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INTRODUCTION

Carbon- to- nitrogen (C:N) and carbon- to- phosphorus 
(C:P) ratios in algal tissues are important metrics for 
determining biogeochemical processes in the ocean 

(Sarmiento & Gruber, 2006). Both nitrogen and phos-
phorus are essential macronutrients that can limit algal 
productivity. At a cellular level, C:N and C:P ratios reveal 
the amount of nitrogen and phosphorus assimilated 
by algae per mole of carbon fixed via photosynthesis. 
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Abstract
Algal carbon- to- nitrogen (C:N) and carbon- to- phosphorus (C:P) ratios are 
fundamental for understanding many oceanic biogeochemical processes, 
such as nutrient flux and climate regulation. We synthesized literature data 
(444 species, >400 locations) and collected original samples from Tasmania, 
Australia (51 species, 10 locations) to update the global ratios of seaweed 
carbon- to- nitrogen (C:N) and carbon- to- phosphorus (C:P). The updated 
global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and 
for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were signifi-
cantly influenced by seawater inorganic nutrient concentrations and season-
ality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, 
Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6– 122.5), fol-
lowed by green seaweeds (Chlorophyta) of 17.8 (6.2– 54.3) and red seaweeds 
(Rhodophyta) of 14.8 (5.6– 77.6). We used the updated C:N and C:P values to 
compare seaweed tissue stoichiometry with the most recently reported val-
ues for plankton community stoichiometry. Our results show that seaweeds 
have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, 
indicating seaweeds can assimilate more carbon in their biomass for a given 
amount of nutrient resource. The stoichiometric comparison presented herein 
is central to the discourse on ocean afforestation (the deliberate replacement 
of phytoplankton with seaweeds to enhance the ocean biological carbon sink) 
by contributing to the understanding of the impact of nutrient reallocation from 
phytoplankton to seaweeds under large- scale seaweed cultivation.

K E Y W O R D S
C:N ratio, C:P ratio, carbon cycling, carbon dioxide removal, carbon sequestration, kelp, 
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Algal C:N and C:P ratios can help explain the flow of 
carbon between the atmosphere, surface ocean, and 
deep sea, and because carbon reservoirs of the Earth 
system are linked, changes to carbon reservoirs in the 
atmosphere and ocean inevitably influence terrestrial 
carbon reservoirs (Keller et al., 2018). A seminal study 
found that the average (molar mean) C:N and C:P stoi-
chiometry of phytoplankton communities in the North 
Atlantic was relatively constant at 6.6 and 106, respec-
tively (Redfield,  1934). In 1983, Atkinson and Smith 
sampled 59 seaweed species at nine globally distrib-
uted locations and found that the molar mean for these 
“benthic plants” (p. 569) was considerably higher (C:N 
18.4 and C:P 623.8) than the global average for phy-
toplankton (Atkinson & Smith,  1983). However, their 
study had a relatively small sample size (59 of the 
15,000+ species of seaweed globally; Huisman, 2019). 
Likewise, a compilation by Duarte (1992) done 9 years 
later reported a similarly high C:N (16.3) and C:P 
(800.0) based on 46 seaweed species, and Lapointe 
et al. (1992) reported an even higher C:N and C:P of 25 
and 803 respectively (35 species).

Although there are many publications that have in-
cluded seaweed C:N and C:P data since Atkinson and 
Smith (1983), Duarte (1992), and Lapointe et al. (1992), 
there has been, to the best of our knowledge, no further 
attempts to synthesize the data. In contrast, there have 
been several more recent global syntheses of phyto-
plankton C:N:P ratios that have illustrated the driving 
factors behind variability in C:N:P globally (Geider & 
La Roche,  2002; Lomas et al.,  2021; Martiny, Pham, 
et al., 2013; Martiny, Vrugt, et al., 2013). Our study sought 
to update our knowledge of seaweed C:N and C:P ra-
tios by data- mining the currently available literature. We 
have significantly enriched the database by adding new 
data from Tasmanian seaweed species, many of which 
have never had their carbon- to- nutrient stoichiometry 
reported before. Furthermore, we added a 20- y time 
series on C:N stoichiometry of ecologically important 
kelp (Order Laminarales) from California (Macrocystis 

pyrifera) to discuss the seasonality of stoichiometry. 
The N:P ratios were collected from the literature and 
are provided in the dataset for further use; however, the 
focus of this paper was on C:N and C:P only due to 
their relevance in the context of Ocean Afforestation, 
or growing seaweeds in the ocean to sequester atmo-
spheric CO2 (Bach et al., 2021; Wu et al., 2023). Our 
first goal with this research was to update and improve 
widely applied global and taxon- specific seaweed C:N 
and C:P ratios to elucidate broad- scale stoichiometric 
patterns.

Seaweed tissue C:N and C:P ratios are highly variable 
and influenced by several factors, including inorganic 
seawater nutrient concentrations (Reef et al.,  2012), 
temperature (Lowman et al.,  2021), season (Lapointe 
et al.,  2021), and water motion (Visch et al.,  2020). 
Thus, in addition to collecting stoichiometric ratios for 

the global database, we also gathered data on the envi-
ronmental conditions and seasons the seaweeds were 
collected in. We used this data to investigate the effect 
of seasonality (which best captured these co- varying 
environmental drivers) and inorganic seawater nutrient 
concentrations (DIN, dissolved inorganic nitrogen, and 
PO4

3−). We hypothesized that C:N and C:P ratios would 
reduce with increasing nutrient availability to a point of 
maximum tissue nutrient uptake. Given that seawater 
nutrients vary seasonally, we hypothesized that C:N 
and C:P ratios would be lowest in seasons with highest 
nutrient availability (e.g., winter and spring in temperate 
regions).

