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a b s t r a c t 

In this paper, we develop a scalable, adaptively refined, octree-based finite element approach with im- 

mersogeometric analysis to track inertial migration of particles in microchannels. Fluid physics is modeled 

using a residual-based variational multiscale method, and the particle movement is modeled as rigid body 

motion. A parallel, hierarchically refined octree mesh is employed as the background mesh, on which a 

variationally consistent immersogeometric formulation is adopted for tracking the particle motion in the 

fluid. Adaptations of immersogeometric analysis on an octree background mesh are developed to enable 

efficient searching of background element for a given surface quadrature point, as well as a distribution of 

surface quadrature points over processors to reduce memory overhead and better parallelize the surface 

assembly. An octree-based adaptive mesh refinement algorithm adapted to in-out test in the immerso- 

geometric approach is also developed. The validation of our octree-based immersogeometric approach is 

carried out using a benchmark case of a sphere settling in quiescent fluid, with good agreement pre- 

sented. In addition, good strong (and weak) scalability on supercomputing resources for this benchmark 

case up to 16,384 processes is demonstrated. The proposed method is further deployed for exploring par- 

ticle migration in straight and converging-diverging channels. This example illustrates the potential of 

the octree-based immersogeometric approach for efficiently tracking particle motion in complex channel 

flows – a problem with a diverse array of applications. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Control and localization of particles (e.g. cells and precipitates) 

n flow is useful in biological processing, chemical reaction control, 

nd for creating structured materials [1,2] . One promising approach 

o control localization (or ‘focusing’) of particles of different sizes 

s via sequential placement of obstacles in microchannels. This is 

ased on the idea that obstacles produce different forces on par- 

icles with distinct sizes when inertial flow conditions are consid- 

red (i.e., when the Reynolds number based on the channel hy- 

raulic diameter is greater than 5) [3] . However, highly accurate 

orce calculations are required to design devices that can exploit 

hese small variations in forces, which essentially becomes a com- 

ut55ational exercise. The availability of validated approaches to 

ompute these dynamics can enable diverse applications in sepa- 
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ation, concentration, and sorting of cells and biomolecules with 

igh specificity. 

The general problem of force (and trajectory) calculation on a 

oving particle in channel flow can be framed as a canonical prob- 

em. The canonical problem is to track the lateral migration of a 

ingle, rigid particle as it traverses a microchannel that is deco- 

ated with a pillar obstacle (see Fig. 1 ). We consider a rigid particle

of size a ) moving in an incompressible fluid inside a channel. We 

re interested in tracking the motion and lateral forces acting on 

his particle. This is a challenging computational problem due to 

he full fluid–solid coupling, associated small time step sizes, and 

daptive (re)meshing requirements. The full fluid–solid coupling is 

eeded due to the finite Reynolds number ( 5 ≤ Re ≤ 100 ) which 

ecessitates solving the full Navier–Stokes equations. Furthermore, 

he construction of migration maps for particles (i.e. how does a 

article traverse a decorated channel, which is a function of ini- 

ial particle release locations, particle sizes and flow rates) re- 

uires several hundreds of simulations tracking individual parti- 

les under various configurations (of release locations and particle 

izes). 

https://doi.org/10.1016/j.compfluid.2020.104764
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104764&domain=pdf
mailto:hari@cs.utah.edu
mailto:baskarg@iastate.edu
https://doi.org/10.1016/j.compfluid.2020.104764


S. Xu, B. Gao, A. Lofquist et al. Computers and Fluids 214 (2021) 104764 

Fig. 1. Canonical problem: A rigid particle traversing a microchannel decorated 

with a pillar obstacle under inertial flow conditions. 
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To track particles in decorated channels, immersed boundary 

ethods [4,5] are a popular class of approaches, since these meth- 

ds exhibit greater geometric flexibility than their boundary-fitted 

ounterparts, and simplify (re)meshing process especially when the 

bject is moving. The immersed boundary method embeds the 

olid geometry into a background mesh without the need for con- 

orming the solid and fluid meshes. As a result, it becomes com- 

utationally convenient to track the motion of arbitrary particles 

hile avoiding a cumbersome boundary-fitted (re)meshing pro- 

ess. In the context of finite elements, several adaptations of im- 

ersed methods have been explored for the simulation of fluid 

nteracting with moving objects [6–13] . Among these immersed 

ethods, immersogeometric analysis [14–18] (IMGA) is a promis- 

ng approach for accurately predicting flow results by faithfully 

apturing the immersed geometry using adaptively refined quadra- 

ure rules in the intersected elements, and weakly enforcing the 

irichlet boundary conditions on the surface of the immersed ob- 

ect using an extension of Nitsche’s method [19] . Our prior work 

as shown that the IMGA is a viable approach to track particles 

n microchannels [20] , and we extend the IMGA approach to 3D 

imulations in this work. 

