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Abstract—IoT devices usually lack perpetual power supply
since they are generally deployed at remote areas with limited
battery capacities. Moreover, the computing power of the IoT
devices is usually limited and the generated data needs to be
offloaded to a more powerful computing server for further
processing. In this paper, we study a novel unmanned aerial
vehicle (UAV)-enabled Internet of Things (IoT) network, where
the UAV delivers energy to the ground IoT devices by employing
wireless power transfer (WPT) in the downlink and collects
data in the uplink. In our work, we try to minimize the total
energy consumption of the UAV by determining the trajectory
and charging power of the UAV, the resource allocation and
the transmission scheme subject to task collection and resource
budget requirements. To make the formulated problem more
tractable, we decompose the primal problem into three subprob-
lems (i.e., the transmission association problem, the trajectory
design problem and the resource allocation problem) and utilize
the block coordinate descent (BCD) method to solve them
alternately. Since the trajectory design problem is still highly non-
convex, we further transform it into a convex one by leveraging
the successive convex approximation (SCA) technique. In the
simulation, we provide extensive numerical results to corroborate
the effectiveness of our proposed algorithm.

Index Terms—unmanned aerial vehicle (UAV), wireless power
transfer (WPT), resource allocation, trajectory optimization.

I. INTRODUCTION

RECENTLY, Internet of Things (IoT) has been increas-
ingly popular as it can greatly improve the quality of

human life in application scenarios such as smart cities, smart
healthcare, and environmental surveillance. It is estimated
that the number of IoT devices will reach 25 billion by
2025 [1], and such multitudes of wirelessly connected de-
vices will increase the burden on the existing communication
infrastructure as the radio resource is limited. In addition,
it is challenging to collect the data generated by the IoT
devices for further processing as the devices are generally
sparsely and determinately distributed. With the development
of UAV technology and miniaturization of the communication
equipment, UAV-enabled IoT can dramatically enhance the
performance of the existing infrastructure since the UAV can
establish the favorable line of sight (LoS) links with the IoT
devices and therefore reduce the path loss [2]–[5].

Since the IoT devices are generally deployed in areas which
are hard to reach or lack stable power supply, the energy issue
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poses a great challenge on designing a robust and reliable
UAV-enabled IoT network. To overcome the above challenge,
radio frequency (RF) wireless power transfer (WPT) has been
proposed to provide reliable energy supply to low-power IoT
devices [6], [7]. By utilizing electromagnetic waves, WPT
delivers energy from the transmitter to the receiver in the form
of radiation. Thanks to the broadcast nature of electromagnetic
waves, WPT can charge multiple target devices over the air
and thus shows more flexibility as compared with conven-
tional charging methods with cord. However, the efficiency of
WPT can be significantly influenced by the channel condition
between the energy transmitter and receiver. To guarantee
the performance of WPT, we need to establish LoS links
and/or reduce the distance between the energy transmitter and
receiver (i.e., the IoT device).

To address the above challenges altogether, we propose to
employ the UAV to improve the performance of IoT network
and raise the transmit efficiency of WPT with mounted com-
munication equipment and energy transmitter. Specifically, we
charge the IoT devices in the downlink utilizing the RF signal
and collect the data generated by the IoT devices in the uplink.
UAV has attracted intensive research interests in application
scenarios such as environment monitoring and surveillance and
communication platforms [8]–[10]. Particularly, UAV-assisted
communications can enhance the performance of existing
cellular infrastructure by working as a relay between the
macro base station (MBS) and the ground users, or provide
coverage recovery for areas where the MBS is malfunctioned
or destroyed by disasters [11], [12]. The UAV can also be
dispatched in an on-demand fashion and be retreated once the
event is ended. Therefore, deploying a UAV is more flexible
and economical as compared with building a small base station
(SBS). UAVs can be classified into two main categories: rotary
wing and fixed wing. A rotary wing UAV can theoretically
hover at a fixed location while a fixed-wing UAV has to
maintain a minimum speed to stay aloft in the air. However,
a rotary wing UAV generally consumes more energy and has
less on-board energy as compared with a fixed-wing UAV.
Since we try to deliver energy to the IoT devices wirelessly
from the UAV, the fixed-wing UAV which has more on-board
energy possesses an apparent advantage over the rotary wing
UAV. To increase the amount of time that the UAV can stay
in the air, it is critical to optimize the trajectory to minimize
the propulsion energy consumption and maximize the charging
efficiency.

