 16 frames compose
a clip. The single stream is divided into nonoverlapping seg-
ments uniformly with 7o clips per segment. For the clips of
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Fig. 2. Overview of our streaming learning workflow. We propose a self-
adaptive video dividing approach with a CS-M approach to split the video
stream as segments, each of which contains complete action and background
frames for better CL. We then explore how to select the most representative
video segments such that requesting their labels can benefit the learning most.

each segment 7, same as previous W-TAL works [8], [9], [10],
we use a frozen pretrained 13D 3D-CNN encoder to extract
features. We also adopt a pretrained TAL model with the same
backbone of CoLA to select the most representative clip s
for each segment, i.e., the clip with the top-1 highest action
attention value. The selected clips will later be transmitted to
the cloud oracle to request segment-level labels. It should be
noted that since the camera keeps collecting streaming data for
hours or days, it is inefficient to store all the raw video seg-
ments, extracted RGB frames, and optical flows on the device.
We use the widely used THUMOS’ 14 dataset to illustrate our
method. This dataset includes training videos with around 11 h
in total, which takes up over 15 GB of memory space to
store the raw video and 70 GB of memory space to store the
RGB frames and optical flow. Therefore, instead of storing raw
inputs of segment i, only the extracted features and selected
clips are stored in local memory. For the THUMOS’ 14 dataset,
the extracted RGB and optical flow features take up only less
than 2 GB of memory space in total, which is around 13%
of the original video and 3% of the input RGB frames and
optical flows. If T = 50, the total length of the representa-
tive clips is only 2% compared to the original video stream.
Therefore, it is feasible for the local device to store all the
extracted features and the most representative clips.

In the second step, we select segments that should be
labeled. Rather than sending the segment to the oracle, we
only transmit the most representative clips selected by the pre-
trained TAL model to the oracle to request segment-level labels
of these segments to the cloud oracle. We assume the oracle
with domain experts can provide the correct action class label
for every selected clip, and these clip labels serve as weak,
segment-level labels. We keep collecting the video during the
daytime, and we upload the clips to the oracle every night. The
third step begins after the oracle sends back all the labels. In
this step, we use the weakly labeled segments to update the
TAL model.

To effectively learn from the streaming video, there are two
challenges to consider. The first challenge is how to prepro-
cess the labeled segments and split them as effective training
samples. Since the video stream is divided into segments with
a predefined segment length during the video recording pro-
cedure, it is impossible to guarantee each segment contains

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

a single complete instance. As mentioned in Section I, the
divided segment should be neither too short nor too long. Since
To is predefined before the video stream features are collected,
it is impossible to set an appropriate original segment length
before the training start. To provide appropriate training sam-
ples that can benefit the training performance, we propose a
self-adaptive dividing approach with a contrast score-based
merging strategy to decide whether two continuous labeled
segments which share the same action class labels need to
merge or not so that the TAL model can learn from the new
segments with complete action and background information.
Such an approach will be discussed in detail in Section I'V.

The second challenge is how to select the video segments
for labeling such that we can label as few labels as possi-
ble while maintaining the model accuracy. For example, for
the THUMOS’ 14 dataset with around 11-h videos in total, if
To = 50, it will generate 1304 segments. Although we only
need to send the most represent short clips to the cloud oracle,
there are still 1304 clips that the oracle needs to deal with.
In fact, some segments play little role in improving learning
performance. Therefore, it is necessary to sample the most
important segments based on the labeling budget of the oracle.
AL learning is a method to deal with such problems. However,
in AL, the learner requests labels from the oracle after every
training iteration. It requires dedicated experts to label the seg-
ments from time to time as long as the system is operating the
learning process. However, in on-device learning applications,
it is impossible for the cloud oracle to generate labels for
the local device in real time. Therefore, a new data sampling
strategy is required which can select the most useful segments
to be labeled before the whole training process begins. We
will explore different sampling strategies on TAL tasks and
propose an IS strategy that selects the segments that contain
more interesting areas. The discussion will be illustrated in
detail in Section V.

