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Abstract—Unmanned aerial vehicles (UAVs) are playing a
critical role in provisioning instant connectivity and computa-
tional needs of Internet of Things devices (IoTDs), especially
in crisis and disaster management. In this work, we focus on
optimizing trajectories of UAVs along which IoTDs are served
with communication and computing resources in multiple time
slots. The quality of experience (QoE) of an IoTD depends on
its latency performance; we thus aim to maximize the average
aggregate QoE of all IoTDs over all time slots. However, this is a
non-convex, nonlinear and mixed discrete optimization problem,
which is difficult to solve and obtain the optimal solution. We
thus propose two deep reinforcement learning algorithms to solve
this problem by considering UAV path planning, user assignment,
bandwidth and computing resource assignment. We compare the
performance of our proposed algorithms through simulations
with three baseline cases: 1) with fixed UAV locations, 2) without
UAVs, and 3) the fixed UAV trajectories. We demonstrate that
the deep reinforcement learning algorithms perform better than
all baseline cases.

Index Terms—Machine learning, unmanned aerial vehicle
(UAV), edge computing, computation offloading, path planning,
joint optimization.

I. INTRODUCTION

Advances in Internet of Things (loT) are empowering many
emerging applications such as autonomous driving vehicles,
virtual and augmented reality, face recognition, video process-
ing, and online gaming, which all require low latency and
perhaps large computing resources [1], [2]. Since many IoT
devices (IoTDs) have limited power, computing and storage
resources, mobile edge computing (MEC) has been proposed
to alleviate the mismatch of the computing resource and reduce
the latency by deploying computing and storage facilities at
the cellular edge to serve IoTDs [3], [4]. While MEC may
reduce the long round-trip communication delay, it presents
challenges to network operations in terms of the computing
resource assignment and the inherent small scale of computing
facility as compared to the cloud [4].

Unmanned aerial vehicles (UAVs) with their high agility
and mobility are becoming increasingly important in providing
communications and edge-computing facilities on board to
serve 1oTDs, especially for the rapid deployment and disaster
service recovery. UAVs have been widely studied in wireless
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networks owing to their agility, high mobility and flexible
deployment features [5]. Moreover, the performance and the
coverage area of the network can be improved and enlarged
by multi-UAVs cooperation [6]. Traditional MEC cannot han-
dle scenarios in which the network resources are sparsely
distributed or the network workload fluctuates greatly while
UAV-aided MEC can tackle these challenges due to the unique
characteristics of UAVs [7], [8].

Many works about MEC/UAV-aided MEC have been stud-
ied. A UAV with computing facility was proposed to pro-
vide service to users in the coverage of a damaged base
station with the objective of optimizing the total weighted
cost of the energy consumption and the latency of users
in [9]. References [10]-[12] studied UAV-aided MEC; the
objectives are to minimize the processing delay of users,
optimize the energy consumption of a UAV and minimize the
average latency of users, respectively. Yao and Ansari [13]
minimized the average task executing time of users in a
fog IoT network. Peng and Sheng [14] proposed a multi-
agent deep reinforcement learning algorithm to solve the joint
spectrum resource, computing resource, and caching resource
management problem in a UAV-assisted hotspot. Zhang et
al. [15] studied how to extend the service time of a UAV
while the service time may be longer than its maximum flight
duration, and they proposed an algorithm with two-UAV sub-
stitution and another joint trajectory optimization and power
control algorithm to overcome this challenge. Zhao et al. [16]
designed a distributed MEC framework and studied user task
offloading with the target to optimize the throughput and the
service level of the network. Chen et al. [5] studied the joint
base station association and UAV trajectory design problem
to optimize the completion time in providing communication
service to users, and proposed a deep reinforcement learning
algorithm to obtain the optimal trajectory. Hu er al. [17]
studied the trajectory problem of one UAV in a hotspot to
minimize the maximum delay of all the users. Yang et al. [18]
investigated the computing offloading problem in a multi-UAV-
assisted MEC system for IoT devices; the target is to optimize
the deployment of UAVs and task scheduling for UAVs; the
sub-optimal user association is achieved by converting the
studied problem into the generalized assignment problem and
a deep reinforcement learning is also proposed to increase the
task execution efficiency.

Although numerous works have been reported in UAV-aided
edge computing in the literature, there are limited works that
studied edge computing in a UAV-aided hierarchical network,
where each user can tap on the computing resource from the
UAV or the base station (BS) in each time slot and UAVs



can also work as relay nodes between users and the BS.
In this work, we propose a UAV-aided hierarchical network
where each edge node (UAV/BS) is equipped with both
communication and computing facilities, each UAV acts as
an edge node as well as a relay node, and each user has a
task to be served by an edge node directly or by the BS via
a UAV. We consider multiple time slots; a UAV may move to
a different location in different time slots but constrained by
its maximum reachable distance. Here, we study the uplink
communications and each user needs to transmit its data to an
edge node and obtain the computing service from this edge
node in each time slot.

We then formulate the joint Resource Allocation and UAV
Trajectory planning for Edge computing (RATE) problem in
the proposed UAV-aided hierarchical network to maximize the
average total quality-of-experience (QoF) of all users over all
time slots. However, unlike the case of a single time slot,
the case of multiple time slots becomes extremely difficult to
analyze due to the dynamic nature of the problem.

