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Edge computing is a popular paradigm for accelerating light- tomedium-weight
machine learning algorithms initiated frommobile deviceswithout requiring the long
communication latencies to send them to remote datacenters in the cloud. Edge servers
primarily consider traditional concerns, such as size, weight, and power constraints for
their installations. However, suchmetrics are not entirely sufficient to consider
environmental impacts from computing given the significant contributions from
embodied energy and carbon. In this articlewe explore the tradeoffs of hardware
strategies for convolutional neural network acceleration engines considering inference
and online training. In particular, we explore the use ofmobile graphics processing unit
(GPU) accelerators, recently released edge-class field-programmable gate arrays, and
novel processing inmemory (PIM) using dynamic random-accessmemory (DRAM) and
emerging Racetrackmemory. Given edge servers already employDRAMand sometimes
GPUaccelerators, we consider the sustainability implications using breakeven analysis
of replacing or augmentingDDR3with Racetrackmemory.We also consider the
implications for provisioning edge serverswith different accelerators using indifference
analysis.Whilemobile GPUs are typicallymuchmore energy efficient, their significant
embodied energy canmake them less sustainable than PIM solutions in certain
scenarios that consider activity time and compute effort.

Deep neural networks have become a pop-
ular algorithm used by a variety of appli-
cations on mobile devices including smart

phones, autonomous vehicles, robotics, unmanned
aerial vehicles, and other smart and connected devi-
ces. Convolutional neural networks (CNNs) have been
demonstrated as an effective deep learning implemen-
tation methodology that trades computational com-
plexity for accuracy.

There have been many proposals to improve the per-
formance and energy efficiency of CNN inference. How-
ever, these algorithmsmay still be too compute and data
intensive to execute directly on mobile nodes that typi-
cally have limited energy and computational capabilities.
In addition, due to changes or drift in input datasets over

time, it is sometimes necessary to adjust the parameters
of CNN inference algorithms through online training.
Online training is typically intractable for mobile con-
nected devices.

Thus, edge servers, now often being deployed in
conjunction with advanced (e.g., 5G) wireless net-
works, have become a popular target to accelerate
CNN inference and training. Moreover, due to their
deployment in the field, edge servers must operate
under size, weight, and power (SWaP) constraints,
while serving many concurrent requests from mobile
clients. Thus, to accelerate CNNs, these edge servers
often use energy-efficient accelerators, sometimes
employing reduced precision approximate models.
Their goal is to achieve fast response time while bal-
ancing requests from multiple clients and maintaining
a low operational energy cost.

Moreover, keeping online training local to edge
server nodes avoids communicating large datasets
from edge to cloud servers.1 However, online training
typically requires much higher precision and floating-
point computation. This can be a heavier burden to
edge servers compared to inference.
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While edge servers can dramatically improve capa-
bilities to deploy deep learning more broadly, this prolif-
eration of lightweight computing from mobile devices
and medium-weight computing from edge servers can
create negative environmental impacts. Manufacturing
newmobile and edge computing infrastructure requires
problematic emissions of everything from carcinogens
to volatile organic compounds, not to mention green-
house warming gases (GWGs). These include most
notably carbon dioxide (CO2) but also methane (CH4)
and nitrous oxide (N2O), among others.

As such, there is a significant and growing aspect
of environmental impacts that come from embodied
impacts of computing.2 Embodied impacts include the
energy, GWGs, waste water generation, etc., from
manufacturing computing infrastructure, particularly
the semiconductor elements that form the heart of all
computing systems.

Recent evidence shows that for cloud servers,
embodied impacts are equally as high as operational
(runtime) effects.3 Formobile devices and compact com-
puters, embodied impacts can reach 80%–90% of total
lifecycle impacts and that these impacts are dominated
by their integrated circuits (ICs).3,4 Thus, for systems
already optimized for SWaP constraints, embodied
energy will be a higher proportion of the total energy
footprint, making its amortization an important sustain-
ability goal. Accelerated deployment of mobile and edge
systems to support deep learning exacerbate these
concerns. Specialty processing units, including field-pro-
grammable gate arrays (FPGAs) and graphics processing
units (GPUs), can accelerate CNN applications while
meeting low operational energy constraints. However,
this operational efficiency comes at the cost of increas-
ing the silicon area of these edge systems. This creates a
significant tradeoff between embodied energy from
including accelerators and the operational energy
impacts from executing deep learning algorithms.