IV. SELF-ADAPTIVE VIDEO DIVIDING APPROACH

In this section, we address the first challenge discussed in
Section III-B. As explained in Section I, dividing the seg-
ment too short or too long will degrade the performance of
the learned model. We propose techniques to split the video
stream into an appropriate length of segments that can benefit
the training performance most. In this section, we assume all
the segment labels are available, and the second challenge of
labeling will be addressed in Section V.

In our proposed stream learning workflow, the single and
long video stream is divided into nonoverlapping segments
uniformly with 7o clips per segment. Assume the cloud oracle
can provide labels for all the representative clips of the seg-
ments. The label for one representative clip is considered as
the weak label of the whole segment. Therefore, during the
training process, we can merge adjacent segments sharing the
same weak label in a self-adaptive manner. Inspired by [24]
which utilized the contrast score to select representative train-
ing samples from streaming images during CL, we propose
a CS-M approach. However, unlike [24] which exploited the
contrast score to measure whether the current image has been
well learned by the model, our approach uses the contrast
score to judge whether two contiguous video segments need
to be merged or not so that they can provide complete action
and background information for the CL-based TAL model.
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Fig. 3. CS-M approach.

Therefore, the selection of contrast pairs should be based on
the TAL framework. The CS-M is illustrated in Fig. 3.

As shown in Fig. 3, the video stream is divided into
segments where each segment contains 7o contiguous nonover-
lapping clips together. In this section, we assume all the
representative clips of the segments can be labeled in the
second step of the stream learning workflow, i.e., all the seg-
ments can acquire segment-level labels. Starting from the first
segment, for two adjacent segments sharing the same segment-
level label, we select clips {ca;}j=1,.. x with the top-k highest
action attention value (i.e., the clips that are predicted as EAs
by the current TAL model) and {cb;};=1,..x with the top-k
lowest action attention value (i.e., the clips that are predicted
as EB by the current TAL model). Following previous weakly
labeled TAL approaches [8], [9], k = max({1, |T?/s|}, where
T' is the length of the ith segment and s is a hyperparameter.
T' may not equal to 7o for the previous segment since it may
be merged with the one before it, while the current segment
which has not been merged has the original length 7o. Then,
we decide whether to merge the previous segment and the cur-
rent segment together by comparing the mean of the contrast
score of the two segments before merging and the score of the
segment after merging

contrast score = sim[mean{ecaj }j_1 ©

3)

The contrast score is shown in (3), where eca; and ecb; are
embedded features of ca; and cb; extracted from the current
TAL model, respectively. The sim{a, b} operation calculates
the similarity of the two vectors a and b by the dot product
operation of the normalized vectors. In CoLA, the EA and EB
are set as two anchors. By enabling HA to be closer to EA and
HB to be closer to EB, the actions and backgrounds can be
distinguished explicitly. Therefore, we use the contrast score to
measure the similarity of EA and EB. If the score is high, i.e.,
EA and EB are more similar, it means that the segment does
not have explicit EA and EB anchors, thus the segment may
not contain complete action and background information to
improve the TAL model. If the contrast score is low, it means
that the segment can provide explicit EA and EB anchors for
the model TAL to learn. Therefore, if the mean of the con-
trastive scores of the previous segment and current segment
is higher than that of the merged segment, we merge the two
segments. If the value of the merged segment is higher, it
means the segments before merging already include explicit
EA and EB, thus they have complete action and background
information and do not need to be merged. After we decide
whether the previous segment needs to be merged with the
current one, we will move to the next segment. This merg-
ing operation happens before each training epoch. When the
model improves during the training process, it can make more
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Fig. 4. IS. Areas of interest are sampled such that labeling them will benefit
the model learning most.

precise predictions of EA and EB, so our merging approach
is self-adaptive during the learning process.

V. STUDIES OF DIFFERENT SAMPLING STRATEGIES

In Section IV, we assume the cloud oracle can provide labels
for all segments. However, assuming we set 7o as 50, there
are still 1304 segments that need to be labeled. Therefore, it
is necessary to sample the most important segments based on
the labeling budget of the oracle. Previous AL works [27],
[28] requested labels during every training iteration. However,
such an AL process requires dedicated experts from the cloud
center to label the segments from time to time as long as the
system is operating the training process, so it is infeasible
for the cloud oracle to provide labels in real time. Therefore,
we need to find an efficient sampling strategy to select the
most useful segments to be labeled before the whole training
process begins.