It is very challenging to solve the RATE problem because
1) the position of each UAV needs to be determined in every
time slot, and this location is bounded by the position of
the neighboring time slot and the flying speed of a UAV; 2)
an edge node is required to serve an IoTD and one IoTD
can only be served by one edge node in each time slot; 3)
the served QoE level of an IoTD needs to be determined in
each time slot; 4) the communication and computing resources
need to be assigned to [oTDs in each time slot; note that the
requirement of each IoTD may vary in different time slots; 5)
the connection between an edge node and an IoTD is unique,
and this connection varies in different time slots because of
different positions of UAVs.

The main contributions of this work are summarized below.

o We study the IoTD service provisioning problem in a UAV-
aided hierarchical network and present a QoE model that
can map different latency of each IoTD to different QoE.

o We formulate the RATE problem in the UAV-aided hierar-
chical network to maximize the average total QoE of all
users over all time slots.

o« We design an algorithm to obtain the optimal resource
assignment based on given locations of UAVs.

o We propose two deep reinforcement learning methods to
solve the UAV trajectory problem.

« The sub-optimal solution for the RATE problem is obtained
based on the solution for the resource assignment and the
UAV trajectory.

» The performance of the proposed deep reinforcement learn-
ing algorithms is evaluated via extensive simulations and
compared with three baseline algorithms.

II. SYSTEM MODEL

Figure 1 shows a UAV-assisted edge computing network,
which consists of UAVs, BS, and IoTDs. The BS and UAVs
are equipped with communications resources as well as the
computing facilities, and a UAV can also work as a relay
node for the communications between an IoTD and the BS.
This work focuses on the uplink communications from IoTDs
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Fig. 1: A UAV-aided edge computing network.

to edge nodes as well as obtaining computing services from
edge nodes. Each IoTD has a task to be executed by an edge
node (a UAV or the BS), and it can obtain the computing
service from the edge nodes directly or from the BS via
a relay node. All IoTDs and edge nodes share the radio
resources in an OFDM manner; each IoTD as well as each
edge node uses unique frequency spectra for communications.
Assume UAVs are full-duplex enabled and [oTDs are half-
duplex enabled, implying that UAVs can utilize the frequency
spectra for reception and transmission. When an IoTD receives
the service from the BS via a UAV, the BS is susceptible
to the backhaul interference and the UAV is subject to the
self interference (SI). For example, [IoTD 1 and IoTD 6 are
provisioned by the BS via relay nodes UAV 1 and UAV 2;
IoTD 1 and IoTD 6 are assigned with different frequency
spectra for communications; the same frequency spectra are
used from IoTD 1 to UAV 1 and from UAV 1 to the BS;
IoTD 1 incurs the backhaul interference to the BS and the
SI exists in UAV 1 because the same frequency spectra are
used for transmission and reception. Since we focus on uplink
communications, the bits of data of the task of an IoTD needs
to be transmitted to an edge node; the edge node is required to
provide computing service to the IoTD and the computation
result may need to return to the IoTD. Here, we assume the
computation result is small and negligible in our work.

Let & and % be the set of edge nodes and the set of [oTDs.
The task of IoTD i to be executed in time slot ¢ is denoted as
ui(t) = {di(t),c;(t),L" (1)}, where d;(), c;(t) and L!"(1)
are the bits of data requirement, the required computation
resource, and the delay threshold.

Assume ¢;(t) is the received QoE of IoTD i at time slot
t. In our conference publication [19], ¢;(¢) was defined as
d;(t)/d'°'%!(t) when the delay of IoTD i is smaller than the
delay threshold Tlf h(t); otherwise, it is 0. Note that the latency
performance is crucial to the edge network and the latency of
the IoTDs can be mapped to different QoE such as various
levels of satisfaction of the service, e.g., excellent, fair, poor,
and dissatisfied [20]. In order to better evaluate the latency
performance of the IoTDs, we define four levels of service:
excellent, fair, poor and dissatisfied (not served), implying that
each g; ;(¢) has up to four levels of QoE based on the delay



performance, as expressed in Eq. (1) below. Here, ¢; ;(f) is
the QoE of IoTD i if served by edge node j in time slot z;
Tl.’"’.ml(t) is the total delay of [oTD i if served by edge node j;

T; (t) and T"“*(t) are the latency threshold for the fair service
and the maximum latency threshold; 0 < px <1, k=1,2,3,
are constants, which represent the achieved QoE for the poor
service, the fair service and the excellent service, respectively.
For example, pu;, up and u3 can be set as 1/3, 2/3, and 1,
respectively.

s, Tl < T,

o, T < Tl (n) < T (),

p T < 7iorel(n) < T (p),
)

0, Tioral(s) > T (r).

qi,; (1) = 6]

A. Communications Model

Assume 7; j, .0., IR are the received data rate, the one-hop

data rate and the two- hop (relay) data rate of IoTD i towards
edge node j, respectively. Then, the relationship among r; ;,

rl.oj and rf ; are described in Egs. (2)-(3):
R . .
= max(rl], i Viel,j=1, 2
R VieU,jeB,j>l.
o _ el Vi i=1
r,,J f(ﬁt,j,st,j), 1, ] R
F(Bijssij) = BoPi,jlogy(1 +5i ;) 3)
rf; = min{r?f, rO8y, Vi,j=1.

Here, f(-) represents the function to calculate the data rate;
s;,; and B; ; represent the signal to interference plus noise
ratio (SINR) and the assigned bandwidth of IoTD i towards
edge node j, as expressed in Eq. (4), respectively ﬁo stands
for the bandwidth of one resource block (RB); r© et 4 and r9 1
are defined as the data rate of the access link (from IoTD i
to UAV;’) and the backhaul link (from UAV j’ to the BS),
respectively.