THEPRIMARYSOURCEOF
ENVIRONMENTAL IMPACTSFOR
COMPUTINGSYSTEMSCOMESFROM
THECHIPSTHAT IMPLEMENTTHECORE
FUNCTIONALITYOFPROCESSING,
MEMORY, ANDDATASTORAGE.

In this article, we explore the several state-of-the-
art proposals to accelerate CNN inference and train-
ing using GPUs, FPGAs, and processing in memory
(PIM) with commodity DRAM and recently proposed
Racetrack memory (RM) PIM.5,6 Our comparison

considers the main two phases of energy consump-
tion of embodied and operational energy.2 Thus, we
explore total lifetime energy efficiency of the state-of-
the-art computing targets allowing a evaluation of the
sustainability of these different system choices.

We select energy as our metric as it bridges the
manufacturing and operational phase of the system
into a single metric that can be directly compared.
However, we will also discuss how these energy values
inform other environmental metrics including GWG
when including electrical grid mix profiles.

In particular, this article makes the following
contributions.

› We provide estimates of the embodied energy to
fabricate edge class GPU, FPGA, and in-memory
computation comparison points.

› We characterize the operational power and per-
formance of representative CNN applications for
edge-scale execution including both inference
and training.

› We conduct indifference and breakeven analyses
of different target systems and usage scenarios
to determine holistic sustainability calculations.

› We explore the carbon impacts of these systems
for different grid-mix choices.

In the next section we discuss the background and
related work to conduct these analyses.

BACKGROUND
In this section, we provide a background on sustain-
ability analysis through lifecycle assessment (LCA),
indifference, and breakeven analyses. We also provide
background on RM, including how it is used for PIM
and its required extension for LCA. We also mention
the features about CNN inference and training that
lead to different assumptions about datatypes.

Lifecycle Assessment
The primary source of environmental impacts for com-
puting systems comes from the chips that implement
the core functionality of processing, memory, and
data storage.2 To determine the holistic environmen-
tal impacts in terms of energy, GWG, and other con-
cerns of a product or process, such as semiconductor
fabrication, typically involves a technique called LCA.7

LCA is most accurate when a detailed analysis of the
process is used to determine the assessment, but
sometimes relative costs to similar processes can be
used as a coarse-grain assessment called economic
input/ouput LCA.
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Semiconductor process LCA explores the impact of
the different steps of the approximately 20 masks
required to build complementary metal–oxide–semi-
conductor (CMOS) circuits. Thesemasks can be broken
down into their individual steps, such as deposition,
lithography, etching, and metrology, per wafer. As the
technology scales to smaller feature sizes, these steps
become increasingly costly due to several factors.
These include slower throughput and higher energy
cost of the machines, more costly high fidelity clean
rooms, and more process steps required for things,
such as multipatterning lithography, high-k dielectrics,
more exotic transistor shapes and materials (e.g., III–V
gate channels). A particular culprit is multipatterning4

and extreme ultraviolet lithography steps.8

Relatively few process LCAs have been undertaken of
semiconductor fabrication. One assessment considered
CMOS, flash, and DRAM fabrication covering technolo-
gies from 350nm down to 32 nm.9 A hybrid (mixing pro-
cess and economic) LCA combined process technology
estimations with reported cost trends to create a semi-
conductor fabrication model estimating embodied
energy scaling to 7 nm.4 Recently, a process LCA was
conducted for IC fabrication from 28–3-nm feature sizes.8

Additional background on LCA for semiconductors can
be found in the supplementarymaterial.

