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Introduction

Kelp forests are complex habitats found along 25% of the
world’s coastlines and form the foundation of many near-
shore marine environments. Kelp forests also provide
valuable services for coastal communities (Wernberg

Abstract

Kelp forests are complex underwater habitats that form the foundation of many
nearshore marine environments and provide valuable services for coastal com-
munities. Despite their ecological and economic importance, increasingly severe
stressors have resulted in declines in kelp abundance in many regions over the
past few decades, including the North Coast of California, USA. Given the sig-
nificant and sustained loss of kelp in this region, management intervention is
likely a necessary tool to reset the ecosystem and geospatial data on kelp
dynamics are needed to strategically implement restoration projects. Because
canopy-forming kelp forests are distinguishable in aerial imagery, remote sens-
ing is an important tool for documenting changes in canopy area and abun-
dance to meet these data needs. We used small unoccupied aerial vehicles
(UAVs) to survey emergent kelp canopy in priority sites along the North Coast
in 2019 and 2020 to fill a key data gap for kelp restoration practitioners work-
ing at local scales. With over 4,300 hectares surveyed between 2019 and 2020,
these surveys represent the two largest marine resource-focused UAV surveys
conducted in California to our knowledge. We present remote sensing methods
using UAVs and a repeatable workflow for conducting consistent surveys, creat-
ing orthomosaics, georeferencing data, classifying emergent kelp and creating
kelp canopy maps that can be used to assess trends in kelp canopy dynamics
over space and time. We illustrate the impacts of spatial resolution on emergent
kelp canopy classification between different sensors to help practitioners decide
which data stream to select when asking restoration and management questions
at varying spatial scales. Our results suggest that high spatial resolution data of
emergent kelp canopy from UAVs have the potential to advance strategic kelp
restoration and adaptive management.

et al.,, 2019), are important nursery and foraging habitat
for numerous key ecological species (Holbrook et al.,
1990; Steneck et al., 2002), and can help buffer shorelines
from storms (Arkema et al., 2013). Globally, the four
dominant kelp genera (Macrocystis, Nereocystis, Ecklonia
and Laminaria) contribute an estimated $684 billion per
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year in fisheries production, nutrient cycling and carbon
removal services (Eger et al., 2021). Despite their ecologi-
cal and economic importance, increasingly severe threats
and stressors to kelp forests have resulted in declines in
kelp abundance in many regions over the past few dec-
ades (Krumbhansl et al., 2016).

The nearshore marine habitat along the North Coast of
California, USA is generally dominated by canopy-
forming bull kelp (Nereocystis luetkeana) forests and hosts
biodiverse and productive ecosystems. However, a perfect
storm of stressors that began around 2013 resulted in mas-
sive and sustained declines in the abundance of bull kelp
in this region. In late 2013, a record-breaking marine heat-
wave (MHW) (Bond et al., 2015; Gentemann et al., 2017;
Oliver et al.,, 2018) took hold of the northeast Pacific
Ocean and brought temperature anomalies that were asso-
ciated with an unprecedented regional decline in the
abundance of bull kelp (McPherson et al., 2021; Rogers-
Bennett & Catton, 2019). The MHW impacts on kelp were
magnified by a dramatic increase in the density of herbiv-
orous purple sea urchin (Strongylocentrotus purpuratus)
that coincided with substantial declines in the population
of the sunflower sea star (Pycnopodia helianthoides), a pri-
mary predator of kelp-grazing sea urchin (Duggins, 1983),
due to the outbreak of sea star wasting disease (Burt et al.,
2018; Hamilton et al., 2021; Harvell et al., 2019; McPher-
son et al., 2021; Miner et al., 2018; Rogers-Bennett & Cat-
ton, 2019). The result was an ecological regime shift along
350 km of coastline from healthy kelp forests to urchin
barrens, an alternative stable state maintained by multiple
feedback mechanisms that challenge the natural recovery
of kelp to historical average abundances (Cavanaugh et al.,
2011; Dayton, 1985; Filbee-Dexter & Scheibling, 2014;
Lauzon-Guay et al., 2009; Ling et al.,, 2009). The regime
shift impacted over 150 species important to coastal tribes,
as well as the commercial red urchin and the recreational
red abalone fisheries (Hohman et al., 2019; McGinnis
et al., 2004).