In on-device scenarios, the video stream always contains
very long background periods. Some divided segments may
contain only a few action clips. Therefore, we propose an IS
strategy that selects segments that have more interesting areas
(i.e., the areas that are more likely to contain action). The
sampling strategy is shown in Fig. 4.

For segment i, we use the pretrained model to find action
proposals using the same detection process of the CoLA base-
line. The only difference is that when applying NMS, we set
the intersection over the union (IoU) threshold to be zero so
that the selected proposals are nonoverlapping. The selected
proposals are represented as areal. It is noted that the adjacent
segments are more likely to have the same action instances.
Therefore, we generate another prediction by merging segment
i with segment i — 1 and segment i 4+ 1. We utilize the same
way to predict nonoverlapping proposals of the merged seg-
ment and the predicted nonoverlapping proposals in segment
i are represented as area2. The intersect proposals of areal
and area? are represented as inferests which means that these
areas are more likely to have actions since they are predicted
as action proposals from two testing procedures. The selected
metric is formulated in (4). Then, we select the segments with
the top-n X ¢ score, where c is the number of action categories,
and n x ¢ is the number of segments we select to request labels

length of interests

“)

score; = -
length of segment i

It should be noted that the sampled segments may not be
consecutive to each other. Therefore, in this step, we also keep
the indexes of the sampled segments in the original stream.
Then, in the merging process in Section IV, we only consider
whether to merge two consecutive segments if they share the
same segment-level labels.
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VI. EXPERIMENTS

A. Experimental Setup

Dataset and Baseline: We use the THUMOS’14 dataset
which includes untrimmed videos with 20 categories [11]. We
use the W-TAL work CoLA [9] as our baseline and use the
same TAL model as the backbone which includes two 1-D
convolution layers as the classifier. Same with the baseline,
we use the 200 videos in the validation set for training and
the 210 videos in the testing set for evaluation. Unlike the W-
TAL baseline which trains the model from separate untrimmed
videos, we combine the 200 videos together with the fol-
lowing orders to form different single, long video streams:
1) the videos are combined randomly with two different ran-
dom seeds; 2) the videos are combined randomly and at least
two consecutive videos in the input stream are from the same
class; and 3) the videos are combined in the original order of
the dataset (i.e., the videos from the same class are consecutive
in the input stream). The different combination orders repre-
sent different temporal correlations of the input stream. The
more videos from the same action category are consecutive
means the temporal correlation of the stream is stronger [24].
We use the combined stream to reflect the behavior of a video
stream collected in a real-life environment because they share
the following features. First, the combined stream lasts for sev-
eral hours, and the actions of nearly all classes are included in
this stream. Second, background clips are between two adja-
cent action instances. Third, two adjacent action instances are
likely to be from both the same action categories and the differ-
ent categories based on the temporal correlations of the input
stream.

Pretraining and Feature Extraction: Same with our baseline,
we use the I3D network pretrained on the Kinetics dataset as
our encoder [29]. RGB frames and optical flows are extracted
from the raw video, and the video stream is divided into 16-
frame nonoverlapping clips. For each clip, the RGB features
and optical flow features which both have 1024 channels are
concatenated together. To select the most representative clips
of each segment and sample the most representative segments
to request labels, we pretrain the classifier of the TAL model
on the UCF-101 dataset [30]. It has 9537 trimmed videos from
101 categories and 1966 of them share the same action cat-
egories as that in our target THUMOS’ 14 dataset. Therefore,
we use the 1966 trimmed videos to pretrain the classifier of the
TAL model. To make a fair comparison with our baseline, we
use the same extracted concatenated features available from
the codes provided by CoL A [31] for the target THUMOS’ 14
dataset.

