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Secure Mobile Edge Computing via a
Drone-enabled FSO-based Heterogeneous Network
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Abstract—A secure mobile edge computing (MEC) framework,
which leverages free space optics (FSO) to provision backhauling
from drone-mounted base stations (DBSs) to a macro base station
(MBS), is proposed. DBSs can work as computing nodes to
provide computing services to user equipments (UEs) as well as
relays to forward the tasks to the MBS at the same time. Both
DBSs and MBS are provisioned with servers. UEs can offload
their tasks to the MBS directly, DBSs directly, or the MBS via
a DBS. The DBSs are to be placed at the optimal locations
to provide computing services and uplink communications for
the ground UEs. We then formulate the joinT bandwidth and
computation rEsource assignment, DBS traNsmisSion power
contrOl, UE power contRol, UE association and DBS placement
(TENSOR) problem to jointly maximize the average secrecy rate
and minimize the task completion time. Since TENSOR is a
mixed-integer nonlinear problem, we decompose it into four sub-
problems: resource (bandwidth and computation) assignment and
DBS transmission power control problem, UE power control
problem, UE association problem, and DBS placement problem.
Successive convex approximation and an iterative algorithm are
leveraged to solve the four sub-problems separately. In each
iteration, we use the output of the first three as the input for
the fourth. The performance of our algorithm is superior to the
greedy algorithm, block search placement algorithm, and equally
shared resource allocation algorithm upon which the average
secrecy rate is improved by at least 19%.

Index Terms—drone-mounted base station (DBS), edge com-
puting, resource allocation, FSO, security

I. INTRODUCTION

With the deployment of 5G networks and the proliferation of
mobile devices, a myriad of applications such as mixed reality,
natural language processing, face recognition, and health mon-
itoring are emerging. These advanced applications are usually
computationally intensive and time-sensitive, and impose great
challenges to be executed on mobile devices [1]. By leveraging
Mobile Cloud Computing (MCC), mobile devices can offload
their tasks to remote cloud servers. However, the total number
of connected devices in the world in 2025 is estimated to
be over 41.2 billion including 30.9 billion IoT devices and
5.8 billion mobile phones [2]; offloading tasks to the remote
servers may incur long transmission time and congestions.
Deploying drone-mounted base stations (DBSs) can empower
5G and beyond networks with additional flexibility. DBSs can
bring the computing resources closer to the mobile devices,
thus relieving the burden of the clouds [3]; they also likely
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provide line-of-sight (LoS) connections to mobile devices, thus
potentially reducing the path loss and increasing the transmis-
sion rates. DBSs are typically resources-limited as compared
to macro base stations (MBSs) [4]. When the number of mobile
devices under the coverage of a DBS is large, the DBS may
not be able to handle all the tasks. To alleviate this problem,
the DBS can forward the computationally intensive tasks to
MBS [5]. However, the backhaul link may suffer from high
path loss when the DBS flies far away from the MBS to
serve cell edge users. As a result, the transmission rate is
significantly reduced. To overcome the issue, FSO can be
leveraged to potentially provision high capacity. With broad
spectrum bandwidth and small divergence angle, an FSO link
can achieve a data rate of 1–2 Gbps over distances in the
range of 1–5 km [6] − [8]. In addition, the FSO link will not
cause interference to the access link since it is working on the
unlicensed spectrum which does not overlap with the existing
spectrum.

Despite the advantages of the DBS-assisted network, the
information can be vulnerable to attacks due to the physical
broadcast property of the wireless communication channels.
With the increasing demand for broadcast services such as
wireless local area networks and uplink communication in the
cellular networks, the concern about broadcasting confidential
messages is growing. The security issue is even more severe in
MEC networks since all UEs can offload their data to the MEC
servers (e.g., the user’s personal information may be exposed
to the eavesdropper when uploading a figure containing some
private information to the server for image processing). As a
result, the security has become an essential issue for the 5G
and beyond networks. Physical layer security techniques can
be employed to protect wireless communications. Different
from the key-based encryption protocols implemented in the
network, transport, session, and application layers, physical
layer security techniques can protect the legitimate transmis-
sion without using the complex protocols and pre-shared keys
in securing the DBS-assisted networks.

II. STATE OF THE ARTS

A wide range of research related to DBS-assisted networks
has been studied. Al-Hourani et al. [9] studied LoS and non-
LoS air to ground communications and proposed a probabilis-
tic model to closely approximate the air to ground commu-
nication model recommended by the International Telecom-
munication Union. They also calculated the optimal altitude
for a DBS to obtain the maximum coverage. Zhang and
Ansari [10] proposed DBS-aided MEC architecture to provi-
sion communication and computing services for IoT devices.
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A (1+𝜖)-approximation algorithm was proposed to minimize
the operation cost of the whole network. Yang et al. [11]
constructed a multi-DBS-aided mobile edge computing system
to assist IoT networks. A differential evolution-based multi-
UAV deployment mechanism was proposed to balance the task
load in the network. A deep reinforcement learning algorithm
was conceived for task scheduling in the DBSs. Si et al.
[12] studied the communication system when both active and
passive eavesdroppers exist in the network and proposed to im-
plement cooperative jamming against the eavesdroppers. They
proposed a new zero-forcing beamforming scheme to optimize
the transmission power allocation between the information
signal and artificial noise signal to maximize the achievable
secrecy rate. Yao and Ansari [13] studied the application of
fog-aided internet of drones for federated learning, where the
training data are collected by the DBS and analyzed in the
fog node. They proposed to control the transmission power
of the DBS to maximize the secrecy rate of the federated
learning system. A low complexity algorithm was proposed
to obtain the optimal secrecy rate. Liu et al. [14] investigated
the full-duplex active eavesdropper in a network scenario with
a ground user sending signals to a DBS and simultaneously
sending artificial noise to jam an eavesdropper. The hybrid
security outage probability is derived and the optimal power
allocation between the signal and the artificial noise as well as
the DBS height is determined to minimize the hybrid security
outage probability. Zhao et al. [33] studied hyper-dense small-
cell networks and proposed to deploy UAVs to reduce the
pressure of wireless backhaul. A cooperation scheme between
the UAV and BS, where the UAV can functionally replace the
BS and the idle BS can generate jamming signals to disrupt
eavesdropping, is proposed. Jamming signals are designed
to degrade the eavesdropper’s channel. Cheng et al. [16]
investigated UAV-relayed wireless networks and proposed a
novel scheme where the UAV first finds two UEs which have
mutually cached the files that were requested by the other,
and then broadcasts the files requested by both UEs so that
the eavesdropper does not know which file is requested by
which UE. The secrecy rates of the non-cached UEs are
maximized by optimizing the trajectory of the UAV and the
UE association. Miao and Zeng [17] investigated the DBS-
enabled mobile relay system and proposed to implement
jammer UAV against the eavesdropper on the ground. The
maximum achievable secrecy rate is obtained by optimizing
the trajectory and the transmit power of both the relay DBS
and the jammer DBS.

Different from the above works, the motivation of this
work is to maximize the achievable secrecy rate and minimize
the task completion time in the MEC network at the same
time. In our work, we do not introduce artificial noise (AN)
because AN, though can jam the eavesdroppers, does corrupt
the wireless channel, thus degrading the transmission rate of
the devices in the network. Owing to the mobility of the DBS,
we try to maximize the secrecy rate of all offloading users
by optimizing the DBS placement, the transmission power of
the user equipment (UEs), and UE association. The minimum
task completion time is achieved by optimizing the DBS
placement, the transmission power of UEs, UE association,

bandwidth, and computing resource allocation. To achieve the
objective, we formulate the joinT bandwidth and computation
rEsource assignment, DBS traNsmisSion power contrOl, UE
power contRol, UE association and DBS placement (TEN-
SOR) problem, and jointly maximize the average secrecy rate
and minimize the task completion time.

The main contributions of this article are delineated as
follows:
1) An FSO-based DBS-assisted secure MEC framework is

proposed where the laser is implemented as the backhaul
from the DBSs to the MBS. DBSs can work as computing
nodes to provide computing services for UEs as well as
relays to forward the tasks to the MBS at the same time.

2) A cooperative framework between the DBSs and UEs is
proposed to maximize the secrecy rate of all the offloading
UEs by optimizing the DBSs placement, UE transmission
power, and UE association.

3) A multi-hop, multi-choice, and multi-objective problem is
formulated to maximize the secrecy rate and minimize
task completion time of all offloading UEs. An iterative
algorithm is proposed to solve the TENSOR problem.

The remainder of this article is organized as follows. Section
III describes the up link communication models (including
UE to DBS and UE to MBS). The task computing model is
presented. The problem formulation is elucidated in Section
IV. In Section V, an iterative heuristic algorithm is proposed
to solve the formulated problem. The performance of the
proposed algorithm, substantiated by extensive simulations, is
evaluated in Section VI. Concluding remarks are presented in
Section VII.