Given the significant and sustained loss of kelp on the
North Coast, interventions such as active kelp forest
restoration and adaptive management are likely necessary
tools to reset the ecosystem (Eger et al., 2022; Walters,
1986). Strategic implementation of kelp restoration pro-
jects often requires conservation practitioners to utilize
geospatial data on kelp dynamics across a variety of spa-
tiotemporal scales. Because canopy-forming kelps (Order:
Laminariales) are distinguishable in airborne and satellite
imagery, remote sensing is an important tool for docu-
menting changes in canopy area and biomass to meet these
data needs (Bell et al., 2020; Cavanaugh et al., 2011; Jensen
et al., 1980; Schroeder et al., 2019). Remotely sensed data
availability for monitoring surface canopy-forming kelps
(hereafter referred to as ‘emergent kelp canopy’) is steadily

UAVs to Map and Monitor Changes in Emergent Kelp

increasing and the selection of these data to inform man-
agement should match the efforts’ objectives and spatial
scale (Cavanaugh, Bell, et al., 2021).

To manage kelp resources and track commercial har-
vest, the California Department of Fish and Wildlife
(CDFW) conducted high-resolution airplane-based occu-
pied aircraft vehicle (OAV) surveys of kelp canopy along
the California coastline from the Mexico to Oregon bor-
ders. The first OAV survey was conducted in 1989 and
the second in 1999. Annual surveys were conducted in at
least some regions of the state between 2002 and 2016
(Aerial Kelp Surveys, 1989); surveys did not take place
from 2017 to 2018, and were attempted but only partially
completed in 2019 and 2020. While the CDFW OAV data
are useful for monitoring changes in kelp canopy over
time at a regional scale, there are several limitations
inherent in these data. Importantly, the spatiotemporal
coverage is inconsistent across years due to various factors
that impacted the surveys such as inclement weather, lim-
ited funding, malfunctioning equipment and smoke from
wildfires (N. Eddy, personal communication, Oct 19,
2020; Hohman et al., 2019) making them unreliable for
consistent time series analysis at the local level (see SI for
further discussion on OAV data limitations).

Satellite imagery has emerged as another remote sensing
tool to track the regional dynamics of kelp canopy (Bell
et al., 2020; Cavanaugh et al, 2011; Finger et al., 2021;
Hamilton et al, 2020). While satellite imagery provides
data on the dynamics of emergent kelp canopy across large
regions since the mid-1980s (Bell et al., 2020; Cavanaugh
et al., 2011; Hamilton et al., 2020), the spatial, spectral and
temporal resolutions of satellite imagery can present sev-
eral limitations. First, emergent kelp canopies that are
adjacent to the coast or offshore rocks are missed due to
the reflectance properties of these terrestrial features within
overlapping pixels (Hamilton et al., 2020; Nijland et al,,
2019). Second, since most satellite imagery is not collected
on demand, acquisition may occur during suboptimal
periods, such as cloudy days or during high tidal height
and/or current speed conditions, which can submerge the
emergent kelp canopy below the sea surface (Britton-
Simmons et al., 2008; Cavanaugh, Cavanaugh, et al., 2021).
Third, the often moderate pixel resolution necessitates the
use of a classifier to assign the class of each coastal pixel,
for example, as kelp or seawater, to avoid erroneous detec-
tion of kelp canopy due to breaking waves, sun glint and/
or floating debris that increases the reflectance of near-
infrared light. The conservative nature of many classifiers
may lead to the misclassification of sparse kelp canopies as
seawater, thus missing small refugia that may be important
to restoration efforts during periods of low canopy cover.

Local-scale monitoring of emergent kelp canopy
dynamics, especially sparse canopy, requires remote
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sensing tools that provide high spatiotemporal resolution.
Small unoccupied aerial vehicles (UAVs) are becoming
increasingly useful tools in conservation, and are being
used for aquatic ecosystem monitoring (Haskins et al.,
2021), wildlife management and enforcement (Jiménez
Lépez & Mulero-Pdazmany, 2019). In recent years, UAVs
have been utilized to capture spatially and spectrally com-
plex intertidal macroalgal communities (Rossiter et al,
2020), monitor invasive aquatic vegetation (Bolch et al.,
2021) and provide a non-invasive way to observe marine
fauna (Bevan et al., 2016; Colefax et al., 2018; Hensel
et al., 2018; Hodgson et al., 2013; Schaub et al., 2018).
Monitoring emergent kelp canopy with UAVs provides
flexibility in the timing of data collection relative to OAV
and satellite imagery. UAVs are a nimble tool that can be
deployed rapidly, allowing a pilot to survey at ideal tidal,
sun angle and wind conditions, as well as peak biomass.
This flexibility in turn facilitates the characterization of
seasonal and interannual kelp dynamics to better under-
stand the effect of disturbance from storms and marine
heatwaves (Cavanaugh, Cavanaugh, et al., 2021; Thomsen
et al, 2019), and inform restoration and management
efforts. With very high-resolution (VHR) sub-meter ima-
gery, UAVs can capture small or sparse kelp beds and dif-
ferentiate between near-shore kelp beds and land,
addressing detection challenges associated with satellite
imagery (Fig. S1). And while certain environmental con-
ditions such as wind, clouds, sun glint and deep water
detection (Kellaris et al., 2019) can limit the use of UAV
imagery in monitoring macroalgal communities, novel
automated canopy detection algorithms have been shown
to be highly accurate and the assessment of the influence
of tides and currents has recently improved data collec-
tion and processing methods (Cavanaugh, Cavanaugh,
et al., 2021). Finally, relatively low start-up costs and pilot
training requirements also make UAV-based conservation
monitoring highly accessible (Evans et al., 2015; Mlambo
et al., 2017; Weissensteiner et al., 2015).