Assume P! and PY are the transmission power of an IoTD
and a UAYV, FGJ is the path loss between between IoTD i and
the BS, and I'; ; is the path loss between between IoTD i and
UAV j, which consists of the line-of-sight (LoS) path loss and
the non-line-of-sight (VLoS) path loss [21], [22]. Then, s; ; is
computed as:

PITC,
= Vi,j=1
§: ;= ol +/ ’ 4)
t.J P’l",«,j .. 1
L, Vi,j>1.
i,

i
Here, 0' :=PopBi,jNo is the thermal noise power and Ny is the
thermal n01se power spectral density.

The path loss between a UAV and an IoTD [21], [22] is
defined as:

L L, N sN
J=9i ;8 +¢;;07 + 1,

Here, ¢L and ¢N . stand for the line-of-sight (LoS) path
loss and non-line- of-51ght (NLoS) path loss (¢L + ¢)N =1),
respectively; /L and ¢V are the extra LoS and NLoS path

Vi, j > 1. (5)

loss, respectively; I'y = 20log(4n¢1d;, j/s0) is the free space
path loss, ¢p is the carrier frequency and ¢ is the sEeed of
light [21]-[23]. Note that ¢l.’j = [1 + {1 exp(—LH(——

)] 4 and £, are environment parameters and Q,, j =
arctan(;—’) [21]-[23].

Assume sR Y and s® .1 are the SINR of the access link of
IoTD i towards edge node J’ and the backhaul link from edge
node j’ to the BS for two-hop communications, respectively.
Here, UAV j’ incurs SI owing to the same frequency spectra
utilized for transmission and reception; the BS is susceptible
to the backhaul interference as IoTD i and UAV j’ both use
the same frequency spectra for communications. Then, %4

ij'
and r9R are calculated according to Egs. (6)—(7).

A R
ro% = F(Bij st

J’ l

Vi, j' > 1. (6)

Vfl—f(ﬁm, ) Vi, j’ > 1. (7)

Note that 87,1 = fi,j. Then, sf;, and s?l are expressed as
Egs. (8)-(9):
PIT; .
sRy=———— VieU,jeRB.j’>1. (8)

Pj',l/GO"'O'i’j/

’
Pj’,lrj/J

sy =—2— Viel,j € RB,j > 1. 9
Jj1 Plri,l +0_12./1 J J ( )

Here, pj1 is the power required for transmitting data from

TABLE I: Important Notations and Variables

Symbol Definition

U set of IoTDs.

g set of time slots.

B set of edge nodes, including the BS and all UAVs.

d; (1) data requirement of IoTD i in time slot 7.

ci(t) computing requirement of IoTD 7 in time slot 7.

qi,j(t) obtained QoE of IoTD i when served by edge node j in
time slot 7.

qi (1) achieved QoE of IoTD i in time slot ¢.

Tl.’ 2 (1) latency threshold for excellent service of 10TD i.

Tlf “"(t) | latency threshold for fair service of IoTD i.

T (1) maximum latency threshold of I0TD i.

d®al (1) | data rate requirement of all Io0TDs in time slot 7.

pU maximum transmission power of a UAV.

PT maximum transmission power of an IoTD.

Cj maximum computing resource of edge node j.

ri,j (1) data rate of IoTD i towards edge node j in time slot 7.

ﬁ}"“ total bandwidth of edge node j in terms of RBs.

‘ri]: j(z) transmission time of edge node j to serve IoTD i in time
slot ¢.

Tfi(l) computing time of edge node j to serve IoTD i in time

’ slot ¢.

(€] set of candidate positions for UAVs in the horizontal plane.

At time duration of a time slot.

w; j(t) IoTD-Edge Node indicator in time slot 7.

a;,j(t) used computing resource of IoTD i in edge node j in time
slot 7.

Bi.j(1) used bandwidth of I0TD i in edge node j in time slot 7.

vj(t) position of UAV j in the horizontal plane in time slot ¢,
j>1

hj position of the jth BS in the vertical plane, j > 1.

UAV j’ to the BS; p».1/Gy is the SI; G is the SI cancellation



capability [24], [25]; T'j» 1 is the path loss between UAV ;'
and the BS; o-l% ; and 0']% , are the thermal noise power.

B. Computing Model

Each IoTD has one task to be served by an edge node. We
assume the maximum number of edge nodes used to serve one
task is one and no partial offloading is allowed. An IoTD can
receive the service directly from UAVs and the BS, or it can
receive the service from the BS via a UAV. Let TCJ (t) be the
computing time of the task from IoTD i to edge node j in
time slot 7. Then, the required computing time Ti’j(l) is given

by:
’ ei(0)
a’l}()

Assume 7; J(t) is the transmission delay for the task from
IoTD ito edge node j in time slot ¢, which can be obtained
by ‘r (t) = d;(t)/r; ](t) Then, the total delay is calculated

as T""“l(t) = TC (1) +‘r (t)

le(t)— NieU, jeRB. (10)

III. PROBLEM FORMULATION

Let w; ;(t) be the IoTD-edge-node assignment indicator and
it equals to 1 if IoTD i is served by edge node j in time slot
t; otherwise, it is 0. Let a; ;(¢) be the assigned computing
resource to IoTD i by edge node j in time slot z. Denote
qi(t) as the achieved QoE of IoTD i in time slot ¢, g; (1) =
2 wi j(t)qi j(t). We assume the number of deployed UAVs
is given and the altitudes of all UAVs are the same and fixed.
Important notations and variables are summarized in Table I.
To make the paper concise, the time slot ¢ associated with
variables may be dropped throughout the manuscript.