Indifference and Breakeven Analyses
One motivation to use a single metric of energy for
both manufacturing and operational sustainability
evaluation of the system is to allow quantitative com-
parison metrics, such as indifference and breakeven
analyses. To compare two design choices of the sys-
tem for deployment we can use the indifference for-
mula tI , as shown in10

tI ¼
M1 "M0

P0 " P1
tB ¼ M1

P0 " P1
: (1)

For a system with higher embodied energy (M) and
lower operational energy (P ), tI is the time at which
the increase in embodied energy will be completely
amortized by the savings in operational energy.

Thus, if the proposed service time t < tI the architec-
ture with the lower embodied energy minimizes envi-
ronmental impact. In contrast, for a proposed service
time t > tI the architecture with the lower operational
energy minimizes impact. If one choice is lower in both
embodied and operational energy, then indifference
analysis is not needed and the lower energy system
can be selected independent of service time.

A similar calculation can be considered for the
breakeven time tB, also defined in (1).10 Consider the
case that an existing system is already deployed.
Replacing the existing system is like assuming embod-
ied energy of the deployed system is 0. Thus, tB is the
time it takes for the replacement system to overcome
the embodied energy of the replacement through
operational energy savings, i.e., tB ¼ tI whenM0 ¼ 0.

While we characterize several accelerators in this
work for CNN acceleration, we also consider an exotic
technology that uses spintronics to store data and
has been explored for PIM called RM.11 We provide
some background on RM in the next section.

Racetrack Memory
Spintronic RM11 is made of ferromagnetic nanowires
consisting of many magnetic domains separated by
domain walls (DWs), as shown in Figure 1. Each domain
has its own magnetization direction such that binary
values are represented by the magnetization direction
of each domain, either parallel/antiparallel to a fixed
reference. For a planar nanowire, several domains
share an access point for read and write operations.12

RM is similar to and has many of the same advan-
tages as spin-transfer torque magnetic memory (STT-
MRAM), including high endurance, fast access time, low
energy. Energy is particularly low as static energy is
nearly eliminated due to the device’s nonvolatility. RM
can have a density #2F2 because it can store multiple
bits in a nanowire accessed using one transistor. In con-
trast, STT-MRAM requires 6–50F2.13

Hence RM, which was originally conceived for sec-
ondary storage, has been proposed at several memory
levels, from L1 cache to main memory. RM achieves

FIGURE 1. Anatomy of a domain-wall memory nanowire.
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this density by requiring shifting if data are not aligned
with an access point. Shifting occurs through DW
motion in the nanowire.

Racetrack Memory Architecture
DW motion is controlled by applying a short current
pulse laterally along the nanowire. Random access
requires shifting the target domain to align it with an
access point (dark blue) and apply a current to read or
write the target bit. To avoid data loss when shifting,
the blue domains store actual data while the grey
domains are overhead domains to prevent data loss.
Shift-based writing (read/write port)14 allows slower
current writes to be replaced with orthogonal shifts
from fixed magnetic alignment domains to reduce
latency and energy.

RM structures are typically built by bundling multi-
ple tracks that are shifted together. Each track repre-
sents a different bit that can be accessed in parallel,
while different memory addresses can be accessed by
shifting the bundled tracks as a group to other posi-
tions.15 Larger memory structures can be build from
these groups of tracks to form tiles, subarrays, banks,
etc.5 Thus, the biggest challenge for RM is to acceler-
ate and minimize shifting for fastest and more energy
efficient operation.11

Processing in RM
Processing using memory has recently received consid-
erable attention. DRAM-based techniques use multiple
row simultaneously16 and/or in sequence17 to allow
sensing amplifiers to achieve two-operand bulk bitwise
logical operations. Higher level arithmetic logic is con-
structed out of a sequence of these logical operations.

RM has also received significant attention for PIM,
particularly for deep learning.5,6,18 The state-of-the-art
approach uses a multidomain read to sense the num-
ber of 1’s in a segment of the nanowire, such as
between the two access points in Figure 1. From this
access and 1’s counting, it is possible to construct
multioperand bulk bitwise logical operations. The
number of operands is dictated by the size of the mul-
tidomain read.