We conducted UAV surveys at 36 priority kelp forest
sites along the North Coast of California in 2019 and 2020
to fill a key data gap for kelp managers and restoration
practitioners working at a local scale. With over 4,300 hec-
tares surveyed between 2019 and 2020, these surveys repre-
sent the two largest marine resource-focused UAV surveys
conducted in California to our knowledge. These surveys
are the first VHR assessments of emergent kelp canopy
since 2016 for the majority of the priority kelp forest sites
along the North Coast and provide documentation of fur-
ther decline and, in some cases, potential resilience (i.e.
recovery after disturbance (Cavanaugh et al., 2019; Hodg-
son et al., 2015)). We present a repeatable workflow for
consistent kelp surveys and data capture, creating ortho-
mosaics, georeferencing data, classifying emergent kelp
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canopy in UAV imagery and creating VHR kelp canopy
maps that can be used to assess changes in kelp canopy
coverage over space and time at a level of spatiotemporal
resolution previously unachieved by traditional OAV and
satellite imagery. We illustrate the impacts of spatial reso-
lution on emergent kelp canopy classification in imagery
from both the Landsat satellite sensor and a UAV to help
practitioners decide which data stream to select when ask-
ing restoration and management questions at varying
scales. Our results suggest that high spatial resolution data
on local-scale spatiotemporal patterns of emergent kelp
canopy from UAVs have the potential to advance strategic
kelp restoration and adaptive management.

Materials and Methods

Study area

The study area includes approximately 90 km of nearshore
rocky habitat in Northern California along Sonoma and
Mendocino counties (38°N—39°N) that has been historically
dominated by bull kelp forests (Fig. 1). The mean tide level
in the study area is approximately 0.84 m with a mean tidal
range of approximately 1.27 m (NOAA Tides and Currents,
n.d.). The coastal ocean environment is largely determined
by wind-driven coastal upwelling that typically brings cold,
nutrient-rich waters to the ocean’s surface, which stimulates
the growth of bull kelp (Springer et al., 2007). An annual
species, bull kelp in the study area typically grows in sea sur-
face temperatures (SST) between 10° and 14°C (Garcia-
Reyes & Largier, 2012) on wave-exposed rocky reefs from
the low intertidal (3 m) out to 20 m, with maximum
depths of about 40 m (Springer et al., 2007). With an upper
thermal tolerance of approximately 17°C, bull kelp exhibits
strong spatial and temporal variability in distribution and
abundance (Springer et al., 2007).

The abrupt and persistent shifts in SST and nutrient
conditions associated with the MHW in the northeast
Pacific Ocean were beyond the physiological thresholds of
optimum bull kelp growth and reproduction (McPherson
et al,, 2021). Mean SST anomalies from 2014 to 2015
during the MHW event were approximately two standard
deviations warmer, with extreme SST anomalies reaching
three to four standard deviations above the long-term
mean distribution (McPherson et al., 2021).

Priority survey site selection

We selected sites for UAV emergent kelp canopy surveys
using a prioritization framework for kelp recovery efforts
based on data from OAV surveys, subtidal surveys, areas
of cultural significance, areas of economic significance,
accessibility and proximity to marine protected areas
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[
123°20'W

123230 W

Saunders Reef

Anchor Bay
o

123950'W 123°40'W
]

Z [N

= »
=0 -

& |

@
3

Z
L= \\

&

« Y

Z

&

z

o
Sin

S

z
S

&

0 UAV Priority Sites
[ Greater Farallones NMS

0 30km N

Figure 1. Study area extent and UAV priority sites along the North Coast of California. Case study sites Saunders Reef and Anchor Bay are

denoted with callouts. Basemap source: Esri.