The IMGA approach incorporates a residual-based variational 

ultiscale (VMS) formulation [21] to model fluid physics, which 

as been a successful approach to model complex flow phenom- 

na. The VMS approach is analogous to a large eddy simula- 

ion (LES) model which uses variational projections in place of 

he traditional filtered equations in LES and focuses on modeling 

he fine-scale equations. The VMS approach does not employ any 

ddy viscosity, and has been successfully used to perform accurate 

ow condition agnostic (laminar or turbulent) simulations. It has 

een extended to a wide range of engineering applications, such 

s buoyancy driven flows, particle laden flows, fluid–structure in- 

eraction, multiphase and free-surface flows, space-time thermal 

ows, magnetohydrodynamic flows, and compressible flows [22–

0] . While the IMGA is a promising approach to model particle 

igration in channels, it is challenging to optimize the computa- 

ional efficiency on an unstructured background mesh. Thus, in this 

ork, we proposed a new computational framework that performs 

arge-scale finite element computations using IMGA on an octree- 

ased background mesh due to its convenience and efficiency of 

ast adaptive mesh refinement and partitioning compared with tra- 

itional unstructured meshing approaches 1 

Octree-based meshing has been successfully applied to finite 

lement computations for many engineering problems [33–38] . 

pecifically in this work, we employ the optimized parallel octree- 

ased meshing library, Dendro , which has been deployed for simu- 

ating binary black hole inspiral, solving PDEs in 4D space-time oc- 

rees, reconstructing the motion of the ventricular walls in cardiac 
1 This work is based on the thesis work of the authors, Xu [31] and Lofquist [32] . 

w

�  

t

2 
mages, and computing information theoretic similarity measures 

or medical images [39–43] . Some of the features of Dendro in- 

lude a bottom-up construction of octrees and a 2:1 balancing on 

istributed architectures [44,45] , and a space filling curve parti- 

ioning for load balancing [46–48] . While the concept of octree- 

ased adaptive space partitions is well studied, developing such 

ethods for the IMGA on large distributed systems is novel. In 

ddition, adaptations of existing IMGA on the octree background 

esh are developed to enable an efficient searching of background 

lement for a given surface quadrature point, as well as a distribu- 

ion of surface quadrature points over processors to reduce mem- 

ry overhead and better parallelize the surface assembly in the 

MGA. The original octree-based adaptive mesh refinement algo- 

ithm is also adjusted for the in-out test in the IMGA. Finally, the 

roposed octree-based IMGA framework is applied to the simula- 

ions of tracking particles in channels to demonstrate its accuracy 

nd scalability. 

The paper is organized as follows. In Section 2 , we summa- 

ize the formulations of the incompressible Navier–Stokes equa- 

ions and particle motion. Section 3 describes the semi-discrete 

ormulations and time stepping. Section 4 briefs the octree-based 

esh implementations and adaptations of extending IMGA on the 

ctree-based mesh. In Section 5 , we validate the framework and 

how scaling results using a case of sphere dropping in a quies- 

ent fluid. We also show a few applications of this framework for 

racking particles in different microchannels. Finally, we draw con- 

lusions and motivate future research in Section 6 . 

. Governing equations for particles moving in fluids 

We consider the non-dimensional two-way coupled governing 

quations describing the interactions between the particle and the 

uid in the channel. 

.1. Incompressible Navier–Stokes equations 

The flow is described by the dimensionless Navier–Stokes equa- 

ions posed on a fluid domain �t : 

∂u 

∂t 
+ u · ∇ ∇ ∇ u 

)
−∇ ∇ ∇ ·σσσ = 0 , (1) 

∇ ∇ ∇ · u = 0 , (2) 

here tis the time, and u is the flow velocity. The stress and strain- 

ate tensors are defined respectively as 

( u , p ) = −p I + 2 
1 

Re 
ε ε ε (u ) , (3) 

ε ε ε (u ) = 

1 

2 

(∇ ∇ ∇ u + ∇ ∇ ∇ u 
T 
)
, (4) 

here pis the pressure, I is an identity tensor, and Re is the chan- 

el hydraulic diameter based Reynolds number. The problem (1) –

4) is accompanied by suitable boundary conditions, defined on the 

oundary of the fluid domain, �t = �D 
t ∪ �N 

t : 

u = u g on �D 
t , (5) 

p n + 2 
1 

Re 
ε ε ε (u ) n = h on �N 

t , (6) 

here u g denotes the prescribed velocity at the Dirichlet boundary 
D 
t , h is the traction vector at the Neumann boundary �N 

t , and n is

he unit normal vector pointing in the wall-outward direction. 
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.2. Particle motion 

The particle is modeled as a rigid body. We denote the dimen- 

ionless kinematic state of the object as Y , and the equations of 

otion may be written in a Lagrange frame of reference as fol- 

ows [49] : 

 = 

⎡ 

⎢ ⎣ 

x c 

R 

P 

L 

⎤ 

⎥ ⎦ , ˙ Y = 

dY 

dt 
= 

⎡ 

⎢ ⎣ 

v c 

ω ω ω 
∗R 

F 
T 

⎤ 

⎥ ⎦ , (7) 

here 

 
c = 

P 

M 

, ω ω ω = I −1 L , (8) 

nd 

 = R I ini R 
T , ω ω ω 

∗ = 

( 

0 −ω z ω y 

ω z 0 ω x 

−ω y ω x 0 

) 

. (9) 

n Eqs. (7) –(9) , x c is the position of the center of mass of the object,

 
c is the velocity of the center of mass of the object, R is the rota-

ion matrix mapping from initial configuration to current configu- 

ation, ω ω ω is the object’s angular velocity, P and L are linear and angu- 

ar momentum, respectively. Mand I are the mass and inertia tensor 

f the object, both of which are non-dimensinalized using the fluid 

ensity and characteristic length scales. and the inertia tensor I can 

e further defined using I ini in initial configuration, which is con- 

tant during the motion. In Eq. (7) , F and T are the integral of force

nd torque acting on the particle surface which are computed from 

he solution of the fluid field, and defined as follows: 

