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In this paper, we develop a scalable, adaptively refined, octree-based finite element approach with im-
mersogeometric analysis to track inertial migration of particles in microchannels. Fluid physics is modeled
using a residual-based variational multiscale method, and the particle movement is modeled as rigid body
motion. A parallel, hierarchically refined octree mesh is employed as the background mesh, on which a
variationally consistent immersogeometric formulation is adopted for tracking the particle motion in the
fluid. Adaptations of immersogeometric analysis on an octree background mesh are developed to enable
efficient searching of background element for a given surface quadrature point, as well as a distribution of
surface quadrature points over processors to reduce memory overhead and better parallelize the surface
assembly. An octree-based adaptive mesh refinement algorithm adapted to in-out test in the immerso-
geometric approach is also developed. The validation of our octree-based immersogeometric approach is
carried out using a benchmark case of a sphere settling in quiescent fluid, with good agreement pre-
sented. In addition, good strong (and weak) scalability on supercomputing resources for this benchmark
case up to 16,384 processes is demonstrated. The proposed method is further deployed for exploring par-
ticle migration in straight and converging-diverging channels. This example illustrates the potential of
the octree-based immersogeometric approach for efficiently tracking particle motion in complex channel
flows - a problem with a diverse array of applications.
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1. Introduction

Control and localization of particles (e.g. cells and precipitates)
in flow is useful in biological processing, chemical reaction control,
and for creating structured materials [1,2]. One promising approach
to control localization (or ‘focusing’) of particles of different sizes
is via sequential placement of obstacles in microchannels. This is
based on the idea that obstacles produce different forces on par-
ticles with distinct sizes when inertial flow conditions are consid-
ered (i.e., when the Reynolds number based on the channel hy-
draulic diameter is greater than 5) [3]. However, highly accurate
force calculations are required to design devices that can exploit
these small variations in forces, which essentially becomes a com-
put55ational exercise. The availability of validated approaches to
compute these dynamics can enable diverse applications in sepa-
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ration, concentration, and sorting of cells and biomolecules with
high specificity.

The general problem of force (and trajectory) calculation on a
moving particle in channel flow can be framed as a canonical prob-
lem. The canonical problem is to track the lateral migration of a
single, rigid particle as it traverses a microchannel that is deco-
rated with a pillar obstacle (see Fig. 1). We consider a rigid particle
(of size a) moving in an incompressible fluid inside a channel. We
are interested in tracking the motion and lateral forces acting on
this particle. This is a challenging computational problem due to
the full fluid-solid coupling, associated small time step sizes, and
adaptive (re)meshing requirements. The full fluid-solid coupling is
needed due to the finite Reynolds number (5 < Re < 100) which
necessitates solving the full Navier-Stokes equations. Furthermore,
the construction of migration maps for particles (i.e. how does a
particle traverse a decorated channel, which is a function of ini-
tial particle release locations, particle sizes and flow rates) re-
quires several hundreds of simulations tracking individual parti-
cles under various configurations (of release locations and particle
sizes).
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Fig. 1. Canonical problem: A rigid particle traversing a microchannel decorated
with a pillar obstacle under inertial flow conditions.

To track particles in decorated channels, immersed boundary
methods [4,5] are a popular class of approaches, since these meth-
ods exhibit greater geometric flexibility than their boundary-fitted
counterparts, and simplify (re)meshing process especially when the
object is moving. The immersed boundary method embeds the
solid geometry into a background mesh without the need for con-
forming the solid and fluid meshes. As a result, it becomes com-
putationally convenient to track the motion of arbitrary particles
while avoiding a cumbersome boundary-fitted (re)meshing pro-
cess. In the context of finite elements, several adaptations of im-
mersed methods have been explored for the simulation of fluid
interacting with moving objects [6-13]. Among these immersed
methods, immersogeometric analysis [14-18] (IMGA) is a promis-
ing approach for accurately predicting flow results by faithfully
capturing the immersed geometry using adaptively refined quadra-
ture rules in the intersected elements, and weakly enforcing the
Dirichlet boundary conditions on the surface of the immersed ob-
ject using an extension of Nitsche’'s method [19]. Our prior work
has shown that the IMGA is a viable approach to track particles
in microchannels [20], and we extend the IMGA approach to 3D
simulations in this work.