We then formulate the RATE problem to maximize the
average total QoE of all IoTDs in all time slots as follows.

1
: max — qi(t)
w1 (0),01, (0B (D (0 1T | ZZ‘ '
S.t.:

c1:Zwi,J-(r) <1, VieUteT

Po

C2: ) wi (0B (1) < B, Vje B,
i

C3: ) ar;(1) £Cjp V),

C4:vi(t)e®, VjeRB,j>1,

C5:vjt)nvyp(t) =2, Vjj >1,

C6: f(vi(n),v;(t+1)) <V"At,

C7:a),~,j(t) E{O,l}, Vi, J,

C8: qi(l) = Zwi,j(t)qi,j(t)’ Vl’]

J

j>1,

Y

Here, C1 and C7 impose one IoTD to be served by no
more than one edge node. C2 ensures that the total utilized
frequency spectra not to exceed the frequency spectra capacity
of each edge node. C3 imposes the total consumed computing
resources of all IoTDs not to exceed the computing resource
capacity of each edge node. C4 is the UAV placement con-
straint to ensure each UAV placed in a pre-defined candidate

location in the horizontal plane in any time slot. C5 imposes
that any two UAVs cannot be placed in one candidate location
in order to avoid collision. C6 is the trajectory constraint to
ensure that a UAV can reach the location of the next time
slot within its maximum reachable distance. Here, f(+) is the
function to obtain the distance between two UAVs. C8 is used
to compute the QoE of each IoTD in every time slot.

IV. ANALYSIS AND ALGORITHMS

The RATE problem is NP-hard because it is a non-convex,
nonlinear and mixed discrete optimization problem even for
one time slot (|| = 1) [26]. In this work, we first find
the solution for the user association and resource allocation
and then propose two deep reinforcement learning methods
to obtain sub-optimal solutions for the RATE problem as
machine learning is a good approach for solving the dynamic
optimization problems [27], [28].

A. User Association and Resource Allocation

Assuming the locations of UAVs in all time slots (v;(¢))
are known, problem &% can be transformed into problem 2.

1
P max — qi(1)
wi (1), (1), (1) |T| Zl: ; Z '

s.t. C1,C2,C3,C1,

12)

in e@o.

Note that |7 | is a constant; the user association and resource
allocation in time slot # do not depend on those in time
slot ' (' < t) because the requirements of IoTDs vary in
different time slots. Then, we remove |J | and focus on the
optimization of the one time slot scenario. When the results
of user association and resource allocation for one time slot
are achieved, they can be easily applied to the remaining time
slots. Problem &; can be further transformed into problem
P,. Here, all “(¢)” are removed to differentiate the formulation
between one time slot and all time slots.

P . max

Wi j,i,j5Bij

Cl: Zw[,j <1,
J

C2: ) wiBij <P, VjeB
i

C3IZ(¥,‘JSCJ‘, vJj,
i

C4:w,-,j€{0,1}, Vi, j. (13)

For the communications and computing resources assign-
ment, both §; ; and «a; ; are required to successfully receive
the service; the QoE of an IoTD depends on the total latency
Tl””“l, which depends on the resource assignment «; ; and
Bi ;- If the QoE of an IoTD is not 1, we can increase B; ;
or a; j, or increase both B; ; and «; ; to improve the obtained
QoE. To efficiently utilize the communications and computing
resources, the computing resource assignment is assumed to
be proportional to the communications resource assignment,

a; j = Bi,j{j. Here, {; represents the ratio of the computing



resource to the communications resource in an edge node,
{j = C;/p7*. Then, we can transform problem &, into
problem 3.

953:

VieUteT

crzzwi,j < 1,
C2: ) wiBij <P, VjeB,
i

C3:w,~,j€{0,1}, Vi, j. (14)

If an IoTD is not served, the obtained QoE is 0; otherwise,
the achieved QoE is bigger than 0, which is differentiated into
three levels: ui, uo and w3, respectively. Assuming a) i is
the IoTD-Edge-node-QoE indicator and k 1s the indicator of
the obtained QoE level, w; ; = kw w; J = 1 represents
the obtained QoE of 10TD i, uy, being served by edge node
j. Let ,Bﬁ ; represent the minimum required corresponding
resources for receiving QoE ui of IoTD i when served by
edge node j, Bi;j = i wl’."jﬁf’j. Since the minimum required
frequency spectra to obtain the three levels of services are
linear, 11/} ; = px/Bf j» k =1,2,3.

A Joint communication and computing Resources Assign-
ment (JCA) algorithm is then proposed to solve problem s,
as expressed in Algorithm 1. Steps 1 — 7 initialize parameters
and calculate the required resource to serve each IoTD; Steps
8 — 17 assign the radio resource and computing resource to
IoTDs; Step 10 determines the index of the IoTD that needs
to be served; Step 11 obtains w ., j and k that can maximize
the total QoE of the network; Steps 12—-17 update the network
information after [oTD i/ has been served; Steps 18—19 update
the parameters for output based on the service status. Here,
q'°"%! is the total received QoE based on the current service
status and k indicates the achieved QoE level; qf."j is the

obtained QoE of IoTD i served by edge node j, q{.‘j = uy.

Theorem 1. Algorithm / achieves the maximum total QoE.

Proof. 1) When all IoTDs are served and the highest QoE
is received, w; ; = 1 and the obtained total QoE glorat
i Y, wijqi = XX, qiy = |%|. Since g;; < 1, "'
|2/|. Then, the maximum total QoE is achieved.