Default Training Setting: To make a fair comparison with
the W-TAL baseline, we use the same hyperparameters accord-
ing to the codes of CoLA [31], such that the number of EA or
EB is T//5, and the number of HA or HB is 7/20. In CoLA, T
is set to 750 for the individual untrimmed videos. In our work,
we set T to the median length of all labeled merged segments.
The batch size is 16, and the learning rate is 0.0001, which
are same as the baseline. We train the TAL model for 500
epochs.

Evaluation Protocols: To make a fair comparison, we use
the same testing code and thresholds in the baseline [31] to
detect action proposals on the testing set. Then, we follow
the standard evaluation protocol by reporting mean average
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precision (mAP) values when the IoU thresholds are set to
[0.1:0.7:0.1].

B. Experimental Results of Contrast Score-Based Segment
Merging Approach

In this section, we validate the efficiency of our CS-M
approach in our self-adaptive video dividing approach. When
the video stream is coming, we divide them into original
segments evenly with the length of 7o. We divide the total
number of clips of the whole stream by 7o to calculate the
number of original segments (NoOS). In our experiments, 7o
is set to 25, 50, 100, and 150, respectively. We select the most
representative clip for each segment to request a segment-level
weak label. In our experiment, we consider the label of the
action segment that is closest to the selected clip as the label
of the clip. The original videos of the dataset are combined
into a long video stream in four different orders: the videos are
combined randomly with seed = 0, the videos are combined
randomly with seed = 10, the videos are combined randomly
and at least two consecutive videos in the input stream are
from the same class, and all the videos from the same class
are consecutive in the input stream. In each order, we train
the TAL model both transferred from the model pretrained
on the trimmed UCF-101 dataset and trained from scratch.
We calculate the average testing mAP when the IoU threshold
ranges from 0.1 to 0.7 and then calculate the mean of the
average testing mAP scores under the four different streaming
video orders.

Baselines: We compare CS-M with several video merging
strategies, including without merging (WM), random merging
(RM), and merging all (MA). The WM strategy means that we
use the original segments that are uniformly divided from the
whole stream without any preprocessing as the training sam-
ples. The RM strategy means that for the original segments
that share the same label, we randomly divide these segments
into randomly set groups where the segments in each group
are continuous. Then, we merge the segments that are from
the same group together. The MA strategy means the adjacent
segments are merged as long as they share the same segment-
level label. For the CS-M strategy, we test merging for one
iteration (1 iter), two iterations (2 iters), and three iterations (3
iters) in each epoch, respectively. We also try to split the seg-
ment after a contrast score-based merging iteration (CS-MS).
We first determine the split point of a segment by finding two
consecutive clips having the lowest cosine similarity. Then, we
use the contrast score to decide whether the segment needs
to be split or not. We also compare our results with that of
CoLA [9]. It represents dividing the whole stream into sep-
arate video segments with exhaustive effort and training the
model with the well-divided videos under the W-TAL setting.

Results: The comparison of different merging strategies
when training the TAL model from the model pretrained on the
trimmed UCF-101 dataset is shown in Table I, while the result
of the merging strategies when training the TAL model from
scratch is shown in Table II. As illustrated in Tables I and II,
conducting three iterations of contrast score-based merging,
i.e., CS-M (3 iters), in a training epoch achieves superior test-
ing performance in general when 7o is 25, while CS-M (2
iters) works well when 7o = 50 when training from the pre-
trained model. In the rest situations, CS-M (1 iter) outperforms
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TABLE I
COMPARISON OF THE MEAN OF AVERAGE TESTING MAP (%) SCORES OF
THE MERGING STRATEGIES UNDER FOUR DIFFERENT STREAMING VIDEO
ORDERS WHEN TRAINING FROM THE PRETRAINED MODEL

CS-M | CS-M | CS-M
To|NoOS | WM | RM | MA (1 iter) | (2 iters) | (3 iters) CS-MS
25 | 2608 |27.43|28.99 |36.08| 35.19 | 35.86 36.33 | 33.78
50 | 1304 [31.42|31.90|35.96| 37.55 | 37.62 36.84 | 35.63
100 | 652 |34.89|34.26|34.97| 36.73 | 35.40 35.17 | 35.69
150 | 435 [35.9936.03[34.79| 36.32 | 35.48 35.83 | 35.04
TABLE 11