The IMGA approach incorporates a residual-based variational
multiscale (VMS) formulation [21] to model fluid physics, which
has been a successful approach to model complex flow phenom-
ena. The VMS approach is analogous to a large eddy simula-
tion (LES) model which uses variational projections in place of
the traditional filtered equations in LES and focuses on modeling
the fine-scale equations. The VMS approach does not employ any
eddy viscosity, and has been successfully used to perform accurate
flow condition agnostic (laminar or turbulent) simulations. It has
been extended to a wide range of engineering applications, such
as buoyancy driven flows, particle laden flows, fluid-structure in-
teraction, multiphase and free-surface flows, space-time thermal
flows, magnetohydrodynamic flows, and compressible flows [22-
30]. While the IMGA is a promising approach to model particle
migration in channels, it is challenging to optimize the computa-
tional efficiency on an unstructured background mesh. Thus, in this
work, we proposed a new computational framework that performs
large-scale finite element computations using IMGA on an octree-
based background mesh due to its convenience and efficiency of
fast adaptive mesh refinement and partitioning compared with tra-
ditional unstructured meshing approaches!

Octree-based meshing has been successfully applied to finite
element computations for many engineering problems [33-38].
Specifically in this work, we employ the optimized parallel octree-
based meshing library, DENDRO, which has been deployed for simu-
lating binary black hole inspiral, solving PDEs in 4D space-time oc-
trees, reconstructing the motion of the ventricular walls in cardiac

1 This work is based on the thesis work of the authors, Xu [31] and Lofquist [32].
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images, and computing information theoretic similarity measures
for medical images [39-43]. Some of the features of DENDRO in-
clude a bottom-up construction of octrees and a 2:1 balancing on
distributed architectures [44,45], and a space filling curve parti-
tioning for load balancing [46-48]. While the concept of octree-
based adaptive space partitions is well studied, developing such
methods for the IMGA on large distributed systems is novel. In
addition, adaptations of existing IMGA on the octree background
mesh are developed to enable an efficient searching of background
element for a given surface quadrature point, as well as a distribu-
tion of surface quadrature points over processors to reduce mem-
ory overhead and better parallelize the surface assembly in the
IMGA. The original octree-based adaptive mesh refinement algo-
rithm is also adjusted for the in-out test in the IMGA. Finally, the
proposed octree-based IMGA framework is applied to the simula-
tions of tracking particles in channels to demonstrate its accuracy
and scalability.

The paper is organized as follows. In Section 2, we summa-
rize the formulations of the incompressible Navier-Stokes equa-
tions and particle motion. Section 3 describes the semi-discrete
formulations and time stepping. Section 4 briefs the octree-based
mesh implementations and adaptations of extending IMGA on the
octree-based mesh. In Section 5, we validate the framework and
show scaling results using a case of sphere dropping in a quies-
cent fluid. We also show a few applications of this framework for
tracking particles in different microchannels. Finally, we draw con-
clusions and motivate future research in Section 6.

2. Governing equations for particles moving in fluids

We consider the non-dimensional two-way coupled governing
equations describing the interactions between the particle and the
fluid in the channel.

2.1. Incompressible Navier-Stokes equations

The flow is described by the dimensionless Navier-Stokes equa-
tions posed on a fluid domain €2;:

(%l:-i—uAVu)—Vv:O, (1)

V.u=0, (2)

where tis the time, and uis the flow velocity. The stress and strain-
rate tensors are defined respectively as

1
a(u,p):—pl+2§£(u), (3)

e(u) = %(Vu +Vu'), (4)

where pis the pressure, lis an identity tensor, and Reis the chan-
nel hydraulic diameter based Reynolds number. The problem (1)-
(4) is accompanied by suitable boundary conditions, defined on the
boundary of the fluid domain, I'; = TP uT'N:

u=u;, on P, (5)

1
—pn+2E8(u)n=h on TN, (6)
where ugdenotes the prescribed velocity at the Dirichlet boundary
I'P.his the traction vector at the Neumann boundary I'N,and nis
the unit normal vector pointing in the wall-outward direction.
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2.2. Particle motion

The particle is modeled as a rigid body. We denote the dimen-
sionless kinematic state of the object as Y,and the equations of
motion may be written in a Lagrange frame of reference as fol-
lows [49]:

X¢ ve©
R . dY w*R
L T
where
vV=—, w=ITL (8)
and
0 —w; Wy
I=RI,R", o' =| w, 0  wy]. (9)
—wy Wy 0