Arithmetic structures, such as addition, can be con-
structed by converting a multidomain read into a local
sum and carry logic. Multiplications are possible by
summation of partial products.5 Floating-point ver-
sions of these operations, particularly multiply accu-
mulate, can be achieved by using these logical and
arithmetic primitives on the sign, mantissa, and expo-
nent components individually.6 We provide more back-
ground on these ideas in the supplementary document.

Racetrack Memory LCA
RM, like many other novel memories, requires addi-
tional process steps during fabrication to realize the
magentic nanowires and access ports. The process
LCA for ICs including RM must be adjusted to account
for the embodied cost of wafers including these addi-
tional steps.

In particular, additional layers of ferromagentic
materials and insulators are placed on top of the com-
pleted CMOS layers. Typically these are added in
between the lower levels of the metal stack. The spin-
tronic devices are composed of three conceptual
layers, a fixed magnetic layer, an MgO barrier that sep-
arates the fixed layer from the free layer in the form of
a nanowire, often made out of a ferromagentic mate-
rial, such as CoFeB. CoFeB with different doping prop-
erties can also be used for fixed magnetic layers.

In terms of the process steps, they are essentially
the same between STT-MRAM and RM, which have
been studied for the former.19 Thus, during manufac-
ture, in addition to the CMOS and metal layers, while
circa 10 material layers are required for the magnetic
devices, a total of three additional mask layers on top
of the circa 20 CMOS layers are required to add these
devices into the evaluation. According to process LCA
study of these devices, they are composed of three
lithography, three dry etching, three deposition steps,
and a polishing step.19

We provide more background on RM including the
process LCA methodology in the supplementary
material.

Convolutional Neural Networks
CNNs are a popular method to compute deep learning
algorithms. CNNs are dominated by the convolution
operation, which is a windowed pointwise multiplica-
tion accumulation of multiple channels of input fea-
tures with a set of weights to generate output
features. As an example, for the input features I and
weights K of size N $Rin $ Cin and M $N $ 3$ 3,
respectively, the convolution operation for the window
atm (output channel index), r (row), c (column) is

ConvðI;KÞðm; r; cÞ ¼
XN"1

n¼0

X2

j¼0

X2

t¼0

Km;n;j;t $ In;rþj;cþt

where M is the number of output channels, N is the
number of input channels, Rin $ Cin is the size of an
input feature map.

While deep learning with CNNs presumes calcula-
tions with floating-point values, CNN inference calcu-
lations can often be reduced to integer computation
with as few as 8 bits achieving reasonable accuracy.
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Recent DRAM PIM work has shown that in many
cases this can be further reduced to ternary w 2
f"1; 0; 1g or even binary w 2 f0; 1g computations oper-
ations to replace the multiplications. However, online
training for all but the simplest CNNs still requires full
32-bit floating-point computations to work properly.
Without this accuracy, the weight updates can be inef-
fective and possibly even detrimental.

In the next section, we explore embodied energy
calculations of a variety of accelerators suitable for
CNN acceleration.

EVALUATION OF EDGE
ACCELERATION SUSTAINABILITY

To consider holistic energy across embodied and oper-
ational phases of potential edge accelerators requires
use of the LCA of the semiconductor fabrication pro-
cess discussed previously. In the next section, we dis-
cuss how to obtain embodied energy and carbon
footprint for different accelerators.

Determining Embodied Energy and
Carbon
As process LCA studies, including our modified pro-
cess to include spintronics, report embodied energy
per wafer, to determine the embodied energy of the
DRAM, RM, FPGA, and GPU we require the IC die area
and technology node. The die area determines what
portion of the wafer is required for each die, from
which the portion of the embodied energy of the wafer
is a result of that die.

We use reported die areas for DDR3DRAM, FPGAs, and
GPUs for the selected devices reported in Table 1. For
RMwe used amodified version of NVSIM20 to calculate
the die area. We also are studying a version of RM that
is extended with PIM capabilities to serve as an accel-
erator using the processing capabilities of CORUS-
CANT5 and POD-RACING.6 Thus, we calculated the
additional die area of the PIM peripheral circuitry.5

Thus, the RM-based accelerator has both an increased
embodied energy per die area due to the exotic mem-
ory process as well as a larger die area than traditional
RM due to the additional logic required for PIM.