2) When not all IoTDs receive the highest QoE, g/’ =
2i 2jwijqi; < |%|. In Algorithm 1, the required resource
,8{?’ j is calculated to serve each IoTD and IoTD i is determined

IA 1l

byi= arg min ,B’.‘ It which requires the least resource. For IoTD

i and 7, it ,Bfi < B s then we have g} /Bt > qb /B
because ql’ ;T Mk = ;- That is, the IOTD requiring
the least resource is served ﬁrst. After that, edge node j
and the obtained QoE level is determined by (J, &, w{‘ J) =
arg max(q’”’“l +w ,uk) which ensures that the maximum
J.k, w i

QoE of IoTD i is obtained in the current iteration. Since
the minimum required resource to obtain the three levels
of services are linear, q}’ j/ﬂ}’. = qt’." j/,Bg" I the maximum
increment of QoE is received after IoTD i is served based
on the current network status, g;; = m,?x(wt"ijqﬁj)‘ Note

Algorithm 1: JCA
Input : %, %, ,6;."”, and Cj;
Output: Wi, j, Om,j, Bi,j and ai,j;
1 ﬁf =ﬁ;."ax, UR =% and %® = o;
2 for edge node j in &R do

3 for 1oTD i in %R do
for each QoE level k do

4
5 L calculate ﬁg‘j;
6

k _ .
set qi,j = Hks
7 Initialize ﬂ;emp = arg min ,Bl’.‘j;
',k ,
3 total _ =0, =0 and =0;
q wj,j =0 an w j
9 while (ﬁR > ﬁtemp) & (‘ZZR + @) do
10 find i = argmlnﬂk Lie Uk,
1 get (j, k, w )= arg max (q")’al +u)l’.<j/.tk), je Bk
J.k, w ’
12 set w =1;
13 calculate q"’ml = gtotal 4 w{.‘juk;
14 compute ﬁ? = ,85.e —ﬁl].‘j;
15 update ﬁt.emp = arg min ,8’.‘ .;
J i,k b

16 US =S U {i} and UR = UR\ {i};
17 update w; j = Xx w’? I

18 update 3; ; based on w j and ﬁk ;

19 update a;, ; according to ﬁ, NE

that g; ; = q?’j = u3 if the communication and computing
resources are sufficient. Here, we first determine the IoTD
which requires the least resource and then find the maximum
QoE level for this IoTD based on the current service status; the
maximum QOoE of each IoTD is the same, and more IoTDs
can be served if the IoTDs with less resource requirements
are chosen to be served first; then, the highest total QoE is
achieved in the end. In summary, Algorithm 1 obtains the
largest increment of the total QoE ¢'?'¢ = ¥, 2 Wi jqi,; in
each iteration of assigning the communication and computing
resources to [oTDs; the maximum total QoE is thus achieved
by Algorithm 1. o

B. Deep Reinforcement Learning Algorithms

A typical fully connected neural network formed by neurons
consists of three layers: the input layer, the hidden layer and
the output layer. Each link in the neural network has a weight
and the weights of all links are randomly initialized, which will
be updated according to the environment. The state s(¢z) and
action a(t) are the input and output of the neural network, and
the reward is obtained based on the action for the environment.
The weights of all links can approximate the environment after
efficient training with the maximum reward.

To proceed with deep reinforcement learning, we need to
define state, action and reward, as described below.

1) State: s, = {X(%(¢)),Y(%(2)),D(t),W(t),V(t)}. Here,
X(%(t)) and Y(% (1)) are cartesian coordinates, which repre-
sent the locations of all IoTDs in the horizontal plane in time
slot t; D(t) = U{d;(t)} is the set of data rate requirements of



all IoTDs in time slot ¢; W(z) = U{w; ;(#)} is the set of user
association indicators of all IoTDs; V(¢) = U{v;(f)} represents
the positions of all UAVs in time slot 7.

2) Action: a(t) = {X(V(¢)),Y(V(¢))}. X(V(¢)) and Y (V(2)
are cartesian coordinates, which represent the target loca-
tions of UAVs in the horizontal plane in time slot ¢. If
IX(V(2))-X(V(¢t+1))| > dis_minor |Y(V(2))-Y(V(t+1))| >
dis_min, we set |X(V(t)) — X(V(t + 1))| = dis_min or
[Y(V(1)) =Y (V(t +1))| = dis_min. Here, dis_min represents
the length between two neighboring candidate positions in the
horizontal plane of UAVs.

3) Reward: g(t) = %; 2.; qi,j(?) is the summation of received
QoE of all IoTDs in time slot ¢.

Deep Q-learning (DQL) is a proven algorithm, which was
proposed by Google Deepmind [29] and has been popularly
used by researchers. We thus leverage DQL to solve the
RATE problem. DQL is a model-free reinforcement learning
algorithm and employs two neural networks: the fixed neu-
ral network and the target neural network; the fixed neural
network is used to estimate the Q value; the Q value is
employed to generate the action and a reward is returned
based on this action; the target neural network is created to
help DQL converge and it is updated slowly using the same
parameters from the fixed neural network; experience buffer
(replay buffer), which stores previous samples, is leveraged
to enhance convergence of DQL. The proposed DQL tailored
to solve the RATE problem is referred to as DQL-RATE, as
delineated as Algorithm 2. Here, R(t) represents the number
of samples in the replay buffer in time slot 7 and R/ stands for
the time duration to update the target network; g(e) denotes
the final average total QoE of epoch e. Steps 1 — 2 initialize
the fixed network, the target network and replay buffer; Steps
7 — 13 calculate state s(¢ + 1), action a(z); Step 14 compute
the reward g(t); Steps 17 — 21 train the fixed network and the
target network; Step 22 obtain the average QoE of all time
slots.