III. SYSTEM MODEL

Fig. 1. FSO-enabled DBS-assisted secure MEC network

The FSO-enabled DBS-assisted secure MEC network is
proposed to provision ground UEs with the secured fast uplink
transmission and computing capabilities. Denote ℐ, 𝒥, and 𝒦

as the set of UEs, base stations (BSs), and eavesdroppers (EVs).
As shown in Fig. 1, the MEC network system is composed of
|𝒥 | BSs (including an MBS and ( |𝒥 | −1) DBSs), |ℐ | ground
UEs and |𝒦 | EVs. We assume the locations and the number
of the UEs are known by the MBS and DBS. The number
of eavesdroppers is also known by the MBS and DBSs. The
locations of the eavesdroppers are imperfectly estimated. Both
MBS and DBSs are equipped with multi-core servers, which
can handle multiple tasks simultaneously. The server on the
MBS is much more powerful than that on the DBS. The UEs
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can offload their tasks to either MBS or DBS. Besides serving
as computing nodes, DBSs can also work as relays to forward
the tasks from UEs to the MBS through the FSO backhaul
link. The DBS hovers at a fixed height and UEs are assumed
to exhibit low mobility.

A. Communications Model

The communications channel between the 𝑖-th user equip-
ment 𝑈𝐸𝑖 and the 𝑗-th DBS 𝐷𝐵𝑆 𝑗 is assumed to be proba-
bilistic LoS [9] expressed as:

𝑝𝑙𝑜𝑠𝑖 𝑗 =
1

1 + 𝑎𝑒−𝑏 (𝜃𝑖 𝑗−𝑎)
, 𝑗 > 1, (1)

where 𝑎 and 𝑏 are environmental parameters corresponding to
different terrains, e.g., urban or rural [18]. 𝜃𝑖 𝑗 = arctan(ℎ 𝑗/𝑙𝑖 𝑗 )
denotes the elevation angle between 𝑈𝐸𝑖 and 𝐷𝐵𝑆 𝑗 . Here, 𝑙𝑖 𝑗
and ℎ 𝑗 are the horizontal and vertical distance between 𝑈𝐸𝑖

and the 𝐷𝐵𝑆 𝑗 , respectively.
The LoS and non-LoS path loss between 𝑈𝐸𝑖 and 𝐷𝐵𝑆 𝑗

( 𝑗 = 1 represents the MBS) are respectively expressed as:

𝜑𝑙𝑜𝑠
𝑖 𝑗 = 𝜁 𝑙𝑜𝑠 + 𝜏𝑙𝑜𝑠 log10 (

√︃
𝑙2
𝑖 𝑗
+ ℎ2

𝑗
), 𝑗 > 1, (2)

𝜑𝑛𝑙𝑜𝑠
𝑖 𝑗 = 𝜁𝑛𝑙𝑜𝑠 + 𝜏𝑛𝑙𝑜𝑠 log10 (

√︃
𝑙2
𝑖 𝑗
+ ℎ2

𝑗
), 𝑗 > 1, (3)

where 𝜏𝑙𝑜𝑠 and 𝜏𝑛𝑙𝑜𝑠 are the LoS and non-LoS path exponent,
respectively. 𝜁 𝑙𝑜𝑠 and 𝜁𝑛𝑙𝑜𝑠 are the LoS and non-LoS path loss
at a reference distance, respectively [19], [20]. Thus, we can
derive the average path loss from 𝑈𝐸𝑖 to 𝐷𝐵𝑆 𝑗 as:

𝜑𝑖 𝑗 = 𝑝𝑙𝑜𝑠𝑖 𝑗 𝜑𝑙𝑜𝑠
𝑖 𝑗 + (1 − 𝑝𝑙𝑜𝑠𝑖 𝑗 )𝜑𝑛𝑙𝑜𝑠

𝑖 𝑗 , 𝑗 > 1. (4)

Here, 𝑝𝑛𝑙𝑜𝑠
𝑖 𝑗

= 1−𝑝𝑙𝑜𝑠
𝑖 𝑗

is the probability of non-LoS connection
between 𝑈𝐸𝑖 and 𝐷𝐵𝑆 𝑗 .

The UE is associating with the MBS if 𝑗 = 1. The path loss
between the 𝑈𝐸𝑖 and the MBS is expressed as:

𝜑𝑖 𝑗 = 𝜁𝑚 + 𝜏𝑚 log10 (
√︃
𝑙2
𝑖 𝑗
+ ℎ2

𝑗
), 𝑗 = 1. (5)

Here, 𝜁𝑚 is the path loss at the reference distance and 𝜏𝑚 the
path exponent from 𝑈𝐸𝑖 to the MBS. Thus, we can derive the
data rate from 𝑈𝐸𝑖 to 𝐵𝑆 𝑗 :

𝑅𝑖 𝑗 = 𝑏𝑖 𝑗 log2 (1 + 𝑝𝑖10
−𝜑𝑖 𝑗

10

𝜎2 ), (6)

where 𝑏𝑖 𝑗 is the bandwidth allocated to 𝑈𝐸𝑖 by 𝐵𝑆 𝑗 . 𝑝𝑖 is the
transmission power of 𝑈𝐸𝑖 and 𝜎2 is the noise power. The
path loss between 𝑈𝐸𝑖 and the 𝑘-th eavesdropper (𝐸𝑉𝑘) can
be written as [13]:

𝜑𝑒
𝑖𝑘 = 𝜁𝑒 + 𝜏𝑒 log10 (𝑙𝑒𝑖𝑘), (7)

where 𝜁𝑒 and 𝜏𝑒 are the path loss at the reference distance
and path exponent between 𝑈𝐸𝑖 and 𝐸𝑉𝑘 , respectively. 𝑙𝑒

𝑖𝑘
is

the distance between 𝑈𝐸𝑖 and 𝐸𝑉𝑘 . Then, we can derive the
data rate between 𝑈𝐸𝑖 and 𝐸𝑉𝑘 as:

𝑅𝑒
𝑖𝑘 =

|𝒥 |∑︁
𝑗=1

𝑏𝑖 𝑗 log2 (1 + 𝑝𝑖10
−𝜑𝑒

𝑖𝑘
10

𝜎2 ). (8)

To secure the network, our objective is to minimize the
eavesdropper’s transmission rate. Also, to minimize the task
completion time of UEs, our objective is to maximize the
legitimate aggregate transmission rate of the UEs. Since we
consider both objectives, the secrecy rate is utilized to quantify
the security level of the network, which is defined as the data
rate between the UE and base station minus the data rate
between the eavesdropper and UE. The secrecy rate 𝑅𝑠

𝑖 𝑗
of

𝑈𝐸𝑖 when associating with 𝐵𝑆 𝑗 is given by [21]:

𝑅𝑠
𝑖 𝑗 = [𝑅𝑖 𝑗 − max

𝑘∈𝒦
{𝑅𝑒

𝑖𝑘}]
+,∀𝑖 ∈ Ω ∪ Ψ. (9)

Here, [𝑥]+ ≜ max{0, 𝑥}. Ω is the set of the UEs who offload
their tasks directly to 𝐵𝑆 𝑗 . Ψ is the set of the UEs who offload
their tasks to MBS through the relay of 𝐷𝐵𝑆 𝑗 ( 𝑗 > 1).

The FSO link channel gain between the MBS and 𝐷𝐵𝑆 𝑗 is
given by [22]:

ℎ𝐹𝑆𝑂
𝑗 = 𝑒−𝛽𝐿 𝑗 , 𝑗 > 1, (10)

where 𝐿 𝑗 is the distance from 𝐷𝐵𝑆 𝑗 to MBS. The atmospheric
attenuation coefficient 𝛽 is calculated by:

𝛽 =
3.91
𝑉

( 𝜆

550
)−𝑞 , (11)

where 𝜆 is the wavelength of the FSO link. 𝑉 is the maximum
distance the laser beam can travel. 𝑞 is the size distribution of
the scattering particles given by [23]:

𝑞 =


0 𝑉 ≤ 0.5,

𝑉 − 0.5 0.5 < 𝑉 ≤ 1,
0.16𝑉 + 0.34 1 < 𝑉 ≤ 6,

1.3 6 < 𝑉 ≤ 50,
1.6 50 < 𝑉,

(12)

where 𝑉 depends on the weather conditions such as: 𝑉 > 50
when the weather is clear and 𝑉 < 1 when it is foggy. The
data rate of the FSO link between 𝐷𝐵𝑆 𝑗 and MBS can be
calculated as:

𝑅𝐹𝑆𝑂
𝑗 =

𝑝𝐹𝑆𝑂
𝑗

𝐸𝑝𝑁𝑏

𝑟2
𝑠

(𝜃𝑔𝐿 𝑗 )2 𝜂𝑡𝜂𝑟10−ℎ𝐹𝑆𝑂
𝑗 , 𝑗 > 1. (13)

Here, 𝑝𝐹𝑆𝑂
𝑗

is the transmission power of 𝐷𝐵𝑆 𝑗 . 𝐸𝑝 is the
photon energy calculated by 𝐸𝑝 = 𝐻𝑐/𝜆, where 𝐻 and 𝑐

are the Planck’s constant and the light speed, respectively. 𝑁𝑏

is the sensitivity of the FSO receiver (photons/bit). 𝑟𝑠 is the
radius of the FSO receiver at the MBS. 𝜃𝑔 is the divergence
angle of the laser beam. 𝜂𝑡 and 𝜂𝑟 are the transmitter and
receiver efficiency, respectively.