In Egs. (7)-(9), xCis the position of the center of mass of the object,
vCis the velocity of the center of mass of the object, Ris the rota-
tion matrix mapping from initial configuration to current configu-
ration, wis the object’s angular velocity, Pand Lare linear and angu-
lar momentum, respectively. Mand lare the mass and inertia tensor
of the object, both of which are non-dimensinalized using the fluid
density and characteristic length scales. and the inertia tensor Ican
be further defined using Ij,;in initial configuration, which is con-
stant during the motion. In Eq. (7), Fand Tare the integral of force
and torque acting on the particle surface which are computed from
the solution of the fluid field, and defined as follows:

F= frga(u, pyndl’, T= ﬁg r x (o (u, p)n)dly, (10)

where ris the distance vector from the particle’s center of mass
to its surface points in the current configuration, F}is the particle
boundary, and the coordinates xand velocities vof its surface points
are computed as

X=X+, V=V'+wxT. (11)

Finally, nis the unit normal vector that points outward from the
particle surface. Note, most microfluidic applications involve neu-
trally buoyant particles (i.e. the density of particle matches the
density of fluid). Density matching allows us to omit the buoyancy
term in Eq. (10). It is trivial to include buoyancy for case of un-
matched densities.

3. Semi-discrete formulation and time discretization
3.1. Variational multiscale formulation

Consider a collection of disjoint elements {€2f},U.Qf C R4, The
fluid domain is covered by the closure of the collection: Q; c
UESTE. Note that Qfis not necessarily a subset of Q;with the im-
mersed boundary method. Let Vand V{}be the finite-dimensional
spaces of discrete test functions and trial solutions for velocity
and pressure, which are denoted as superscript h,and represent
resolved scales (coarse scale) produced by the finite element dis-
cretization. The strong problem (1)-(6) may be recast in a weak
form and posed over these discrete spaces to produce the follow-
ing semi-discrete problem using the VMS modeling approach: Find
u" e Viand p" e Visuch that for all w" e Viand g e VI:

BVMS({Wh, qh}v {llh, ph}) _ FVMS({Wh, qh}) -0. (12)

The bilinear form BYMSand the load vector F¥MSare given as
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BVMS({Wh, qh}’ {l.lh, ph})

h
=/ wh. <au+u“ -Vu“) ds
o, ot

+ | vwh :o(uh, ph) a2,
Q

+ | ¢"V.u"dQ,
Q

—Z/Q . (u”~th+th)-u/ dsy,
e HaY

- Z/ PV -whdQ,
e YN

wh. (0 - Vuh) d;

e JQINQ
- Z/ vw': (u’ ®u/) dsy, (13)
e Y QN2
and
FVMS({Wh’ qh}) — f wh . fdQ; +/ w' . h dIy, (14)
o8 ry

where the variables with superscript primes denote the unsolved
scales (fine scale) that need to be modeled, and their effect is
added onto the coarse scale. u’is defined as

ou"
u’:—tM<8t+uh~Vu’7—f—V~a(uh,ph)>, (15)
and p’is given by

p=-1V-u. (16)
Here, w’and p’are approximated by the residuals of momentum
equation and continuity equation, respectively, and tyand tcare
corresponding coefficients with the definitions in Bazilevs et al.
[21]. Egs. (12)-(16) feature the VMS formulation of Navier-Stokes
equations of incompressible flows. The additional terms added
onto the standard weak Galerkin form can be interpreted as a com-
bination of streamline/upwind Petrov-Galerkin (SUPG) stabilization
and VMS large-eddy simulation of turbulence modeling.

3.2. Immersogeometric analysis

The no-slip boundary condition (which is a Dirichlet bound-
ary condition) on an immersed particle surface is converted
into an equivalent Neumann condition in the sense of the
Nitsche’s method [50]. We perform a surface integral over the im-
mersed boundary to weakly impose the Dirichlet boundary con-
dition [19,51,52]. Assuming the immersed boundary I'/is decom-
posed into Nysurface elements each denoted by (I'}),,the semi-
discrete problem becomes

BVMS({Wh, qh}’ {l.lh, ph}) _ FVMS({Wh, qh})
_Z/ 1 w”(-p"n+2%£(u”)n) ar

1
2—g(wWhn+ “n>~ u'—v) dI’
1 (F%)b< Re ) 1 ( )

Neb
[
b=1"(
where nis the normal vector of the immersed boundary. The
boundary terms added to the governing equations are the sec-

ond, third and last lines in Eq. (17), and a detailed interpreta-
tion of different terms can be found in Bazilevs and Hughes [19].