The fixed network is updated by minimizing the loss
(y(1) —@(s(t), a(t)|6%))>. The loss is defined as the difference
between the target Q-value and the predicted Q-value. The
target network is updated by 69~ « 6% + (1 —n)6¥~. Here,
the target value y(r) is estimated as:

(1) = {g(t),

g(t) + ymax, ¢(s(t+1),a(t)|697), otherwise.

15)

Since DQL is not easy to converge, we propose to tailor
another deep reinforcement learning method named deep de-
terministic policy gradient (DDPG) [30], [31] for solving the
RATE problem, and the resulting algorithm is referred to as
the DDPG-RATE algorithm. DDPG is a combination of the
actor-critic approach and the architecture of DQL [30], and
the structure of the DDPG-RATE algorithm is shown in Fig. 2.
The actor network is utilized to generate the action a(¢) for the
environment based on the policy gradient method; the critic
network is employed to estimate how good the action of the
actor network is; similar to the target network of DQL, the
target networks (target actor network and target critic network)
are leveraged to minimize the loss function that can also

if terminates in time slot (¢ + 1),

Algorithm 2: DQL-RATE

Input : %, %, u;i(t), ¢(s(1)|60¥) and ¢(s(1)|6¥7);
Output: g(e) and g(¢);
1 initialize the fixed network and the target network with the
weights 6% and 6%
2 initialize the replay buffer 7;
3, for epoch e do
4 initialize positions of all UAVs;
5 initialize s(z) and g(¢);
6 for time slot t do
7
8
9

obtain X(% (1)), Y(%(¢)), D(t), W(t), and V(¢);
obtain s(¢ + 1);
generate a random variable €’ € (0, 1);
10 if € > € then
11 L randomly generate an action a(t);
12 else
13 L use the maximum Q-value to obtain action a(7);
14 calculate g(¢) based on a(t) and Algorithm 1;
15 add sample (s(7),a(t), g(2), s(t+1)) to replay buffer;
16 set s(t) = s(t+1);
17 if R(e.r) > R" then
18 estimate target output y; by Eq. (15);
19 update 6% of the fixed network by minimizing
(y(1) = @(s(1), a(1)|09))%;
20 if R(e,1)%RS == 0 then
21 update the target network by the weight of
L the neural network;

22 obtain the results g(e) = IJ?I > 8(1);

23 return g(e) and g(7).

improve the stability of DDPG, and they are updated slowly
from the actor-critic networks. Moreover, the input of the actor
network is s(¢) and the inputs of the critic network are s(¢) and
a(t). Note that the IoTD assignment can be obtained based on
the action a(t); the state s(z), action a(t), reward g(¢), and
next state s(z + 1) constitute a sample, which is added to the
replay buffer.

Reward

ToTD Assignment |—>|

T

Environment |—>| Next State

Replay Buffer

State
Agent Action

State
Action

State Action

State
Action

Mini Batch

Update X N
Gradient Policy

Q value

Actor Network

Critic Network

Update

Loss Function

Soft update

Target Actor Network

7

Fig. 2: The structure of the DDPG-RATE algorithm.

In the DDPG algorithm, two pairs of neural networks are
utilized: the actor neural network a(t) = ¢(s(¢)|6%) and
the critic neural network Q(s(t),a(t)|02), the target actor



Algorithm 3: DDPG-RATE

Input : B, %, ui (1), ¢(s(1)[69), Q(s(1),a(1)|69),
@(s(1)10¥7) and Q(s(1), a(1)|097);

Output: g(e) and g(¢);

initialize the actor network ¢(s(¢)|60¥) and the critic network
0(s(1), a(1)|62) with parameters 6% and §<;

initialize the target actor network ¢(s(¢)|6%~) and the target
critic network Q(s(¢), a(¢)|#2~) with parameters 09~ = 0%
and 2~ = 6’Q;

-

»

3 set R(e,t) =0;

4 initialize the replay buffer R;

5 for epoch e do

6 initialize the position of all UAVs;

7 initialize s(z) and g(t);

8 for time slot t do

9 get X(%(t)), Y(%(t)), D(¢), W(t), and V(¢);

10 obtain s(r + 1);

11 generate action a(t);

12 add noise to action a(z) = a(t) +ag;

13 map the action a(?) to positions;

14 update positions of all UAVs;

15 calculate g(¢) based on a(t) and Algorithm 1;

16 add sample (s(t), a(t), g(t),s(t+1)) to replay buffer;
17 set s(t) = s(¢t+1);

18 if R(e,t) > RY then

19 update 62 of the critic network by Eq. (16);
20 update 0¥ of the actor network by Eq. (17);
21 update target networks by Eq. (18);

2 R(e,t) = R(e,t) +1;

23 obtain the results g(e) = IJ?I 2 8(0);

24 return g(e) and g(7).

network a(t) = ¢(s(t)|6¥~) and the target critic network
Q(s(1), a(1)|697).

For Algorithm 3, Steps 1 — 3 initialize the actor-critic
networks and the target actor-critic networks and replay buffer;
Steps 5 — 15 calculate state s(z + 1), action a(¢) and reward
g(t), form one sample and add the sample to the replay buffer;
Steps 17 — 20 updates the actor-critic networks and the target
actor-critic networks based on Eqs. (16) — (17); Step 22 obtains
the average QoE of all time slots.