There are CMOS process LCAs reported in the lit-
erature for 350–32-nm9 processes and for 28–3 nm.8

There are also DRAM process LCAs down to 55 nm9

that were in service to produce DDR3 parts. There is a
significant gap between the two studies as noted by
the gap between the reported 329 and 28 nm,8 such
that a third study that reports 32 nm21 sits between
the two. Thus, in our work we do not compare nodes
that cross the studies.

Because we report RM at 32 nm, for which there
are three process LCA studies, we estimated the total
cost based on the CMOS estimates from each of the
three studies and make comparisons to devices that
can be estimated using the same process LCA study.
We discuss this in more detail in the supplementary
material.

System Embodied Energy and Carbon
Study
Several grid mix scenarios for CO2 eq based on CO2 eq
per generation method22 and reported grid mix per
state23 for states that have significant semiconductor
manufacturing activities are presented in Table 2.
These states, Arizona (AZ), California (CA), Texas (TX),
and New York (NY), all have very different grid mixes.

TABLE 1. Accelerator statistics, embodied energy, and

embodied carbon emissions for grid mixes from Table 2.

RM DDR3 RM RM FPGA GPU

Tech node 32a,d 55a 32b,d 32c,d 7c 14c

Die size (mm2) 38 73 38 38 324 350

Die per wafer 1,847 967 1,847 1,847 217 201

PE (kWh/Wafer) 1,600 1,200 1,206 753 1,482 882

Energy (MJ/die) 3.12 4.47e 2.35 1.47 24.59 15.80

AZ (gCO2eq/die) 343 490e 259 162 2,698 1,734

CA (gCO2eq/die) 203 291e 153 95 1,598 1,027

TX (gCO2eq/die) 380 544e 286 179 2,992 1,922

NY (gCO2eq/die) 163 233e 123 77 1,284 825

aCalculated using process LCA from Boyd.9
bCalculated using process LCA from Higgs et al.21
cCalculated using process LCA from Garcia Bardon et al.8
dRequires extra steps for spintronics.19
eRequires 16 dies to build a the tested 1-GB DIMM.

TABLE 2. Energy to (gCo2eq/kwh)22 and grid mixes.23

Source gCO2eq/kWh AZ CA TX NY

Coal 980 20% 3% 19% –

Natural gas 465 40% 39% 53% 37%

Geothermal 27 – 5% – –

Hydroelectric 24 5% 18% – 22%

Solar PV 65 7% 20% 2% 2%

Wind 11 – 7% 17% 4%

Nuclear 27 28% 7% 9% 33%

Biopower 54 – 3% – –

Mix (gCO2eq/kWh) 395 234 438 188
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AZ and TX have significant electrical generation
from coal and the highest generation from natural
gas. While AZ has significant generation from nuclear
plants and TX has significant wind energy, their 395
and 438 gCO2eq/kWh (CO2 equivalent generated per
kilowatt hour) are much higher than CA and NY, which
still get more than a third of their electricity from natu-
ral gas. CA is very balanced on renewable energy and
NY has significant hydroelectric and nuclear power
generation, thus their grid mix generates about half
the GWG emissions at 234 and 188 gCO2eq/kWh,
respectively.

In Table 1, we report the embodied energy and
embodied carbon using the grid mixes from Table 2 for
different accelerators. We targeted DDR3-1600 for DRAM
as this is the device that has been used to implement
DRAM PIM using ELP2IM17 and subsequently used to
implement a ternarymodel reduction of CNN inference.

For dedicated accelerators we selected edge
server appropriate low-energy devices including the
Versal Prime FPGA (VM1802) from AMD/Xilinx and the
NVIDIA Jetson NX mobile GPU. Note that, we were
somewhat limited in our choice of, particularly FPGA,
devices as die area is necessary to estimate embodied
energy/carbon and not typically reported.

The RM is extremely dense, even with the addi-
tional PIM logic,5 it has a low embodied energy even
compared to the DRAM. The GPU and FPGA require
an order of magnitude more embodied energy due to
their much larger die sizes.