Although the UAV-enabled IoT network has been studied,
considering wireless charging and data collection together in
the trajectory design still requires further investigation.
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1) What are the optimal trajectory of the UAV and the charging
power?
The trajectory design (i.e., the location of the UAV at each time
slot) not only determines the propulsion energy consumption
of the UAV [13], but also influences the transmit efficiency
between the energy transmitter (mounted on the UAV) and
IoT devices. Decreasing the charging power for users which
consume less and increasing the charging power when the
distances between the energy receivers and transmitter are
small can decrease the energy consumption of the UAV.
Moreover, decreasing the charging power when the channel
conditions are good (i.e., when the distance between the UAV
and the IoT devices are closer) can also reduce the energy
consumption of the UAV. Therefore, the trajectory design and
charging power are coupled together and should be jointly
considered to reduce the energy consumption of the UAV.
2) How to allocate the limited resources in the uplink data
offloading?
Since the UAV provides the power supply of the IoT devices,
the uplink transmit power design directly affects the energy
consumption of the UAV. Moreover, an optimized bandwidth
allocation scheme can also reduce the energy consumption by
allocating more bandwidth to those which have better channel
conditions. Otherwise, the transmit power should be raised
to meet the quality of service (QoS) requirements, i.e., more
energy is needed (larger energy consumption of the UAV) to
fully charge the IoT devices.
3) What is the optimal association policy of the IoT devices?
In the uplink communication, the data generated by all IoT
devices should be offloaded to the UAV. At certain time slot,
each IoT device can decide whether to offload the data to the
UAV or not. However, choosing to offload data when the UAV
is farther means more transmit power is needed to transmit the
generated data, which will increase the energy consumption for
charging the UAV. Therefore, the association policy needs to
be carefully designed to save the energy of the UAV.

Note that the trajectory design of the UAV, the resource
allocation scheme and association policy of the IoT devices
are mutually dependent. Hence, we should jointly consider
these three subproblems to minimize the energy consumption
of the UAV. To address the above challenges, we propose a
block coordinate descent (BCD) based cyclic iterative algo-
rithm which decomposes the joint optimization problem into
three subproblems, i.e., the resource allocation problem, the
trajectory design problem and the association problem. In
particular, this paper makes the following main contributions:
1) We propose a fixed-wing UAV-enabled IoT network where
the UAV wirelessly charges the IoT devices using RF WPT in
the downlink and collects data generated by the IoT devices
in the uplink. Different from prior works, we assume that
each IoT device can be associated with the UAV in multiple
time slots and multiple IoT devices can be associated with
the UAV at certain time slot; this is more practical and can
potentially save energy. Note that only one IoT device is
allowed to offload data at certain time slot is a special case of
our scheme. However, the generalization of the association
scheme yields new challenges: 1) which time slots should
be associated with each IoT device? 2) how to allocate the

limited bandwidth to avoid interference between multiple IoT
devices? Furthermore, as compared to constant charging power
assumption in previous works [18], [19], we allow flexible
charging power adjustment such that it can be reduced to save
energy when necessary.
2) We formulate the joint resource allocation, trajectory design
and time slot association as an optimization problem aiming
to minimize the energy consumption of the UAV. To make
the formulated problem more tractable, we decompose it into
three subproblems by utilizing the BCD method. Specifically,
we sequentially optimize each subproblem by exploiting the
solutions of the other two subproblems as the input. However,
the trajectory design problem is still non-convex and difficult
to solve. We transform it into a convex optimization problem
by leveraging the SCA technique. The iterative algorithm is
stopped when no further performance improvement can be
achieved or the maximum allowed number of iterations is
reached.

Initial position

Final position

Downlink RF WPTUplink data collection

Fig. 1. The systen model.

The remainder of this paper is organized as follows. We
review the related works in Section II. Section III presents the
system model and the UAV energy minimization problem. In
Section IV, we propose a cyclic iterative algorithm to solve the
formulated problem by utilizing the BCD and SCA technique.
In Section V, simulations are conducted to demonstrate the
performance of the proposed algorithm. Finally, Section VI
concludes this paper.