B. Computing Model
All the BSs (including the MBS and DBSs) are equipped

with multi-core servers to provide computing services. The
server mounted on the MBS is assumed to be more powerful
than those mounted on the DBSs. Because the size of the
computation result is often considerably much smaller than
the size of uploaded data, the transmission latency for 𝐵𝑆 𝑗 to
send the result back to 𝑈𝐸𝑖 is neglected in general [24], [25].
Denote 𝑑𝑖 as the task size of 𝑈𝐸𝑖 . The task completion time
for 𝑈𝐸𝑖 to offload the task to 𝐵𝑆 𝑗 equals to:

𝑡𝑏𝑖 𝑗 =
𝑑𝑖

𝑅𝑖 𝑗

+ 𝑟𝑖𝑑𝑖

𝐶𝑖 𝑗

, (14)



4

where 𝑟𝑖 is the required computing resource per bit and 𝐶𝑖 𝑗

is the computing resources allocated to 𝑈𝐸𝑖 by 𝐵𝑆 𝑗 .
The completion time for the task forwarded to the MBS by

𝐷𝐵𝑆 𝑗 consists of the transmission time from 𝑈𝐸𝑖 to 𝐷𝐵𝑆 𝑗 ,
transmission time from 𝐷𝐵𝑆 𝑗 to MBS, and the computing
time, which can be expressed as:

𝑡
𝑓

𝑖 𝑗
=

𝑑𝑖

𝑅𝑖 𝑗

+ 𝑑𝑖

𝑅𝐹𝑆𝑂
𝑗

+ 𝑟𝑖𝑑𝑖

𝐶𝑖 𝑗

, 𝑗 > 1. (15)

The task completion time for local execution can be ex-
pressed as:

𝑡𝑙𝑖 =
𝑟𝑖𝑑𝑖

𝐶𝑙
𝑖

, (16)

where 𝐶𝑙
𝑖

is the computing capacity of 𝑈𝐸𝑖 .
The power consumption of the task initialized by 𝑈𝐸𝑖 for

the remote computing 𝑝𝑟
𝑖 𝑗

and the local computing 𝑝𝑙
𝑖

can be
calculated by [26]:

𝑝𝑟𝑖 𝑗 = 𝜅𝑟𝑗𝐶
3
𝑖 𝑗 ,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥, (17)

𝑝𝑙𝑖 = 𝜅𝑙𝑖 (𝐶𝑙
𝑖 )3,∀𝑖 ∈ ℐ, (18)

where 𝜅𝑟
𝑗

and 𝜅𝑙
𝑖

are the computing power coefficient of the
𝐵𝑆 𝑗 and 𝑈𝐸𝑖 , respectively.

Let 𝛼𝑖 ∈ {0, 1} indicate whether 𝑈𝐸𝑖 processes the task
locally (𝛼𝑖 = 1) or remotely (𝛼𝑖 = 0). 𝜔𝑖 𝑗 ∈ {0, 1} indicates
whether the task initialized by 𝑈𝐸𝑖 is offloaded to 𝐵𝑆 𝑗 (𝜔𝑖 𝑗 =

1) or not (𝜔𝑖 𝑗 = 0). 𝜓𝑖 𝑗 ∈ {0, 1} indicates whether the task
initialized by 𝑈𝐸𝑖 is relayed to the MBS through 𝐷𝐵𝑆 𝑗 (𝜓𝑖 𝑗 =

1) or not (𝜓𝑖 𝑗 = 0). Thus, we can derive the task completion
time of 𝑈𝐸𝑖 as:

𝑇𝑖 𝑗 = 𝑇 𝑙
𝑖 + 𝑇𝑏

𝑖 𝑗 + 𝑇
𝑓

𝑖 𝑗
, (19)

where 𝑇 𝑙
𝑖
= 𝛼𝑖 (1−𝜔𝑖 𝑗 ) (1−𝜓𝑖 𝑗 )𝑡𝑙𝑖 is the local computing time,

𝑇𝑏
𝑖 𝑗

= 𝜔𝑖 𝑗 (1 − 𝛼𝑖) (1 − 𝜓𝑖 𝑗 )𝑡𝑏𝑖 𝑗 is the task completion time if
𝑈𝐸𝑖 offloads the task to 𝐵𝑆 𝑗 , and 𝑇

𝑓

𝑖 𝑗
= 𝜓𝑖 𝑗 (1−𝛼𝑖) (1−𝜔𝑖 𝑗 )𝑡 𝑓𝑖 𝑗

is the task completion time if 𝑈𝐸𝑖 offloads its task to the
MBS through the relay of 𝐷𝐵𝑆 𝑗 . We assume one task can
only be processed locally or remotely, and the task can only
be executed by one entity. Thus, the constraint 𝛼𝑖 +

∑ |𝒥 |
𝑗=1 𝜔𝑖 𝑗 +∑ |𝒥 |

𝑗=1 𝜓𝑖 𝑗 = 1,∀𝑖 ∈ ℐ must be satisfied.

TABLE 1. List of Key Notations

ℐ, 𝒥, 𝒦 Set of UEs, BSs, EVs

Ω, Ψ Set of offloading UEs with and without relay

𝑅𝑠
𝑖 𝑗

Secrecy rate between 𝑈𝐸𝑖 and 𝐵𝑆 𝑗

𝑅
𝑠,𝑙𝑏
𝑖 𝑗

Lower bound of the secrecy rate between 𝑈𝐸𝑖 and 𝐵𝑆 𝑗

𝑅
𝑒,𝑢𝑏

𝑖𝑘
Upper bound of the data rate between 𝑈𝐸𝑖 and 𝐸𝑉𝑘

Γ𝑖 𝑗 Distance between 𝑈𝐸𝑖 and 𝐵𝑆 𝑗

𝑅
(1)
𝑖 𝑗

First-order Taylor expansion of 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

w.r.t. 𝑝𝑖

𝑇
(1)
𝑖 𝑗

First-order Taylor expansion of 𝑇𝑖 𝑗 w.r.t. 𝑝𝑖

𝑅
(2)
𝑖 𝑗

First-order Taylor expansion of 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

w.r.t. Γ𝑖 𝑗
𝑇
(2)
𝑖 𝑗

First-order Taylor expansion of 𝑇𝑖 𝑗 w.r.t. Γ𝑖 𝑗
𝑇
(3)
𝑖 𝑗

First-order Taylor expansion of 𝑇𝑖 𝑗 w.r.t. 𝐴

IV. PROBLEM FORMULATION

The objective of this article is to maximize the aver-
age secrecy rate of all offloading UEs and minimize the
average task completion time of all the tasks. We define
𝑍 ≜ {(𝑥 𝑗 , 𝑦 𝑗 ),∀ 𝑗 ∈ 𝒥, 𝑗 > 1} as the set of locations of DBSs.
𝑃𝐷𝐵𝑆 ≜ {𝑝𝐹𝑆𝑂

𝑗
,∀ 𝑗 ∈ 𝒥, 𝑗 > 1} as the DBS transmission

power. 𝑃𝑈𝐸 ≜ {𝑝𝑖 ,∀𝑖 ∈ ℐ} as the UE transmission power.
𝐹 ≜ {𝐶𝑖 𝑗 ,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥} as the BS computing resource
allocation. 𝐴 ≜ {𝛼𝑖 , 𝜔𝑖 𝑗 , 𝜓𝑖 𝑗 ,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥} as the UE
association. 𝐵 ≜ {𝑏𝑖 𝑗 ,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥} as the bandwidth
allocation. Thus, we formulate the following multi-objective
optimization problem to solve the TENSOR problem:

𝒫1 : max
𝑍,𝑃𝐷𝐵𝑆 ,𝑃𝑈𝐸 ,𝐹,𝐵,𝐴

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠
𝑖 𝑗

min
𝑍,𝑃𝐷𝐵𝑆 ,𝑃𝑈𝐸 ,𝐹,𝐵,𝐴

∑︁
𝑖∈ℐ

∑︁
𝑗∈𝒥

1
|ℐ |𝑇𝑖 𝑗

𝑠.𝑡. : 𝐶1 :
|ℐ |∑︁
𝑖=1

𝜔𝑖 𝑗𝐶𝑖 𝑗 +
|ℐ |∑︁
𝑖=1

𝜓𝑖 𝑗𝐶𝑖 𝑗 ≤ 𝐶𝐷𝑚𝑎𝑥
𝑗 ,∀ 𝑗 ∈ 𝒥

𝐶2 :
|ℐ |∑︁
𝑖=1

𝜔𝑖 𝑗𝑏𝑖 𝑗 +
|ℐ |∑︁
𝑖=1

𝜓𝑖 𝑗𝑏𝑖 𝑗 ≤ 𝐵𝐷𝑚𝑎𝑥
𝑗 ,∀ 𝑗 ∈ 𝒥

𝐶3 : 𝑃𝐹𝑆𝑂
𝑗 +

|ℐ |∑︁
𝑖=1

𝜔𝑖 𝑗 𝑝
𝑟
𝑖 ≤ 𝑃𝐷𝑚𝑎𝑥

𝑗 ,∀ 𝑗 ∈ 𝒥, 𝑗 > 1

𝐶4 : 𝛼𝑖 +
|𝒥 |∑︁
𝑗=1

𝜔𝑖 𝑗 +
|𝒥 |∑︁
𝑗=1

𝜓𝑖 𝑗 = 1,∀𝑖 ∈ ℐ

𝐶5 : (1 − 𝛼𝑖)𝑝𝑖 + 𝛼𝑖 𝑝
𝑙
𝑖 ≤ 𝑃𝑈𝑚𝑎𝑥

𝑖 ,∀𝑖 ∈ ℐ

𝐶6 :
|𝒥 |∑︁
𝑗=1

𝑇𝑖 𝑗 ≤ 𝑇𝐷𝐿
𝑖 ,∀𝑖 ∈ ℐ

𝐶7 : 0 ≤ 𝑥 𝑗 , 𝑦 𝑗 ≤ 500,∀ 𝑗 ∈ 𝒥

𝐶8 : 𝛼𝑖 = {0, 1},∀𝑖 ∈ ℐ

𝐶9 : 𝜔𝑖 𝑗 = {0, 1},∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥

𝐶10 : 𝜓𝑖 𝑗 = {0, 1},∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥 (20)

Here, 𝐶𝐷𝑚𝑎𝑥
𝑗

, 𝐵𝐷𝑚𝑎𝑥
𝑗

, and 𝑃𝐷𝑚𝑎𝑥
𝑗

are the maximum com-
puting, bandwidth, and power capacities of 𝐵𝑆 𝑗 . 𝑃𝑈𝑚𝑎𝑥

𝑖
is

the power capacity of 𝑈𝐸𝑖 , respectively. 𝑇𝐷𝐿
𝑖

is the deadline
of the task initialized by 𝑈𝐸𝑖 . C1 and C2 are computing
resource and bandwidth capacity constraints, which impose
the computing resource and bandwidth allocated to UE not to
exceed the capacity of the BS. C3 is the DBS power capacity
which imposes the power used for FSO communication and
computing not to exceed the capacity of the DBS. C4 is the
UE association constraint which imposes one task to only be
processed by one device. C5 is the UE power constraint which
imposes the power used for computing and the communication
not to exceed the device capacity. C6 is the task deadline
constraint which imposes the task completion time not to
exceed the deadline of the task. C7 is the DBS placement
constraint on the horizontal plane. C8-C10 are the binary
constraints.
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V. PROPOSED SOLUTION

The TENSOR problem is a mixed-integer nonlinear problem
due to the UE association indicators, and the data rate function
being neither convex nor concave w.r.t. the placement of the
DBS; it is thus very challenge to solve TENSOR. Furthermore,
the uncertainty of the eavesdropper’s location has exacerbated
the difficulty of TENSOR. To tackle the problem, we adopt the
bounded location error model to describe the eavesdroppers’
uncertainty given by [27]:

𝑧𝑘 ∈ {||𝑧𝑘 − 𝑧𝑘 | | ≤ 𝛿}, (21)

where 𝑧𝑘 is the location of 𝐸𝑉𝑘 . 𝑧𝑘 is the estimated location of
𝐸𝑉𝑘 by BSs. 𝛿 is the estimation error. The physical meaning of
this model is that the location of 𝐸𝑉𝑘 can be anywhere within
the cycle with radius 𝛿 and center at 𝑧𝑘 . Since this model is
still an uncertainty model, to solve the problem, we consider
the location of 𝐸𝑉𝑘 that results in the worst-case lower bound
of the secrecy rate:

𝑅
𝑠,𝑙𝑏
𝑖 𝑗

= [𝑅𝑖 𝑗 − max
𝑘∈𝒦

{𝑅𝑒,𝑢𝑏

𝑖𝑘
}]+,∀𝑖 ∈ Ω ∪ Ψ, (22)

where 𝑅
𝑒,𝑢𝑏

𝑖𝑘
= 𝑏𝑖 𝑗 log2 (1 + 𝑝𝑖10

−𝜑
𝑠,𝑙𝑏
𝑖𝑘
10

𝜎2 ) is the upper bound
of the data rate between the 𝑈𝐸𝑖 and 𝐸𝑉𝑘 . Here, 𝜑

𝑠,𝑙𝑏

𝑖𝑘
=

𝜁𝑒
𝑖𝑘
+ 𝜏𝑒

𝑖𝑘
log10 (

√︁
| |𝑧𝑖 − 𝑧𝑘 | | − 𝛿) and 𝑧𝑖 denotes the location of

𝑈𝐸𝑖 . Then, we can restate 𝒫1 as:

𝒫
′
1 : max

𝑍,𝑃𝐷𝐵𝑆 ,𝑃𝑈𝐸 ,𝐹,𝐵,𝐴

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

min
𝑍,𝑃𝐷𝐵𝑆 ,𝑃𝑈𝐸 ,𝐹,𝐵,𝐴

∑︁
𝑖∈ℐ

∑︁
𝑗∈𝒥

1
|ℐ |𝑇𝑖 𝑗

𝑠.𝑡. : 𝐶1 − 𝐶10 (23)

Due to the binary indicators and the secrecy rate function,
𝒫

′
1 is a mixed-integer nonlinear problem. Moreover, 𝒫

′
1 is

not convex due to the DBS placement. To solve the multi-
objective problem, we utilize the 𝜖-constraint method, which
is to put one of our objectives into the constraint. Here, we
put the second objective into the constraint because the second
objective is to minimize the average task completion and we
can easily find the upper bound of the objective, which is
𝜖 =

∑ |ℐ |
𝑖=1

1
|ℐ |𝑇

𝐷𝐿
𝑖

. Then, we restate 𝒫
′
1 as:

𝒫2 : max
𝑍,𝑃𝐷𝐵𝑆 ,𝑃𝑈𝐸 ,𝐹,𝐵,𝐴

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

𝑠.𝑡. : 𝐶1 − 𝐶10

𝐶11 :
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

1
|ℐ |𝑇𝑖 𝑗 ≤ 𝜖 (24)

After implementing the 𝜖-constraint method, 𝒫2 is still a
mixed-integer nonlinear problem and not convex, due to the
binary indicators, secrecy rate function, and DBSs placement.
In order to solve 𝒫2, we decompose 𝒫2 into 4 sub-problems:
bandwidth and computing resource allocation problem, UE
power control problem, DBSs placement problem, and UE
association problem. Then, we use successive convex approx-
imation to tackle the problem.

A. The Bandwidth and Computing Resource Allocation Prob-
lem

For given UE transmission power, DBSs placement, and UE
association, 𝒫2 can be simplified to 𝒫2−𝐴:

𝒫2−𝐴 : max
𝐵,𝐹

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

𝑠.𝑡. : 𝐶1, 𝐶2, 𝐶3, 𝐶6, 𝐶11 (25)

Note that 𝐶3 imposes the power used for FSO communication
and computing not to exceed the capacity of the DBS. To
minimize the task completion time, the equality condition of
𝐶3 will always hold. As a result, we can conclude that 𝑃𝐹𝑆𝑂

𝑗
=

𝑃𝐷𝑚𝑎𝑥
𝑗

− ∑ |ℐ |
𝑖=1 𝜔𝑖 𝑗 𝑝

𝑟
𝑖
. By substituting 𝑃𝐹𝑆𝑂

𝑗
in Eq. (13), we

decide 𝑃𝐷𝐵𝑆 in 𝒫2.

Lemma 1. Given UE transmission power, DBSs placement,
and UE association, 𝒫2−𝐴 is convex.

Proof: We can derive the Hessian Matrix of 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

as

𝐻𝑅 =


𝜕2𝑅𝑠,𝑙𝑏

𝑖 𝑗

𝜕2𝑏𝑖 𝑗

𝜕2𝑅𝑠,𝑙𝑏
𝑖 𝑗

𝜕𝑏𝑖 𝑗𝜕𝐶𝑖 𝑗

𝜕2𝑅𝑠,𝑙𝑏
𝑖 𝑗

𝜕𝐶𝑖 𝑗𝜕𝑏𝑖 𝑗

𝜕2𝑅𝑠,𝑙𝑏
𝑖 𝑗

𝜕2𝐶𝑖 𝑗

 =

[
0 0
0 0

]
, i.e., 𝐻𝑅 is both

positive and negative semi-definite, which is linear w.r.t 𝑏𝑖 𝑗

and 𝐶𝑖 𝑗 . As a result, 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

is convex. Since the linear
combination of convex functions is still convex, we can
conclude that the objective function of 𝒫2−𝐴 is convex.
For constraints 𝐶1, 𝐶2, and 𝐶3, they are obviously convex
(linear). For constraints 𝐶6 and 𝐶11, denote the Hessian

Matrix of 𝑇𝑖 𝑗 as 𝐻𝑇 =


𝜕2𝑇𝑖 𝑗
𝜕2𝑏𝑖 𝑗

𝜕2𝑇𝑖 𝑗
𝜕𝑏𝑖 𝑗𝜕𝐶𝑖 𝑗

𝜕2𝑇𝑖 𝑗
𝜕𝐶𝑖 𝑗𝜕𝑏𝑖 𝑗

𝜕2𝑇𝑖 𝑗
𝜕2𝐶𝑖 𝑗

 . There are

two cases based on different UE association policy. 𝐻𝑇 =[
0 0
0 0

]
(obviously convex), if task 𝑖 is executed locally.

