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Abstract
Fish in all the world’s oceans exhibit variable body size and growth over time, with some populations exhibiting long-

term declines in size. These patterns can be caused by a range of biotic, abiotic, and anthropogenic factors and impact the
productivity of harvested populations. Within a given species, individuals often exhibit a range of life history strategies that
may cause some groups to be bu+ered against change. One of the most studied declines in size-at-age has been in populations
of salmon; Chinook salmon in the Northeast Pacific Ocean are the largest-bodied salmon species and have experienced long-
term declines in size. Using long-term monitoring data, we develop novel size and growth models to link observed changes
in Chinook size to life history traits and environmental variability. Our results identify three distinct trends in size across
the 48 stocks in our study. Di+erences among populations are correlated with ocean distribution, migration timing, and
freshwater residence. We provide evidence that trends are driven by interannual variation in certain oceanographic processes
and competition with pink salmon.
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Introduction
Many fish species around the world targeted by com-

mercial or recreational fisheries have exhibited declines
in mean size; examples include Atlantic salmon (Quinn
et al. 2006; Kuparinen et al. 2009), groundfish in the
North Sea (Greenstreet and Hall 1996), Australian reef fishes
(Audzijonyte et al. 2020), and species of Pacific salmon (Oke
et al. 2020). Understanding the factors that drive these trends
is critical for identifying and distinguishing among threats,
such as impacts of climate change (Sheridan and Bickford
2011), fishery-induced evolution (Conover et al. 2009), shift-
ing spatial distributions (Pinsky et al. 2020), competition
among species (Ruggerone and Nielsen 2004), and changes
in predation and natural mortality (Ohlberger et al. 2019).
Accounting for temporal declines in size a+ects both con-
servation and fisheries management: smaller fish have been
shown to have reduced reproductive capability, further ex-
acerbating the decline of small populations (Barneche et al.
2018; Ohlberger et al. 2020), and populations of smaller fish
provide fewer ecosystem services, such as providing prey for
predators and transportation of nutrients from the ocean to
freshwater environments (Oke et al. 2020).

Some of the longest-studied declines in body size have been
in populations of Pacific salmon (Oncorhynchus spp.) (Ricker
1981). Declines have been found across multiple species;

however much of the attention has focused on declines in
Chinook salmon (Oncorhynchus tshawytscha; (Lewis et al. 2015;
Ohlberger et al. 2018; Xu et al. 2020)). Chinook salmon are
the largest and most economically valuable species of Pa-
cific salmon and have experienced the sharpest decline in
size over time (Oke et al. 2020). This species has experienced
many of the same pressures that have caused changes in
size in other fish populations, including harvest, changing
abiotic conditions, interspecific competition, and predation
(Ohlberger et al. 2018).

One of the challenges in understanding mechanisms re-
sponsible for declines in size is the life history diversity of
Chinook salmon. Across the range of the species, there is sig-
nificant diversity in life history traits and migratory behav-
iors (Quinn 2018). Examples of trait diversity include variable
age at maturity and di+erent ocean distributions. Further-
more, Chinook salmon are anadromous and migrate from
freshwater habitats to the ocean in their first or second year
of life. There are also di+erences in the phenology of their
spawning migrations, with stocks in our study region return-
ing to spawn in the spring, summer, fall, or late fall. Further-
more, there is an important distinction between spring and
summer run stocks that typically mature in the freshwater
environment and fall and late fall stocks that mature in the
ocean before their spawning migrations (Quinn 2018).
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This variation in life history is likely to interact with chang-
ing environmental conditions to shape trends in growth and
body size in Chinook salmon. Variability in ocean distribu-
tion exposes stocks to di+erent marine environments where
the productivity regime is driven by independent or even op-
posing oceanographic processes (Mantua et al. 1997; Hare et
al. 1999; Wells et al. 2008; Kildu+ et al. 2014; Malick et al.
2017; Dorner et al. 2018). Even in cases where two stocks
share the same environment, di+erences in migration tim-
ing and other traits can cause them to respond di+erently
to the same patterns of environmental variation (Wells et
al. 2008; Greene et al. 2010). The resultant potential for in-
teractions between life history diversity and environmental
change must be accounted for in any complete causal expla-
nation of the observed changes of size in this species. Fur-
thermore, di+erent responses to the environment between
stocks within a larger stock complex can reduce the vari-
ability of trends experienced by this larger stock complex,
stabilizing ecosystem services and functions (Hilborn et al.
2003; Schindler et al. 2010). These so-called portfolio e+ects
are most often invoked in relation to variation in abundance
over time. However, changes in body size also contribute to
the productivity of salmon populations and can, in principle,
be stabilized through a similar averaging process. In these
ways, life history diversity is likely to shape the causes and
consequences of changing body sizes in fish populations.

To better understand these processes, we leverage long-
term monitoring data to shed light on variation in trends in
body size exhibited between stocks of Chinook salmon and
the potential drivers of this variation. We focus on three
questions: (1) How do changes in size-at-age di+er across pop-
ulations of Chinook salmon? (2) Are there life history char-
acteristics or other traits that underlie the di+erences in
trends?, and (3) What factors may be causing populations to
respond di+erently to the same changes in environmental
conditions? We focused on hatchery-origin Chinook salmon
populations from the coastal regions of Washington and Ore-
gon, including the Columbia River Basin. The Columbia River
represents the single largest watershed-level source of Chi-
nook salmon production (Shelton et al. 2019), with a large
range of within-basin life history variation reflective of local
adaptation and deep phylogenetic di+erences (Waples et al.
2004; Moran et al. 2013). Thus, these populations provide a
unique opportunity to shed light on how changing environ-
mental conditions may interact with life history variation to
determine long-run decline in size.

Another advantage of focusing on these populations is that
they are monitored closely with coastwide tagging programs
(particularly fish of hatchery origin). Since the 1970s, juvenile
fish have been marked with unique coded-wire tags (Johnson
2004). When these individuals are later encountered as adults
(in spawning surveys or captured in fisheries), these tags pro-
vide information about survival, maturation and size-at-age,
and spatial distribution in coastal waters of North America.
These long-term monitoring data provide an opportunity to
disentangle potential confounding e+ects between the envi-
ronmental divers of changes in body size in this species and
their interaction with the diverse range of life history strate-
gies.