Finally, this study applied updated informa-
tion of seaweed C:N:P ratios to a novel lens on 
Ocean Afforestation, an atmospheric CO2 removal 
strategy discussed by many researchers (Bach 
et al.,  2021; Boyd et al.,  2022; Chung et al.,  2013; 
Duarte et al., 2017; Froehlich et al., 2019; Gallagher 
et al.,  2022; Hurd et al.,  2022; Krause- Jensen 
et al.,  2018; Krause- Jensen & Duarte,  2016; 
Ritschard,  1992; Ross et al.,  2022) and widely dis-
cussed in public discourse (Climate Foundation, n.d.; 
Bate & Rowland, 2021; Gameau, 2019; The Intrepid 
Foundation, 2019). Although several studies have fo-
cused on the high growth rates and primary produc-
tion of seaweeds as a beneficial parameter for Ocean 
Afforestation (de Ramon N'Yeurt et al., 2012; Krause- 
Jensen et al., 2018; Pessarrodona et al., 2022), this 
study broadens discussions to argue that carbon 
assimilation in biomass per available amount of lim-
iting nutrient resource is perhaps a more crucial pa-
rameter to consider in the discussion of constraints 
on the enhancement of the biological carbon pump 
(BCP) through Ocean Afforestation (Bach et al., 2021; 
Ross et al., 2022; Wu et al., 2023). This argument is 
based on the constraint that there is a finite amount 
of nutrient resource available to the surface ocean 
to support primary production and that primary pro-
ducers utilize all of this resource in many parts of the 
ocean where Ocean Afforestation is being considered 
(DeVries et al.,  2012; Sarmiento & Gruber,  2006). 
Within this concept, the amount of carbon fixation 
by primary producers is constrained by the amount 
of limiting nutrient resource (Orr & Sarmiento, 1992). 
However, carbon fixation can increase if a prevailing 
primary producer (e.g., phytoplankton) is replaced by 
a new one (e.g., seaweed) that depletes the same 
nutrient reservoir but assimilates more carbon while 
using the same available amount of nutrients. This 
potential increase in carbon assimilation relative to 
the phytoplankton- dominated baseline system has 
a profound influence on the “additionality” of carbon 
sequestration achievable with Ocean Afforestation 
(Bach et al., 2021), with additionality being a crucial 
parameter to assess whether a CO2 removal strategy 
has been successful (Gustavsson et al., 2000).
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To further the debate on the potential of Ocean 
Afforestation, we discuss if Ocean Afforestation could 
make the BCP more efficient by causing additional CO2 
sequestration via their presumed stoichiometric advan-
tage in C:N and C:P stoichiometry relative to phyto-
plankton based on our updated global database.

METHODS

Literature synthesis of seaweed C:N:P 
ratios

The Web of Science was searched in June 2021 with 
the following terms to find articles containing C:N:P data: 
TOPIC: (“macro algae” OR macroalgae OR macro- algae 
OR “macro Algal” OR macroalgal OR macro- algal OR 
kelp OR seaweed OR “marine plants” OR “marine plant” 
OR “aquatic plants” OR “aquatic plant” OR macrophyte) 
AND TOPIC: (stoichiometry OR “C:N" or “C/N" OR “C– 
N" OR “C:N:P" OR “C/N/P" OR “C– N– P" OR “N:P" OR 
“N/P" OR “C:P" OR “C/P" OR “carbon- to- nitrogen" OR 
“carbon- to- nitrogen" OR “carbon/nitrogen" OR “carbon- 
to- phosphorus” OR “carbon- to- phosphorus” OR “carbon/
phosphorus” OR “nitrogen to phosphorus” OR “nitrogen- 
to- phosphorus” OR “nitrogen/phosphorus”).

We only included peer- reviewed studies that reported 
seaweed C:N or C:P data from salt marsh, brackish, and 
marine habitats in laboratory, mesocosm, and field stud-
ies. Studies on seagrass and mangroves were excluded, 
as well as those on seaweed in freshwater environments. 
Only studies that were accessible through University of 
Tasmania's library subscription or open access articles 
were used in the analysis, which excluded around 10% 
of the retrieved literature. The following data was gath-
ered from literature articles where available: reference, 
site name, latitude and longitude, phylum and species, 
juvenile or adult, type of experiment, seawater parame-
ters (temperature; nutrients NH3, NH4

+, NO2
−, NO3

−, DIN, 
SRP, and PO4

3−; dissolved oxygen; pH; collection depth, 
date, and season; light intensity; photoperiod; transport 
conditions; drying method; grinding method; %C, %N, 
%P; C:N, N:P, and C:P; and number of replicates). We 
calculated dissolved inorganic nitrogen (DIN) from stud-
ies that reported both NO3

− and NH4
+. Concentrations 

of NH3 and NO2
− were also included in our DIN calcula-

tions when they were reported. WebPlotDigitizer (version 
4.5) was used to extract values reported only in graphi-
cal form (Rohatgi, 2021). AlgaeBase was used to deter-
mine the current taxonomic status of seaweeds (Guiry & 
Guiry, 2023).

Data organization

All C:N:P ratios reported in g:g were converted to mol:mol, 
and all data are reported in molar ratios. When studies 

did not report a unit, authors were emailed requesting the 
unit used. If the unit could not be determined, the study 
was excluded from analysis. Through the process of 
emailing authors, some responded with additional stud-
ies on seaweed C:N or C:P, and/or raw data from their 
studies, which were included in our dataset. There was 
a large species bias present in the global C:N:P dataset 
for seaweeds, in which some species were represented 
by many samples and others with only one sample. To 
deal with this bias in the analyses, the global dataset was 
sorted into a single row per species, reporting the aver-
age (mean) and SD for each species. We also sorted 
the Atkinson and Smith (1983) seaweed data in this way 
for comparison to the global dataset. These re- arranged 
datasets were used in creation of Figures 3 and 4 and the 
accompanying text of mean, ranges, and SD (including in 
the abstract). When seaweeds were not identified to spe-
cies level, unidentified species of the same genus were 
grouped. Seawater nutrients were reported in varying 
units in the literature, which were all converted to μM. For 
representation of the spatially resolved data (Figure 1), 
mean C:N and mean C:P ratios were taken when sam-
ples were at identical latitudes and longitudes (to an ac-
curacy of 0.05 degrees).