𝐻𝑇 =


2𝑑𝑖𝑀

𝑏3
𝑖 𝑗
𝑙𝑜𝑔 (1+𝛾𝑖 )

0

0 𝑀 ( 2𝑟𝑖𝑑𝑖
𝐶3

𝑖 𝑗

+ 2𝑑𝑖 (𝜅𝑟𝑗 )2

𝑁 (𝑃𝐷𝑚𝑎𝑥
𝑗

−𝐶𝑖 𝑗 𝜅
𝑟
𝑗
)3 )

 , if task

𝑖 is executed by BS 𝑗 . Here, 𝛾𝑖 =
𝑝𝑖10−

𝜑𝑖 𝑗
10

𝜎2 , 𝑀 = 𝜔𝑖 𝑗 (1 −

𝛼𝑖) (1 − 𝜓𝑖 𝑗 ) + 𝜓𝑖 𝑗 (1 − 𝛼𝑖) (1 − 𝜔𝑖 𝑗 ) and 𝑁 =
𝑟2
𝑠 𝜂𝑡 𝜂𝑟10−ℎ

𝐹𝑆𝑂
𝑗

𝐸𝑝𝑁𝑏 (𝜃𝑔𝐿 𝑗 )2 .
Since the task is executed remotely (i.e., 𝑀 = 1), we have
𝑃𝐷𝑚𝑎𝑥

𝑗
− 𝐶𝑖 𝑗𝜅

𝑟
𝑗
≥ 0. This is because the power used for

computing will never exceed the power capacity of the DBS.
𝑁 , 𝜅𝑟

𝑗
, 𝑟𝑖 , 𝑑𝑖 , 𝑏𝑖 𝑗 and 𝐶𝑖 𝑗 are all larger than 0. As a result, 𝐻𝑇

is positive semi-definite, implying that 𝑇𝑖 is convex for a given
UE association. Since the summation of convex functions is
still convex, we can conclude that 𝒫2−𝐴 is convex.

Since 𝒫2−𝐴 is convex, we can solve it easily by CVX.

B. The UE Transmission Power Problem
For given bandwidth and computing resource allocation,

DBSs placement, and UE association, 𝒫2 can be simplified
to 𝒫2−𝐵:

𝒫2−𝐵 : max
𝑃𝑈𝐸

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

𝑠.𝑡. : 𝐶5, 𝐶6, 𝐶11 (26)
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However, the objective function 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

= [𝑅𝑖 𝑗 − 𝑅
𝑒,𝑢𝑏

𝑖𝑘
]+ is not

convex w.r.t. the UE transmission power 𝑝𝑖 . Although 𝑅𝑖 𝑗 and
𝑅
𝑒,𝑢𝑏

𝑖𝑘
are both convex w.r.t. 𝑝𝑖 , the subtraction of 𝑅𝑖 𝑗 and

𝑅
𝑒,𝑢𝑏

𝑖𝑘
is not necessarily convex. To convexify 𝒫2−𝐵, we try to

replace 𝑅𝑖 𝑗 and 𝑅
𝑒,𝑢𝑏
𝑖 𝑗

with their first-order Taylor expansion.
Denote 𝑅

(1)
𝑖 𝑗

as the first-order Taylor expansion of 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

w.r.t.
𝑝𝑖 , then,

𝑅
(1)
𝑖 𝑗

= 𝑏𝑖 𝑗 log(1 + 𝑝𝑖 [𝑚]10−
𝜑𝑖 𝑗

10

𝜎2 ) − 𝑏𝑖 𝑗 log(1+

𝑝𝑖 [𝑚]10−
𝜑𝑒
𝑖𝑘

10

𝜎2 ) + (
𝑏𝑖 𝑗10−

𝜑𝑖 𝑗

10

𝜎2 log(1 + 𝑝𝑖 [𝑚]10−
𝜑𝑖 𝑗
10

𝜎2 )
+

𝑏𝑖 𝑗10−
𝜑𝑒
𝑖𝑘

10

𝜎2 log(1 + 𝑝𝑖 [𝑚]10−
𝜑𝑒
𝑖𝑘

10

𝜎2 )
) (𝑝𝑖 − 𝑝𝑖 [𝑚]), (27)

where 𝑝𝑖 [𝑚] is the transmission power of 𝑈𝐸𝑖 at the 𝑚-th
iteration. Then, we define the first-order Taylor expansion of
𝑇𝑖 𝑗 w.r.t. 𝑝𝑖 as 𝑇

(1)
𝑖 𝑗

, which can be expressed as:

𝑇
(1)
𝑖 𝑗

= (𝑇 𝑙
𝑖 ) (1) + (𝑇𝑏

𝑖 𝑗 ) (1) + (𝑇 𝑓

𝑖 𝑗
) (1) , (28)

where (𝑇 𝑙
𝑖
) (1) = 𝛼𝑖 (1−𝜔𝑖 𝑗 ) (1−𝜓𝑖 𝑗 ) 𝑟𝑖𝑑𝑖

𝐶𝑈𝐸
𝑖

is the first-order Tay-

lor expansion of 𝑇 𝑙
𝑖
. (𝑇𝑏

𝑖 𝑗
) (1) = 𝜔𝑖 𝑗 (1−𝛼𝑖) (1−𝜓𝑖 𝑗 ) (𝑏𝑖 𝑗 log2 (1+

𝑝𝑖 [𝑚]10−
𝜑𝑖 𝑗
10

𝜎2 )+ 𝑟𝑖𝑑𝑖
𝐶𝑖 𝑗

− 𝑑𝑖10−
𝜑𝑖 𝑗
10

𝜎2𝑏𝑖 𝑗 log2 (1+
𝑝𝑖 [𝑚]10−

𝜑𝑖 𝑗
10

𝜎2 )2 (1+ 𝑝𝑖 [𝑚]10−
𝜑𝑖 𝑗
10

𝜎2 )
(𝑝𝑖−

𝑝𝑖 [𝑚])) is the first-order Taylor expansion of 𝑇𝑏
𝑖 𝑗

w.r.t. 𝑝𝑖 .

(𝑇 𝑓

𝑖 𝑗
) (1) = 𝜓𝑖 𝑗 (1−𝛼𝑖) (1−𝜔𝑖 𝑗 ) (

(𝑇𝑏
𝑖 𝑗
) (1)

𝜔𝑖 𝑗 (1−𝛼𝑖 ) (1−𝜓𝑖 𝑗 ) +
𝑑𝑖

𝑅𝐹𝑆𝑂
𝑗

) is the

first-order Taylor expansion of 𝑇 𝑓

𝑖 𝑗
w.r.t. 𝑝𝑖 . At last, we restate

𝒫2−𝐵 as:

𝒫
′
2−𝐵 : max

𝑃𝑈𝐸

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

(1)
𝑖 𝑗

𝑠.𝑡. : 𝐶5

𝐶6′ :
|𝒥 |∑︁
𝑗=1

𝑇
(1)
𝑖 𝑗

≤ 𝑇𝐷𝐿
𝑖 ,∀𝑖 ∈ ℐ

𝐶11′ :
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

1
|ℐ |𝑇

(1)
𝑖 𝑗

≤ 𝜖 (29)

Since 𝑅
(1)
𝑖 𝑗

and 𝑇
(1)
𝑖 𝑗

are linear (i.e., convex) functions of 𝑝𝑖 ,
𝒫

′
2−𝐵 is a convex problem, which can be solved by utilizing

CVX.