To analyze these data, we developed two novel statistical
methods. First, we developed a new algorithm to categorize
variation in trends of size-at-age between populations over
time. This approach is similar in spirit to dynamic factor
analysis (DFA) (Zuur et al. 2003), in that the model identifies
groups or “clusters” of populations that experienced similar
trends in length-at-age over time but aims to make an im-
provement in interpretability over DFA by uniquely assign-
ing each population to a latent trend. Second, we developed
a state-space modeling approach to identify factors that may
influence the observed trends in size-at-age, leveraging infor-
mation between cohorts overlapping in their ocean residency
to identify the e+ects of interannual variation in ocean condi-
tions on growth. These two methodological advances in com-
bination with the long-term tagging data allow us to produce
novel insights into the processes that govern the changes in
size-at-age in Chinook salmon populations.

Methods

Data

Length-at-age data

We analyzed observations of length-at-age of coded wire
tagged (CWT) hatchery-origin Chinook salmon from the
Columbia River basin and coastal Washington and Oregon
recorded in the Regional Mark Information System (RMIS)
(www.rmpc.org). The data set includes information on groups
of fish at the point of release (release date, size, and location)
and when individuals from this group are recovered as adults
at hatcheries and in escapement surveys. Summary statistics
describing the stocks included in that analysis are provided
in Supplementary Materials 1. To analyze changes in length-
at-age, we matched the observations of releases and recover-
ies by tag code to link the observed length of the adult fish
(fork length) to its release location and date as well as life
history characteristics. Age is defined as the year of recap-
ture minus the brood year. We restricted our analysis to in-
dividuals that were released from the Columbia River Basin
or coastal Washington and Oregon that had non-missing val-
ues for sex and fork length. Furthermore, we restricted our
analysis to observations of fish recovered in hatcheries or on
spawning grounds to avoid issues with gear selectivity from
marine and freshwater fisheries. A full list of sampling meth-
ods used to recover the individuals included in our study is
given in Table S1.2. Including multiple sampling methods in
our data could bias the observed trends if the frequency of
each method changes over time. However, we found limited
evidence for size selectivity between the sampling methods
included in our analysis of length-at-age (Fig. S2.2). Further-
more, the frequency of each sampling method was largely
consistent over the study period (Fig. S2.1).

We assigned all individual observations (n = 1 406 913) to
groups that we refer to as stocks based on their adult run tim-
ing (spring, summer, fall, and late fall), sex, the age of release
from the hatchery (1 or 2), and the RMIS basin from which
they were released. We restricted our analysis to stocks and
years for which there were at least (n = 10) observations so
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that we could compute both the sample mean and standard
error for the group. In addition, we omitted stocks with fewer
than 15 years of length-at-age data.

Ocean distribution index

We expect variation in the trends in length-at-age of each
stock to depend in part on ocean distribution. Because many
stocks in our analysis have a di+erent ocean distribution
(Weitkamp 2010; Shelton et al. 2019), ocean distribution in-
dices (ODI) were constructed by compiling the CWT recov-
eries for each stock in marine fisheries. We then restricted
the samples to fish recovered at least 2 years after release
and computed the mean latitude of the observations. Some
observations were missing precise geographical coordinates
and were instead reported by fishery areas; we assigned coor-
dinates to these cases based on the mean latitude of catches
in the fishery area. This assumption has little e+ect on the
final index (Fig. S3.1).

The ODI aggregates observations across age classes and be-
tween years to generate a single value for each stock. This
procedure is well-motivated because the distributions of Chi-
nook salmon are known to be relatively stable across years
(Weitkamp 2010; Shelton et al. 2021). However, several po-
tential sources of bias need to be considered. The ocean
distribution of Chinook salmon changes across age classes,
with younger fish remaining closer to their river of origin
(Weitkamp 2010). Because ODI aggregates across age classes,
di+erences in the age composition of samples for each stock
will a+ect its value. In general, the age compositions of the
samples were similar, but some stocks had larger numbers
of fish younger ocean ages (Fig. S3.1). To test the e+ects of
these di+erences on the ODI, we calculated a new index us-
ing only samples with ocean age three (the most common age
class). This alternative index was highly correlated with the
ODI (0.933), indicating that the e+ects of age composition are
likely to be small.

Furthermore, because the ODI is based on fishery-
dependent data, it is sensitive to the distribution of fishing ef-
fort across space during the study period. Despite this, we do
not attempt to correct of sampling e+ort. Our goal is to under-
stand the di+erences in ocean distribution between stocks.
If each stock is sampled with the same distribution of fish-
ing e+ort, di+erences in the ODI between stock will reflect
di+erences in their ocean distribution. However, biases may
still arise when two conditions hold (1) the distribution of
sampling (fishing) e+ort changes over time and (2) the fre-
quency of observations between years varies for each stock
(Fig. S3.3). To test the e+ects of variable fishing e+ort, we con-
structed an index that only used samples from 1979 to 1994,
because fishing e+ort is thought to have been stable over this
period (Weitkamp 2010). There was a strong correlation be-
tween this index and ODI (0.916), suggesting any bias caused
by changes in fishing e+ort over time is small.

Environmental covariates

To identify factors that may be driving the observed trends
in length-at-age over time, we analyzed the relationship