COMPARISON OF THE MEAN OF AVERAGE TESTING MAP (%) SCORES OF
THE MERGING STRATEGIES UNDER FOUR DIFFERENT STREAMING
VIDEO ORDERS WHEN TRAINING FROM SCRATCH

CSM | CS-M | CSM

To |NoOS | WM | RM | MA | (150 | (2 ters) | (3 iters) | ©SMS

75 [ 2608 | 27.87 [ 28.00 | 3580 | 3528 | 3624 | 37.25 | 3455

50 [ 1304 [31.90 [ 32.56 | 36.03 | 37.51 | 3624 | 36.74 | 36.16

T00 | 652 | 34.82 3526 [34.75 | 3671 | 3597 | 3587 | 35.23

150 435 [35.74[35.04 [34.73 | 3625 | 3556 | 34.96 | 35.85
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Fig. 5. Comparison of different merging strategies in Situation 1) (seed = 0).
(a) Training the TAL model from the model pretrained on the trimmed dataset.
(b) Training the TAL model from scratch.

other strategies. When To = 50, the CS-M (1 iter) strategy
achieves the highest testing performance with 37.55% mAP
when trained from the pretrained model and 37.51% mAP
when trained from scratch.

To better understand the performance of the four merging
strategies, we discuss the learning results under the above-
mentioned situations in detail. The results are as follows.

Situation 1): The videos are combined randomly.

The experimental results of training the TAL model from
the video stream when the videos are combined randomly
(with the random seed as O and 10) to form the stream are
shown in Figs. 5 and 6, respectively. We compare the aver-
age testing mAP when the IoU threshold ranges from 0.1
to 0.7 of the proposed contrast score-based merging strat-
egy with the results from the WM, RM, and MA strategies.
The upper bound performance (the black solid line) is 40.9%
reported from CoLA [9] when the model is trained from sepa-
rately untrimmed videos under the W-TAL setting. The lower
bound (the black dashed line) is the average testing mAP
of the model pretrained on the UCF-101 trimmed videos,
which is 19.78%. Figs. 5(a) and 6(a) show the results when
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Fig. 6. Comparison of different merging strategies in Situation 1) (seed = 10).
(a) Training the TAL model from the model pretrained on the trimmed dataset.
(b) Training the TAL model from scratch.

the TAL model is transferred from the pretrained model.
The proposed CS-M strategy with different merging iterations
outperforms the WM and RM strategies. It shows that the orig-
inally divided segments cannot convey complete action and
background information for the TAL model to learn, so it is
necessary to merge adjacent segments. Compared with RM,
the proposed CS-M approach can judge whether the current
segment already contains complete information and whether
it needs further merging or not. The outcomes of CS-M (1
iter), CS-M (2 iters), and CS-M (3 iters) are similar but CS-M
(3 iters) achieves a bit higher mAP when 7o = 25. It shows
that improving the merging iterations can improve the learn-
ing performance when the original segment is short, but the
overall difference is small. For CS-M (1 iter), the best aver-
age testing mAPs are 37.58% and 38.28% when To = 50.
The performance of CS-MS lies between CS-M and WM,
which means that such a splitting strategy cannot improve the
learning performance.

The MA strategy is a bit better than the CS-M strategy
with the best average testing mAP as 39.39% when To = 50
and 38.65% when To = 25. It is because when the original
videos are randomly shuffled and combined into the video
stream, it is more likely that the consecutive segments that
share the same label are all generated from one video file
of the original dataset. Therefore, MA is pretty close to the
original W-TAL situation. However, the temporal correlation
of the input stream is unknown during the training process, so
we also consider the situations when the original videos are
combined with the stream if consecutive videos are from the
same class.

Figs. 5(b) and 6(b) show the results when the TAL model
is trained from scratch. The performance is similar to that of
training from the pretrained model. The CS-M (1 iter) strategy
with the best average testing mAP reaches 37.53% and 38.41%
when To = 50.
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Fig. 7. Comparison of different merging strategies in Situation 2) (seed = 0).
(a) Training the TAL model from the model pretrained on the trimmed dataset.
(b) Training the TAL model from scratch.