Phytoplankton data

Phytoplankton C:N:P ratios were used to compare 
seaweed and phytoplankton stoichiometry to help 

F I G U R E  1  Map of seaweed C:N and C:P samples from the 
global dataset (a) Mean seaweed C:N (mol:mol) (b) Mean seaweed 
C:P (mol:mol). 
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assess if Ocean Afforestation could lead to additional 
carbon sequestration relative to the plankton ecosys-
tem they would replace. The phytoplankton dataset 
from the most recent large- scale synthesis by Martiny 
et al.  (2014) was downloaded from Dryad at https://
datadryad.org/stash/dataset/doi:10.5061/dryad.d702p. 
Negative values were removed, and the dataset was fil-
tered to include only samples collected at depths shal-
lower than 50 m for relevance to the depth where most 
seaweeds grow. The phytoplankton data is based on 
natural seawater samples and thus not only includes 
phytoplankton but also some detrital particles and small 
zooplankton that are typically collected on filters (e.g., 
ciliates or flagellates). Thus, in the following when we 
compared seaweed stoichiometry with what we have 
called “phytoplankton stoichiometry,” strictly speaking 
we were comparing individual specimen data with more 
comprehensive ecosystem data (e.g., including all or-
ganisms in a pelagic community that were collected 
on filters). We justify this comparison in section the 
Discussion section under The relevance of seaweed 
C:N and C:P stoichiometry for Ocean Afforestation.

Tasmanian seaweed and seawater 
nutrient collection

Seaweeds were collected in March 2021 in Tasmania 
at Rocky Cape (−40.860639°, 145.513111°), Temma 
Harbour (−41.231444°, 144.688889°), nungu/West Point 
(−40.945556°, 144.613917°), East Beach (−41.061167°, 
146.803000°), Waterhouse Beach (−40.837778°, 
147.643722°), Beerbarrel Beach (−41.282361°, 148. 
359083°), Waubs Bay (−41.871028°, 148.303333°), 
Spring Beach (−42.564556°, 147.899750°), Coal Point 
(−43.335287°, 147.324707°) and Taroona (−42.954889°, 
147.345556°). Maximum collection depth was 6 m in an 
approximately 50- m2 area, and samples were collected 
via snorkeling from shore, except at Taroona and Coal 
Point where max depth was 15 m and seaweeds were 
collected via SCUBA.

From each site, samples of individual seaweeds 
were taken from the most visually dominant species 
of the phyla Chlorophyta, Ochrophyta, or Rhodophyta. 
Mature thalli in the average size range present at the 
site were chosen, as well as some juvenile individuals. 
Clean and healthy individuals not covered in epiphytes 
were prioritized, although this was not always possible 
given the proliferation of epiphytes in late summer, es-
pecially at more wave- sheltered sites. Individual sea-
weeds were pulled or cut from the holdfast, taking care 
to preserve the whole sample where possible. Smaller 
subsamples from large individuals such as Durvillaea 
spp. and Macrocystis pyrifera were taken. Intertidal 
seaweeds were sampled when submersed when-
ever possible; however, Ulva spp. were sampled while 
emersed at Beerbarrel Beach and Waubs Bay due to 

the low tide. Samples were wrapped in a damp paper 
towel, placed in ziplock bags, and transported in an 
insulated container loaded with ice packs to the labo-
ratory. All samples were processed within 24 h of col-
lection, except for Rocky Cape samples (within 48 h). 
In the laboratory, samples were identified as juvenile 
or adult and to the species level, when possible, before 
being cut into smaller pieces incorporating an aver-
age of the different parts of morphology present (stipe, 
blade, holdfast, pneumatocysts). Around 95% of visible 
epiphytes were removed, and samples were weighed, 
then dried in the oven at 60°C. Once dried, samples 
were stored in ziplock bags inside a sealed container 
with silica gel.

All dried seaweed samples were ground to a homog-
enous powder using a ball mill or mortar and pestle, 
then weighed in tin cups. Calcified seaweeds were fu-
migated with 32% HCL to remove inorganic carbon. A 
known weight of dry and homogeneous sample was 
placed into a silver cup to which 40 mL of MILLI- Q® 
water was added before undergoing fumigation in 
a desiccator for 24 h. The samples were then oven- 
dried at 60°C for 12 h, and the silver cups were folded 
and immediately analyzed. The fumigation and anal-
ysis for total tissue nitrogen and carbon were deter-
mined by the Central Science Laboratory, University 
of Tasmania, using a Thermo Finnigan EA 1112 Series 
Flash Elemental Analyzer.

Seawater nutrient samples were collected in cleaned 
and pre- rinsed (with seawater in situ) 500- mL Nalgene® 
polycarbonate bottles while snorkeling at a depth of ap-
proximately 2 m. Care was taken not to contaminate the 
sample, by swimming fast while sampling and holding 
the bottle in front of the swimmer. Samples were imme-
diately filtered (pore size of 0.22 μM) with syringe filters 
and stored as triplicates in new PE tubes (pre- rinsed 
with seawater sample). Tubes were kept on ice and 
then frozen as soon as possible (between 1 and 6 h 
after collection) to preserve nutrients. Concentrations 
of nitrate, ammonium, and phosphate were determined 
using a QuickChem® 8000 Automated Ion Analyzer 
(LaChat Instruments) at the Institute of Marine and 
Antarctic Studies (IMAS). Salinity was measured at the 
site shoreline with a Hach 600® salinometer, except in 
the case of the northwest sites, where samples were 
taken and immediately filtered, then stored in the refrig-
erator for 1 week until measurements of salinity were 
taken. Temperature was sampled at each site using the 
Hach 600® salinometer.

Macrocystis pyrifera collection and 
analysis from California

Tissue samples were obtained from mature blades 
of Macrocystis pyrifera collected at three kelp forests 
each month from 2002 to 2021 (Santa Barbara Coastal 
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LTER et al.,  2021). Blades were collected from 10 to 
15 different individuals at approximately 2 m from the 
growing tip of a frond reaching the surface and trans-
ported to the laboratory in dark insulated containers. In 
the laboratory, a 5- cm2 diameter disk was excised from 
the central portion of each blade cleaned of epiphytes, 
rinsed in a 10% HCl solution, and shaken to remove 
excess water. The disks were dried for 2– 5 d at 60°C 
and ground to a powder using a mortar and pestle. The 
powdered samples from all 15 blades were combined 
to form a composite sample for each site on each sam-
pling date. The percent carbon and nitrogen of each 
composite sample was measured using an elemental 
analyzer (Carlo- Erba Flash EA 1112 series, Thermo- 
Finnigan Italia). Two replicate samples were analyzed 
for each composite sample.