 = 

∮ 
�I 

t 

σσσ ( u , p ) n d�t , T = 

∮ 
�I 

t 

r × ( σσσ ( u , p ) n ) d�t , (10) 

here r is the distance vector from the particle’s center of mass 

o its surface points in the current configuration, �I 
t is the particle 

oundary, and the coordinates x and velocities v of its surface points 

re computed as 

 = x c + r , v = v c + ω ω ω × r . (11) 

inally, n is the unit normal vector that points outward from the 

article surface. Note, most microfluidic applications involve neu- 

rally buoyant particles (i.e. the density of particle matches the 

ensity of fluid). Density matching allows us to omit the buoyancy 

erm in Eq. (10) . It is trivial to include buoyancy for case of un-

atched densities. 

. Semi-discrete formulation and time discretization 

.1. Variational multiscale formulation 

Consider a collection of disjoint elements { �e 
t } , ∪ e �e 

t ⊂ R 
d . The 

uid domain is covered by the closure of the collection: �t ⊂
 e �e 

t . Note that �
e 
t is not necessarily a subset of �t with the im- 

ersed boundary method. Let V h u and V h p be the finite-dimensional 

paces of discrete test functions and trial solutions for velocity 

nd pressure, which are denoted as superscript h, and represent 

esolved scales (coarse scale) produced by the finite element dis- 

retization. The strong problem (1) –(6) may be recast in a weak 

orm and posed over these discrete spaces to produce the follow- 

ng semi-discrete problem using the VMS modeling approach: Find 

 
h ∈ V h u and p h ∈ V h p such that for all w 

h ∈ V h u and q h ∈ V h p : 

 
VMS 

({ w 
h , q h } , { u 

h , p h } ) − F VMS 
({ w 

h , q h } ) = 0 . (12) 

he bilinear form B VMS and the load vector F VMS are given as 
3 
 
VMS 

({ w 
h , q h } , { u 

h , p h } )
= 

∫ 
�t 

w 
h ·

(
∂u 

h 

∂t 
+ u 

h · ∇ ∇ ∇ u 
h 

)
d�t 

+ 

∫ 
�t 

∇ ∇ ∇ w 
h : σσσ

(
u 
h , p h 

)
d�t 

+ 

∫ 
�t 

q h ∇ ∇ ∇ · u 
h d�t 

−
∑ 

e 

∫ 
�e 

t ∩ �t 

(
u 
h · ∇ ∇ ∇ w 

h + ∇ ∇ ∇ q h 
)

· u 
′ d�t 

−
∑ 

e 

∫ 
�e 

t ∩ �t 

p ′ ∇ ∇ ∇ · w 
h d�t 

+ 

∑ 

e 

∫ 
�e 

t ∩ �t 

w 
h · (u 

′ · ∇ ∇ ∇ u 
h ) d�t 

−
∑ 

e 

∫ 
�e 

t ∩ �t 

∇ ∇ ∇ w 

h 
: 
(
u 

′ 
� u 

′ ) d�t , (13) 

nd 

 
VMS 

({ w 
h , q h } ) = 

∫ 
�t 

w 
h · f d�t + 

∫ 
�N 

t 

w 
h · h d�t , (14) 

here the variables with superscript primes denote the unsolved 

cales (fine scale) that need to be modeled, and their effect is 

dded onto the coarse scale. u ′ is defined as 

 
′ = −τM 

(
∂u 

h 

∂t 
+ u 

h · ∇ ∇ ∇ u 
h − f −∇ ∇ ∇ ·σσσ

(
u 
h , p h 

))
, (15) 

nd p ′ is given by 
p ′ = −τC ∇ ∇ ∇ · u 

h . (16) 

ere, u ′ and p ′ are approximated by the residuals of momentum 

quation and continuity equation, respectively, and τM 
and τC are 

orresponding coefficients with the definitions in Bazilevs et al. 

21] . Eqs. (12) –(16) feature the VMS formulation of Navier–Stokes 

quations of incompressible flows. The additional terms added 

nto the standard weak Galerkin form can be interpreted as a com- 

ination of streamline/upwind Petrov–Galerkin (SUPG) stabilization 

nd VMS large-eddy simulation of turbulence modeling. 

.2. Immersogeometric analysis 

The no-slip boundary condition (which is a Dirichlet bound- 

ry condition) on an immersed particle surface is converted 

nto an equivalent Neumann condition in the sense of the 

itsche’s method [50] . We perform a surface integral over the im- 

ersed boundary to weakly impose the Dirichlet boundary con- 

ition [19,51,52] . Assuming the immersed boundary �I 
t is decom- 

osed into N eb surface elements each denoted by (�I 
t ) b , the semi- 

iscrete problem becomes 

 
VMS 

({ w 
h , q h } , { u 

h , p h } ) − F VMS 
({ w 

h , q h } )
−

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

w 
h ·

(
−p h n + 2 

1 

Re 
ε ε ε (u 

h ) n 

)
d�

−
N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

(
2 
1 

Re 
ε ε ε (w 

h ) n + q h n 

)
·
(
u 
h − v 

)
d�

+ 

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

τ B w 
h ·

(
u 
h − v 

)
d� = 0 , (17) 