II. RELATED WORKS

UAV has been widely studied to improve the throughput
and/or extend the service range of current wireless cellular net-
works. Zeng et al. [14] proposed to deploy a UAV to work as a
mobile relay between the transmitter and receiver. The transmit
power and the trajectory of the UAV are optimized to achieve
the highest data rate between the source node and the target
node. However, the UAV is only working as a data collector for
the single ground terminal without providing energy supply.
Al-Hourani et al. [15] approximated the probability function
of LoS links by using a simple Sigmoid function. Based
on the simplified model, they further analyzed the optimal
altitude of the UAV that maximizes the coverage area given
the maximum allowed pathloss. Mozaffari et al. [16] studied
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a UAV-assisted heterogeneous network with underlaid device-
to-device (D2D) communications. Two application scenarios,
i.e., a mobile UAV and a static UAV, are considered to improve
capacity and coverage of the existing network. The coverage
probability and system throughput of deploying a static UAV
are analyzed. By transforming the primal problem into a disk
covering problem, the minimum number of stop points to
provide fully coverage to all users is derived in the mobile
UAV-assisted network. Sohail et al. [17] investigated the case
of non-orthogonal multiple access (NOMA) for an aerial base
station. They analyzed the energy efficiency of the system
under two different cases, i.e., the optimized altitude and fixed
altitude of the UAV, respectively. However, the rotary wing
UAV is assumed to be quasi-stationary and only two users,
which work as the data transmitter and receiver, respectively,
are considered.

Another application scenario for studying UAV-enabled
communications is deploying UAVs in the IoT networks.
Xie et al. [18] proposed to dispatch a UAV to periodically
charge and serve the ground users by utilizing WPT. They
aimed to maximize the minimum data rate in the uplink with
the constraints of the UAV’s maximum speed and the users’
power budget. However, they assumed the transmit power in
the downlink WPT to be constant, which may increase the
energy consumption of the UAV and therefore reduce the time
remaining in the air. Yan et al. [20] investigated the use of UAV
to work as an energy transmitter and a data collector. The UAV
is charged at a base station before sending out to collect data of
the sensors. Upon arrival, the total time slots are split into two
parts, i.e., the charging period and data transmission period, to
charge the ground sensors in the downlink and collect data in
the uplink, respectively. The UAV then flies back to the base
station to offload the collected data. However, the proposed
paradigm may suffer from data incompletion that hinders the
further processing of the data since they aim to maximize
the amount of data collected without guaranteeing the data
collection completion. Moreover, the UAV’s location when
collecting data is fixed. This may result in data collection
unfairness since some sensors have good channel conditions
while others are suffering from bad ones. Lu et al. [21] tried
to maximize the timeliness of data collection in a UAV-aided
IoT network in the presence of a warden Willie which tries
to eavesdrop the data sent from the IoT device to the UAV.
The UAV simultaneously works as a power supplier and a
data collector. Particularly, the IoT device first harvests the
wireless energy transmitted from the UAV and then offloads its
generated data to the UAV as covertly and timely as possible.
However, the authors only considered only one IoT device
and the rotary-wing is deployed at a fixed location. This
proposed system can thus only apply to scenarios where the
number of IoT devices is limited or they are distributed in a
very small area. Zhan et al. [22] studied the minimization of
energy consumption and completion time of the UAV-enabled
mobile edge computing (MEC) system for IoT computation
offloading. However, they assumed that only one user is
allowed to be associated with the UAV in each time slot
when offloading the computation task. Oubbati et al. [23],
[24] considered deploying two sets of UAVs in a target area

to collect data of the ground devices. Specifically, one set of
UAVs is working as dedicated flying energy sources while the
other set working as the data collector. Multi-agent deep Q
network methods are utilized to deal with the non-convexity
of the formulated problems and the dynamic environment.
However, the authors assumed only several discrete trajectories
of the UAV are available in the action space, which will reduce
the optimality of the obtained solution. Table I summarizes the
difference of related works.

TABLE I. Comparison of references

Ref. Deployment Optimize Charging Association Wing

[18] Mobile SCA Constant TDMA Rotary
[19] Mobile Traditional Constant None Rotary
[20] Stationary Convex Constant TDMA Rotary
[21] Stationary Traditional Constant TDMA Rotary
[22] Mobile SCA None TDMA Fixed
[23] Stationary Learning Constant TDMA Rotary
[24] Mobile Learning Constant FDMA Rotary

Different from the above works, we propose to jointly
deliver wireless energy in the downlink and collect data gen-
erated by the IoT devices in the uplink with flexible time slot
association. We try to minimize the total energy consumption
of the UAV while taking into account of the QoS requirements,
the limited available resource and maximum allowed speed of
the UAV.