between length-at-age and eight indices of biotic and abi-
otic ocean conditions that have previously been considered
as drivers of changing salmon sizes. These indices include
both large-scale oceanographic and atmospheric conditions
in the Northeast Pacific Ocean and the abundance of poten-
tial competitors. We considered five climate indices: (1) the
Pacific Decadal Oscillation (PDO; Zhang et al. 1997), which
is the first principal component of North Pacific sea sur-
face temperature anomalies, (2) the North Pacific Gyre
Oscillation (NPGO; Di Lorenzo et al. 2008), which is the
second principal component of sea surface height anomalies
in the North Pacific, (3) the Aleutian Low-Pressure Index (ALPI;
Surry and King 2015) which describes the state of the Aleutian
Low, a semi-permanent atmospheric low-pressure system in
the central North Pacific, (4) the multivariate El-Nino Index
(Kobayashi et al. 2015), (5) the North Pacific Current bifurca-
tion index (BI; Malick et al. 2017) which describes latitudinal
shifts in the North Pacific Current, and (6) SST-arc (Johnstone
and Mantua 2014) which describes sea surface temperature
(SST) anomalies in the Northern California Current and Gulf
of Alaska. In addition to these indices of abiotic conditions,
we included two indices of pink salmon (Oncorhynchus gor-
buscha) abundance, because pink salmon have been identi-
fied as potential competitors with Chinook (Ruggerone and
Nielsen 2004; Connors et al. 2020). We used estimates of total
pink salmon run size (i.e., catch plus escapement) from all
large populations in Washington State and the Fraser River
as a proxy for abundance in the Northern California Current
(Litz et al. 2021) and estimates of Pink salmon abundance in
North America from (Ruggerone and Irvine 2018) extended
through 2020 using data from (Ruggerone et al. 2021) as a
proxy for abundance in the Gulf of Alaska. All environmen-
tal indices available on sub-annual increments were averaged
to the calendar year. We standardized each of the indices to
have a mean of zero and variance one. The time series and
covariance matrix of these indices are shown in Fig. 1.

Cluster analysis: identifying stock groupings
and trends

Overview

To understand how changes in size-at-age di+er across pop-
ulations of Chinook salmon, we developed a novel clustering
algorithm to identify groups of stocks with similar trends in
body size through time. We used the mean length of 4-year-
olds from each brood year to characterize trends in size-at-age
for each stock. Age four was chosen because it is the most
common age at maturation for the stocks included in our
study and comprised the largest number of observations in
our data set. Our clustering approach is similar to conven-
tional unsupervised clustering approaches (e.g., k-means clus-
tering; MacQueen 1967) and allowed us to identify groups
or “clusters” of stocks with similar trends in length-at-age
without making any explicit assumptions about the biolog-
ical processes that cause the trend. We then compared the
characteristics of the stocks in each cluster to identify biolog-
ical characteristics that may cause the observed di+erences in
the trends. This approach allows our analysis to uncover all
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Fig. 1. (A) time series of each index of environmental conditions included in the analysis. (B) Covariance matrix of the indices
over time.

the common patterns of length-at-age observed in our data
set, regardless of whether they are caused by observed or un-
observed characteristics of each stock.

Time series

We defined a time series describing changes in size for each
stock by computing the average length-at-age four from each
brood year. To control for di+erences in average length be-
tween stocks, we subtracted the mean length for each stock.
Each time series was then divided by the standard deviation
of length-at-age across all stocks, a step which only changed
the scaling of the time series, not the di+erences between
them. We calculated trends for stocks that had su,cient data
(10 or more observations) to estimate the mean length-at-age
in 20 years spanning a 25-year period; stocks meeting these
criteria are listed in Table 1. All years were given equal weight
in the analysis regardless of the number of observations avail-
able. Four data points appeared to be outliers (exceeded 4
standard deviations from mean length-at-age); these points
were removed, and a sensitivity analysis demonstrated that
omitting these points did not change our findings (Fig. S7.1).

Algorithm

We identified groups of stocks with similar time series
using a modified version of the k-means clustering algo-
rithm. The k-means algorithm identifies groups of observa-
tions within a data set, such that the Euclidean distance
between observations within a group is minimized. In the
standard k-means algorithm, each observation is defined
as a set of real-valued measurements arranged into a d-
dimensional vector. In our application, each observation cor-
responds to a stock and each of the d-dimensions describes
a year in the time series. Observations are assigned to one
of k clusters through an iterative process. To initiate the al-
gorithm, observations are randomly assigned to one of the

k clusters. Then, a two-step process begins; (1) for each of
the clusters, the mean value of observations in each of the
d-dimensions is calculated and (2) each observation is then re-
assigned to the cluster with the most similar mean values as
measured by the mean squared error (MSE). These two steps
are repeated iteratively until no observations change their as-
signment in step 2.

We modified this basic approach to accommodate missing
data and to increase its sensitivity to a long-run trend in size
by estimating the mean length-at-age for each cluster with a
smoothing function. The smoothing function for each clus-
ter was estimated by fitting a generalized additive model de-
scribing the relationship between the size-at-age time series
and brood year for each cluster using the mgcv R package
(Wood 2011). Observations were then reassigned to clusters
based on the MSE between the observed value of the time se-
ries for each stock and the smoothing trend for each cluster.
This modified algorithm was implemented in the R program-
ming language (R Core Team 2022), and pseudo-code for the
algorithm can be found in Supplementary Materials 4.

Relationships between life history and cluster
assignments

To answer our second question (are there life history
characteristics or other traits that underlie the di+erences in
trends between population groups?), we analyzed relation-
ships between the groupings identified by the clustering anal-
ysis and the life history characteristics of each population.
We identified the relative importance of life history charac-
teristics and the geographic region of the stock for predicting
cluster assignment using a random forest classification algo-
rithm implemented in the R “randomForest” package (Liaw
and Wiener 2002). Random forest was used over parametric
regression techniques because of the flexibility in includ-
ing complicated interactions and allowing for nonlinear
relationships. Specifically, we fit a model that predicted clus-
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Table 1. Characteristics of each stock included in the analysis.