Situation 2): The videos are combined randomly and at least
two consecutive videos in the input stream are from the same
class.

This situation happens when continuous action instances
are correlated to each other. As illustrated in Fig. 7, when
the original videos are randomly shuffled to form an input
stream and at least two consecutive videos are from the same
class, CS-M outperforms other merging strategies. The out-
comes of CS-M (1 iter), CS-M (2 iters), and CS-M (3 iters)
are close to each other in general. The best average test-
ing mAP of CS-M (1 iter) reaches 37.04% (To = 50) and
37.63% (To = 50) when the TAL model is transferred from
the pretrained model and is directly trained from scratch,
respectively.

Compared to Situation 1), the performance of MA decreases
a bit, because the merged segments are too long that contain
action and background information from multiple instances
which are hard to learn. Besides, if the length of merged seg-
ments elongates, there will be fewer learning samples in the
same hours of the video stream.

Situation 3): All videos from the same class are consecutive
in the input stream.

Finally, we combine the videos into a stream using the orig-
inal order of the dataset so that the videos from the same class
are consecutive in the input stream. Such a situation with a
strong temporal correlation is also very common in on-device
learning scenarios when the local devices keep receiving a
series of action instances from one category in a fixed scene
and then enter a new scene receiving action instances from
another category.

As illustrated in Fig. 8, the outcomes of CS-M (2 iters) and
CS-M (3 iters) lie between that of CS-M (1 iter) and MA. In
general, merging with fewer iterations per epoch works well
when 7o is larger while merging with more iterations per epoch
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Fig. 8. Comparison of different merging strategies in Situation 3).
(a) Training the TAL model from the model pretrained on the trimmed dataset.
(b) Training the TAL model from scratch.

average mAP

2256

works well when 7o is small. For CS-M (1 iter), the best
average testing mAP of the CS-M strategy reaches 37.28%
(To = 50) and 37.47% (To = 100) when the TAL model is
transferred from the pretrained model and is directly trained
from scratch, respectively.

The average testing mAP of MA is around 30% when learn-
ing from the pretrained model, and below 30% when learning
from scratch. The average testing mAP decreases by more than
6% compared to that in Situations 1) and 2). Therefore, the
TAL model cannot learn from the merged segments under the
current situation. It is because the merged segments are too
long for the model to improve, while the number of samples is
too small. For example, when 7o = 50, the original segments
are merged into only 23 samples, while the average length of
the segments is 2834. Therefore, the MA strategy can only
work when the temporal correlation of action instances is not
strong.

However, the temporal correlation is unknown during the
training phase and 7o is predefined before the video stream is
collected, so it is desirable that the proposed approach can
provide promising results under different situations with a
fixed 7o. Table IIl shows the testing mAP of the proposed
CS-M (1 iter) strategy learning from the input streams under
the above-mentioned situations with 7o = 50. The values
inside the parentheses are the testing results of the TAL
model trained from scratch, while the values outside the
parentheses are the results of the model trained from the pre-
trained model. The baseline, CoLA [9] was trained under
the W-TAL setting, where the TAL model is learned from
200 separate untrimmed videos with video-level labels. As
shown in Table III, the performance of our approach under
the streaming learning setting is comparable with the W-
TAL baseline. The average testing mAP decrease ranges
from 4.42 to 2.49.
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TABLE III

TESTING MAP OF THE CONTRAST SCORE-BASED MERGING STRATEGY WHEN 7o = 50

3919

mAP@IoU (%)

Situation 01 02 03 04 05 06 07 AVG
(1) seed=0 61.86 (62.35) | 55.08 (55.33) | 47.07 (46.57) | 38.86 (38.64) | 29.81 (29.91) 19.60 (19.71) 10.74 (10.21) | 37.58 (37.53)
(1) seed=10 | 62.23 (62.41) | 56.03 (55.64) | 47.73 (47.78) | 39.94 (40.17) | 30.82 (30.88) | 20.75 (21.04) | 10.48 (10.97) | 38.28 (38.41)
2) 60.21 (61.30) | 53.99 (55.25) | 46.28 (47.11) | 38.68 (38.73) | 29.90 (30.21) | 19.71 (19.70) | 10.54 (11.11) | 37.04 (37.63)
3) 60.89 (60.21) | 54.89 (53.93) | 47.12 (46.20) | 38.82 (37.64) | 29.24 (28.46) | 19.99 (19.19) 10.02 (9.76) 37.28 (36.48)