Data analysis

All statistical analysis was conducted in R (R 
CoreTeam, 2022). To compare our global C:N and C:P 
values with that of Atkinson and Smith (1983) and phy-
toplankton (Martiny et al., 2014), we conducted Welch's 
t- tests. Our raw data did not meet the assumptions of 
the model (homoscedacity and normality of residuals), 
and as such, a log- transform was required for both C:N 
and C:P data to undertake the tests. Phytoplankton C:N 
and C:P have been plotted on a secondary axis at a 
different scale to seaweed C:N and C:P in Figure 3c,d, 
due to the greater quantity of data for phytoplankton 
than seaweed (e.g., >30,000 vs. 415 data points, re-
spectively, for C:N). If plotted on the same scale, the 
seaweed data would have been dwarfed by the phyto-
plankton data; thus, this secondary axis allows visual 
comparison of phytoplankton versus seaweed C:N 
and C:P distribution. To compare C:N and C:P ratios 
across seasons, data was sorted into temperate and 
tropical regions and analyzed separately. Only “field” 
data was used for this analysis. Comparisons between 
seasons (temperate = 4 levels: summer, autumn, winter 
and spring; tropical = 2 levels: wet and dry) were made 
using Generalized Linear Mixed Models (GLMM) using 
the lmer function in the package lmerTest (Kuznetsova 
et al., 2017). For all seasonal models, species and lati-
tude were included as random factors in the model. For 
both temperate and tropical datasets, Boxcox transfor-
mations were used (Box & Cox, 1964): C:N was trans-
formed by Y−0.3, and for the temperate C:P dataset, 
C:P was transformed by Y0.55

, followed by the use of 
residual versus fitted plots and normal Q– Q plots to 
check that the models conformed to the assumptions of 
normality of residuals and homeoscedacity. To further 
cross- check for species bias on seasonality in C:N in 
our global dataset, we also included an analysis of a 
single species (Macrocystis pyrifera) variation in C:N 
per season over two decades.

To investigate the effect of DIN and PO4
3− on C:N 

and C:P values respectively, we created dot plots with 
data for field and other studies (laboratory, mesocosm, 
cultivated) shown separately, given the presence of ar-
tificially high nutrient concentrations in the latter. These 
were presented on a log10 scale to enable viewing of 
the data (which was concentrated at lower nutrient 
levels) at a higher resolution. The 10 species with the 
highest C:N and C:P were based on species with the 
highest reported mean C:N and C:P in at least three 
independent studies. Calcifying seaweed species were 
excluded from this analysis, as our intent was to iden-
tify the most suitable species for Ocean Afforestation. 
As calcification releases CO2, calcifying species would 
unlikely be suitable organisms for Ocean Afforestation 
(Bach et al., 2021).

RESULTS

Results of literature synthesis

Samples were collected in predominantly coastal 
oceanic regions from polar to equatorial regions, with 
a greater number of locations for C:N than for C:P 
(Figure  1). The literature synthesis, combined with 
Tasmanian data collected from this study and supple-
mentary data from researchers resulted in 199 stud-
ies that were used for the analyses and 4986 samples 
of seaweed C:N, N:P, or C:P. Of these samples, 2970 
were from phylum Ochrophyta, 1097 from Rhodophyta, 
and 919 from Chlorophyta (Figure 2a). The most fre-
quently reported ratio was C:N (4,599 samples), fol-
lowed by N:P (1,397 samples), and C:P (987 samples; 
Figure  2b). Most studies collected seaweed from the 
field (3490 samples), although some data came from 
laboratory studies (615 samples), mesocosms (470 
samples), aquaculture (132 samples), and blooms (75 
samples; Figure  2c). For field studies, samples were 
taken more often in summer (850 samples) than in au-
tumn (754 samples), spring (644 samples), or winter 
(574 samples). Some data were also presented from 
annual collections (152 samples) as well as in the dry 
season (96 samples) or wet season (47 samples) in 
equatorial regions (Figure 2d). Our synthesis revealed 
inconsistencies in how C:N:P data was reported among 
authors. Ten percent reported in g:g, 40% in mol:mol, 
and 50% without specifying a unit.

Updated global C:N and C:P ratios 
for seaweed

Overall the global mean C:N (mol:mol) for seaweeds 
was 20.2 ± 14.5 SD (range 5.6– 122.5), which is higher 
than the Atkinson and Smith (1983) mean of 18.4 ± 11.1 
SD (range 6.0– 77.7; Figure  3a). Global seaweed C:P 
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(mol:mol) had a mean of 800.9 ± 648.1 SD (range 76.3– 
4102.3) compared to Atkinson and Smith's (1983) mean 
of 623.8 ± 411.1 SD (range 137.0– 1927.0; Figure  3b). 
The differences between our updated data set and 
the Atkinson and Smith dataset were not statistically 
significant for either C:N or C:P (p = 0.427 and 0.060, 
respectively; Welch's t- test, log- transformed data). 
Mean C:N was significantly higher for seaweeds (20.2) 
compared to phytoplankton communities (7.1 ± 4.5 SD, 
range 0.5– 324.0; Figure 3c), and mean C:P was also 
significantly higher in seaweeds (800.9) compared to 
phytoplankton (200.1 ± 333.9 SD, range 5.3– 8570.7; 
Figure  3d; p = <0.001 for both C:N and C:P; Welch's 
t- test, log- transformed data).

Taxonomic influences on seaweed 
C:N and C:P

Mean C:N varied by phylum (Figure  4). Ochrophyta 
had the highest C:N (mean = 27.5 ± 18.6 SD, range 7.6– 
122.5), followed by Chlorophyta (mean = 17.8 ± 9.5 SD, 
range 6.2– 54.3) and Rhodophyta (mean = 14.8 ± 8.4 SD, 
range 5.6– 77.6; Figure 4a). For C:P, the highest mean 
ratios were found in Chlorophyta (mean = 848.8 ± 619.9 
SD, range 186.0– 3031.0), followed by Rhodophyta 
(mean = 789.3 ± 783.4 SD, range 76.3– 4102.3) and 
Ochrophyta (mean = 773.3 ± 525.5 SD, range 109.5– 
2457.2; Figure  4b). The 10 species with the highest 
C:N were all from the phylum Ochrophyta (Figure 5a). 