(MPAs) (Hohman et al., 2019). A total of 37 sites were
identified in Mendocino and Sonoma Counties (i.e. the
‘North Coast’), hereafter referred to as ‘priority sites’
(Fig. S2). Ten of the sites are in actively managed state
MPAs and 27 are in the Greater Farallones National Mar-
ine Sanctuary (GFNMS) (Fig. 1). Thirty-six of the 37 sites
were surveyed with UAVs between 2019 and 2020, with
21 sites surveyed in both 2019 and 2020. The average pri-
ority site area was 1 km? (range 0.2-1.7 km?).

UAY flights, timing and environmental
sources of variation and error

Due to the 90 km stretch of coastline within which the
noncontiguous priority sites are located, numerous pilots
participated in data collection and we developed a

repeatable workflow building upon the efforts of Cava-
naugh, Cavanaugh, et al. (2021) to ensure data consis-
tency. We obtained state and federal permits to allow
UAV use in restricted areas and we established criteria for
UAV launch sites (e.g. public coastal access, no large
obstacles, flat area with minimal ecological impact poten-
tial and located mid-way in the survey area to maintain
telemetry link between the UAV and controller). We used
small UAV platforms from the same manufacturer and
each pilot selected their own flight software. Pilots flew at
an altitude of 120 m above mean sea level with a mini-
mum front and side overlap of 75%, nadir angle of the
sensor, auto white balance and UAV speeds between 10
and 12 m/s. The image processing softwares used were
Agisoft Metashape, DroneDeploy and Pix4D; all orthomo-
saics were reviewed by expert annotators and when

© 2022 The Nature Conservancy and The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd 65

on behalf of Zoological Society of London.

d ‘1 €T0T 'S8PE9SOT

woy

sdiy) SUONIPUOY pue SULIRY, 31 33§ “[€202/01/60] U0 AIRIqIT AUHUQ KA[IA “BIRQIEY TIUES “BILION[ED) JO ANSIOAIUN £q S6T'TSHTO0 101 /10p/wi0d" K1’

w0 Kopim .

P!

ASUDIT suOWIWO)) 2AneAI) d[qearidde ayy £q pauseaos e s3[ANIL YO aSn JO SN 10§ Kreiqr] duruQ LI UO (¢



UAVs to Map and Monitor Changes in Emergent Kelp

output orthomosaics were incomplete or contained signif-
icant defects, the imagery was reprocessed using at least
one of the two other software options (see SI for detailed
workflow; Table S2).

All UAV pilots acquired imagery using the built-in
Red-Green-Blue (RGB) sensor. We coordinated flights to
coincide with the annual peak biomass of bull kelp, which
typically occurs in late summer/early fall on the North
Coast. Our team surveyed during the lowest tide series of
the month and aimed to survey at the lowest tide of the
day, as tidal height and surface currents have been shown
to impact the amount of kelp canopy exposed on the
water surface (Britton-Simmons et al.,, 2008), and these
impacts can vary regionally (Cavanaugh, Cavanaugh,
et al., 2021). Because sun angle, wind and weather condi-
tions varied significantly throughout the data collection
process, surveys were not restricted to a specific daily
tidal height or current speed; data were collected when
field conditions allowed for stable UAV launch and land-
ing and this structure resulted in random sampling
throughout the tidal range within and between years,
addressing sampling bias in our data (see SI for detailed
discussion on the potential influence of tides).

Kelp detection, classification and
quantification

We identified kelp pixels in each UAV image using a
band combination between the red and blue bands (Red -
Blue), which has been shown to best distinguish kelp
from water in RGB-UAV imagery relative to other RGB
vegetation indices (Cavanaugh, Cavanaugh, et al., 2021).
Before applying a threshold to our image, we manually
masked all terrestrial objects (e.g. land and intertidal
rocks). Due to radiometric and spectral variability present
in the imagery, we manually selected thresholds to distin-
guish kelp from seawater. For individual sites with high
levels of spectral variability due to turbidity, sun glint or
other artifacts, a single threshold could not be used for
kelp identification because the threshold varied through-
out the image within a site (Cavanaugh, Cavanaugh,
et al., 2021). For these sites, we gridded images into sub-
sets (ranging from 1000 x 1000 m areas to 5000 x
5000 m areas, depending on the level of variability), and
each grid was assigned a unique threshold. As a result,
multiple thresholds were used for classification for these
sites. We mosaicked the classified grids back to their orig-
inal extent (Fig. S3) and manually reviewed all classified
mosaics for quality assurance. We used binary classifica-
tion values (i.e. ‘Kelp’ or ‘Not Kelp’) except for mixed-
species marine algal beds and the occasionally blurred
image, which were assigned ‘No Data’ values. We worked
in a GIS environment to determine the area of kelp at a

V. R. Saccomanno et al.

given site by multiplying the number of kelp pixels by the
area of the pixels (ArcGIS Pro 2.7).