W-TAL [9] 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9

C. Experimental Results of Different Merging and Sampling ISEW T Rswwn _f;s(‘;;'h‘,i’ - k;:fé\_lh)b

IS (WM) RS (MA) IS (WM) RS (MA)
Strategies 40%—15(\11\) sor 1S

In Section VI-B, we assume the cloud oracle can provide
labels for all original segments. However, for example, when
To = 50, there are 1304 clips requiring labels. If the oracle
cannot provide all labels for the segments, it is desirable to
sample the most representative segments for labeling. Unlike
AL which requests labels after one training iteration or epoch,
it is infeasible for the oracle to provide labels to the device in
real time. Therefore, in our experiments, the original segments
are sampled after the input stream is recorded and all labels
of the clips of selected segments are given at the beginning of
the training process.

The labeling budget ranges from 1c to 30c, while c is the
number of action categories. We consider the three situations
the same as that in Section VI-B

entropy; = mean{—(Aij X log(A,;,') + (1 - A,j/)
x log(1 — Ay) }j:l ,,,,, To* )

Baselines: We compare the proposed IS strategy with ran-
dom sampling (RS) and uncertainty sampling (US). RS is the
most simple sampling strategy that selects a given number of
segments randomly from the unlabeled original segments. In
this section, we randomly choose the original segment indexes
with seed = 0, seed = 10, and seed = 100. Then, we train the
TAL model with three different selected labeled segments and
calculate the mean of the average mAP in each experiment.
All the selected segments are labeled at the beginning of the
training process. US selects the most uncertain samples based
on the current model. In this work, we use the commonly
used information entropy [27] to measure the uncertainty. In
segment i, we use the pretrained model to predict the action
attention value A;; of each clip j, the entropy of the whole seg-
ment is illustrated in (5). When the entropy is higher, it means
that the current model is more uncertain to judge whether
the clips of the segments are actions or background, so the
segment should be selected to learn.

In this section, we test different combinations of merg-
ing and strategies. From Section VI-B, we find that the
performance of WM and RM is quite similar. For CS-M, the
splitting approach cannot improve the learning mAPs, while
increasing the merging iterations in each epoch cannot out-
perform CS-M (1 iter) in general. Therefore, we test WM,
RM, and CS-M (1 iter) with different sampling strategies. The
results of RS with CS-M, US with CS-M, IS with CS-M, RS
with WM, IS with WM, RS with MA, and IS with MA are
shown in Figs. 9-12.

Results: As seen in Fig. 9(a), for the proposed CS-M, in
Situation 1) when the random seed = 0, the proposed IS
approach outperforms RS and US when the number of labeled
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Fig. 9. Comparison of different sampling strategies in Situation 1) (seed = 0).
(a) Training from the pretrained model. (b) Training from scratch.
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Fig. 10. Comparison of different sampling strategies in Situation 1)

(seed = 10). (a) Training from the pretrained model. (b) Training from scratch.

segments is greater than 5c¢. The average testing mAP exceeds
36% when sampling 9¢ segments, while the average testing
mAPs of RS and US are around 32%. The trend of training
from scratch is similar to that of learning from the pretrained
TAL model. As seen in Fig. 10, the IS approach outperforms
RS and US when the number of labeled segments is greater
than 15c if the random seed is 10. As seen in Fig. 11, IS out-
performs RS and US when the labeling budget is greater than
5c in Situation 2). In Situation 3), the testing mAPs of the three
sampling approaches are similar, while the performance of the
IS approach is slightly higher in general than other approaches
when the number of labeled segments is greater than 20c. In
general, compared to RS and US, the proposed IS approach
can sample more representative segments to improve learning
performance.