here n is the normal vector of the immersed boundary. The 

oundary terms added to the governing equations are the sec- 

nd, third and last lines in Eq. (17) , and a detailed interpreta- 

ion of different terms can be found in Bazilevs and Hughes [19] . 
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Fig. 2. Implementation of the immersogeometric method. (a) A schematic (2D example) showing how the surface assembly of IMGA is performed. The surface mesh is used 

to identify surface Gauss points (the ‘X’ locations). The immersed boundary condition terms (i.e. the last three terms in Eq. (17) ) are computed at these surface Gauss points, 

and then distributed to their background nodes. (b) A schematic (2D example) of the volume assembly in the IMGA method. An in-out test is performed to identify whether 

each volume Gauss point lies inside the particle (green points) or inside the fluid (red points). Only the Gauss points in the fluid domain are used to assemble the elemental 

matrices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a

nly the penalty-like stabilization parameter, τ B , is a heuristic that 

as to be appropriately chosen. We use the definition proposed 

n Wu et al. [53] , which scales the stabilization parameter as τ B = 

ax { C B 
inv 

h/ 	t, C B 
vis 

/ (Re h ) } , where the C B ’s are positive dimension- 

ess constants, h is the size of the cut element, and 	tis the time 

tep size. 

The boundary terms are imposed onto the surface Gauss points, 

hich are then interpolated by their background Cartesian grids as 

hown in Fig. 2 (a). In this way we can apply the Dirichlet boundary 

ondition on the immersed boundary of the object. The implemen- 

ation of the IMGA requires some refinement of the background 

esh across the immersed surface to better capture the shape of 

he interface. The volume assembly of IMGA is accomplished by 

sing selective quadrature (i.e. only using the Gauss points that lie 

n the fluid and not inside the immersed particle). This necessitates 

erforming an in-out test to determine the Gauss points inside the 

uid domain (red points) on which we assemble, while discard- 

ng the Gauss points inside the object (green points), as shown in 

ig. 2 (b). Note that the in-out test is also required for the adaptive

efinement, and selective quadrature is performed only for the cut 

lements during volume assembly. 

The particle evolution is then computed by evaluating the force 

nd torque exerted from the fluids on the particle. Finally, when 

he particle is moving, freshly-cleared nodes, i.e., some background 

esh nodes that are inside the object at one time step, but are 

n the fluid domain at the next time step will occur. These mesh 

odes have no fluid history and require interpolation from their 

eighbors. We refer readers to our previous work [20] for a de- 

ailed treatment. 

.3. Time stepping for fluids and particle motion 

The time-dependent Navier–Stokes equations are solved using a 

ackward Euler implicit scheme as follows 

∂u 

∂t 
= 

u 
n − u 

n −1 

	t 
= L (u 

n , p n ) , (18) 

here the operator L (u n , p n ) represents all the other terms except 

he time-dependent term evaluated at the current time step in 

q. (1) . 	tis chosen to respect the CFL condition 2 . The (non)linear 
2 Due to the explicit time stepping used to track object motion, the 	tis usually 

et to a small value. 

t

t

a

m

4 
olution procedure is taken care by PETSc [54] . We utilize the 

NES construct (line search quasi-Newton), which uses the KSP 

onstruct, specifically the stabilized bi-conjugate gradient (BCGS) 

olver. An additive Schwarz preconditioner (ASM) is used to enable 

arallel preconditioning and solving on decomposed sub-domains. 

An explicit forward Euler time-stepper is used to update the 

article location and velocity. In the discrete form we have 

 
n +1 = Y 

n + 	t ̇ Y 
n . (19) 

 
n and T n at each time step are discretized in space and computed 

ith weakly imposed boundary conditions as follows 

 
n = 

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

σσσ (u 
n , p n ) n d� −

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

τ B (u 
n − v n ) d�, (20) 

 
n = 

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

r ×( σσσ (u 
n , p n ) n ) d �−

N eb ∑ 

b=1 

∫ 
(�I 

t ) b 

r ×τ B (u 
n −v n ) d � (21) 

he last terms in Eqs. (20) and (21) are the penalty-like term that 

re added onto the surface force calculation. The total force act- 

ng on the object is the summation of the surface force and any 

xternal body forces (such as gravity and buoyancy). 

. Scalable immersogeometric analysis on octree meshes 

While the IMGA is a promising approach to model particle mi- 

ration in channels, it is challenging to optimize the computational 

fficiency on an unstructured background mesh. As a result, in this 

aper, we propose an octree-based IMGA that extends the IMGA 

n an octree-based background mesh. We employ the optimized 

arallel octree-based meshing library, Dendro . In this section, we 

iscuss adaptations of IMGA as well as some computational as- 

ects required and developed on Dendro that enable integration 

f IMGA on octree-based adaptive meshes. 

.1. Octree mesh implementation 

While the elemental matrix computations are done using a sep- 

rate external module (described in Section 4.2 ), Dendro provides 

he adaptive mesh refinement and all parallel data-structures. For 

his work, Dendro is extended to support meshes of (long) rect- 

ngular channels in order to account for non-cubic geometry do- 

ains. Octants outside the channels will be removed from the 
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Fig. 3. An illustrative example of a rigid particle traversing a microchannel deco- 

rated with obstacles. Figure shows a slice cut through the geometry. 
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a

ctree structure. Note that for channels with pillar obstacles, we 

an either immerse the pillars or create boundary-fitted structures 

ince pillars will not move. The latter approach requires removal 

f octants inside pillars. An example of such an adaptively refined 

esh (with a boundary-fitted pillar) is shown in Fig. 3 . 