C. The DBS Placement Problem

For given UE transmission power, DBS transmission power,
BS computing resource allocation, bandwidth allocation and
UE association, 𝒫2 can be simplified to 𝒫2−𝐶 :

𝒫2−𝐶 : max
𝑍

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

𝑠.𝑡. : 𝐶6, 𝐶7, 𝐶11 (30)

Note that 𝒫2−𝐶 is neither convex nor concave w.r.t. the
location of 𝐷𝐵𝑆 𝑗 , (𝑥 𝑗 , 𝑦 𝑗 ), since 𝑅𝑖 𝑗 is neither convex nor
concave w.r.t. (𝑥 𝑗 , 𝑦 𝑗 ). However, 𝑅𝑖 𝑗 and 𝑇𝑖 𝑗 is convex and
concave w.r.t. Γ𝑖 𝑗 , respectively, where Γ𝑖 𝑗 =

√︃
𝑙2
𝑖 𝑗
+ ℎ2

𝑗
is the

distance between 𝑈𝐸𝑖 and 𝐷𝐵𝑆 𝑗 . To solve the DBS placement
problem, we try to transform 𝒫2−𝐶 into a convex problem by
replacing 𝑅𝑖 𝑗 and 𝑇𝑖 𝑗 with their convex approximations. Define
𝑅
(2)
𝑖 𝑗

as the first-order Taylor expansion of 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

w.r.t. Γ𝑖 𝑗 and
define 𝑇

(2)
𝑖 𝑗

as the first-order Taylor expansion of 𝑇𝑖 𝑗 w.r.t. Γ𝑖 𝑗 .
Then, we can restate 𝒫2−𝐶 as:

𝒫
′
2−𝐶 : max

Γ𝑖 𝑗

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

(2)
𝑖 𝑗

𝑠.𝑡. : 𝐶6′′ :
|𝒥 |∑︁
𝑗=1

𝑇
(2)
𝑖 𝑗

≤ 𝑇𝐷𝐿
𝑖 ,∀𝑖 ∈ ℐ

𝐶7′ : Γ𝑖 𝑗 ∈ [ℎ,
√︃
ℎ2 + (500

√
2)2]

𝐶11′′ :
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

1
|ℐ |𝑇

(2)
𝑖 𝑗

≤ 𝜖 (31)

Here, 𝐶7′ is the distance constraint. The smallest and largest
value of Γ𝑖 𝑗 are obtained when 𝐷𝐵𝑆 𝑗 is right above 𝑈𝐸𝑖 and
when 𝐷𝐵𝑆 𝑗 and 𝑈𝐸𝑖 are at two diagonal corners, respectively.
Since 𝒫

′
2−𝐶 is convex, we can solve it by utilizing CVX.

D. UE Association Problem

For given UE transmission power, DBS transmission power,
BS computing resource allocation, bandwidth allocation and
DBS placement, 𝒫2 can be simplified to 𝒫2−𝐷:

𝒫2−𝐷 : max
𝐴

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

𝑠.𝑡. : 𝐶1 − 𝐶6, 𝐶8 − 𝐶11 (32)

Note that 𝒫2−𝐷 is a multiple-choice multiple-dimension
knapsack problem, which is a well-known NP-hard problem.
To solve the problem, we first rewrite the binary constraints
𝐶8 − 𝐶10 as follows:

𝐶8′ : 0 ≤ 𝛼𝑖 ≤ 1,∀𝑖 ∈ ℐ

𝐶8′′ :
|ℐ |∑︁
𝑖=1

𝛼𝑖 − 𝛼2
𝑖 ≤ 0

𝐶9′ : 0 ≤ 𝜔𝑖 𝑗 ≤ 1,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥

𝐶9′′ :
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

𝜔𝑖 𝑗 − 𝜔2
𝑖 𝑗 ≤ 0

𝐶10′ : 0 ≤ 𝜓𝑖 𝑗 ≤ 1,∀𝑖 ∈ ℐ,∀ 𝑗 ∈ 𝒥

𝐶10′′ :
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

𝜓𝑖 𝑗 − 𝜓2
𝑖 𝑗 ≤ 0 (33)
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Then, we restate 𝒫2−𝐷 as:

𝒫
′
2−𝐷 : min

𝐴
𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) ≜

∑︁
𝑖∈Ω∪Ψ

∑︁
𝑗∈𝒥

−1
|Ω| + |Ψ| 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

+

𝜂𝛼 (
|ℐ |∑︁
𝑖=1

𝛼𝑖 − 𝛼2
𝑖 ) + 𝜂𝜔 (

|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

𝜔𝑖 𝑗 − 𝜔2
𝑖 𝑗 )

+ 𝜂𝑘 (
|ℐ |∑︁
𝑖=1

|𝒥 |∑︁
𝑗=1

𝜓𝑖 𝑗 − 𝜓2
𝑖 𝑗 )

𝑠.𝑡. : 𝐶1 − 𝐶6, 𝐶8′, 𝐶9′, 𝐶10′, 𝐶11 (34)

Here, 𝜂𝛼, 𝜂𝜔 , and 𝜂𝑘 are the penalty factors that penalize the
UE association indicators that violate constraints 𝐶8′′, 𝐶9′′,
and 𝐶10′′.

Lemma 2. For sufficiently large penalty factors 𝜂𝛼, 𝜂𝜔 , and
𝜂𝑘 , 𝒫′

2−𝐷 is equivalent to 𝒫2−𝐷 .

Proof: We can observe that
max𝐴

∑
𝑖∈Ω∪Ψ

∑
𝑗∈𝒥

1
|Ω |+|Ψ | 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

in 𝒫2−𝐷 is equivalent to
min𝐴

∑
𝑖∈Ω∪Ψ

∑
𝑗∈𝒥

−1
|Ω |+|Ψ | 𝑅

𝑠,𝑙𝑏
𝑖 𝑗

in 𝒫
′
2−𝐷 . Denote the primal

solution of 𝒫′
2−𝐷 as 𝑝∗ = min𝐴 max𝜂𝛼 ,𝜂𝜔 ,𝜂𝑘

𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘)
and the solution of the dual problem as 𝑑∗ =

max𝜂𝛼 ,𝜂𝜔 ,𝜂𝑘
min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘). According to Lagrangian

duality, we have 𝑑∗ ≤ 𝑝∗. If 𝜂𝛼 (
∑ |ℐ |

𝑖=1 𝛼𝑖 − 𝛼2
𝑖
) = 0,

𝜂𝜔 (
∑ |ℐ |

𝑖=1
∑ |𝒥 |

𝑗=1 𝜔𝑖 𝑗−𝜔2
𝑖 𝑗
) = 0, and 𝜂𝑘 (

∑ |ℐ |
𝑖=1

∑ |𝒥 |
𝑗=1 𝜓𝑖 𝑗−𝜓2

𝑖 𝑗
) = 0,

we have 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) = max𝜂𝛼 ,𝜂𝜔 ,𝜂𝑘
𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘).

Note that max𝜂𝛼 ,𝜂𝜔 ,𝜂𝑘
min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) ≥

min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘). Thus, we can conclude that
𝑑∗ = 𝑝∗. Since min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) is increasing
monotonically w.r.t. 𝜂𝛼, 𝜂𝜔 , and 𝜂𝑘 , we can conclude
that 𝑝∗ = min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘). If 𝜂𝛼 (

∑ |ℐ |
𝑖=1 𝛼𝑖 − 𝛼2

𝑖
) > 0,

𝜂𝜔 (
∑ |ℐ |

𝑖=1
∑ |𝒥 |

𝑗=1 𝜔𝑖 𝑗 −𝜔2
𝑖 𝑗
) > 0, and 𝜂𝑘 (

∑ |ℐ |
𝑖=1

∑ |𝒥 |
𝑗=1 𝜓𝑖 𝑗 − 𝜓2

𝑖 𝑗
) >

0, max𝜂𝛼 ,𝜂𝜔 ,𝜂𝑘
min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) tends to infinity

because min𝐴 𝐿 (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) is increasing monotonically
w.r.t. 𝜂𝛼, 𝜂𝜔 , and 𝜂𝑘 , which contradicts 𝑑∗ ≤ 𝑝∗. As a
result, for enough large penalty factors, 𝒫′

2−𝐷 is equivalent
to 𝒫2−𝐷 .

In the objective function of 𝒫
′
2−𝐷 , 𝜂𝛼 (

∑ |ℐ |
𝑖=1 𝛼𝑖 − 𝛼2

𝑖
),

𝜂𝜔 (
∑ |ℐ |

𝑖=1
∑ |𝒥 |

𝑗=1 𝜔𝑖 𝑗 − 𝜔2
𝑖 𝑗
), and 𝜂𝑘 (

∑ |ℐ |
𝑖=1

∑ |𝒥 |
𝑗=1 𝜓𝑖 𝑗 − 𝜓2

𝑖 𝑗
) are

all composed by subtracting two convex functions, which
are not necessarily convex. So, we construct a surrogate
function by implementing the first order Taylor approximation
to the objective function of 𝒫

′
2−𝐷 . Define 𝐿′ (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘)

as the first order Taylor expansion of the objective func-
tion of 𝒫

′
2−𝐷 , 𝐿′ (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) ≜ 𝐿 (𝐴[𝑚], 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) +

▽𝛼𝐿 (𝐴[𝑚], 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) (𝛼 − 𝛼[𝑚]) + ▽𝜔𝐿 (𝐴[𝑚], 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘)
(𝜔 −𝜔[𝑚]) + ▽𝑘𝐿 (𝐴[𝑚], 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘) (𝑘 − 𝑘 [𝑚]). Here 𝐴[𝑚],
𝛼[𝑚], 𝜔[𝑚], and 𝑘 [𝑚] are the UE association at the 𝑚-th
iteration. Define 𝑇

(3)
𝑖 𝑗

as the first-order Taylor expansion of
𝑇𝑖 𝑗 w.r.t. 𝐴, then 𝑇

(3)
𝑖 𝑗

can be expressed as:

𝑇
(3)
𝑖 𝑗

= (𝑇 𝑙
𝑖 ) (3) + (𝑇𝑏

𝑖 𝑗 ) (3) + (𝑇 𝑓

𝑖 𝑗
) (3) , (35)

where (𝑇 𝑙
𝑖
) (3) = 𝛼𝑖 [𝑚] (1 − 𝜔𝑖 𝑗 [𝑚]) (1 − 𝜓𝑖 𝑗 [𝑚])𝑡𝑙

𝑖
+ (1 −

𝜔𝑖 𝑗 [𝑚]) (1 − 𝜓𝑖 𝑗 [𝑚])𝑡𝑙
𝑖
(𝛼𝑖 − 𝛼𝑖 [𝑚]) is the first-order Taylor

expansion of 𝑇 𝑙
𝑖
. (𝑇𝑏

𝑖 𝑗
) (3) = 𝜔𝑖 𝑗 [𝑚] (1−𝛼𝑖 [𝑚]) (1−𝜓𝑖 𝑗 [𝑚])𝑡𝑏

𝑖 𝑗
+

(1 − 𝛼𝑖 [𝑚]) (1 − 𝜓𝑖 𝑗 [𝑚])𝑡𝑏
𝑖 𝑗
(𝜔𝑖 𝑗 − 𝜔𝑖 𝑗 [𝑚]) is the first-order

Taylor expansion of 𝑇𝑏
𝑖 𝑗

. (𝑇 𝑓

𝑖 𝑗
) (3) = 𝜓𝑖 𝑗 [𝑚] (1 − 𝛼𝑖 [𝑚]) (1 −

𝜔𝑖 𝑗 [𝑚])𝑇 𝑓

𝑖 𝑗
+ (1− 𝛼𝑖 [𝑚]) (1−𝜔𝑖 𝑗 [𝑚])𝑇 𝑓

𝑖 𝑗
(𝜓𝑖 𝑗 −𝜓𝑖 𝑗 [𝑚]) is the

first-order Taylor expansion of 𝑇 𝑓

𝑖 𝑗
. Then, we can restate 𝒫

′
2−𝐷

as:

𝒫
′′
2−𝐷 : min

𝐴
𝐿′ (𝐴, 𝜂𝛼, 𝜂𝜔 , 𝜂𝑘)

𝑠.𝑡. : 𝐶1 − 𝐶5, 𝐶8′, 𝐶9′, 𝐶10′

𝐶6′′′ :
|𝒥 |∑︁
𝑗=1

𝑇
(3)
𝑖 𝑗

≤ 𝑇𝐷𝐿
𝑖 ,∀𝑖 ∈ ℐ

𝐶11′′′ :
|𝒥 |∑︁
𝑗=1

|ℐ |∑︁
𝑖=1

1
|ℐ |𝑇

(3)
𝑖 𝑗

≤ 𝜖 (36)

Since 𝒫
′′
2−𝐷 is convex, we can solve it by using CVX.

E. Proposed Algorithm

Algorithm 1: Iterative Allocation for TENSOR

Input: 𝐼, 𝐷, 𝐸 , 𝐶𝐷𝑚𝑎𝑥
𝑗

, 𝑃𝐷𝑚𝑎𝑥
𝑗

, 𝐵𝐷𝑚𝑎𝑥
𝑗

, 𝑃𝑈𝑚𝑎𝑥
𝑖

, 𝑇𝐷𝐿
𝑖

.
Output: 𝐹, 𝐵, 𝑃𝐷𝐵𝑆 , 𝑃𝑈𝐸 , 𝐴, 𝑍 .

1 Initialize 𝑚 and set 𝑚 = 1.
2 Initialize 𝑃𝑈𝐸 [𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝐴[𝑚], and 𝑍 [𝑚].
3 repeat
4 Given 𝑃𝑈𝐸 [𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝐴[𝑚], and 𝑍 [𝑚], obtain

𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], and 𝑃𝐷𝐵𝑆 [𝑚 + 1] by solving
𝒫2−𝐴.

5 Given 𝐴[𝑚], 𝑍 [𝑚], 𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], and
𝑃𝐷𝐵𝑆 [𝑚 + 1], obtain 𝑃𝑈𝐸 [𝑚 + 1] by solving 𝒫

′
2−𝐵.

6 Given 𝐴[𝑚] 𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], and
𝑃𝑈𝐸 [𝑚 + 1], obtain 𝑍 [𝑚 + 1] by solving 𝒫

′
2−𝐶 .

7 Given 𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1],
𝑃𝑈𝐸 [𝑚 + 1], and 𝑍 [𝑚 + 1], obtain 𝐴[𝑚 + 1] by
solving 𝒫

′′
2−𝐷 .

8 𝑚 = 𝑚 + 1.
9 until∑

𝑖∈Ω[𝑚+1]∪Ψ[𝑚+1]
∑

𝑗∈𝒥
1

|Ω[𝑚+1] |+|Ψ[𝑚+1] | 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

[𝑚 +
1] −∑

𝑖∈Ω[𝑚]∪Ψ[𝑚]
∑

𝑗∈𝒥
1

|Ω[𝑚] |+|Ψ[𝑚] | 𝑅
𝑠,𝑙𝑏
𝑖 𝑗

[𝑚] ≤ 𝜀.

Based on the analysis in the proposed solution section, our
proposed iterative algorithm is illustrated in Algorithm 1. We
iteratively slove 𝒫2−𝐴, 𝒫′

2−𝐵, 𝒫′
2−𝐶 , and 𝒫

′′
2−𝐷 (Steps 3-8)

until the improvement of the average secrecy rate (Step 9) is
less than the threshold 𝜀.

Lemma 3. Algorithm 1 is guaranteed to converge.

Proof: Denote 𝑅𝑠,𝑙𝑏 (·) as the objective function
of TENSOR. 𝐹 [𝑚], 𝐵[𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝑃𝑈𝐸 [𝑚], 𝐴[𝑚],
and 𝑍 [𝑚] are the BS computing resource allocation,
BS bandwidth assignment, FSO transmission power,
UE transmission power, and DBS placement at the 𝑚-
th iteration, respectively. In Algorithm 1 line 4, since
𝒫2−𝐴 is convex w.r.t. 𝐹, 𝐵, and 𝑃𝐷𝐵𝑆 , 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 +
1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚], 𝐴[𝑚], 𝑍 [𝑚]) ≥
𝑅𝑠,𝑙𝑏 (𝐹 [𝑚], 𝐵[𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝑃𝑈𝐸 [𝑚], 𝑃𝑈𝐸 [𝑚], 𝐴[𝑚], 𝑍 [𝑚]).
In line 5, we set the output of 𝒫2−𝐴 (e.g., 𝐹 [𝑚+1], 𝐵[𝑚+1],
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and 𝑃𝐷𝐵𝑆 [𝑚 + 1]) as the input of 𝒫
′
2−𝐵. Since 𝒫

′
2−𝐵 is

convex w.r.t. 𝑃𝑈𝐸 , 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 +
1], 𝑃𝑈𝐸 [𝑚 + 1], 𝐴[𝑚], 𝑍 [𝑚]) ≥ 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 + 1], 𝐵[𝑚 +
1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝐴[𝑚], 𝑍 [𝑚]). In
line 6, we set the output of 𝒫2−𝐴 and 𝒫

′
2−𝐵 (e.g.,

𝐹 [𝑚+1], 𝐵[𝑚+1], 𝑃𝐷𝐵𝑆 [𝑚+1], and 𝑃𝑈𝐸 [𝑚+1]) as the input
of 𝒫′

2−𝐶 . Since 𝒫′
2−𝐶 is convex w.r.t. 𝑍 , 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚+1], 𝐵[𝑚+

1], 𝑃𝐷𝐵𝑆 [𝑚+1], 𝑃𝑈𝐸 [𝑚+1], 𝐴[𝑚], 𝑍 [𝑚+1]) ≥ 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚+
1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚 + 1], 𝐴[𝑚], 𝑍 [𝑚]). In
line 7, we set the output of 𝒫2−𝐴,𝒫

′
2−𝐵, and 𝒫

′
2−𝐶 (e.g.,

𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚 + 1], and 𝑍 [𝑚 + 1])
as the input of 𝒫

′′
2−𝐷 . Since 𝒫

′′
2−𝐷 is convex w.r.t. 𝐴,

𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚 + 1], 𝐴[𝑚 +
1], 𝑍 [𝑚 + 1]) ≥ 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 + 1], 𝐵[𝑚 + 1], 𝑃𝐷𝐵𝑆 [𝑚 +
1], 𝑃𝑈𝐸 [𝑚 + 1], 𝐴[𝑚], 𝑍 [𝑚 + 1]). So, 𝑅𝑠,𝑙𝑏 (𝐹 [𝑚 + 1], 𝐵[𝑚 +
1], 𝑃𝐷𝐵𝑆 [𝑚 + 1], 𝑃𝑈𝐸 [𝑚 + 1], 𝐴[𝑚 + 1], 𝑍 [𝑚 + 1]) ≥
𝑅𝑠,𝑙𝑏 (𝐹 [𝑚], 𝐵[𝑚], 𝑃𝐷𝐵𝑆 [𝑚], 𝑃𝑈𝐸 [𝑚], 𝐴[𝑚], 𝑍 [𝑚]),
which indicates that Algorithm 1 yields a non-decreasing
sequence of the objective value. The upper bound of
𝑅𝑠,𝑙𝑏 is reached when there is no eavesdropper, i.e.,
𝑅𝑠,𝑙𝑏 =

∑
𝑖∈Ω∪Ψ

∑
𝑗∈𝒥

1
|Ω |+|Ψ | 𝑅𝑖 𝑗 . Hence, we conclude that

Algorithm 1 is guaranteed to converge.