Name
Regression

model group Cluster Run
Release

age ODI Sex Release region Release basin
Brood year

range

WILL Spring.1(F) 1 1 Spring 1 53.2 F Lower Columbia River WILL 1978–2013

WILL Spring.1(M) 1 1 Spring 1 53.2 M Lower Columbia River WILL 1978–2013

TILN Spring.1 (F) 1 3 Spring 1 50.0 F Northern Oregon TILN 1982–2013

UPSK Spring.1 (F) 1 1 Spring 1 50.1 F Skagit River UPSK 1985–2013

TILN Spring.1 (M) 1 3 Spring 1 50.0 M Northern Oregon TILN 1982–2013

UPSK Spring.1 (M) 1 1 Spring 1 50.1 M Skagit River UPSK 1985–2013

STIL Summer.1 (F) 1 1 Summer 1 50.6 F Northern Puget Sound STIL 1987–2013

STIL Summer.1 (M) 1 3 Summer 1 50.6 M Northern Puget Sound STIL 1987–2013

SIYA Fall.1 (F) 1 3 Fall 1 53.1 F Northern Oregon SIYA 1978–2013

SIYA Fall.1 (M) 1 3 Fall 1 53.1 M Northern Oregon SIYA 1978–2013

LEWI Fall.1 (F) 1 3 Fall 1 51.0 F Lower Columbia River LEWI 1976–2013

MNPR Fall.1 (F) 1 3 Fall 1 52.6 F Upper Columbia River MNPR 1976–2013

QUHO Fall.1 (F) 1 3 Fall 1 53.6 F Washington Coast QUHO 1984–2013

SAWA Fall.1 (F) 1 3 Fall 1 52.7 F Lower Columbia River SAWA 1976–2013

TILN Fall.1 (F) 1 3 Fall 1 53.8 F Northern Oregon TILN 1982–2013

WILR Fall.1 (F) 1 3 Fall 1 53.3 F Willapa Bay WILR 1982–2013

LEWI Fall.1 (M) 1 1 Fall 1 51.0 M Lower Columbia River LEWI 1976–2013

MNPR Fall.1 (M) 1 3 Fall 1 52.6 M Upper Columbia River MNPR 1976–2013

QUHO Fall.1 (F) 1 3 Fall 1 53.6 M Washington Coast QUHO 1984–2013

SAWA Fall.1 (M) 1 3 Fall 1 52.7 M Lower Columbia River SAWA 1976–2013

TILN Fall.1 (M) 1 3 Fall 1 53.8 M Northern Oregon TILN 1982–2013

WILR Fall.1 (F) 1 3 Fall 1 53.3 M Willapa Bay WILR 1982–2013

SAND Late Fall.1 1 3 Late Fall 1 53.4 F Lower Columbia River SAND 1979–2012

UMAT Late Fall.1 (F) 1 3 Late Fall 1 52.7 F Central Columbia River UMAT 1982–2012

SAND Late Fall.1 (M) 1 3 Late Fall 1 53.4 M Lower Columbia River SAND 1979–2012

COWL Fall.1 (F) 2 1 Fall 1 49.2 F Lower Columbia River COWL 1976–2013

GREL Fall.1 (F) 2 2 Fall 1 48.9 F Lower Columbia River GREL 1976–2012

WIND Fall.1 (F) 2 1 Fall 1 47.7 F Lower Columbia River WIND 1976–2012

YOCL Fall.1 (F) 2 2 Fall 1 46.3 F Lower Columbia River YOCL 1976–2012

COWL Fall.1 (F) 2 3 Fall 1 49.2 M Lower Columbia River COWL 1976–2013

GREL Fall.1 (F) 2 2 Fall 1 48.9 M Lower Columbia River GREL 1976–2011

WIND Fall.1 (F) 2 2 Fall 1 47.7 M Lower Columbia River WIND 1976–2012

YOCL Fall.1 (F) 2 2 Fall 1 46.3 M Lower Columbia River YOCL 1976–2012

WILL Spring.2 (F) 3 1 Spring 2 52.9 F Lower Columbia River WILL 1978–2013

WILL Spring.2 (M) 3 1 Spring 2 52.9 M Lower Columbia River WILL 1977–2013

PRGC Summer.2 (F) 3 1 Summer 2 52.1 F Upper Columbia River PRGC 1976–2013

MEOK Summer.2 (M) 3 1 Summer 2 52.6 M Upper Columbia River MEOK 1976–2013

PRGC Summer.2 (M) 3 1 Summer 2 52.1 M Upper Columbia River PRGC 1976–2013

UMAT Late Fall.2 (F) 3 3 Late Fall 2 51.3 F Central Columbia River UMAT 1983–2011

UMAT Late Fall.2 (M) 3 1 Late Fall 2 51.3 M Central Columbia River UMAT 1983–2011

COWL Spring.2 (F) 4 1 Spring 2 48.9 F Lower Columbia River COWL 1976–2013

DESC Spring.2 (F) 4 1 Spring 2 48.5 F Central Columbia River DESC 1977–2013

GRIA Spring.2 (F) 4 1 Spring 2 48.6 F Snake River GRIA 1983–2013

UPSK Spring.2 (F) 4 1 Spring 2 49.3 F Skagit River UPSK 1981–2010

COWL Spring.2 (M) 4 1 Spring 2 48.9 M Lower Columbia River COWL 1976–2013

DESC Spring.2 (M) 4 1 Spring 2 48.5 M Central Columbia River DESC 1977–2013

GRIA Spring.2 (M) 4 1 Spring 2 48.6 M Snake River GRIA 1982–2013

UPSK Spring.2 (M) 4 1 Spring 2 49.3 M Skagit River UPSK 1981–2010

Note: The far-left column “Regression model groups” defines the life history group the stock was included in for the regression analysis. For this analysis
stocks were divided based on the release age and ocean distribution index. The column “Brood year range” indicates the first and last brood year for which
length at age data was available.
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ter
assignment based on the ODI, migration timing, release
type, and release region. Each variable included in the cat-
egorization model is listed in Table 2. The “importance” of
each variable in the fitted model was measured by mean
decreasing Gini (Liaw and Wiener 2002). To visualize these re-
lationships in the data, we plotted the correlations between
life history traits and cluster assignments in Fig. 2.

Growth increment model

Model overview

To identify factors that may cause the observed trends in
size over time, we developed a model to estimate the cor-
relation between indices of environmental conditions and
growth. One di,culty of modeling the e+ect of abiotic condi-
tions on growth is that observed length-at-age represents the
integrated e+ects of the environment over the life of an indi-
vidual, so a simple correlation between a lagged environmen-
tal variable and length-at-age may be misleading. Instead, we
developed a model that takes advantage of the fact that over-
lapping cohorts experience the same ocean conditions for
part of their life span to identify the e+ect of ocean condi-
tions on growth each year. That said, because individuals are
only measured once, our results may also reflect changes in
size-dependent maturation or mortality. However, we assume
such confounding e+ects are similar across years, allowing us
to identify years with faster or slower growth.