The process in Dendro used to build and maintain an adap- 

ively refined octree mesh in parallel includes refinement, 2:1 bal- 

ncing, partition, and meshing, and the algorithms of Dendro are 

etailed in [55] . We also refer readers to [44,56–59] for details on 

mplementation of Dendro . 

.2. Elemental computation 

Node coordinates and elemental connectivity are implicit in the 

ctree’s structure, so Dendro recalculates these values on the fly as 

he octree is traversed. To avoid memory overhead, we consider a 

ingle hexahedral element. As we iterate through the octree mesh 

or assembly we re-position the nodes in this hexahedral element 

o match the octree element from Dendro . Since the octree mesh 

as only one possible element shape, we pre-calculate and cache 

he isoparametric to physical mapping at each integration point. 

uring initialization, we create an ‘index’ element at each refine- 

ent level in the octree and evaluate the basis functions at the 

ntegration points. When the assembly code needs to access these 

alues, we pull them from the corresponding refinement level in 

he cache instead of recalculating them at each element. 

.3. Refinement according to in-out test and subdomains 

To adapt the mesh refinement to the in-out test in IMGA, a 

oarse mesh is first constructed based on the geometry. Proceed- 

ng in a top-down fashion, each cell in the mesh is refined if a sur-

ace (pillar/particle) passes through it, which is determined using 

n in-out test. If all eight corners of an octant are outside of the 

mmersed geometry, then we retain this element, but do not refine 

urther. If all eight points are inside the immersed geometry, then 

his element is performed with the same manner as outside ele- 

ent for a immersed strategy, while it is removed from the octree 

or a boundary-fitted strategy. If some of the corners of the octant 

re inside and others outside, then this octant is refined. This pro- 

ess is repeated until the desired level of refinement is achieved. 

imilarily, the octants outside the rectangular channels are also re- 

oved by a channel boundary in-out test (as boundary-fitted strat- 

gy) during the refinement process. Channel boundaries may also 

e refined using the same way for a better approximation of the 

hannel dimensions (and boundary layers if needed). Since in our 

ase, the pillars, particles and channels are all regular geometries 

i.e., cylinder, sphere and rectangular), the in-out test can be per- 

ormed analytically. However for complex geometries, a ray-tracing 

lgorithm may be employed in the in-out test. 

In addition, subdomains, which leverage the original mesh data- 

tructure, are created to handle meshes with rectangular geometry 

nd holes for boundary-fitted pillars as octants outside the channel 
5 
nd inside the boundary-fitted pillars will be removed, and also no 

ommunications are needed for them. A different scattering map- 

ing within the subdomains for current mesh is also uniquely de- 

ned afterwards. The finite element computations will only take 

lace in subdomains (and we can discard the main octree struc- 

ure for the original domain). Therefore, subdomains have an over- 

ll (much) smaller computation domain and store (significantly) 

ess data than the original mesh (for example, in our case of a 

ery long channel). Re-partitioning is required as creating subdo- 

ains will result in load imbalance. For our target application, it 

s important to identify both the external (channel) boundary as 

ell as the internal boundary (boundary-fitted pillar surface). The 

ubdomain stores two bits to keep track of whether a node is non- 

oundary, external, or internal boundary. 

.4. Sampling the immersed boundary and adding corrections 

In order to reduce memory overhead and better parallelize the 

urface assembly in IMGA, we distribute surface quadrature points 

ver processors. The object boundary mesh is generated as a tri- 

ngulated mesh. Surface quadrature point coordinates, along with 

ther necessary parameters, such as the unit normal vector and 

oundary values of velocity at each quadrature point, are then cal- 

ulated in each triangle element using standard Gaussian quadra- 

ure. The surface quadrature points are then sorted and distributed 

ver processes. This is done by associating each surface quadra- 

ure point with an octree element (real or virtual) with the maxi- 

um refinement that contains the quadrature point. Note that this 

ctree element is not necessarily an existing octant in the octree 

esh. This associated octree element represented by its bottom- 

eft-back (minimum) node can be then aligned on the space-filling- 

urve, and the processor it belongs to can be easily found by 

he partitioning of the space-filling-curve. To find the actual back- 

round octree element that contains the quadrature point, we loop 

ver all the octree elements in the process to check if the oc- 

ree element is an ancestor of the associated octree element, or 

f they are exactly the same octree element. Since the octree el- 

ments and the surface quadrature points are both sorted based 

n the space-filling-curve, we can loop over them – in parallel –

ith an efficiency of O(m + n ) instead of a nested loop with an

fficiency of O(m × n ) , (unstructured meshes usually have to per- 

orm a nested loop), where m is the local number of elements in 

he background mesh and n is the local number of surface quadra- 

ure points. Boundary conditions imposed on the surface quadra- 

ure points can be then evaluated and distributed to the nodes of 

he background octree element. The distribution of surface quadra- 

ure points over processes and finding their background elements 

re challenging in unstructured meshes, as the process boundaries 

re usually complex in most graph-based partitioning approaches. 

hen the object is moving, this is even more cumbersome since it 

as to be performed at each time step. 