Durvillaea spp. had the highest mean C:N at 43.6 ± 13.8 
SD (range 21.6– 75.5). However, there was large vari-
ability in the range of C:N values reported, with some 
individual samples of Phyllospora comosa, Sargassum 
spp., and Ecklonia radiata having higher C:N than any 
sample of Durvillaea spp. Seaweeds from all three major 
phyla were represented in the top 10 C:P (Figure 5b), 
and Laurencia intricata (phylum Rhodophyta) had 
the highest mean C:P at 3072.1 ± 3, 342.3 SD (range 
144.7– 12,205).

Environmental influences on seaweed 
C:N and C:P

In the field, there appeared to be the highest variation of 
C:N ratios at 1– 2 μM DIN, with C:N values ranging from 
8 to 132 within this DIN range (Figure 6a). Less varia-
tion and generally reduced C:N values were seen at 
very low (<1 μM) DIN, as well as at DIN > 2 μM, with C:N 
reducing further at >10 μM DIN. For mesocosm, labo-
ratory, and cultivated data, there appeared to be rela-
tively high variation in C:N at all DIN levels, with no clear 
trend apparent (Figure 6b). Field samples of C:P versus 
PO4

3− showed a somewhat similar pattern (albeit with 
a smaller sample size), with C:P variation (290– 5538) 

F I G U R E  2  Distribution of data extracted from the literature. 
a. Number of samples of C:N, C:P, and N:P by phylum. b. Number 
of samples of C:N, C:P, and N:P by ratio. c. Number of samples of 
C:N, C:P, and N:P by experiment type. d. Number of field samples 
of C:N, C:P, and N:P by season. 

F I G U R E  3  Histograms of our global dataset for seaweed C:N 
and C:P overlaid with comparisons to other datasets. Our dataset 
and Atkinson and Smith (1983) data are re- arranged to an average 
(mean) C:N / C:P per species (see Methods). Phytoplankton data 
are taken from Martiny et al. (2014). (a) Comparison of our global 
C:N data (turquoise) to Atkinson and Smith C:N data (brown). (b) 
Comparison of our global C:P data (blue) to Atkinson and Smith 
C:P data (brown). (c) Comparison of our global C:N data (turquoise) 
to phytoplankton communities C:N (brown). (d) Comparison of 
our global C:P data (turquoise) to phytoplankton communities C:P 
(brown). 
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peaking at 0.1– 0.2 μM PO4
3− and generally lower C:P 

values (<2000) below 0.1 μM PO4
3− and above 0.2 μM 

PO4
3, reducing further above 3 μM PO4

3− (Figure 6c). 

The variation in mesocosm, laboratory, and cultivated 
data appeared to be more evenly spread throughout 
the range of PO4

3− values (Figure 6d).
For temperate seaweeds, mean C:N was sig-

nificantly different across all seasons (GLMM: 
F(3/2371.7) = 148.08, p < 0.001). The C:N was highest in 
autumn (mean = 27.5 ± 18.3 SD, range 6.1– 132.3), fol-
lowed by summer (mean = 20.3 ± 9.7 SD, range 4.9– 
75.5), winter (mean = 18.4 ± 7.5 SD, range 5.8– 49.1), 
and spring (mean = 15.7 ± 6.8 SD, range 4.7– 59.6). 
For tropical seaweeds, there were no significant 
differences in C:N ratios between wet and dry sea-
sons (GLMM: F(1/104.19) = 0.805, p = 0.37; Figure  7a). 
Seasonality had an influence on mean C:P in temper-
ate seaweeds when accounting for latitude and spe-
cies as random variables (GLMM: F(3/267.03) = 3.396, 
p = 0.018). Values in autumn (mean = 708.8 ± 441.6 
SD, range 193.9– 2061.9) were significantly greater 
than in spring (mean = 656.5 ± 486.3 SD, range 
24.1– 4158.2). Other seasons did not differ signifi-
cantly from each other, nor did C:P differ significantly 
between the wet and dry seasons for tropical sea-
weeds (GLMM: F(1/34.09) = 0.9816, p = 0.33; Figure 7b). 
Seasonality also followed the same trend for C:N of 
Macrocystis pyrifera over two decades (Figure  8): 
highest in autumn (mean = 24.6, SD = 8.6, range 10.3– 
54.0), followed by summer (mean = 20.6, SD = 8.4, 

F I G U R E  5  Top 10 seaweeds for C:N and C:P. (a) Seaweeds 
with the highest C:N from at least three independent studies. (b) 
Seaweeds with the highest C:P from at least three independent 
studies. Seaweeds are in descending order by median C:N or C:P. 

F I G U R E  4  Seaweed C:N and C:P by phylum, using re- 
arranged dataset (see Methods). (a) C:N by phylum. (b) C:P by 
phylum.

F I G U R E  6  Influence of seawater nutrients on seaweed C:N 
and C:P. (a) Seawater DIN concentration influence on C:N taken 
from field studies only. (b) Seawater DIN concentration influence on 
C:N taken from laboratory, mesocosm, and cultivated studies only. 
(c) Seawater phosphate concentration influence on C:P taken from 
field studies only. (d) Seawater phosphate concentration influence 
on C:P taken from laboratory, mesocosm, and cultivated studies 
only.
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range 8.8– 48.1), winter (mean = 18.4, SD = 6.4, range 
9.5– 44.4) and spring (mean = 14.7, SD = 6.0, range 
7.7– 56.2). A Kruskal– Wallis test revealed all four 

seasons were statistically different from each other 
(p = <0.002).