Our growth model estimates a latent process that describes
the mean length of each cohort as they grow between years.
The growth rate of each cohort in any given year is taken
to be the product of a year-specific factor that describes the
quality of ocean conditions gt and an age-specific factor fa that
accounts for slower growth rates as the fish age. The observa-
tion model accounts for sampling errors and size-selective ef-
fects of di+erent sampling methods. The correlation between
environmental indices and growth is estimated by modeling
the year-specific e+ects gt as a linear function of the environ-
mental indices.

Model details

Process model
The process model describes the average length l̂s,a,y of a

fish of age a born in year y from stock s released at age ar. We
assume that ls, a, y is defined as the sum of the initial length
ls, 0, y − a, and annual growth increments, which are taken to
be the product to an age (f) and year-specific factor (g)

ls,a,y = l̂s,0,y−a +
∑a

i=ar
fs,igs,y−a+i(1)

We assume that the age-specific factors are a linearly de-
creasing function of age

fa = (1 − αsa)(2)

where α ∈ (0,1/amax). The year-specific factors are a linear
function of the environmental indices Xt, and autocorrelated

process errors εs,t

gs,t = b0,s + b1,sXt + εs,t(3)

We assume that all process errors εs,t follow an auto regres-
sive process (AR1) independent between stocks with stock-
specific coe,cient ρs.

Observation model
The observation or data model links predictions of mean

length-at-age of a cohort to the individual measurements of
length that we observe. We assume that the length of indi-
viduals is normally distributed, with a constant variance for
each stock and age combination across years but we allow
for di+erent variances across stocks and ages. We assume
that the sampling process may be size-selective and repre-
sent the selectivity with fixed e+ects (Fgear) for the sampling
methods used to collect the individual. We also include fixed
e+ects for each age class to account for size-dependent mat-
uration. Given these assumptions, the length of individual
i from stock s of age a in cohort y is li,s,a,y is given by

li,s,a,y ∼ N
(
ls,a,y + FEage + FEgear, σs,a

)
.(4)

To increase the e,ciency of the estimation algorithm, we
fit the model to the mean length of individuals from each
combination year, age, stock, and sampling method. In addi-
tion to calculating the estimated mean lengths l̂s,a,y,g, we also
calculated the standard error σ̂s,a,y,g = σs,a√

Ns,a,y,g
, where Ns,a,y,g is

the number of individuals in the sample to account for sam-
pling variance. Finally, we include an overdispersion term
σ disp to account for observation errors not associated with
the statistical sampling process

l̂s,a,y,g ∼ N
(
ls,a,y + FEage + FEgear, σ̂s,a,y,g + σdisp

)
.(5)

Model fitting

To analyze the e+ect of the environmental indices on
growth, we separated the data into four groups based on life
history characteristics. These life history groups were formed
by separating the stock into two groups based on the age at
release from the hatchery (age 1, 2) and then dividing each
of these groups again based on the ODI, yielding four groups.
We used an ODI of 50.0 as a cuto+ between stocks with north-
ern and southern distributions. These groupings were chosen
because our cluster analysis indicated that stocks with di+er-
ent ocean distributions and release ages exhibited di+erent
trends in size-at-age. Run timing also predicted the di+erence
in trends between stocks. We chose to group to the stocks by
release age rather than run timing because these two traits
are highly correlated; summer and spring run stocks gener-
ally released at age two and fall and late fall released at age
one. Release age provided a simple binary representation of
the e+ect of these life history characteristics on the trends in
length-at-age.
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Table 2. Variables included in the random forest model.

Variable name Interpretation Values

ODI The ocean distribution index, defined by the mean
latitude of CWT recoveries in the marine environment

Min: 45◦Max: 55◦

Run timing Timing of spawning migration Spring, summer, fall, late fall

Release age The age of release from the hatchery 1, 2

Interior Indicator variable for stocks from the Columbia River
basin

True, False

RMIS region Geographic region of origin for the stock CECR, LOOR, NOOR, NWC, SKAG, SNAK, UPCR, NPS,
WILP

Fig. 2. Results from cluster analysis. Time series of length-at-age four for each cluster of stocks (A), variable importance from
random forest classification algorithm (B), and association of ocean distribution (C), run timing (D), and freshwater residence
(E) with cluster assignment.

The life history group for the stocks included in the clus-
ter analysis is listed in Table 1. For each group, we calcu-
lated the sample mean and variance for each stock, age, year,
and sampling method combination. We fit the model to each
group of stocks independently using Bayesian inference im-
plemented with Hamiltonian Monte Carlo (HMC) using the
Stan modeling language via the R package “rstan” (Stan De-
velopment Team 2020). Priors for this analysis are given in
Table S5.1. The HMC runs were checked for convergence us-
ing the “shinystan” package (Stan Development Team 2017).
We used visual diagnostics to ensure mixing between the
HMC chains and R̂ statistics to ensure samples would pro-
vide accurate quantile estimates (Stan Development Team
2020).

We initially fit a model with all covariates and a second
model that excluded SSTarc because of high correlations be-
tween it and PDO (Fig. 1). Initial model results showed sig-
nificant relationships between growth and BI for several of
the run groupings. To better understand this relationship, we
fit a model that included NPGO, BI, and an interaction term
between these two variables. The mechanism that links the
BI to productivity is hypothesized to interact with the NPGO
(Malick et al. 2017).

Results

How do changes in size-at-age di+er across
populations of Chinook salmon?

We found at least three distinct trends in size-at-age across
the 48 stocks included in our analysis. These included a clus-
ter of stocks that showed a consistent declining trend across
all years included in the study (Fig. 2A cluster 3), one cluster
with an oscillating pattern that has a minimum in the late
1990s and again in the 2010s (Fig. 2A cluster 2), and a third
group of stocks that exhibited less variation in length-at-age
over time (Fig. 2A cluster 1). These three patterns are con-
sistent with long-run declines in the average size across the
study region documented previously (Ohlberger et al. 2018),
but they provide a more nuanced picture. There is substantial
heterogeneity in the trends of size-at-age between stocks, and
the consistencies within these heterogeneous responses indi-
cate that multiple causal mechanisms may be at work. How-
ever, it is notable that all three patterns we identify show a
decline in length-at-age starting between 2000 and 2010 and
continuing until the end of the time series.