III. SYSTEM MODEL

The application scenario of the fixed-wing UAV-enabled IoT
network is shown in Fig. 1, where the UAV delivers wireless
power to the IoT devices in the downlink. Meanwhile, the
UAV collects data generated by the IoT devices for further
processing in the uplink. Denote i as the index of the IoT de-
vices, I as the set of IoT devices and (xi, yi, 0) as the location
of IoT device i in a 3D Euclidean coordinate. We assume the
locations of the IoT devices are fixed and known a priori to
the UAV. We allow multiple IoT devices to be associated with
the UAV at certain time slot and adopt orthogonal frequency
division multiplex access (OFDMA) scheme when allocating
the bandwidth resources in the uplink communication. The
cruising duration of the UAV is divided into N time slots to
simplify the analysis. The time duration of each time slot can
be calculated by δ = T/N , where T is the cruising duration
of the UAV. We further assume that the location of the UAV is
fixed during each time slot by setting δ small enough. Denote
q[n] = (x[n], y[n], H),∀n ∈ N as the location of the UAV at
time slot n, where N = {n|1 ≤ n ≤ N} is the set of time
slots.

The channel pathloss model and the power consumption
model of the fixed-wing UAV are presented in this section.
Then, an optimization problem that aims to minimize the
total energy consumption of the UAV, subject to the resource
budget constraints, the user QoS requirements and the UAV’s
maximum allowed speed, is formulated.

A. Pathloss model between the IoT devices and the UAV
The data rate of the uplink communication depends on the

pathloss model between the UAV and the IoT devices. In this
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paper, we assume the IoT devices are located outdoors, i.e., the
uplink channels are LoS-dominated. Therefore, the pathloss
between IoT device i and the UAV at time slot n can be
calculated by [9]

ξi[n] = β0(di[n])
2

= β0

[
(x[n]− xi)

2 + (y[n]− yi)
2 +H2

]
, (1)

where di[n] is the distance between IoT device i and the
UAV at time slot n, and β0 is the pathloss at the reference
distance d = 1 m. Then, the link capacity of the uplink data
transmission can be calculated by the Shannon formula as

Ri[n] = bi[n] log2(1 +
pi[n]

ξi[n]σ2
), (2)

where pi[n] and bi[n] represent the transmit power and the
allocated bandwidth of IoT device i at time slot n, respectively.
σ2 denotes the noise power at the receiver. To ensure that all
the data generated by IoT device i are successfully offloaded to
the UAV within the cruising duration, the following constraint
should be satisfied, i.e.,

δ
N∑

n=1

Ri[n]ui[n] ≥ Di, (3)

where ui[n] = 1 if IoT device i offloads data to the UAV at
time slot n and ui[n] = 0, otherwise. Di denotes the size of
the data generated by IoT device i measured in bits.

B. Propulsion energy consumption model

Note that we propose to deliver wireless energy to the IoT
devices by employing WPT. Therefore, not only the energy
for flying but also the energy used for wireless charging in the
WPT mode needs to be considered to obtain the total energy
consumption of the UAV. Assume the duration of each time
slot is small enough such that the UAV can be seen as flying
at a constant speed. As derived in [13], the propulsion power
of the UAV during time slot n can be approximated as

pf [n] =

(
c1||v[n]||3 +

c2
||v[n]||

)
,∀n ∈ N , (4)

where c1 and c2 are parameters whose values are determined
by the UAV’s wind area, weight, air density, etc. v[n] is the
velocity of the UAV during time slot n:

v[n] =
q[n]− q[n− 1]

δ
, ∀n ∈ N . (5)

The IoT devices should possess enough energy to finish
the data offloading, i.e., the energy harvested by each IoT
device should be greater or equal to the energy used for uplink
transmission within the cruising duration, i.e.,

η

N∑
n=1

pc[n]hi[n] ≥
N∑

n=1

pi[n]ui[n],∀i ∈ I, (6)

where 0 ≤ η ≤ 1 denotes the conversion efficiency from radio
frequency to direct current energy at the IoT devices. pc[n]
and hi[n] = 1/ξi[n] are the charging power and channel gain
between IoT device i and the UAV at time slot n, respectively.