DISCUSSION

This study has provided, to the best of our knowl-
edge, the first global synthesis of seaweed C:N:P 
ratios and the environmental factors that influence 
them since Atkinson and Smith (1983), Duarte (1992), 
and Lapointe et al. (1992). We observed that C:N ra-
tios varied by phyla and were highest in Ochrophyta 
seaweeds (discussed in the next subsection). 
Additionally, C:N and C:P ratios were influenced by 
seawater nutrients and seasonality (discussed in 
subsequently in the subsection Environmental influ-
ence on seaweed C:N and C:P). We found that on av-
erage, seaweeds have 2.8 and 4.0 times higher C:N 
and C:P, respectively, than phytoplankton. This find-
ing contributes to discourse on Ocean Afforestation 
by offering an understanding the impact of nutrient 
reallocation from phytoplankton to seaweeds under 
large- scale seaweed cultivation for atmospheric CO2 
removal (discussed subsequently under The rel-
evance of seaweed C:N and C:P stoichiometry for 
Ocean Afforestation).

Taxonomic influences on seaweed C:N

Seaweeds of the phylum Ochrophyta had higher C:N 
than the C:N for either Rhodophyta or Chlorophyta, 
which is consistent with observations made in previous 
studies (Fiset et al., 2019; Niell, 1976). Phylogenetic 
differences in pigment type and content, along with 
amount of structural material could help explain this 
trend in C:N. All seaweeds have chlorophyll a, but 
the accessory pigments of seaweeds differ among 
the three major phyla (Hurd et al., 2014). The acces-
sory pigments found in Chlorophyta and Rhodophyta 
seaweeds (chlorophylls and phycobiliproteins, re-
spectively) are rich in nitrogen and can act as ni-
trogen stores when nutrients are limiting (Harrison 
& Hurd,  2001; Paine et al.,  2020). Thus, the higher 
contents of nitrogen in the pigments of Rhodophyta 
and Chlorophyta seaweeds may explain their higher 
tissue %N and corresponding average lower C:N ra-
tios compared with Ochrophyta seaweeds. Also, the 
largest species of seaweed belong to the Ochrophyta 
(Scott, 2017), and therefore, they may need additional 
structural support in the form of carbon- rich cell wall 
polysaccharides and alginates to prevent wave- 
damage and breakage (Atkinson & Smith, 1983; Fiset 
et al., 2019). This likely contributes to the higher C:N 
ratio in Ochrophyta compared with other phyla. We 
found that in our global dataset, the differences in 
C:P between phyla were much smaller than for C:N, 

F I G U R E  7  Seasonal differences in seaweed C:N and C:P 
taken from field studies only. Analyses for temperate (summer, 
autumn, winter, and spring) and tropical (wet and dry) seasons 
were conducted separately. (a) Seasonal differences in C:N: global 
dataset (b) Seasonal differences in C:P: global dataset.

F I G U R E  8  Seasonal variation in C:N per season across two 
decades in Macrocystis pyrifera.
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suggesting that taxonomic drivers are not an impor-
tant influence on C:P ratios.

Environmental influence on seaweed 
C:N and C:P

Many studies have found that high C:N (C:P) ratios gen-
erally occur more frequently at low DIN (PO4

3−) concen-
trations (Atkinson & Smith, 1983; Douglas et al., 2014; 
Fong et al.,  1994; Gevaert et al.,  2001; Lapointe 
et al., 2004; Lee & Kang, 2020; Menendez et al., 2002; 
Reef et al., 2012; Rico & Fernandez, 1996). The obvi-
ous explanation for the observed pattern is that lower 
DIN (or DIP) concentrations restrict the assimilation of 
these nutrients in seaweed biomass, which can be re-
flected in the occurrence of high C:N (C:P) ratios. This 
finding is somewhat consistent with our study, although 
we found that at very low (<1 μm DIN and <0.1 μm 
PO4

3−) nutrient concentrations, higher C:N (C:P) ratios 
were less frequent. However, this could be due to a 
lack of samples at these very low nutrient levels. Lin 
et al. (2007) determined that there were species differ-
ences in response to seawater DIN increases and that 
additional factors such as thallus form and exposure to 
air (for intertidal seaweeds) may be important factors in 
influencing C:N.

When investigating the samples that accounted for 
the C:N “peak” (highest values and largest variation in 
C:N values in the field) between 1 and 2 μM DIN, we ob-
served that all samples >60 C:N came from Ochrophyta 
seaweeds collected for this study. The high C:N ratios 
found in Ochrophyta seaweeds in Tasmanian waters 
(especially in autumn) is consistent with other studies 
(Paine, Brewer, et al.,  2023; Wernberg et al.,  2019). 
Paine, Brewer, et al. (2023) hypothesized this may be 
due to these seaweeds using up stored nitrogen when 
external supplies were low. These abnormally high 
C:N values seen in Tasmanian Ochrophyta species in 
autumn indicate they are highly nitrogen limited. (C:N 
>20 is thought to be an indication nitrogen limitation; 
Hurd et al., 2014). Although a comprehensive overview 
of DIN has not been undertaken around the Tasmania 
coastline, initial seawater nutrient samples show that 
Tasmanian waters have ubiquitously lower nutrients 
year- round compared with other temperate regions 
(Hurd et al., 2023). We undertook a similar analysis for 
the C:P peak in field studies at 0.1– 0.2 μm PO4

3− and 
observed that all samples >2000 C:P were from the 
study by Lapointe et al. (2004). These high C:P ratios 
were found at the sites with lower nutrients, while pre-
dominantly lower (<2000) C:P ratios were found at the 
nutrient- enriched study site (Lapointe et al., 2004), fol-
lowing the general trend as discussed above.

Given that the effect of seawater nitrogen (and phos-
phorous) on C:N and C:P ratios is confounded by other 
factors such as temperature and daylight, seasonality 

may be a more accurate predictor of C:N and C:P ra-
tios as it accounts for these complex interactions (Endo 
et al., 2017). Such was the case for our global dataset 
that showed strong temperate seasonality in C:N and 
C:P with the highest values in autumn and the lowest 
in spring, which is in line with conclusions of several 
other studies (Douglas et al., 2014; Gomez et al., 1995; 
Lapointe et al., 2021; Rico & Fernandez, 1996). We also 
showed this seasonal C:N trend within a single species, 
Macrocystis pyrifera, which has shown strong season-
ality over two decades, with highest values in autumn 
and lowest in spring. In our global synthesis, there was 
a sampling bias toward summer, which tended to have 
higher C:N ratios than winter or spring. Therefore, the 
global average C:N ratios may be lower than reported 
here. However, seasonal influence on tissue stoichiom-
etry is not ubiquitous. If seawater nutrient availability 
is consistently high (as in eutrophic areas and in parts 
of the Southern Ocean; Henley et al., 2020), then sea-
sonal trends may not be evident (Lourenco et al., 2006). 
Additionally, our study found no statistically significant 
change in C:N or C:P in tropical regions between wet 
and dry seasons. It is possible that the environmen-
tal factors influencing C:N and C:P ratios are not cor-
related to season in tropical areas as much as they are 
to season in temperate regions.