Comparison to multi-decadal Landsat data

To give multi-decadal temporal context to the UAV sur-
veys, we examined long-term trends in kelp canopy
dynamics along the North Coast using Landsat satellite
imagery (see SI for data accessibility). The primary bene-
fits of using Landsat data include high temporal resolu-
tion, long-term coverage (1984-present) and large spatial
coverage (Bell et al., 2020; Cavanaugh et al., 2011; Hamil-
ton et al., 2020). The maximum extent of UAV survey area
overlap between 2019 and 2020 was used to clip the Land-
sat emergent kelp canopy data such that the exact same
area was compared for each priority site between the
Landsat and UAV datasets (n = 36) (Fig. 6). To control
for differences in available reef habitat between priority
sites, we selected the maximum area of kelp canopy (m?)
that occurred within a site in each year and normalized
that amount by the historical maximum extent of emer-
gent kelp canopy (i.e. the cumulative area within a site
where kelp was ever observed between 1984 and 2020) to
produce a time series of annual, proportional coverage
values. We also used Landsat emergent kelp canopy data
to produce maps of canopy persistence at our case-study
sites (Fig. 7), where relative persistence was defined as the
number of years from 1984 to 2020 in which a pixel con-
tained kelp canopy (Bell et al., 2020). Maps of emergent
kelp canopy for case-study sites during a given year used
the maximum canopy area observed (Fig. 7).

Comparison to historical OAV data

We used the high-resolution CDFW OAV survey data
collected annually from 2002 to 2016 to assess changes in
emergent kelp canopy over time relative to the UAV data.
While the OAV data have a different spatial and spectral
resolution (2 m and RGB + NIR, respectively) compared
with the UAV data (~0.03 m and RGB, respectively), they
are the only high-resolution data available for the region
to assess trends over time. The spatiotemporal coverage
of the OAV surveys was irregular and the associated
metadata do not consistently differentiate between when
data were not collected in an area (e.g. due to cloud
cover) and when there was no kelp detected in an area
(see SI for further discussion on OAV data limitations).
Therefore, we only selected years with North Coast regio-
nal OAV data (Table S1) that spatially overlapped with
the UAV priority sites based on the OAV survey extent
coordinates. The maximum extent of UAV survey area
overlap between 2019 and 2020 was used to clip the OAV
emergent kelp canopy data such that the exact same area
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was compared for each priority site in the OAV and UAV
combined dataset (hereafter referred to as the ‘high-
resolution dataset’). To control for differences in available
reef habitat between survey sites, we normalized the
annual peak kelp area by the historical maximum extent
of emergent kelp canopy (i.e. the cumulative area within
a site where kelp was ever observed in available years
from 2002 to 2020 in the high-resolution dataset) to pro-
duce a dataset of annual, proportional coverage values.
Therefore, max extent estimates between the high-
resolution and Landsat data are specific to the dataset.
We used the WGS 1984 geographical coordinate system
for all data in this dataset. To account for the differences
in spatial resolution when investigating local, relative
occurrence patterns, we resampled the UAV data to 2 m
to match that of the OAV data; we then ran the high-
resolution dataset of emergent kelp for each case study
site through the Count Overlapping Feature geoprocess-
ing tool in ArcGIS Pro 2.7 to obtain the number of years
a given pixel was classified as “kelp”.

Spatial statistics

We examined the interquartile range of emergent kelp
canopy values for both Landsat and the high-resolution
data at the priority sites between years to understand sta-
tistical dispersion given the natural interannual variability
of kelp forest ecosystems. For the Landsat dataset, we col-
lated emergent kelp canopy data across all 36 priority
sites by year (Fig. 6); for the high-resolution dataset, we
collated emergent kelp canopy data by year for the 36 pri-
ority sites where canopy data were available (Table S1).
Spatial statistics were conducted in R V4.1.1 (R Core
Team, 2021; Wickham et al.,, 2019) and are available in
the data repository.

Case study sites

With 36 priority sites and over 4,300 hectares surveyed
with UAVs between 2019 and 2020, we selected two, rep-
resentative priority sites to serve as case study locations,
Saunders Reef and Anchor Bay (Fig. 1); both sites were
surveyed in 2019 and 2020, and represent the upper and
lower bounds of priority site area (1.5 and 0.4 km?
respectively), cover the two core site types (coastal and
cove, respectively) and capture the range of kelp canopy
dynamics and trends observed in the region (refugia and
sustained decline, respectively). We use these sites to
investigate the performance of the UAV imagery and
associated classifications, understand local trends and kelp
canopy status and compare UAV emergent kelp canopy
classifications to that of Landsat. A full summary of find-
ings by priority site can be found in Table S1.