Another computational efficiency issue caused by the IMGA is 

hat the immersed geometry is likely localized on a small subset 

f processes. These processes are the only ones that perform the 

urface assembly for weakly imposing no-slip boundary condition 

n the immersed boundary. A potential solution is to perform a 

eighted partition – increasing the weight of the intercepted el- 

ments by the additional relative cost of surface assembly with 

olume assembly. This weighted partition will ensure better load 

alancing. We defer this development to a subsequent paper. 

.5. Adaptive remeshing and intergrid transfers 

An essential requirement for computational efficiency is to 

dapt the spatial mesh as the particle moves across the channel. 



S. Xu, B. Gao, A. Lofquist et al. Computers and Fluids 214 (2021) 104764 

Fig. 4. A representative mesh illustrating the refinement around the particle, and contours of velocity magnitude at two representative time instances. 
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3 While remeshing after every time step is not necessary, we perform this to il- 

lustrate scaling behavior of each part of the framework 
n the distributed memory setting, this also indicates a need to re- 

artition and re-balance the load. We adaptively remesh the do- 

ain at each time step based on the current position of the parti- 

le using results of the in-out test in IMGA followed by the subse- 

uent 2:1 balance enforcement, partitioning and meshing process. 

nce the new mesh is generated, we transfer the data from the old 

esh to the new mesh using interpolation. To keep things sim- 

le at this stage, we remesh each time from scratch followed by 

he repartition of new octree (reuse the same code of initial octree 

eneration and partition because they are sufficiently optimized in 

endro [59] ), and then interpolate the local new mesh. The nodes 

f the local new mesh are distributed over processes based on the 

ld mesh partitioning similarly as described in Section 4.4 to per- 

orm interpolation. Again, the intergrid transfer is challenging in 

nstructured meshes as repartitioning usually offers no guaran- 

ee of good overlap between the old and new partitions in most 

raph-based approaches, and the distribution of local new mesh 

ill be difficult across complex process boundaries. A construction 

f global old mesh may be required for intergrid transfer in un- 

tructured meshes. 

. Experiments and results 

.1. Implementation specification 

The Dendro framework is implemented in C++ using MPI for 

istributed memory parallelism and OpenMP for shared memory 

arallelism. This is integrated with a C++ module ( Section 4.2 ) for 

valuating basis functions and weak form of governing equations 

o support elemental computation. Our code is tightly integrated 

ith PETSc v3.7 ’s distributed matrix and vector data-structures 

nd utilizes its SNES and KSP solvers. These tests were compiled 

nd run on Oak Ridge’s Titan supercomputer (before its decom- 

issioning in 2019). PETSc, Dendro , and the main program were 

ompiled with the GNU 4.9.3 compiler with -O2 optimization flags. 

iming information was reported using PETSc’s logging framework. 

.2. Validation 

We first validate the framework by comparing the particle tra- 

ectory and velocity against a benchmark experimental data of a 

phere dropping in a quiescent fluid [60] . We consider a container 

ith dimension of 0 . 1 m × 0 . 16 m × 0 . 1 m . We simulate a sphere

ith a diameter of D = 0 . 015 m, released at a height of 0 . 12 m in the

iddle. The fluid has a density of ρ f = 960 kg/m 
3 , and a dynamic
6 
iscosity of μ = 0 . 058 kg/ (m · s ) . The density of the sphere is ρs =
120 kg/m 

3 . Reynolds number, defined as 
ρ f u 0 D 

μ , is Re = 31 . 9 with a

eference velocity u 0 = 0 . 128 m/s . Time step size 	tis set to 1 . 2 ×
0 −3 s. Initial conditions are set as zero velocity in the whole fluid 

omain. No-slip boundary condition is imposed on lateral and bot- 

om walls, and traction-free boundary condition is imposed on the 

op wall. We adaptively refine the mesh around the interface of the 

phere and fluid. We refine three levels deeper than the rest of the 

ackground mesh. Specifically, we refine to a minimum/maximum 

evel, r = 5 / 8 (successively bisect and divide the octree root five and

ight times, respectively). We remesh after each time step as the 

phere drops. Note that such frequent adaptive remeshing is one of 

he challenges of our target application 3 . We set the surface trian- 

ular mesh size of the sphere in sync with the background inter- 

ace element size, keeping a ratio of 1:2 (surface to background) to 

nsure adequate surface integration. The mesh example and visual- 

zations of velocity magnitude contour, and the validation of non- 

imensional height and sedimental velocity as the sphere settles 

ownwards are presented in Figs. 4 and 5 , respectively. As can be 

een, both the sedimental velocity and the trajectory of the sphere 

atch with the experiment results well. 

.3. Parallel scalability 

We next show scaling performance of the framework. We col- 

ect timing for the case of a dropping sphere. We run each 

ase for 5 time steps. The same setup and (re)meshing strategy 

s in last section is adopted. We run this experiment on four 

inimum/maximum refinement levels: r = 5 / 8 , 6 / 9 , 7 / 10 , and 8 / 11 .

ach refinement level has roughly seven to eight times more de- 

rees of freedom to solve for than the previous level, with r = 

 / 8 having 203,0 0 0 and r = 8 / 11 reaching 70.2 million degrees of

reedom. 