The relevance of seaweed C:N and C:P 
stoichiometry for ocean afforestation

Ocean Afforestation seeks to enhance the efficiency 
of the BCP to sequester more atmospheric CO2 in the 
ocean than the natural BCP already does. The BCP 
efficiency is defined by how much of the available sur-
face ocean nutrient pool can be utilized by biology be-
fore these nutrients are lost from the surface ocean 
(e.g., via downwelling; Ito & Follows,  2005). As such, 
the BCP efficiency could be increased (i.e., Ocean 
Afforestation could be successful) by implementing 
Ocean Afforestation in areas where currently not all of 
the surface ocean nutrient pool is being utilized (Marinov 
et al., 2006; Primeau et al., 2013), for example, far south 
in the Southern Ocean (Xie et al., 2022). A second way 
for Ocean Afforestation to increase BCP efficiency is 
by decreasing carbon flux attenuation relative to the 
plankton- dominated system with which seaweeds com-
pete for limiting nutrients. A reduced flux attenuation 
would lead to a deeper injection of carbon and nutrients 
into the deep ocean, thereby slowing return flux of rem-
ineralized carbon and nutrients, and thus concentration, 
in the surface ocean over timescales of >100 y (Kwon 
et al., 2009; Taucher et al., 2014). Seaweeds are on av-
erage likely sinking faster than plankton- derived organic 
matter (Baker et al., 2017; Johnson & Richardson, 1977; 
Laurenceau- Cornec et al.,  2020; Wernberg & Filbee- 
Dexter,  2018), and current evidence suggests rather 
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limited remineralization during sinking (Bach et al., 2021; 
Baker et al., 2017; Ortega et al., 2019). Accordingly, cur-
rent modeling on Ocean Afforestation has assumed that 
all carbon and nutrients fixed in seaweed biomass ends 
up on the seafloor (Wu et al., 2023), the most optimistic 
assumption for the BCP efficiency with regards to this 
mechanism.

The third possible mechanism for how Ocean 
Afforestation could increase BCP efficiency is by in-
creasing the fixation of carbon with the available pool 
of limiting nutrients. This mechanism is the focus of the 
present paper and is relevant in the vast oligotrophic 
regions of the ocean where nearly all surface ocean 
nutrients are utilized (meaning that BCP efficiency is 
already very high; Devries et al.,  2012; Sarmiento & 
Gruber,  2006). Here, the BCP efficiency increases if 
the afforested seaweeds utilize more carbon per unit 
of limiting nutrient than the phytoplankton did before 
seaweeds were introduced (Bach et al.,  2021; Berger 
et al., 2023; Wu et al., 2023). Previous data collections 
on phytoplankton and seaweed C:N:P stoichiometry 
have generally suggested that seaweeds have higher 
C:N and C:P ratios than phytoplankton (Atkinson & 
Smith, 1983; Martiny et al., 2014). The following discus-
sion uses our updated dataset on seaweed carbon- to- 
nutrient ratios to assess if and how much seaweed has 
a stoichiometric advantage relative to phytoplankton, 
to inform the debate on whether Ocean Afforestation 
could be effective. We assess the range of stoichiomet-
ric advantages and point toward species with the high-
est differences. Before continuing, we emphasize that 
stoichiometry is one important aspect in determining 
the potential of Ocean Afforestation to generate addi-
tional CO2 removal but that many other processes play 
roles in determining the effect of the method on climate 
radiative forcing (Bach et al., 2021).

Our study compared the range of species- specific 
carbon- to- nutrient ratios of seaweeds with carbon- to- 
nutrient ratios from phytoplankton communities from 
filtered water samples (Martiny et al.,  2014). These 
samples comprised not only phytoplankton, but all sus-
pended organic particles (e.g., microzooplankton and 
detritus) that were sampled with a CTD rosette and 
ended up on a filter after filtering about 1 L of sea water. 
This raises the question of whether the comparison be-
tween seaweed species and plankton communities is 
meaningful, or whether phytoplankton- specific carbon- 
to- nutrient ratios (e.g., derived from monocultures as in 
Garcia et al., 2018) would need to be compared with sea-
weed data instead. We considered this question when 
designing our study and concluded that phytoplankton 
community data is needed for our comparison. This 
is because Ocean Afforestation aims to grow (mono- ) 
cultures of benthic seaweeds in pelagic environments, 
and a single seaweed species (analogous to a crop) de-
mands resources (e.g., nutrients) from a diverse, natu-
ral plankton community that drives the BCP collectively 

through food webs that ultimately lead to carbon export 
(Boyd et al., 2019). Within this framework, our compari-
son of seaweed species with plankton communities that 
included all sources of particulate C in the planktonic 
food web is meaningful.

Our literature synthesis found the mean global sea-
weed C:N ratio was 2.8 times higher than that estimated 
for phytoplankton communities, indicating that seaweeds 
have, on average, a considerably higher capacity to fix 
carbon per mole of limiting N than natural phytoplankton 
communities. This capacity is even higher when particular 
Ochrophyta species are considered (e.g., Durvillaea spp., 
Sargassum polyceratium, and Phyllospora comosa). The 
large range of C:N across species underscores the rele-
vance of selecting potentially carbon- efficient species for 
Ocean Afforestation. However, the choice of species for 
Ocean Afforestation is constrained by the ability to culture 
them and the ability of the species to grow in often oligo-
trophic pelagic habitats to which they may not be adapted 
(DeAngelo et al., 2023). For example, for the 10 species 
with the highest C:N and C:P (Figure  5), except some 
species of Sargassum, cultivation techniques have not 
yet been developed or are in their infancy (Buschmann 
et al., 2017; Kelly, 2020).