Holistic Sustainability Evaluation
To determine the overall energy (and carbon footprint)
of these acceleration choices we compared a CNN
conducting inference using hand-designed ternary
approximations targeting DRAM PIM17 and RM PIM5

against the GPU using 8-bit integer precision from a
PyTorch-based flow. Between the PIM solutions, RM
provides both an embodied and operational energy
improvement, ultimately providing order-of-magnitude
benefits in mega frames per gCO2eq.

RM is also competitive with the GPU, with the GPU
having an approximately 30% latency and throughput
advantage. However RM is clearly more sustainable
having an order-of-magnitude improvement in both
embodied and operational energy.

Breakeven Inference Analysis
We conducted two studies, presuming the edge sys-
tem already contains DDR3 with PIM capabilities or a
GPU. We illustrate this using the GreenChip tool10 in
Figure 2(a). The chart shows the comparisons between

the two systems in terms of activity ratio on the y-axis
versus sleep ratio on the x-axis. The sleep ratio is the
ratio of active to sleep time. The activity ratio is, of the
active time, the ratio of compute to idle time.10 More
details on how the GreenChip tool represents break-
even and indifference scenarios is included in the sup-
plementary document.

In the comparison of adding RM to a server using
DDR3 as a PIM accelerator [see Figure 2(a)], if the sys-
tem is heavily loaded (bottom left) it can take on the
order of a month before the RM upgrade saves overall
energy. As the system becomes more idle (toward top
left) or sleeping (toward bottom right) or both (toward
top right), it can take months to recover the embodied
cost. However, unless the machine is sleeping more
than 75%–80% of the time, the upgrade will be recov-
ered in less than one year. The time for RM to overtake
the GPU is faster, with a busy server requiring days
and lightly loaded server requiring months. This is
because the embodied cost is lower in the design
technology co-optimization (DTCO) estimation and
the RM has a substantial advantage over the GPU in
both dynamic and static power.

Indifference Online Training Analysis
To explore CNN training we compare the GPU and
FPGA implementations using a PyTorch-based flow
with hand optimization of AlexNet and VGG-161 as
well as hand mapped designs for the RM accelerator.6

From Tables 1 and 3, both embodied and operational
energies for the FPGA are higher than both the RM
and the GPU, so the indifference calculation will never
pick the FPGA. The FPGA does have a lower power
than the GPU, so its best use case is if the system has
a hard power upper limit.

A notable sustainability comparison is that for
training the RM has a lower embodied energy and a
higher operational energy than the GPU. The indiffer-
ence results are shown in Figure 2(c) and (d) for Alex-
Net and VGG-16, respectively. We note that GreenChip
normalizes the usage scenario to the slower system.
Thus, in these online training comparisons there is con-
siderable headroom in terms of capacity of training
jobs that can be handled by the GPU versus the RM.
However, recent discussions with edge system usage
scenarios reports that online training jobs are currently
less than 30% of overall system loads and are more
likely to be around 5%, placing these comparisons in
the right ballpark for RM. Both training applications
can benefit from the GPU in high usage scenarios (bot-
tom left), but if the system does training infrequently,
as is currently the likely scenario, the GPU savings dur-
ing training cannot overcome the higher embodied
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TABLE 3. Performance, operational power, and efficiency per power and carbon of different edge accelerators.

Inference acceleration using ternary model reduction and PIM

Benchmark Target Performance Power Efficiency

Lat.(S) FPS W FPS/W MF/gCO2eq

Alexnet
GPU 0.0014 705.9 9.54 74 0.61–1.42

DDR317 0.0118 84.8 2 42.4 0.35–0.81

Ternary17 RM 0.0020 490 0.93 526 4.6–10.8

Training acceleration using floating-point 32 data

Benchmark Target Performance Power Efficiency

Lat.(S) GFLOPS W GFLOPS/W TFLOPS/gCO2eq

Alexnet

GPU 0.005 1335 21.05 63.4 521–1,214

RM 0.128 50.72 5.65 8.97 74–172

FPGA 0.13 49.97 16.78 2.98 25–57

VGG-16

GPU 0.11 848 20.37 41.6 342–797

RM 1.12 81.95 5.7 14.37 118–275

FPGA 1.03 89.48 18.02 4.97 41–95

FIGURE 2. Sustainability analyses of different accelerator choices for edge systems. (a) AlexNet inference DDR3!RM. (b) Alex-