The critic network is updated through the loss function:

M
LO2) = 22 3 (A +ya)”

m=1

(16)

Here, m is the index of a sample in the batch and M
stands for the maximum number of samples in a batch,
1 < m < M; g(m) is the reward of sample m; A; =
g(m) = Q(s(m),a(m)|69); Ay = Q(s(m +1),a(m +1)|627),
which is the output result of sample (m + 1) from the target
critic network [31].

The actor network is updated according to the gradient
policy:

M
1
©y = .
Ve J(09) = M;(Ag Ay). (17)
Here, VgJ(0) is the gradient function of J(6); J(0) is the
policy objective function; Az = Ve @(s]0%)|s=5(m) and Ag =

0
VaQ (8, al09)| () a5y

The target networks are updated as:

{9“" —n6% + (1 -n)ov",

18
02~ — 1o + (1 — )62, (1%)

Here, n is the updating rate, which is a small constant and
utilized to smoothen the input.

C. Computational Complexity

Two baseline algorithms are employed to evaluate the
performance of the machine learning algorithms. One is named
Fixed-UAV, in which all UAVs are placed in the fixed locations
and the best SINR strategy is employed to determine the IoTD
assignment. The other one is referred to as No-UAV, i.e., no
UAV is deployed and all IoTDs are served by the BS.

The computational complexity of the Fixed-UAV algorithm
is O(|7|(|1%||%|K +1og(|%B| +|%|+K))) and that of the No-
UAV algorithm is O (|7 |(|%|K+log(|%|+K))); the complexity
of user association and resource allocation is O(|%B||%|K +
log(|AB| + |%| + K)) and || = 1 for the No-UAV algorithm;
K is the number of QoE levels for each 1oTD.

For machine learning algorithms, the computational com-
plexity of finding actions is O(ZZL=l N;N;—1) [31]. Here, L
is the number of layers of the neural networks and Nj is
the number of neurons of layer /. The complexity of the
JCR algorithm (user association and resource allocation) is
O(|B||%|K+log(|B|+|%|+K)). The overall complexity of the
machine learning algorithms is 0((21L:1 NiN;_1 + |B||%|K +
log(|B| + || + K))T E), where E is the number of epoches
used in the training.

V. PERFORMANCE EVALUATION

Python 3.6 is employed to run the simulations and Ten-
sorflow 2.6.2 (tf.keras.optimizers.Adam) is utilized to run
machine learning algorithms. The coverage area is set as
500 m x 500 m, which is evenly divided into 25 X 25 = 625
sub-areas. Each sub-area is 20 m X 20 m and it is also called a
block. The BS is fixed at the center of the coverage area and
every UAV is placed at the center of a block. Two UAVs are
deployed; the height and the maximum flying speed of each
UAV are set as 30 m and 30 m/s. In each time slot, a UAV
can move to one of the neighbouring blocks in both X-axis
and Y-axis in the horizontal plane in the next time slot. In
other words, each UAV has 9 (3 x 3) candidate blocks to be
placed in the next time slot. Here, constraint C6 in problem
PO is satisfied (30 m > 500/25 m). We consider 30 time
slots in the simulation and the duration of each time slot is
1 5. We assume the locations of IoTDs are fixed within each
time slot; IoTDs are generated according to a Matérn cluster
process, and the communication and computing resources
requirements of IoTDs in different time slots may vary. For the
communication parameters setting, (¢!, 2, ¢, ¢N) is set as
(9.6,0.16, 1,20) [21]-[23]; the SI cancellation capability Gy is
set as 130 db [24]; the path loss between the [oTD and BS (the
edge node on the ground) is 131.1+42.81og;,(d;, ;) according
to the path loss model from 3GPP [32]. For machine learning
configurations, all neural networks are initialized with the
same parameters: each has three layers with 800 neurons, 600
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neurons and 300 neurons, respectively. Important simulation
parameters are summarized in Table II.

TABLE II: Simulation Parameters

Fig. 4: Convergence results of DQL-RATE.
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in the last epoch of the DQL-RATE algorithm and DDPG-
RATE algorithm are shown in Fig. 6(a) and Fig. 6(b).

Parameters Value Parameters Value 400 7 § x Y N
coverage 500 m x 500 m time slot 30 Tedt v P
U] 20,25, -, 45} d; [0.1, 1] Mb M
ci [1, 10] x 107 Bo 180 kHz i vt
Co (BS) 2 x 101 CPU cycle/s | PV 27 dBm v
C; (UAV) 1 x 10" CPU cycle/s | PE 20 dBm O 2 eaan
VIax 30 m/s At Is v vz * e
rayleigh 8 dB Ny —174 dBm/Hz ’ 100 200 300 “oo0 so 100 0 0 00 00
prrax 100 RB (20 MHz) (a) Trajectory of DQL-RATE. (b) Trajectory of DDPG-RATE.
ro 131.1 +42.8log(d;, ;) (321
Parameters for DQL-RATE Value Fig. 6: UAV trajectory results with 45 IoTDs and R? = 32.
learning rate 5% 1073
v, discount factor 0.85
n, soft target update 0.005
replay buffer 100 %] mm DDPGRATE
Parameters for DDPG-RATE Value BB DQL-RATE
" 3 B®® Fixed-RATE
learning rate of actor 5x 107 251 EEEE No-RATE
learning rate of critic 5% 1077
7y, discount factor 0.99 X
17, soft target update 0.001 2 20 A
replay buffer 10° %’ o
'f 15 &
;5?0 °
We set the latency parameters as follows: T} h(t), Tl.f (1), E ’
T"**(r) are set as 100 ms, 200 ms and 400 ms; u; = 0.25, 10 5
Hr =0.5 and p3 = 1. Fig. 4 and Fig. 5 show the convergence B
results under 45 IoTDs with batch size R” = 32 of the DQL- 5 X
RATE algorithm and DDPG-RATE algorithm. Here, the batch o
is a set of samples, (s(¢),a(t), g(t), s(¢+1)), which is utilized 0 v
to train neural networks; the batch size is the number of # of IoTDs