When assessing the stoichiometric advantage of sea-
weeds relative to phytoplankton in the context of Ocean 
Afforestation it is also crucial to consider that plankton 
community C:N:P ratios, while lower on average, are 
also highly variable (Figure 3c,d). Plankton community 
C:N:P ratios have been shown to have a pronounced 
latitudinal gradient and to change with nutrient availabil-
ity (Martiny et al., 2014). Furthermore, different plankton 
species can have inherently different C:N:P stoichiom-
etries (Garcia et al., 2018), so predominance of certain 
species can leave an imprint on plankton community 
C:N:P stoichiometry. For example, the important cyano-
bacterium Trichodesmium sp. has been shown to have 
substantially higher C:P than other phytoplankton and 
to provide its own nitrogen via dinitrogen- fixation (Finkel 
et al., 2010) so that nitrogen is not a limiting resource. 
Thus, the stoichiometric advantage seaweeds have 
on average would decline when contrasted against a 
phytoplankton community dominated by, for example, 
Trichodesmium sp. However, the stoichiometric ad-
vantage would increase when contrasted against, for 
example, a community dominated by diatoms, which 
are known to have inherently lower C:N and C:P ratios 
(Quigg et al., 2003). These examples reveal one of the 
difficulties facing Ocean Afforestation when it comes to 
constraining the increase of the seaweed C:N:P ratio 
relative to the ecosystem they replace (plankton): One 
must not only constrain the C:N:P ratios of the “seaweed 
crop" used for Ocean Afforestation but also the C:N:P of 
the plankton ecosystem that is being replaced.

It is important to note that our study focused on C:N 
and C:P, not on C:Fe (carbon to iron) or other micronu-
trients, to assess stoichiometric advantages in carbon 
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assimilation of seaweeds relative to phytoplankton. 
The focus on macronutrients was because seaweeds 
are (with few exceptions) benthic organisms that are 
highly exposed to benthic fluxes of trace metals such 
as iron. They are therefore not considered to be lim-
ited by iron or other trace metals. In the case of Ocean 
Afforestation, however, floating platforms with seaweed 
growing on them may be deployed in the open ocean 
(de Ramon N'Yeurt et al., 2012; DeAngelo et al., 2023; 
Wu et al.,  2023). In such cases, iron and other trace 
metals can limit photosynthetic carbon fixation of phy-
toplankton (Moore et al., 2013), which are adapted to 
these limiting conditions. A recent study showed that 
Macrocystis pyrifera— a species that has been pro-
posed for Ocean Afforestation— dies in <2 weeks when 
cultivated in open ocean seawater due to iron limita-
tion (Paine, Boyd, et al., 2023). This finding suggests 
that iron would have to be provided artificially if ocean 
afforestation was implemented in iron- limited ocean re-
gions (Paine, Boyd, et al.,  2023). Thus, according to 
Liebig's Law of the Minimum (de Baar, 1994), the mac-
ronutrients nitrogen and phosphorus would ultimately 
limit seaweed growth in the open ocean if iron limitation 
(and potential limitation by other micronutrients) were to 
be alleviated artificially. Based on this rationale it is rea-
sonable to compare C:N and C:P ratios of seaweeds 
and phytoplankton to assess the net gain of CO2 se-
questration through ocean afforestation.

Some authors have proposed fertilizing open ocean 
seaweed farms via artificially induced upwelling of deep, 
nutrient- rich water (Fan et al., 2020) or via diel depth cy-
cling (Navarrete et al., 2021) to enhance seaweed growth 
rates and ultimately CO2 removal. Our study revealed 
probabilities for high seaweed C:N (and to some extent 
high C:P) were increased under low DIN (DIP) concen-
trations across the diverse range of species included in 
the analysis (Figure 6). Furthermore, the seasonal plots 
provide evidence that seaweed C:N is lower in seasons 
where nutrient concentrations are higher (Figures 7 and 
8). Similar observations have recently been made for 
pelagic Sargassum spp., for which increasing nutrient 
load coincided with reduced C:N (Lapointe et al., 2021). 
These results, counterintuitively, suggest that enhanc-
ing seaweed growth rates by nutrient fertilization could 
be detrimental for the CO2 removal efficiency of Ocean 
Afforestation. Thus, from a nutrient- stoichiometric per-
spective, Ocean Afforestation would become most ef-
ficient when farming seaweeds in way that maximizes 
their C:N ratios upon harvest, not their growth rates.

CONCLUSIONS

This study updated global mean molar seaweed C:N 
and C:P ratios and the factors that influence them 
through a large- scale literature synthesis and original 
data collection. The inclusion of environmental factors 

in our synthesis can contribute to a broader discussion 
of driving forces behind C:N and C:P variability globally. 
We observed that effects of taxonomic and environmen-
tal factors on seaweed stoichiometry can be statistically 
significant and that their relative importance varies in 
nuanced ways. A further research questions includes 
how biogeographic region influences seaweed C:N:P, 
given that regional differences have been observed 
to significantly influence phytoplankton stoichiometry 
(Lomas et al., 2021; Martiny, Pham, et al., 2013). More 
research is also needed on the effects of light and wave 
exposure on seaweed C:N and C:P, as well as on under-
studied biotic factors such as thallus age and type. Our 
comparisons between the most updated C:N and C:P 
for seaweeds and phytoplankton contribute to a novel 
perspective about how to evaluate the carbon seques-
tration efficiency of Ocean Afforestation. We confirm that 
seaweeds have higher C:N and C:P than phytoplank-
ton on average, but that substantial differences exist 
between seaweed species. Thus, Ocean Afforestation 
could be made more efficient when choosing a sea-
weed “crop” that establishes the highest difference in 
C:N (or C:P) relative to phytoplankton We also confirm 
that the C:N and C:P ratios for both phytoplankton and 
seaweed can vary substantially with environmental con-
ditions, and the carbon assimilation advantage for sea-
weeds is potentially higher when growing them in low 
nutrient conditions.
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