UAVs to Map and Monitor Changes in Emergent Kelp

Results

UAYV survey extent and tides

We surveyed 25 priority sites encompassing 2,075 hectares
of priority bull kelp habitat in 2019, and 32 priority sites
encompassing 2,198 hectares in 2020. Between the 2019
and 2020 surveys, there were 21 overlapping priority sites
representing a spatial footprint of 1,297 hectares of prior-
ity bull kelp habitat (Table S1). We used tidal data at the
time of UAV launch to explore the interquartile range of
tidal height across all priority sites surveyed in both 2019
and 2020 and found that the median tidal height between
2019 and 2020, 1.17 m and 1.1 m, respectively (n = 21,
Fig. S4), was comparable; the IQR was less than 1 m of
tidal height in each year (IQR 2019 = 0.94-1.35 m; IQR
2020 = 0.59-1.45 m). Tidal height (m) in 2019
(1.17 & 0.35 [mean & SD]) and 2020 (1.1 £ 0.53) did
not differ significantly (t(40) = 0.56, P = 0.571, n = 21)
for each year (see SI for further analysis on the potential
influence of tides).

Local trends using high-resolution dataset

We used the high-resolution dataset to understand
annual emergent kelp canopy trends from 2002 to 2020
across the 36 non-contiguous priority sites (Fig. 2) and
constructed spatial occurrence patterns within case study
sites over time (Figs. 4 and 5). We found that the
median emergent kelp canopy coverage since the 2013
onset of coincident stressors has consistently remained
below that of preceding years where higher-resolution
data are available (Fig. 2; Table S1). From the most
recent complete OAV survey in 2016 to the first UAV
survey in 2019, we found that emergent kelp canopy
decreased in all but two priority sites and that there
was an overall decrease in emergent kelp canopy of
85.8% from 2016 to 2019 (Table S1). We found that
emergent kelp canopy area increased in every priority
site surveyed in both 2019 and 2020 (n = 21), although
the increase at several sites was minimal and may not
reflect true increases given the sources of variability in
this system that impact the amount of kelp canopy
exposed on the water’s surface (Britton-Simmons et al.,
2008)(Table S1).

Priority site case studies using the high-
resolution dataset

Using the high-resolution dataset, we explored site-
specific spatiotemporal trends in emergent kelp canopy
within and between our case study sites and observed
between-site variation (Fig. 3) that suggests that certain
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Figure 2. Interquartile range of emergent kelp canopy coverage proportional to maximum extent observed in the high-resolution dataset across
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Figure 3. Emergent kelp canopy proportional to the maximum extent of observed kelp within Saunders Reef (A) and Anchor Bay (B) using the
high-resolution and Landsat datasets. Maximum extent estimates are relative to each dataset.

sites exhibit more resilience to extreme stressor events
(Fig. 4) relative to other sites (Fig. 5). While the regional
trend in emergent kelp canopy along the North Coast
since the onset of coincident stressors has been a sus-
tained lack of emergent kelp canopy relative to historical
coverage (Figs. 2 and 6), several priority sites exhibited
signs of potential local recovery in the 2020 UAV surveys.
UAV surveys and classification of emergent kelp canopy
at Saunders Reef suggest that 2019 was a historically low
kelp year for this site, but that some recovery might have
occurred in 2020 with the second highest emergent
canopy coverage in the high-resolution dataset, albeit
temporal coverage is discontinuous (Fig. 3a). It is possible

that the lower tides in 2020 relative to 2019 account for
some of this increase (Table S3). Landsat data were used
to place the 2020 UAV kelp area data at Saunders Reef in
greater historical context and illustrate that, while there
was indeed an uptick in emergent kelp canopy in 2020,
this priority site historically has had high emergent kelp
canopy coverage proportional to the max extent and 2020
was a moderate year relative to other years in the time
series with 78% of the previous years on record having
higher canopy coverage than 2020 (Fig. 3a). Spatializing
the emergent kelp in the high-resolution dataset at Saun-
ders Reef shows regions of kelp occurrence and suggests
this priority site is a historically strong location for kelp,
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Figure 4. Spatial occurrence of emergent kelp canopy at Saunders Reef using the high-resolution dataset. Colored pixels represent areas where
kelp has been observed, where variation in color represents the count of occurrence in years (not necessarily consecutive). A = full dataset with
high-resolution classifications; B = pre-onset of coincident stressors (2003, 2004, 2005, 2008); C = post-onset of coincident stressors (2014,

2015, 2016, 2019, 2020). Basemap source: Esri.

with canopy reoccurring in select locations in the reef in
eight out of the nine years of data (Fig. 4a). Additionally,
we detected areas of kelp occurrence post-coincident
stressors where kelp had not been previously detected by
OAV sensors (Fig. 4c). Unfortunately, we do not know if
these are novel areas of kelp occurrence or if the resolu-
tion and/or methodology of the OAV surveys resulted in
undetected kelp.