samples in a batch. Each epoch has 30 time slots; 100 epochs
represent 30 X 100 = 3000 training steps; the average QoE
of all time slots is calculated in each epoch. For both DQL-
RATE algorithm and DDPG-RATE algorithm, the actions for
all UAVs are generated by the machine learning agent and
a sample is added to the buffer in each time slot. When
the buffer is full, the oldest sample will be discarded. The
machine learning agent starts to update the weights of the
neural networks when the number of samples in the buffer is
more than R? = 32. Then, the best positions of UAVs can
be achieved after efficient training based on the knowledge
of the environment. The results show that the DQL-RATE
algorithm and DDPG-RATE algorithm can converge after 300
and 200 epochs, respectively. The trajectories of all time slots

Fig. 7: Average QoE versus number of [oTDs.

Fig. 7 shows the average total QoE in all time slots versus
different workloads (IoTDs). The average total QoE of all
algorithms increases as the workload increases. Less commu-
nications resources are used in serving the same number of
IoTDs as compared to a heavy workload scenario because
it is easier to obtain IoTDs with higher weight and better
SINR under a heavy workload. Then, the total communications
and computing resources in all edge nodes can be utilized to
serve more IoTDs, thus incurring a higher average total QoE.
The average total QoE results of the DQL-RATE algorithm
increase by up to 21% and 32% as compared to those of
Fixed-RATE and No-RATE, while those of the DDPG-RATE
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algorithm increase by up to 29% and 42% as compared to
those of Fixed-RATE and No-RATE. The average total QoE of
the Fixed-RATE algorithm is better than that of the No-RATE
algorithm because more computing resources are available
and UAVs also have better connection to remote IoTDs as
compared to the BS.

We have added one more algorithm to evaluate the per-
formance of the proposed algorithm. It is named Fixed-
Trajectory, which lets each UAV fly in given positions,
as shown in Fig. 8. The complexity of the Fixed-
trajectory algorithm is similar to the Fix-RATE, which is
O(|T|B|(|B||%|K +1og(|B| +|2%|+K))). The average QoE
results of the DDPG-RATE algorithm and the DQL-RATE
algorithm have up to 25.4% and 15.7% enhancement as
compared to those of Fixed-Trajectory, as shown in Fig. 9. The
Fixed-trajectory algorithm does not perform well because its
UAV trajectories do not consider the positions and the resource
requirements of IoTDs.

To better evaluate the QoE performance of the machine
learning algorithms, we have considered two more cases: the
scale of computing resources (case 1) and the scale of the
delay requirements of QoE (case 2). For case 1, each edge
node’s computing capacity is increased by 50%; for case 2,
all latency thresholds of achieving different levels of QoE
are increased by 50%. Then, the average QoE results under
different scales with 35 and 45 IoTDs are shown in Fig. 10.
Here, the number in a bracket represents the case information,
e.g., “35(2)” represents case 2 with 35 IoTDs. The average
QoE results of all algorithms have been increased for both
case 1 and case 2. Note that the QoE increment of case 2
for every algorithm is more than case 1 because case 1 only
adds computing resources to the network but case 2 relaxes
both communication and computing resources. For case 1, the
DDPG-RATE algorithm and the DQL-RATE algorithm have
achieved up to 35.2% and 32.3% improvement of the average
QoE as compared to those of baseline algorithms. For case
2, the DDPG-RATE algorithm and the DQL-RATE algorithm
have achieved up to 31.3% and 26% improvement of the
average QoE as compared to those of baseline algorithms.

#of IoTDs.

Fig. 9: Average QoE versus the number of
1oTDs.
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VI. CONCLUSION

In this work, we have studied the RATE problem with
consideration of the UAV path planning, user assignment,
and communication and computing resources assignment; the
target is to maximize the average total QoE of all IoTDs over
multiple time slots. As the RATE problem is NP-hard, two
deep reinforcement learning algorithms have been proposed
to achieve the sub-optimal solution. Three baseline strategies,
Fixed-RATE (locations of all UAVs are fixed), No-RATE
(no UAV is deployed) and Fixed-Trajectory (every UAV flies
in given positions), are utilized to evaluate the performance
of the deep reinforcement learning algorithms. Simulation
results show that the average total QoE result of the deep
reinforcement learning algorithms have increased up to 32%
and 42% as compared to those of baseline strategies.

The future research directions attempt to address the fol-
lowing questions: 1) The current flying time of commercial
UAVs is around 30 minutes or up to two hours; how does
one provision seamless services in the long duration event?
2) As new applications such as AR and VR with large
data rate requirements emerge, how does one satisfy these
new applications in the UAV-aided MEC network? 3) Many
research works focus on one dimension of resource allocation
in the UAV-aided MEC networks, how does one efficiently
utilize different types of computing resources (CPU, memory,
storage, etc.) in the UAV-aided MEC network?
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