C. Problem formulation
In this section, we formulate the problem aiming to mini-

mize the total energy consumption of the UAV by determining
the UAV’s trajectory and charging power, the time slot asso-
ciation scheme and the uplink resource allocation scheme of
the IoT devices subject to the QoS requirement and resource
budget of each IoT device and the UAV’s maximum allowed
speed. Specifically,

P0: min
q[n],bi[n],pi[n],pc[n],ui[n]

δ
N∑

n=1

(pc[n] + pf [n]) (7)

s.t. (3), (6)
||q[n]− q[n− 1]|| ≤ δV m,∀n ∈ N , (8)
q[0] = Q, (9)
|I|∑
i=1

bi[n] ≤ B, ∀n ∈ N , (10)

0 ≤ bi[n],∀i ∈ I,∀n ∈ N , (11)
0 ≤ pi[n] ≤ Pmax

i ,∀i ∈ I,∀n ∈ N , (12)
ui[n] = {0, 1},∀i ∈ I,∀n ∈ N , (13)

where V m is the maximum velocity of the UAV, Q is
the initial point of the UAV. B denotes the total available
bandwidth; Pmax

i denotes IoT device i’s maximum transmit
power. The resource budgets of the IoT devices are guaranteed
by Constraints (11) and (12). Constraint (13) imposes ui to
be a binary variable.

Since pf [n] and Ri[n] are non-linear and non-convex w.r.t.
q[n] and ui[n] is an integer variable, it is challenging to
solve problem P0. To make it more tractable, we partition
the entire decision variables into three blocks (i.e., the UAV
trajectory design, the resource allocation and the time slots
association) by utilizing the BCD method where each block
is alternatively optimized given the solutions of the other two
blocks. The iteration is stopped until the algorithm converges
or the maximum allowed steps are reached.

IV. BCD-BASED ALGORITHM FOR P0
Owing to the integer variables and non-convexity, it is

challenging to solve problem P0. In our proposed BCD-
based algorithm, we solve each subproblem by using the
solutions of the other two as input. We next discuss these
three subproblems in detail.

A. Trajectory design
In this subproblem, given the time slot association and

resource allocation, we design the trajectory of the UAV to
minimize its total energy consumption. Substituting Eq. (2)
into Eq. (3) and obtaining Constraint (15), and Eq. (1) into
Eq. (6) and obtaining Constraint (16), we have

P1: min
q[n]

δ
N∑

n=1

(pc[n] + pf [n]) (14)

s.t. (9),
N∑

n=1

bi[n] log2(1 +
pi[n]

ξi[n]σ2
)ui[n] ≥

Di

δ
,∀i ∈ I, (15)
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η
N∑

n=1

pc[n]

β0[(x[n]− xi)2 + (y[n]− yi)2 +H2]

≥
N∑

n=1

pi[n]ui[n],∀i ∈ I, (16)

(x[n]− x[n− 1])2 + (y[n]− y[n− 1])2

≤ (δV m)2,∀n ∈ N , (17)

Note that the functions in Constraints (9) and (17) are convex
w.r.t. (x[n], y[n]). However, P1 is still challenging to solve
because pf [n] and Ri[n] are neither linear nor convex w.r.t.
(x[n], y[n]). In addition, the set of trajectories of the UAV that
satisfies Constraint (16) is not convex because hi[n] = 1/ξi[n]
is a convex function rather than a concave function w.r.t.
(x[n], y[n]). Next, we try to replace pf [n], Ri[n] and hi[n]
with the convex approximations and solve the transformed
problem based on the SCA technique.

Lemma 1. As pf [n] is convex w.r.t. ||v[n]||2 and given a local
point ||vr[n]||2, we have

pf [n](||v[n]||2) ≥ pf [n]
∣∣∣
||vr[n]||2

+ pf [n]′
∣∣∣
||vr[n]||2

(
||v[n]||2 − ||vr[n]||2

)
(18)

where pf [n]′ is the first derivative of pf [n].

Proof: pf [n] can be rewritten as a function of ∥v[n]∥2 as

pf [n] = c1
(
||v[n]||2

)3/2
+

c2

(||v[n]||2)1/2
. (19)

To simplify the analysis, we make use of f(z) = c1z
3/2 +

c2/z
1/2 instead of pf [n] since f(z) and Eq. (19) share the

same convexity. Then, we can obtain the first derivative of
f(z) as

f ′(z) =
3c1z

2 − c2

2z
3
2

. (20)

Furthermore, we can obtain the second derivative of f(z) as

f ′′(z) =
3(c1z

2 + c2)

4z5/2
. (21)