UAV flights and classification of emergent kelp canopy
at Anchor Bay align with the regional trend in that there
has been a sustained lack of kelp recovery at this site
since 2014. In 2019, there was historically low area of
emergent kelp canopy and little indication of recovery in
2020 (Fig. 3b). Tides were higher at this site during the
2020 UAV surveys than they were during the 2019 sur-
veys (Table S3). Spatializing the emergent kelp canopy

data using the high-resolution dataset at Anchor Bay to
investigate regions of kelp occurrence also suggests that
this priority site has had minimal kelp recovery since the
onset of coincident stressors (Fig. 5¢). Landsat data were
used to place the observed lack of kelp recovery at
Anchor Bay in greater historical context and illustrate that
2019 and 2020 were indeed low years for emergent kelp
canopy coverage and that this site has not experienced a
strong uptick since 2008 (Fig. 3b).

Regional trends using Landsat

While the high-resolution dataset is helpful for under-
standing near-term, local-scale emergent kelp canopy
dynamics, these data are of limited value for assessing
long-term, regional-scale change. Landsat data were used
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Figure 5. Spatial occurrence of emergent kelp canopy at Anchor Bay using the high-resolution dataset. Colored pixels represent areas where kelp
has been observed, where variation in color represents the count of occurrence in years (not necessarily consecutive). A = full dataset with high-
resolution classifications; B = pre-onset of coincident stressors (2003, 2004, 2005, 2008); C = post-onset of coincident stressors (2014, 2015,

2016, 2019, 2020). Basemap source: Esri.
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Figure 6. Interquartile range of emergent kelp canopy across the 36 priority sites proportional to the maximum observed extent within a priority

site observed in the Landsat time series.

to bridge this gap and suggest a significant and sustained
loss of kelp within priority sites from 2014 to 2020 com-
pared to the historic emergent kelp canopy area (1984—
2013). The period since the 2013 onset of coincident
stressors is the first within the record with sustained loss

for more than four years and emergent kelp canopy con-
sistently under 15% of average historical levels (Fig. 6).
The most severe decline in kelp after the onset of coinci-
dent stressors was in 2019 (Fig. 6) when kelp coverage
was only 3.6% of the historic average emergent kelp
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Figure 7. Landsat and UAV emergent kelp canopy classification and persistence at Saunders Reef (top row) and Anchor Bay (bottom row) at
peak biomass in 2019 and 2020, where red outlines demark the UAV survey extent. A and D show annual persistence using Landsat data, the
number of years where emergent kelp canopy was present across all years from 1984 to 2020. The 2019 (B and E) and 2020 (C and F) canopy
maps display the emergent kelp canopy area identified through Landsat and the enhanced insets in the upper right of each panel show the UAV
emergent kelp canopy classification in brown for that year. See Figure 1 for location of case study sites relative to the study area.

canopy cover, with a slight increase to 9.7% of historic
levels in 2020.

While Landsat data are helpful for understanding long-
term, regional-scale kelp canopy dynamics, the 30 m sen-
sor resolution is often too coarse to accurately assess
local-scale, nearshore emergent kelp canopy spatial pat-
terns (Finger et al.,, 2021; Hamilton et al.,, 2020). A com-
parison between Landsat and UAV emergent kelp canopy
classifications in case study sites illustrates the differences
in resolution between these sensors and the ability of
UAVs to detect sparse emergent kelp canopy, a common
feature in the North Coast region since 2014. Many areas
of sparse kelp canopy were missed by the Landsat sensor,
suggesting that the <0.1 m spatial resolution of UAVs is a
better fit to understand local, site-level emergent kelp
canopy dynamics of this system (Fig. 7).

Discussion

Our analysis indicates that remote sensing methods using
UAVs to map and monitor emergent kelp canopy provide
unparalleled insights into the spatial dynamics of kelp at
a local scale. While the Landsat data indicate low

regional-scale resilience (Fig. 6), the UAV data suggest
that there are pockets of potential recovery at the local
level. Using the UAV data, we illustrate considerable
local-scale spatial variability in kelp occurrence at North
Coast priority sites which, coupled with the region’s
prevalent sparse canopy, supports the use of a UAV plat-
form to document local patterns of loss or potential
recovery. While determining the causal mechanism(s) for
variability in emergent kelp canopy between sites is
beyond the scope of this study, it is possible that local-
scale biotic and abiotic processes may influence the recov-
ery of kelp from extreme disturbance events (Edwards,
2004; McPherson et al., 2021) and that VHR data can be
used to map fine-scale spatiotemporal patterns and locate
remnant kelp that could serve as refugia and a local
source of spore production during periods of low canopy
cover. This information in turn can be used to inform
strategic, local restoration efforts to defend kelp strong-
holds that can otherwise be difficult to locate.