To test if the three trends we identified were su,cient to
describe the observations in our data set, we used the same
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modeling procedure with k = 2, 4, and 5 clusters. Cluster as-
signments (Fig. 3) change substantially between k = 2, k = 3,
and k = 4, but less so when a fifth cluster was added. Increas-
ing the number of clusters from two to three resulted in a
greater improvement in model fit than the increase from
three to four clusters, providing support for the choice of
k = 3 (Fig. S6.1). To ensure our conclusions are robust to this
modeling choice, Supplementary Materials S.6 recreates the
results presented in Fig. 2 for k = 2 and k = 4. We find sim-
ilar trends are identified when additional clusters are added
to the analysis and that the correlations between life history
characteristics and the cluster assignment of each stock are
robust to this choice as well.

Are there life history characteristics or other
traits that underlie the di+erences in trends?

We found that the cluster assignments corresponded with
the ocean distribution and life history characteristics of each
stock. We used a random forest classification algorithm to
identify whether life history characteristics, ocean migra-
tions, or the freshwater region best predicted the popula-
tion’s trend in length-at-age. The classification algorithm had
an out-of-bag error rate (the estimated probability that the
model will incorrectly assign an observation) of 29%, indi-
cating that the life history characteristics and ocean dis-
tribution contained a substantial amount of information
about the trends in length-at-age. The ODI and run tim-
ing had the highest variable importance scores (Fig. 2B).
The importance of ocean distribution along with run tim-
ing indicated that both hypotheses might be true: pop-
ulations with di+erent marine distributions presumably
experience di+erent changes in conditions and di+erent
trends in size, and populations with di+erent life histories
(i.e., hatchery run timing, which is strongly correlated with
hatchery release age) respond di+erently to the same changes
in conditions.

To further support these inferences, we plotted the rela-
tionships between group assignment and ocean distribution,
run timing, and hatchery release age (Figs. 2C–2E) This more
detailed analysis indicated that the ODI predicted whether
a population experienced a long-run decline (cluster 3) or
the oscillating trend (cluster 2), with populations with more
northerly distribution experiencing long-run declines. In ad-
dition to run timing, release age predicted the strength of
the trends in length-at-age. Spring run stocks and stocks
with release age two were primarily assigned to cluster one,
which exhibited the more stable trend in size-at-age. How-
ever, it should be noted that run timing and release age are
correlated with spring and summer run stocks more likely
to be released at age two; therefore, it is di,cult to deter-
mine which of these two factors causes the di+erences in
trends.

What factors underlie the observed trends in
length-at-age?

Our regression analysis showed that each of the stock
groups had distinct responses to variation in the environ-
mental indices (Fig. 4). However, three groups exhibited

positive responses to the BI and negative responses to the
Alaska pink salmon index. The two northern groups had par-
ticularly strong relationships with the Alaska pink salmon
index, while the southern ocean distribution group (release
age one) had a particularly strong positive correlation with
the BI. In addition to these two main patterns, there was a
consistently negative relationship between the El-Nino index
and growth for all groups. We also found a negative associ-
ation between Washington pink salmon abundance and the
northern release age two stocks and a positive relationship
between NPGO and growth for the release age two southern
groups. However, the widths of the credible intervals likely
overstate the amount of evidence for each of these relation-
ships given the large number of hypotheses tested in this
analysis (7 × 4 = 28), and the strong assumptions about
the functional form of the e+ects of ocean conditions on
growth made in our state-space model. However, the results
are consistent with the hypothesis that interspecific compe-
tition with pink salmon a+ects growth, and that growth is
a+ected by inter-annual variation in productivity driven by
the bifurcation of the North Pacific Current.

The correlation between the BI and growth is consistent
with patterns of recruitment in sockeye, pink, and chum
salmon populations (Malick et al. 2017). The putative mecha-
nism linking the productivity of salmon populations to this
environmental index is variation in the horizontal transport
of nutrients in the northern portion of the California cur-
rent. This process is also a+ected by NPGO-like variation in
the North Pacific Current. To further analyze this mecha-
nism, we fit models including NPGO, BI, and their inter-
action to length-at-age data for the two life history groups
with southern-ocean distributions. We focused on these two
groups because prior work has shown that the e+ect of these
processes is stronger for stocks in this region (Malick et al.
2017). We found positive associations between growth and
the BI and NPGO for both groups. However, the e+ect of NPGO
was weak for the release age one stocks. The e+ect of the
interaction between these variables was weak in both cases
(Fig. 5).

Robustness tests

The growth increment model assumes that variations in
ocean conditions have the same e+ect on growth across all
ages within a stock grouping. Although it is very likely that
some factors a+ect all age groups similarly, there may also be
age-specific responses to changes in ocean conditions caused
by ontogenetic niche shifts. In Supplementary Materials S.8,
we include two alternative models which relax this assump-
tion by (1) including random e+ects for each age cohort and
(2) including process errors into the growth equations for
each cohort. Results from these analyses are shown in Fig.
S8.1 and do not change the qualitative nature of the find-
ings presented in the main text. The model also assumes that
the age-specific component of the growth increments fa de-
clines linearly with age (eq. 2). We constructed an alterna-
tive model with a more flexible relationship between growth
rate and age and again found qualitatively similar results
(Fig. S8.2).

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

C
al

if 
D

ig
 L

ib
 - 

D
av

is
 o

n 
02

/1
0/

23

http://dx.doi.org/10.1139/cjfas-2022-0116


Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 00: 1–15 (2023) | dx.doi.org/10.1139/cjfas-2022-0116 9

Fig. 3. The cluster assignments of each stock for k ∈ {2,3, 4,5}. The “probability” on the y-axis is calculated by taking the
log-sum-exponential of the mean squared distance of each stock’s time series to the trend from each cluster.

Discussion

Our study asks three primary questions: (1) How do
changes in size-at-age di+er across populations of Chinook
salmon in the Pacific Northwest? (2) Are there life history
characteristics or other traits that underlie the di+erences
in trends? And (3) What factors may be causing populations
to respond di+erently to the same changes in environmen-
tal conditions? Results from our analysis provide evidence of
at least three distinct trends of size-at-age across the popula-
tions included in our study, suggesting that there are discrete
sets of mechanisms that drive the observed patterns. The dif-
ferences in trends between stocks were associated with dif-
ferences in ocean distribution; stocks with more northerly
ocean distributions had qualitatively distinct trends from
other stocks. Our analysis also identified additional variation
between stocks with similar ocean distributions that was cor-
related with life history characteristics. These findings sug-
gest that di+erences in trends of size-at-age between stocks
are primarily driven by exposure to di+erent environmen-
tal conditions due to di+erences in ocean distribution, and
the relative use of freshwater and the marine environment
through their life cycle.