Since c1 and c2 are positive values determined by the UAV’s
wing area and weight, we have f ′′(z) > 0 if z > 0, i.e.,
f(z) is a convex function. Equivalently, pf [n] is convex w.r.t.
||v[n]||2 (note that ∥v[n]∥2 > 0). Recall that the first order
Taylor expansion of a convex function at any given local point
incurs a lower bound [25], and thus

pf [n] ≥ pf [n]
∣∣∣
||vr [n]||2

+

pf [n]′
∣∣∣
∥vr [n]∥2

(
∥v[n]∥2 − ∥vr[n]∥2

)
(22)

a
= pf [n]

∣∣∣
||vr [n]||2

+

pf [n]′
∣∣∣
||vr [n]||2

( (x[n]− x[n− 1])2 + (y[n]− y[n− 1])2

δ2

− ||vr[n]||2
)

≜ pflb[n]. (23)

where step (a) holds by substituting Eq. (5) into Eq. (22).

For Constraint (15), although Ri[n] is not convex w.r.t. the
UAV’s location q[n] = (x[n], y[n]), Ri[n] can be proven to
be convex w.r.t. the pathloss ξi[n] as follows. Note that the
second derivative of Ri[n] w.r.t. ξi[n] can be expressed as

R′′
i [n] =

d2Ri[n]

d(ξi[n])2
=

bi[n]pi[n]/σ
2(2ξi[n] + pi[n]/σ

2)

ξi[n]2(ξi[n] + pi[n]/σ2)2 ln 2
.

(24)

We can observe that R′′
i [n] > 0 (i.e., Ri[n] is convex) since

both bi[n] and pi[n] are positive values. As Ri[n] is proven to
be convex w.r.t. ξi[n], given a local point ξri [n], we have

Ri[n] ≥ Ri[n]
∣∣
ξri [n]

+R′
i[n]

∣∣
ξri [n]

(ξi[n]− ξri [n])

= Ri[n]
∣∣
ξri [n]

+R′
i[n]

∣∣
ξri [n]

(
β0

[
(x[n]− xi)

2

+ (y[n]− yi)
2 +H2

]
− ξri [n]

)
≜ Rlb

i [n], (25)

where Ri[n]
∣∣
ξri [n]

= bi[n] log2(1 +
pi[n]

ξri [n]σ
2 ) and R′

i[n]
∣∣
ξri [n]

=

−
(
bi[n]pi[n]/σ

2
)
/
(
ξri [n](ξ

r
i [n] + pi[n]/σ

2) ln 2
)
.

For Constraint (16), hi[n] can also be easily proven to be
convex w.r.t. ξi[n]. By following a similar process as deriving
Eq. (25), we can also derive the lower bound of hi[n] as

hi[n] =
1

ξi[n]
≥ 1

ξri [n]
+

−1

(ξri [n])
2
(ξi[n]− ξri [n])

=
1

ξri [n]
+

−1

(ξri [n])
2

(
β0

[
(x[n]− xi)

2

+ (y[n]− yi)
2 +H2

]
− ξri [n]

)
≜ hlb

i [n]. (26)

Finally, by replacing pf [n], Ri[n] and hi[n] with their
convex lower bounds, we transform P1 into the following
problem,

P1-a: min
q[n]

δ
N∑

n=1

(pc[n] + pflb[n]) (27)

s.t.
N∑

n=1

Rlb
i [n] ≥

Di

δ
,∀i ∈ I, (28)

η
N∑

n=1

pc[n]hlb
i [n] ≥

N∑
n=1

pi[n]ui[n],∀i ∈ I, (29)

(9), (17),

Note that Rlb
i [n] and hlb

i [n] are concave w.r.t. q[n] =
(x[n], y[n]) as given in Eq. (25) and Eq. (26), respectively. As
a result, the sets of trajectories that satisfy Constraints (28)
and (29), respectively, constitute two convex sets. Since P1-a
is a convex problem now, we can utilize CVX to obtain its
solution.

B. Resource allocation
If the UAV trajectory and time slot association are given,

we can obtain the resource allocation problem as

P2: min
bi[n],pi[n],pc[n]

δ

N∑
n=1

(pc[n] + pf [n]) (30)
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s.t. δ
N∑

n=1

bi[n] log2

(
1 +

pi[n]

ξi[n]σ2

)
ui[n] ≥ Di,∀i ∈ I,

(31)

η
N∑

n=1

pc[n]hi[n] ≥
N∑

n=1

pi[n]ui[n],∀i ∈ I, (32)

0 ≤ pi[n] ≤ Pmax
i ,∀i ∈ I,∀n ∈ N , (33)

|I|∑
i=1

bi[n] ≤ B, ∀n ∈ N , (34)

bi[n] ≥ 0,∀i ∈ I,∀n ∈ N , (35)

In P2, Eq. (30) and all of the constraints are linear functions
w.r.t. (bi[n], pi[n], pc[n]) except for Constraint (31). Next, we
derive the Hessian matrix of Constraint (31) and prove it to
be concave w.r.t. (bi[n], pi[n]).