We illustrate the impacts of spatial resolution on emer-
gent kelp canopy classification between the Landsat sensor
and that of a UAV to help practitioners decide which data
stream to select when asking restoration and management
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questions at varying scales. The use case for UAV surveys
of emergent kelp canopy at local scales is compelling.
When comparing classified kelp in Landsat and UAV ima-
gery at the same site during a similar timeframe, we found
that many areas of sparse canopy that were detected by
the UAV were not detected by the Landsat sensor (Figs. 7
and S1); this suggests that higher spatial resolution data
are needed to understand local trends in emergent kelp
canopy dynamics in regions characterized by sparse kelp
coverage. Furthermore, when comparing historical OAV
emergent kelp canopy surveys with UAV surveys within
case study sites, we mapped novel areas of kelp canopy in
2019 and 2020 (Fig. 4¢c) even though these were both his-
torically low kelp abundance years (Fig. 6). Due to the
moderate resolution resampling of the OAV data we do
not know if these are indeed new areas of kelp growth, or
if kelp was missed by the OAV sensor, which inherently
limits our confidence in these potential signs of recovery.
Thus, when selecting remote sensing tools for local-scale
kelp restoration and management purposes, UAVs are a
compelling platform to capture fine-scale dynamics.

While small UAVs are a nimble tool and provide data
with exceptional spatial resolution, this tool is not yet
cost- nor time-effective when surveying large regions (e.g.
state wide); UAVs have notable limitations including
visual line of sight requirements, telemetry link limita-
tions (often 3-7 km), maximum flight altitude restric-
tions (120 m without a waiver), wind speed thresholds
(approximately 45 km/h for small quadcopters), reliance
on batteries with finite charge and other physical and
technological limitations. Given these limitations and
challenges, surveys in the present study were not
restricted to a specific daily tidal height. This is an impor-
tant limitation because tidal height has been shown to
impact the amount of kelp canopy exposed on the water
surface (Britton-Simmons et al., 2008; Cavanaugh, Cava-
naugh, et al., 2021). While differences in tidal height at
the time of the surveys may influence our estimates of
change between years, the range of tidal heights across
the 2019 and 2020 surveys was comparable and therefore
site-level biases are likely addressed when pooling changes
across all sites (see SI for further discussion). Addition-
ally, the necessity of an accessible launch site for UAVs
limits which areas can be surveyed, making it difficult to
census a population or survey sites without a viable
launch site. For example, Fig. 7c illustrates that kelp was
present beyond the perimeter of the UAV priority site
but, due to the above-mentioned UAV limitations, this
area was unable to be surveyed. Finally, the imagery col-
lected with three-channel digital cameras that come stan-
dard with low-cost UAV platforms is more sensitive to
the misclassification of submerged kelp and previous
work suggests that multispectral imagery (e.g. imagery

V. R. Saccomanno et al.

collected by Landsat or a multispectral UAV payload)
produces higher accuracy classifications (Cavanaugh,
Cavanaugh, et al., 2021). However, when used in con-
junction with other remote sensing platforms like satel-
lites, UAVs with standard sensors can supplement time
series with VHR data and capture narrow temporal inter-
vals (e.g. low tide, post-fire, post-storm) to enhance eco-
logical monitoring (Mohamad et al, 2019; Padua et al,
2020; Turner et al., 2016).

While our UAV priority sites primarily contain bull
kelp and are located along the North Coast of California,
the methods presented here are applicable for remote
sensing of canopy-forming kelp forests with UAVs in
other geographies. As global interest in actively restoring
kelp forests continues to increase (Eger et al., 2020; Eger
et al., 2022), these results suggest that high spatial resolu-
tion emergent kelp canopy data from UAVs can be used
to guide strategic management efforts by informing
restoration site and technique selection. For example, in
systems where herbivory is an issue, VHR imagery can
illustrate where kelp strongholds are located and therefore
guide where techniques such as removing overabundant
grazers should be deployed. Furthermore, repeat VHR
UAV surveys of restoration areas with control sites can
allow practitioners to monitor and evaluate the potential
efficacy of restoration efforts. The ability to produce VHR
data on local-scale spatiotemporal patterns of emergent
kelp canopy using UAVs has the potential to advance
strategic kelp restoration and adaptive management on
the North Coast of California and around the world.
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