Although these findings appear to be robust, it is unknown
how well they generalize from the hatchery stocks included
in our study to wild conspecifics. Hatchery and wild origin
fish from the same populations exhibit similar ocean dis-
tributions (Weitkamp 2010) and therefore may experience
similar ocean conditions. However, the impacts of other life
history characteristics identified in our study seem less likely
to generalize to wild origin populations. Like their hatchery

counterparts, wild Chinook salmon migrate to the ocean in
either their first (ocean types) or second year of life (stream
type). However, during the period of freshwater residence,
they experience very di+erent conditions living in the natu-
ral environment. This may not matter if growth is dominated
by the marine phase of the life cycle; however, there might
be legacy e+ects from this early life phase that set wild origin
fish on a distinct growth trajectory.

We were unable to fully resolve question 3: identifying
the processes that are driving the trends in length-at-age.
Our state-space regression model indicated several possible
mechanisms, including the e+ects of competitors and ocean
conditions, but there are several limitations to this type of
analysis. First, time-series correlation analyses tend to have
limited statistical power because the size of the data sets is
inherently limited to the length of the study period (Pyper
and Peterman 1998). In our case, we had 35 years of data
on salmon growth to compare with inter-annual variation in
ocean conditions. Also, our environmental indices are only
proxies for the hypothesized causal mechanisms and do not
measure them perfectly. This limits the amount of varia-
tion that can be explained by the model because the esti-
mated e+ect of the indices is expected to be smaller than the
true e+ect of the underlying biological process due to the er-
rors in variables bias (Walters and Martell 2004). Finally, our
state-space modeling approach assumed a specific structural
relationship between interannual environmental variability
and size-at-age, although the qualitative nature of our results
does seem to be robust to relaxing core assumptions (Sup-
plementary Materials section 5). All of these factors limit the
strength of evidence that can be produced by our analysis
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Fig. 4. Posterior distribution of the coe,cients between growth of each stock grouping (columns) and the environmental
indices (rows). The vertical dashed marks the origin on each plot and the stars indicate the overlap between the posterior
distribution and the origin (∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001).

for any given hypothesis. Furthermore, our analysis focused
on potential bottom-up e+ects on the size-at-age of Chinook
salmon and did not account for possible top-down mech-
anisms (e.g., Ohlberger et al. 2019; Manishin et al. 2021).
Because of these limitations, it is important to consider our
findings in the context of prior work on the topic and other
forms of evidence.

Evidence for oceanographic processes
Di+erent responses to interannual variation in abiotic

ocean conditions are a possible explanation of the di+erences
in trends in size-at-age between populations we identified in
our analysis. The productivity of salmon populations varies
along the west coast due to distinct oceanographic regimes in
the California Current, Gulf of Alaska, and the transition zone
in between. Primary productivity in these regions is partly
controlled by variability in the North Pacific Current, which
a+ects upwelling and downwelling in the California Current
and Gulf of Alaska and through horizontal transport of nu-
trients (Mantua et al. 1997; Malick et al. 2017). Prior studies
have found that interannual variation in the growth of Chi-
nook salmon in the Gulf of Alaska, Puget Sound, and Central
California was driven by di+erent oceanographic processes

(Wells et al. 2008). This variation in productivity regimes
could contribute to the di+erence in trends in size-at-age
between populations with northern versus more southerly
ocean distributions.

Consistent with this idea, we found positive relationships
between growth and the BI. This index is associated with
horizontal transport of nutrients caused by interannual
variation in the North Pacific Current, which a+ects pro-
ductivity in the transition region between the California
Current and the Gulf of Alaska. This relationship is consistent
with the productivity of pink, chum, and sockeye salmon in
the same region (Malick et al. 2017). Other physical oceano-
graphic processes may play a role; we found consistently
negative (though not statistically significant) relationships
between growth and El Nino conditions and consistent with
Wells et al. (2006) a positive relationship between NPGO and
size-at-age for one population groupings. However, the rela-
tionships between growth and abiotic conditions were rela-
tively similar across the life history groups, including those
with di+erent ocean distributions (Fig. 4). This may suggest
that variation in abiotic conditions has a limited ability to
explain the observed di+erences in trends in size between
stocks.
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Fig. 5. Posterior distribution for the e+ect of NPGO, BI, and their interaction on the growth of the two southern stock groupings.

An alternative explanation for the apparent lack of di+er-
ences reflects our data and modeling choices. Because we
modeled length, our analysis implicitly gives more weight
to the e+ect of conditions early in the life cycle when indi-
viduals experience the greatest increases in length. The dif-
ferences in ocean distribution between the stocks are the
smallest during this phase of the life cycle (Weitkamp 2010),
potentially explaining the observed similarities in regression
coe,cients. Our choice to model lengths may also a+ect our
estimates of the e+ect of competition with pink salmon,
which has been shown to be stronger later in the life cycle
of other salmon species (Ruggerone et al. 2007, 2016).

Importantly, the climate indices included in our analysis
cannot explain the long-run declining pattern observed in
the stocks with northerly ocean distributions. This does not
rule out bottom-up oceanographic processes as a causal factor
because the oceanographic indices are only proxies for fac-
tors like prey availability and temperature that directly a+ect
growth. Furthermore, the indices included in our analysis do
not exhaustively describe variation in abiotic conditions in
this region, and some additional or unknown processes may
also influence growth. However, other explanations may still
be more appropriate. For example, consistent with Lewis et
al. (2015) and Ohlberger et al. (2019), we found the declin-
ing trend in length-at-age was steeper for older age classes in
these population groupings. These trends could imply that
there are age-specific factors not accounted for in our anal-
ysis causing poor growth conditions for older individuals in
these populations, but it is also consistent with the top-down
mechanisms discussed below.