When applying the same sampling strategy, CS-M, MA, and
WM achieve similar performance. For RS, the trends of CS-
M and MA are close to each other, while the performance of
WM is a little bit lower.
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Fig. 12. Comparison of different sampling strategies in Situation 3).

(a) Training from the pretrained model. (b) Training from scratch.

D. Implementation Results on Local Devices

In this section, to demonstrate the feasibility of the proposed
stream learning approach, we analyze the communication and
computation time of the proposed W-TAL stream learning on
the local device. We first measure the computation time per
epoch of the training process of the proposed CS-M (1 iter)
approach with all segments labeled under the four combina-
tion orders mentioned in Section VI-A. The training process is
implemented on a GTX 1050 Ti GPU node card embedded in
a desktop and on a Jetson TX2 embedded GPU, respectively.
Then, we measure the memory space and time duration of
both the whole video dataset and the selected representative
video clips under these combination orders. The communi-
cation time can be estimated by dividing the memory space
size by the transmission speed of the device. We use Gigabit
Ethernet for the 1050 Ti and Wi-Fi for the TX2 to transmit
the video clips to the oracle. We have tested that the upload
speed of the Ethernet is around 643 Mb/s and the upload speed
of Wi-Fi is around 4.02 Mb/s. The performance is shown in
Table 1V.

Since the encoder is frozen, and the TAL model is only
learned from the extracted features which take up only
508 MB. Therefore, the computation time of training an epoch
is 16.24 s on the 1050 Ti and 31.27 s on the TX2 for the CoLA
baseline, and it only requires around 2 h on the 1050 Ti and
around 4 h on the TX2 to complete the whole training process.
For streaming learning, since we conduct merging operations
in each epoch, the whole computation time is larger than that
of the baseline which only involves the training process. When
the temporal correlation increases, more continuous segments
share the same action labels, thus increasing the frequency of
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TABLE IV
IMPLEMENTATION PERFORMANCE ON THE LOCAL DEVICE

(1) seed=0 | (1) seed=10 ?2) 3) CoLA [9]
Computation
time on 1050 Ti 43.98 46.77 51.11 61.58 16.24
(s/epoch)
Computation
time on TX2 134.92 137.61 161.07 209.04 31.27
(s/epoch)
Video size 51.4 MB 51.3 MB |51.5MB |51.3 MB| 153 GB
Time duration 886.7s 886.7s 886.7s 886.7s 11.6h

judging whether two segments need to merge. Therefore, the
computation time of Situation 2) is longer than that of 1), and
the computation time of Situation 3) is the longest. The whole
training process costs 6—9 h on the 1050 Ti and 18-30 h on the
TX2, which is feasible for learning on the device. As for data
communication, the selected representative video clips only
take up around 51 MB of space, while the whole video stream
costs 15.3 GB. The Gigabit Ethernet can transmit the whole
stream in 15.3 GB/643 Mb/s = 3.2 min, while transmitting
only the selected clips costs only 51.4 MB/643 Mb/s = 0.6
s. For the Wi-Fi module, transmitting the whole stream costs
15.3 GB/4.02 Mb/s = 8.7 h, while transmitting only the
selected clips costs only 51.4 MB/4.02 Mb/s = 102.3 s.
The main difference is in the labeling cost. For the baseline,
it requires human effort to divide an 11.6-h video into suit-
able segments, which is time consuming and expensive. In our
workflow, the total time duration of all the selected video clips
is only 886.7 s, which makes the oracle feasible and efficient
to provide labels.

VII. CONCLUSION

This article is the first attempt to directly learn from the
on-device, long video stream without laborious manual video
splitting for the W-TAL task. We proposed a self-adaptive
video dividing approach with a CS-M approach to convert the
video stream into multiple segments, and the streaming learn-
ing performance is comparable with the W-TAL baseline. To
request fewer labels if the cloud oracle cannot provide labels
for all original segments, we explore different sampling strate-
gies to sample the most representative segments to learn. In
general, the proposed IS approach achieves higher learning
performance than the RS and US approaches when the number
of labeled segments is greater than 20c.
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