Lemma 2. bi[n] log2

(
1 + pi[n]

ξi[n]σ2

)
is concave w.r.t.

(bi[n], pi[n]).

Proof: The Hessian matrix of bi[n] log2

(
1 + pi[n]

ξi[n]σ2

)
w.r.t. (bi[n], pi[n]) can be expressed as

R′′
i [n] =

 0,
1

(pi[n] + ξi[n]σ2) ln 2
1

(pi[n] + ξi[n]σ2) ln 2
, − bi[n]

(pi[n] + ξi[n]σ2)2 ln 2

 .

Since bi[n], pi[n] ≥ 0, we can conclude that R′′
i [n] is neg-

ative semidefinite. Thus, Ri[n] = bi[n] log2

(
1 + pi[n]

ξi[n]σ2

)
is

concave w.r.t. (bi, pi[n]).
Note that ui[n] and δ are given non-negative values in

P2 and the sum operation preserves convexity, therefore,
Constraint (31) incurs a convex set. Hence, we can also utilize
CVX to obtain the solution of P2 as it is a convex problem.

C. Time slot association

Assuming the UAV trajectory and resource allocation are
fixed, the time slot association (i.e., the time slot association
policy for each IoT device) problem can be simplified as

P3: min
ui[n]

δ
N∑

n=1

(pc[n] + pf [n]) (36)

s.t. δ
N∑

n=1

Ri[n]ui[n] ≥ Di,∀i ∈ I, (37)

η
N∑

n=1

pc[n]hi[n] ≥
N∑

n=1

pi[n]ui[n],∀i ∈ I, (38)

ui[n] = {0, 1},∀i ∈ I,∀n ∈ N . (39)

Note that the objective function is independent of ui[n] since
pc[n] and pfly[n] are given in P3. Therefore, there may exist
more than one feasible solution which satisfies Constraints
(37)-(39). Among all feasible solutions, we select the one that
maximizes the sum rate of IoT device i, i.e.,

P3-a: max
ui[n]

N∑
n=1

Ri[n]ui[n] (40)

s.t. η
N∑

n=1

pc[n]hi[n] ≥
N∑

n=1

pi[n]ui[n],∀i ∈ I, (41)

ui[n] = {0, 1},∀n ∈ N ,∀i ∈ I, (42)

Note that P3-a is a 0-1 Multiple Knapsack Problem, where
time slot n and IoT device i can be seen as item n and knap-
sack i, respectively. Then, Ri[n] is the profit incurred when
placing item n in knapsack i, pi[n] is the corresponding weight

and
N∑

n=1
pc[n]hi[n] is the capacity of knapsack i. P3-a can

be efficiently solved by utilizing the dynamic programming
algorithm.

The BCD-based algorithm to jointly determine the UAV
trajectory, time slot association and resource allocation is
embodied in Algorithm 1. Line 1 initializes all parameters.
The complexities of line 3 and line 4 are both O(

√
|I|+ |N |)

since they are both solving a convex optimization problem;
that of line 5 is O(|I| ∗ |N |) in the worst case. Hence, the
complexity of Algorithm 1 is O(|I| ∗ |N |).

Denote E (Qr,Ar,Ur) as the objective value of P0 with
given trajectory Qr, resource allocation Ar and time slot
association Ur at the r-th iteration. It then follows that:

E (Qr,Ar,Ur)
(a)

≤ E
(
Qr+1,Ar,Ur

)
(b)

≤ E
(
Qr+1,Ar+1,Ur

) (c)

≤ E
(
Qr+1,Ar+1,Ur+1

)
(43)

where (a), (b) and (c) hold due to the monotonicity of SCA-
based algorithms [13] at lines 3-5, respectively. Note that the
optimal value of P0 is upper bounded by a finite value. Hence,
Algorithm 1 is guaranteed to converge.