Pink salmon
Our regression model provided evidence for an e+ect of

pink salmon abundance on the growth of Chinook salmon

in each of the population groupings. All estimated e+ects
were negative, which is consistent with the expected result
of competition. However, the index of Alaska pink salmon
abundance showed consistent increasing trends over time;
thus, any correlations may be the result of the match of
these long-run trends rather than an underlying causal re-
lationship. Despite these limitations on our ability to mea-
sure the e+ect of pink salmon, there is substantial evidence
for interspecific competition between salmonids in the ma-
rine environment a+ecting growth, survival, and matura-
tion (Ruggerone and Nielsen 2004; Shaul and Geiger 2016;
Cunningham et al. 2018; Litz et al. 2021). Pink salmon are
likely to have the largest competitive e+ects due to their high
abundance and possible competitive dominance (Ruggerone
and Nielsen 2004), but their e+ects may also simply be eas-
ier to measure because of their 2-year cycles in abundance.
Furthermore, much of the evidence for competition with
pink salmon comes from chum, sockeye, and coho salmon
(Ruggerone and Goetz 2004; Oke et al. 2020; Claiborne et al.
2021), only providing indirect support of competitive e+ects
on Chinook. However, there is direct evidence for competi-
tion between pink salmon and Chinook salmon during early
life stages (Kendall et al. 2020), and Chinook salmon have di-
etary overlap with pink salmon that are in the second year
of their life cycle (Davis 2003; Davis et al. 2009). Dietary over-
lap with pink salmon has been shown to a+ect the growth
of coho salmon in the Gulf of Alaska, and similar processes
could a+ect the growth of Chinook (Shaul and Geiger 2016).

Top-down mechanisms
The processes discussed in the previous sections implicitly

attribute the observed changes in average length-at-age to
changes in growth. However, size-dependent mortality can
also explain changes in the average size of a population.
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There are several potential sources of size-dependent natural
mortality in salmon populations. First, because salmon die
after spawning, changes in size-dependent maturation pat-
terns could result in changes in size at the population level.
For example, if faster growing individuals within the popu-
lation begin maturing at earlier ages the individuals left in
the population reaching older age classes will on average be
smaller. For this process to produce a trend in size-at-age,
there would need to be a mechanism driving changes in mat-
uration rates. This could be caused by changes in hatchery
practices, which have resulted in larger individuals being re-
leased from the hatchery over time (Nelson et al. 2019), which
could, in turn, cause earlier maturation. Similarly, interspe-
cific competition has also been shown to change maturation
schedules in salmonids (Cline et al. 2019).

Other sources of size-dependent mortality for salmon in-
clude predation (Woodson et al. 2013) and fisheries (Kendall
et al. 2009). Increases in size-selective harvest or predation
would cause a decline in average size within age classes and
a truncation of the age distribution by removing larger and
older individuals from the population. These e+ects can be
augmented by adaptation of slower growth rates and faster
maturation rates to avoid predation. Changes in harvest rates
over the time period considered in our study are not con-
sistent with this hypothesis (Ohlberger et al. 2018), but the
observed changes in size and age structure of the popula-
tion can be accounted for by increased predation by ma-
rine mammals, particularly Northern Resident killer whales
(Ohlberger et al. 2020). This explanation would match three
distinct features of our observations. First, the populations
with the sharpest declines in size-at-age exhibit sharper de-
clines among older age groups. These populations also ex-
hibit a change in age structure consistent with increases in
size-dependent natural mortality (Ohlberger et al. 2019), and,
as we show, populations with greater spatial overlap with
coastal populations of fish-eating whales (i.e., more northerly
distributions) show the largest declines in size-at-age. Finally,
we observe that spring and summer run populations, which
are smaller on average for a given total age, do not experience
as sharp of declines in size-at-age as the fall-run populations
independent of their ODI. It is unclear whether this pattern
should be expected, given the hypothesis that changes in size
and age structure are caused by predation. However, this pat-
tern could provide a test of the predation hypothesis that is
independent of the evidence that has previously been consid-
ered.

Conclusions
Regardless of which factors are causing the observed trends

in size, the variation in patterns of growth between stocks
has implications for the population dynamics of this species
and our understanding of their marine ecology. Spatial dis-
tribution has previously been shown to cause variation in
productivity between salmon populations, with a range of
oceanographic processes creating variable conditions at spa-
tial scales ranging from a few hundred miles (Kildu+ et al.
2014) to the entire west coast (Mantua et al. 1997; Mueter et
al. 2002; Malick et al. 2017). Prior work has emphasized the

location of river mouths as the key driver of this spatial vari-
ability in production because of the importance of the early
marine period for survival and recruitment (Beamish and
Mahnken 2001). Our results show that space also plays an
important role in driving patterns of growth. However, be-
cause growth occurs through the marine life stage, variation
in ocean distribution between stocks is the critical factor. In
addition to the spatial dimension, our results indicate that
life history traits determine how Chinook salmon respond to
changing ocean conditions. Our regression analysis allowed
us to identify whether stocks with di+erent characteristics
had di+erent responses to specific sources of environmental
variation. However, the full set of biological processes that
cause the observed interaction between life history traits and
environmental conditions remains an open question.

A final question our results highlight is whether variation
in patterns of growth between stocks can stabilize ecosystem
functions and services provided by Chinook salmon through
portfolio e+ects. The productivity of populations is deter-
mined by two factors, recruitment and growth. Prior studies
on portfolio e+ects have primarily focused on recruitment as
the driver of variation in productivity in salmon populations
(Carlson and Satterthwaite 2011; Kildu+ et al. 2014). How-
ever, the recent declines in size among all species of Pacific
salmon have demonstrated that the second factor, growth,
cannot be taken for granted. Among the stocks included in
our study, the distinct trends in size over time could underly
a portfolio e+ect. However, all four distinct trends exhibit a
declining pattern in the last decade of the data set. We are un-
able to identify if this pattern is a coincidence caused by the
temporary alignment of independent factors driving changes
in size among these populations or if it is a sign of a novel
mechanism that a+ects all stocks similarly. Time may help
di+erentiate between these hypotheses, but the clear di+er-
ences among stocks leading up to this point provide useful
context for understanding the mechanisms and implications
of this developing pattern.
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