We note that given specific minimum/maximum refinement 

evel and the same initial and boundary conditions, the overall 

roblem size (total degrees of freedom) in spite of remeshing is 

ndependent of the number of processes being used for the sim- 

lation. To this effect, we believe presenting performance for dif- 

erent minimum/maximum refinement levels with different num- 

ers of processes, in the style of a strong scaling is appropriate. 

ndeed, performing weak scaling for such real-world applications 



S. Xu, B. Gao, A. Lofquist et al. Computers and Fluids 214 (2021) 104764 

Fig. 5. Comparisons of the non-dimensional height and sedimental velocity of the particle as it settles downwards with an experimental benchmark of a particle setting in 

a viscous fluid [60] . Note as the particle nears the bottom surface, its velocity rapidly zeros out. 

Fig. 6. Strong and approximated weak scaling for a non-dimensional sphere of unit size dropping in a channel of size 8 × 8 × 8 running for 5 time steps with number of 

processes up to 16,384 on Titan. 
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Fig. 7. Total simulation time broken down by category for refinement level r = 

8 / 11 . IMGA setup refers to the setup required to perform immersed boundary 

method. Global matrix and Global vector refer to the time taken to build the global 

Jacobian matrix and residual vector. Solve refers to the time taken to actually solve 

the system (i.e. PETSc BCGS solver + ASM preconditioner). Remesh refers to the 

time taken to create the mesh of next time step and interpolate data onto it. 
s more difficult than strong scaling, since it is much harder to en- 

ure that N/p, i.e., the grain size stays relatively constant with such 

requent adaptive remeshing and consequently changes in problem 

ize, where Nis the total degrees of freedom and pis the number 

f processes. Therefore, given the somewhat fixed increase in prob- 

em size with increasing minimum/maximum refinement level and 

orresponding increase of number of processes, we can combine 

ultiple strong scaling results to derive approximate weak scal- 

ng results for the overall simulation time. The approximated weak 

caling results are presented in Fig. 6 (b). Note that minor fluctu- 

tions in the approximation of the weak scalability are expected 

ue to the inconsistent grain size. 

.3.1. Strong scalability 

For our target application, the key goal is to be able to per- 

orm the simulations quickly. Given this, and the relatively moder- 

te size of our problems, the focus is on strong scalability. We first 

resent strong scalability results for the overall simulation time in- 

luding the cost of everything in Fig. 6 (a) for three problem sizes. 

verall our code scales well, with continued reductions in simu- 

ation time. A breakdown of the total simulation time into vari- 

us significant components for the refinement level of r = 8 / 11 is

lso presented in Fig. 7 . We can see that the amount of solve time

nd matrix assembly time, which are comparable, dominate the to- 
7 
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Fig. 8. Total time of adaptive remeshing for refinement level r = 6 / 9 , 7 / 10 , and 8 / 11 . 
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Fig. 10. Lateral force and velocity magnitude of the particle vs. distance it traveled 

downstream. 
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al simulation time for most of the cases. The immersed boundary 

ethod corrections (IMGA setup) involving the distribution of im- 

ersed surface points on the octree mesh also scales reasonably 

ell. 

One significant trend with increasing number of processes is 

total remeshing”, as shown in Fig. 8 (also listed as “Remesh” in 

ig. 7 ). This refers to the overall remeshing stage combining gen- 

rating a new mesh, interpolating between two meshes and reini- 

ializing the matrix, vector and solver. Effectively, this is the over- 

ead paid for having good adaptivity. The scaling of remeshing is 

oor compared with other parts of the code, but the magnitude 

f time it takes is much smaller than solving the Navier–Stokes 

quations for most of the cases except using relatively large num- 

ers of processes (last two data points) in the refinement level of 

 = 8 / 11 . The remeshing time is comparable with the solve time

shown in Fig. 7 ) in these two cases when the communication 

ecomes considerable. This is due to the interpolation between 

wo meshes because the generation of a new adaptively refined 

esh is sufficiently optimized. Note at the current stage, we per- 

orm a remeshing and repartitioning from scratch (due to the suf- 

ciently optimized meshing code) first, followed by a subsequent 

nterpolation. However, the interpolation may not be optimal since 

 large amount of communication may be required by distribut- 

ng new local mesh. We are exploring alternatives (to be reported 

n a subsequent paper). Specifically, we could remesh (refine or 

oarsen octants) in each process while keeping the local geome- 

ry domain unchanged in each process. This means the old and 

ew local mesh are overlapping and consequently there is no need 
Fig. 9. Schematics of particle trackin

8 
o distribute new local mesh over processes during interpolation. 

e could then perform interpolation (no communication needed) 

rst in each process, and then repartition the new octree and cor- 

esponding newly interpolated solution vector for load balancing. 

.4. Results for particle tracking in microchannels 

We finally present two results for the application of this frame- 

ork. The first is particle tracking in a channel with a square cross- 

ection, and the other is our canonical problem of particle tracking 

n a channel with pillar obstacles. The schematics of both cases 

re shown in Fig. 9 , and we present both cases in non-dimensional 

nits. 