VI. PERFORMANCE EVALUATION

Extensive simulations are run using MATLAB to obtain
the results. In the simulations, UEs and EVs are uniformly
distributed in a 500×500 𝑚2 area. The MBS is placed in the
center of the area. The two DBSs are also initially placed in the
center of the area. We assume one raspberry pi 4 is mounted
on each DBS. Since each CPU core of the raspberry pi 4
can overclock to 2.3 GHz [28], the computational capacity
of the DBS is 4×2.3=9.2 GHz (four cores). According to
[29], the specific absorption rate for mobile devices is 1.6
W/Kg and the weight of smart phones range from 112 g
to 328 g. Therefore, the transmission power of each UE is
randomly distributed within [100, 500] mW. The task size
and the deadline of each task are distributed within [0.1, 0.5]
Mb and [0.2, 1] s, respectively [30]. The other simulation
parameters are illustrated in Table 2.

Fig. 2 shows how the average secrecy rate of offloaded UEs
changes for different numbers of UEs. There are 2 EVs and
3 BSs in Fig. 2. The yellow bar corresponds to 4 UEs, the
pink bar 8 UEs, the cyan bar 12 UEs, the red bar 16 UE,
and the green bar 20 UEs. Note that the average secrecy rate
increases as the number of UEs increases from 4 to 12 (yellow
to cyan bar) because the DBSs have enough resource to serve
UEs. However, from 12 to 20 UEs (cyan to green bar) the
average secrecy rate decreases as the number of UEs increases
because the DBSs do not have enough resources to serve all
UEs, i.e., some UEs have to offload their tasks to the MBS.
Since the channel capacity of the MBS is smaller than that
of the eavesdropper unless the UE is very close to the MBS,
connecting to the MBS will cause information leakage. As a
result, the secrecy rate of some UEs may reduce drastically.
Thus, as the number of UEs grows, more UEs will have zero
secrecy rate, thus resulting in the decrease of the average
secrecy rate. The result shows that, when the number of UEs

TABLE 2. Simulation Parameters

(𝑎, 𝑏) environmental parameters (9.1,0.16) [33]

( 𝜉 𝑙𝑜𝑠
𝑖 𝑗

, 𝜉𝑛𝑙𝑜𝑠
𝑖 𝑗

, 𝜏𝑙𝑜𝑠
𝑖 𝑗

, 𝜏𝑛𝑙𝑜𝑠
𝑖 𝑗

) (1,20,20,20) [9] [36]

( 𝜉𝑚
𝑖 𝑗
, 𝜏𝑚

𝑖 𝑗
) (131.1,42.8) [10]

( 𝜉𝑖𝑘 , 𝜏𝑖𝑘 ) (80,20) [34]

𝜎2 -174 dbm/Hz

(𝐵𝐷𝑚𝑎𝑥
1 , 𝐵𝐷𝑚𝑎𝑥

𝑗
, ∀ 𝑗 > 1) (20, 5) MHz [10] [35]

(𝐶𝐷𝑚𝑎𝑥
1 , 𝐶𝐷𝑚𝑎𝑥

𝑗
, ∀ 𝑗 > 1) (50, 9.2) GHz [32] [28]

𝑝𝑖 [100, 500] mW [28] [29]

𝑟𝑖 [0.2, 1] × 105 cycles/bit [30]

𝑑𝑖 [0.1, 0.5] Mb [30]

𝑇𝐷𝐿
𝑖

[0.2, 1] s [30]

ℎ 𝑗 25 m

𝑃𝐷𝑚𝑎𝑥
𝑗

, ∀ 𝑗 > 1 3.5 W [28]

𝑁𝑏 100 photons/bit [31]

𝑟𝑠 0.05 m [31]

𝜃𝑔 1 mrad [31]

𝜆 1550 nm [31]

𝑉 10 km [31]

(𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑎𝑥 ) (500, 500) m
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Fig. 2. Average secrecy rate for different numbers of UE.

is over 12, in order to increase the secrecy rate, we should
deploy more DBSs.

Fig. 3 demonstrates how the average secrecy rate changes
as the number of EVs increases. In Fig. 3, there are 4 UEs and
3 BSs. The yellow, pink, cyan and red bar correspond to 1, 2,
3, and 4 EVs, respectively. The result shows that the average
secrecy rate decreases as the number of EVs increases. This
is quite intuitive, with the increase of EVs, the possibility of
EVs being closer to UEs will also increase. Therefore, UEs
will face more threats as the number of EVs increases.

Fig. 4 illustrates the average secrecy rate for different 𝜖 . In
Fig. 4, there are 8 UEs, 3 BSs, and 2 EVs. 𝜖 =

∑ |ℐ |
𝑖=1

1
𝐼
𝑇𝐷𝐿
𝑖

,
which is the average deadline of all the tasks corresponding
to the constraint 𝐶11 of 𝒫2. The value of the x-axis in Fig.
4 reflects a multiplier of 𝜖 , i.e., 0.7 means 0.7𝜖 . The results
show that the average secrecy rate decreases as 𝜖 decreases.
As the task deadline constraint becomes stricter, the DBSs
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have to fly closer to the UEs which have a larger task size,
and allocate more resources to them. Since DBSs do not have
enough resources, more UEs have to offload their tasks to the
MBS, thus decreasing the average secrecy rate. In addition,
when the task deadline constraint is smaller than 0.6𝜖 there
will be no solution, i.e., when the task deadline constraint is
smaller than 0.6𝜖 , more DBSs are needed.

Fig. 5 illustrates the average secrecy rate for different
algorithms. In Fig. 5, “E” is the abbreviation for equal share
resource allocation, “G” represents the greedy algorithm. “F”
stands for fix placement, and “M” stands for the block
searching placement method. There are 12 UEs, 3 BS, and
2 EVs. RF stands for the fixed placement random algorithm
where the DBSs are placed in the center of the area and
UEs have the same probabilities to offload their tasks to
any BSs. The resources are allocated to UEs to meet the
deadline requirements. EF represents the fixed placement equal
allocation algorithm, in which the DBSs are fixed in the center
of the area and the resources are equally shared by all the
UEs. Meanwhile, UEs transmit at their maximum power. GM
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Fig. 5. Average secrecy rate for different algorithm.

and EM algorithms share the same placement policy in which
the plane is divided into multiple blocks, and the DBSs search
every block to find a place that maximizes the average secrecy
rate. The difference between the GM and EM algorithms is
the UE association policy. For the GM algorithm, UEs are
sorted in descending order according to 𝑑𝑖/𝑇𝐷𝐿

𝑖
and have the

same probability to offload their tasks to any DBSs. The tasks
are first offloaded to the DBSs with the sorted order until all
resources are exhausted. Then, all the remaining tasks will be
offloaded to the MBS. For the EM algorithm, UEs share all the
available resources equally and have the same probability to
offload their tasks to any BSs. PP is our proposed algorithm.
The result shows that our proposed algorithm is better than the
other four algorithms. For the GM algorithm, UEs offload their
tasks to the DBSs blindly with equal probability. However,
UEs may not choose the most suitable DBS that incurs the
highest secrecy rate. For instance, the tasks that are offloaded
to 𝐷𝐵𝑆1 may yield higher secrecy rates if they are offloaded to
𝐷𝐵𝑆2. Also, the same situation may happen for tasks that are
offloaded to 𝐷𝐵𝑆2. The reason why EM is inferior to GM is
that all UEs in GM try to offload their tasks to DBSs. Different
from the GM algorithm, all UEs have the same probability to
offload their tasks to the MBS and DBSs in the EM algorithm.
A UE associated with DBSs will increase the secrecy rate as
compared to associating with the MBS. The performance of
our proposed algorithm is improved by 19% as compared to
the GM algorithm when there are 12 UEs and 2 EVs.

VII. CONCLUSION

In this article, we have formulated the TENSOR problem
in which an MBS and multiple DBSs are deployed to provide
computing services to the ground UEs. FSO is implemented
to provide high-speed backhaul. The objective is to jointly
maximize the average secrecy rate of all offloading UEs and
minimize the average task completion time of all UEs. In
order to solve TENSOR, a successive convex approximation
technique has been applied. Specifically, we have decomposed
TENSOR into four sub-problems: resource assignment and
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DBS transmission power control problem, UE power control
problem, UE association problem, and DBS placement prob-
lem. Then, these four sub-problems are cyclically optimized in
each iteration, i.e., the output of the first three as the input for
the fourth. However, the UE power control problem, UE asso-
ciation problem, and DBS placement problem are not convex.
Thus, we convexify these three sub-problems by leveraging
the Taylor approximation and solving them approximately. A
cyclic iterative algorithm, which is guaranteed to converge,
has been designed. The simulation results demonstrate that our
proposed algorithm achieves better performance as compared
to the greedy allocation algorithm, equal allocation algorithm,
random association algorithm, and block search placement.
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