Algorithm 1 BCD-based Algorithm for P0
1: Initialize A0 and U0. Set r = 0;
2: repeat
3: Obtain Qr+1 by solving P1-a with given Ar and Ur;
4: Obtain Ar+1 by solving P2 with given Qr+1 and Ur;
5: Obtain Ur+1 by solving P3-a with given Qr+1 and

Ar+1;
6: Update r = r + 1;
7: until There is no update of the objective function or the

maximum number of iterations is reached,
where A = {bi, pi[n], pc[n],∀i ∈ I,∀n ∈ N}, Q =
{q[n],∀n ∈ N}, U = {ui[n],∀i ∈ I,∀n ∈ N} and the
superscript r denotes the r-th iteration.

V. NUMERICAL RESULTS

We consider a 300 m × 300 m area with 6 IoT devices in
the simulations. The flying height of the UAV H is set as 10
m. The start location of the UAV is set as Q = (0, 0). The
data size of IoT devices follows the Poisson distribution with
the average value of 1 Mb. The noise power at the receiver
σ2 = −80 dBm. Assume c1 = 9.26 × 10−4 and c2 = 2250



7

[13]. The efficiency for converting the harvested RF energy to
the direct current energy is η = 50%. β0 = −30 dB. Unless
otherwise stated, the system parameters are set as follows:
T = 20 s, V m = 30 m/s, δ = 1 s, Pmax = 0.5 W and
B = 10 MHz.

Fig. 2 and Fig. 3 illustrate the UAV trajectories and total
energy consumption under different total available bandwidth.
It can be observed that the trajectory of the UAV reduces
to a smaller circle with the increase of the total available
bandwidth. Because the increase of the available bandwidth
allows IoT devices to consume less transmit energy to offload
the same amount of data. Therefore, the energy consumption
for charging is reduced as the IoT devices consume less energy.
Meanwhile, the UAV does not need to hover close to each IoT
device to improve the harvesting efficiency, thus reducing the
flight energy consumption.
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Fig. 2. Trajectories with different total available bandwidth.
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Fig. 3. Total energy consumption vs total available bandwidth.

Fig. 4 illustrates the energy consumption for charging and
flying under different cruising durations. We can observe that
the energy consumption for charging increases slightly while
the energy consumption for flying increases drastically with
the increase of the cruising duration of the UAV. The reason
is that all data are collected and IoT devices are fully charged
within 20 seconds. After all IoT devices are fully charged,
the charging power will be set as 0 and no more energy
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Fig. 4. Total energy consumption vs cruising duration.
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Fig. 5. Convergence behavior of Algorithm 1.

is consumed for charging. However, more energy will be
consumed to keep the UAV stay in the air. Fig. 5 shows the
convergence performance of Algorithm 1. We can observe that
the total energy consumption decreases monotonically after
each iteration and the algorithm converges fast (the objective
function value does not change after 3 iterations).
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Fig. 6. Trajectories for different data sizes.

Fig. 6 and Fig. 7 show the trajectories and energy con-
sumption for charging and flying for different data sizes.
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Fig. 7. Charging and flying energy consumption for different
data sizes.

The trajectories in Fig. 6 are similar to those shown in
Fig. 2 because the increase of the data size incurs more
transmit energy consumption of the IoT devices. The UAV
needs to fly closer to the location of each IoT device to
reduce the communication pathloss and increase the energy
harvesting efficiency. Note that the energy consumption for
charging in Fig. 7 increases significantly while the propulsion
energy consumption remains roughly the same as the data
size increases. This is because the trajectory of the UAV has
already been optimized (hovering right above each IoT device)
and the IoT devices have to increase the transmit power to
complete the data offloading.

VI. CONCLUSION

The fixed-wing UAV-enabled IoT network can not only
collect the data offloaded by the IoT devices but also pro-
vide perpetual power by utilizing RF WPT. Considering the
limited on-board energy, we have formulated the problem to
minimize the UAV’s energy consumption by jointly designing
the resource allocation, the UAV trajectory and the time slot
association scheme. We have developed a cyclic iterative
algorithm based on the BCD method to efficiently solve the
formulated problem. We have proven the resource allocation
and the time slot association to be a convex problem and a
0-1 Multiple Knapsack problem, and solved them by utilizing
CVX and dynamic programming, respectively. To make the
trajectory design problem more tractable, we replace the non-
convex functions in the objective function and constraints with
the convex approximations by leveraging first order Taylor
expansion. We have proven the transformed problem to be
a convex optimization problem and solved it by utilizing
CVX. We have conducted extensive numerical experiments to
corroborate the effectiveness of the proposed algorithm.
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