.4.1. Square channel 

Case setup : We consider a long channel with dimensions 96 ×
 × 4 . We simulate a spherical particle released at( 10 , 2 , 1 ) with

iameter of D = 1 . The origin is located at the bottom-left-front 

orner (oriented as shown in Fig. 9 ) of the channel. We set the 

article Reynolds number, Re D = 5 . We assume the particle is of 

he same density as the fluid, so that there is no buoyancy effect. 

ime step size 	tis set to 0.05. The inlet has unit velocity normal 

o the inlet. No-slip boundary condition is imposed on surround- 

ng walls, and zero pressure is imposed on the outlet. The initial 

ondition for the fluid velocity as well as the particle velocity are 

oth set to be the same as the inlet velocity. We note that such 

ong simulations – tracking the temporal evolution of the particle 

s it traverses nearly 50D downstream – is fairly atypical in the 

icrofluidics community. 

Results : We are interested in the magnitude of lateral force 

cting on the particle and the magnitude of the particle velocity 

s the particle reaches its equilibrium cross-sectional position as 

hown in Fig. 10 . After the particle has traveled 30 D downstream, 
g in different configurations. 
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Fig. 11. Top-down view ( x − y plane) of pathline of particle movement in a channel with pillars. Boundary-fitted pillars are plotted for visualization purpose while they are 

immersed in the actual simulation. 

Fig. 12. Velocity magnitude of particle in channel with pillars at different time steps, and force magnitude on the particle during its motion. 
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t is clear that the velocity have converged to a steady value (rep- 

esenting pure streamwise motion, and very small lateral motion), 

hich suggests that the particle has reached its equilibrium po- 

ition. Additionally, the net lateral force becomes negligibly small. 

he final cross sectional location in y − zplane is (2.0, 1.04) which 

atches the experimentally determined equilibrium position [61] . 

.4.2. Channel with pillars 

Case setup : In our canonical problem, we consider a sphere of 

iameter of D = 1 in a channel of dimensions of 32 × 5 × 2 . 5 . Two

alf pillars of radius 1.25 and height 2.5 are placed in the chan- 

el, forming a converging-diverging type of cross section. The par- 

icle is released from ( 3 , 1 . 4 , 1 . 25 ) with the same placement of the

rigin as the previous example. The particle Reynolds number is 

e D = 50 using the channel flow rate, which ensures that inertial 

ffects are prominent [3] . Time step size 	tis set to 0.015. The 

oundary conditions are the same as the previous case except for 

he two half pillars. Note, we also immerse the two half pillars, and 

herefore the no-slip boundary condition on the pillars are weakly 

nforced. The initial condition of fluid velocity is the same as in- 

et velocity. The sphere is held stationary until t = 5 to wait for the

hannel flow to fully develop, so that a physically meaningful force 

s imposed on the released particle. 

Results : Fig. 11 plots the particle path as it navigates the channel 

ith the pillar obstacles. This path curves in as the particle passes 

he pillars, and due to the inertial regime that the flow is in, the 

ross-sectional position of the particle close to outlet is offset from 

he initial cross-sectional location. This is in line with expected be- 

avior from experiments in Stoecklein and Di Carlo [3] , which sug- 

est that inertial microfluidics with pillars can produce irreversible 

ross-sectional displacements. 

Fig. 12 (a) illustrates the ‘squeezing’ effect due to the presence 

f pillars and plots the flow velocity magnitude contour along the 

 − zplane (i.e., side view) at 3 different time steps (before, during 

nd after the particle interacts with the pillars). Note that there 

s no direct interaction between the particle and the pillars, but 
9 
nstead all interactions are mediated by the fluid. Fig. 12 (b) quan- 

ifies this observation by plotting the force acting on the particle. 

ote the large jump in force as the particle traverses the channel 

close to the pillar) is due to the squeezing effect. Furthermore, the 

imulation was performed on a mesh with around 105,0 0 0 hexa- 

edra elements, the average number of degrees of freedom for this 

roblem is around 350K, and the number of time steps needed to 

rack the particle across the channel dimension is 790 steps. The 

otal simulation time for this canonical problem is around 10 hours 

sing 12 KNL nodes on TACC Stampede2. This is very promising as 

t allows us to proceed with computing cross-sectional displace- 

ent maps under different pillar configurations, which essentially 

ranslates to executing this type of simulation for a large set of dif- 

erent release locations across the inlet cross-section. 

. Conclusions and future directions 

We developed a scalable, adaptively refined octree-based im- 

ersogeometric analysis framework, and validated this framework 

sing a benchmark case of sphere dropping in fluids. Our frame- 

ork demonstrates excellent strong (and weak) scalability for the 

verall simulation time, even with frequent remeshing in the 

enchmark case. Our framework can keep the overhead of adaptive 

emeshing and IMGA corrections relatively low. We anticipate ad- 

itional code optimization will make the approach even more scal- 

ble. We further deployed the framework to track particle in mi- 

rochannels with different (complex) geometries. This framework 

llows us to efficiently construct the deformation maps for parti- 

les under a broad range of experimentally accessible parameters, 

hich will result in a passive approach for particle localization. 

e identify several avenues of future work. Immediate computa- 

ional goals include (1) transitioning to a matrix-free solver that 

an significantly reduce the solve-time, while ensuring sustained 

daptivity for larger processor counts, (2) designing a local refine- 

ent/coarsening algorithm and subsequent repartitioning to opti- 

ize intergrid transfer, (3) incorporating a more rigorous dynamic 
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oad balancing that accounts for the additional work involved in 

he surface computations, and (4) accounting for multiple mov- 

ng objects. From the flow physics perspective, we plan to deploy 

his framework to characterize the inertial displacement maps for 

 range of particle sizes and pillar placements. 
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