Net inference GPU! RM. (c) AlexNet training GPU versus RM. (d) VGG-16 training GPU versus RM. (e) AlexNet training GPU fab-

ricated in AZ deployed in NY. (f) AlexNet training GPU fabricated in CA deployed in TX.
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energy. For an deeply under loaded server, it becomes
impossible for the GPU to benefit due to its higher
static power. The activity ratio cutoff for Alexnet is
around 50% and VGG-16 cuts off in the 40% range.

When considering the energy grid mix in the calcu-
lation this can deflect the indifference calculation sub-
stantially. In Figure 2(e) for online training of AlexNet,
we explore the case where fabrication takes place in
AZ, which has a comparatively high CO2eq/kWh and
the system is deployed in NY with a relatively low
CO2eq/kWh. Even in the highest utilization case the
indifference point becomes six months, and in lower
utilization (circa 70%) it becomes one year, and quickly
grows to multiple years as the utilization drops toward
50%, favoring the RM for relatively more usage
scenarios.

In Figure 2(f), a lower embodied carbon grid mix
and higher operational carbon grid mix is explored for
the same application. As expected the indifference
times are much shorter favoring the GPU in more sce-
narios. Considering a deployment lifetime of circa two
years, the AZ, NY scenario requires more than 60%
training computation for the GPU to be worthwhile
while in the CA, TX comparison this drops to 50% if
the server remains active, but could drop to less than
20% if the server can sleep while not in use.

As online training becomes more popular in edge
systems, the GPU becomes a more attractive alterna-
tive and we provide analyses normalized to the GPU in
the supplementary document.

CONCLUSION
In this work, we compared several SWaP-optimized
CNN accelerators popular for edge servers for both
inference and online training metrics. The breakeven
point analysis suggests replacing DRAM PIM with RM
PIM results in a benefit in total energy within the 0 #
t # 1 years for most usage scenarios. The replacement
time is likely on the low end of that time frame if the
server is heavily used for this task, which is reasonably
popular given the rising popularity of CNN accelera-
tion on edge servers. The breakeven time is even more
striking for a system using a Jetson Xavier NX mobile
GPU, suggesting replacement with RM always yields a
savings within just a few months.

In our indifference comparison between RM and
the GPU, the edge server activity ratio needs to be at
least 50% for lightweight CNN training algorithms,
such as Alexnet, and higher for VGG-16 to make a
GPU lower overall energy than RM. Because of the
higher static power, lower utilization will always favor
RM due to its lower embodied and static energy costs.

To understand the carbon relationship we can see
that the grid mix from manufacturing and use have a
significant impact.

A SYSTEM CAN ACHIEVE BETTER
SUSTAINABILITY EVEN IF IT IS NOT THE
MOST OPERATIONALLY ENERGY
EFFICIENT.

It is clear that embodied effects can remain high
compared to operational effects. Even an energy-effi-
cient GPU can be inefficient compared to reduced
precision models for inference if the accuracy is suffi-
cient. While one takeaway is that RM is an interesting
compromise between efficient inference calculation
and infrequent online training compared to the GPU,
the more salient point is that a system can achieve
better sustainability even if it is not the most opera-
tionally energy efficient.

The somewhat nonintuitive takeaway is that
systems that dramatically reduce embodied energy
in general, and static power particularly for under-
loaded servers, have a place for more sustainable
edge computing. This is possible even if the accel-
erator has higher latency and operational energy
than other accelerators. Designing accelerators for
holistic sustainability remains an important chal-
lenge. Emerging architectures, such as tensor pro-
cessors, should be studied. Emerging technologies,
such as analog crossbars, should also be evaluated,
in spite of their increases in embodied energy per
area. We plan to explore these approaches in more
detail in our future work.
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