tPw" . (u" —v) dT" = 0, (17)
'y
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Fig. 2. Implementation of the immersogeometric method. (a) A schematic (2D example) showing how the surface assembly of IMGA is performed. The surface mesh is used
to identify surface Gauss points (the ‘X’ locations). The immersed boundary condition terms (i.e. the last three terms in Eq. (17)) are computed at these surface Gauss points,
and then distributed to their background nodes. (b) A schematic (2D example) of the volume assembly in the IMGA method. An in-out test is performed to identify whether
each volume Gauss point lies inside the particle (green points) or inside the fluid (red points). Only the Gauss points in the fluid domain are used to assemble the elemental
matrices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Only the penalty-like stabilization parameter, T58,is a heuristic that
has to be appropriately chosen. We use the definition proposed
in Wu et al. [53], which scales the stabilization parameter as 8 =
max {CB h/At,CB /(Reh)},where the CP's are positive dimension-
less constants, his the size of the cut element, and Atis the time
step size.

The boundary terms are imposed onto the surface Gauss points,
which are then interpolated by their background Cartesian grids as
shown in Fig. 2(a). In this way we can apply the Dirichlet boundary
condition on the immersed boundary of the object. The implemen-
tation of the IMGA requires some refinement of the background
mesh across the immersed surface to better capture the shape of
the interface. The volume assembly of IMGA is accomplished by
using selective quadrature (i.e. only using the Gauss points that lie
in the fluid and not inside the immersed particle). This necessitates
performing an in-out test to determine the Gauss points inside the
fluid domain (red points) on which we assemble, while discard-
ing the Gauss points inside the object (green points), as shown in
Fig. 2(b). Note that the in-out test is also required for the adaptive
refinement, and selective quadrature is performed only for the cut
elements during volume assembly.

The particle evolution is then computed by evaluating the force
and torque exerted from the fluids on the particle. Finally, when
the particle is moving, freshly-cleared nodes, i.e., some background
mesh nodes that are inside the object at one time step, but are
in the fluid domain at the next time step will occur. These mesh
nodes have no fluid history and require interpolation from their
neighbors. We refer readers to our previous work [20] for a de-
tailed treatment.

3.3. Time stepping for fluids and particle motion

The time-dependent Navier-Stokes equations are solved using a
backward Euler implicit scheme as follows
ou u'—u"!

§=T=£(U,P), (18)

where the operator £(u", p")represents all the other terms except
the time-dependent term evaluated at the current time step in
Eq. (1). Atis chosen to respect the CFL condition?. The (non)linear

2 Due to the explicit time stepping used to track object motion, the Atis usually
set to a small value.

solution procedure is taken care by PETSc [54]. We utilize the
SNES construct (line search quasi-Newton), which uses the KSP
construct, specifically the stabilized bi-conjugate gradient (BCGS)
solver. An additive Schwarz preconditioner (ASM) is used to enable
parallel preconditioning and solving on decomposed sub-domains.
An explicit forward Euler time-stepper is used to update the
particle location and velocity. In the discrete form we have

Y =Y 4 ArY™ (19)

F'and T"'at each time step are discretized in space and computed
with weakly imposed boundary conditions as follows

Ney Nep
F”:Zf[ a(u”,p”)ndI‘fz/] B —vdl,  (20)
= Jay, = Jan,

NEb Neb
T":Z/ l‘X(G(u”,p”)n)dF—Z/ rxt8u"—v")dl (21)
b1 Y THs by YTy

The last terms in Egs. (20) and (21) are the penalty-like term that
are added onto the surface force calculation. The total force act-
ing on the object is the summation of the surface force and any
external body forces (such as gravity and buoyancy).

4. Scalable immersogeometric analysis on octree meshes

While the IMGA is a promising approach to model particle mi-
gration in channels, it is challenging to optimize the computational
efficiency on an unstructured background mesh. As a result, in this
paper, we propose an octree-based IMGA that extends the IMGA
on an octree-based background mesh. We employ the optimized
parallel octree-based meshing library, DENDRO. In this section, we
discuss adaptations of IMGA as well as some computational as-
pects required and developed on DENDRO that enable integration
of IMGA on octree-based adaptive meshes.

4.1. Octree mesh implementation

While the elemental matrix computations are done using a sep-
arate external module (described in Section 4.2), DENDRO provides
the adaptive mesh refinement and all parallel data-structures. For
this work, DENDRO is extended to support meshes of (long) rect-
angular channels in order to account for non-cubic geometry do-
mains. Octants outside the channels will be removed from the
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Fig. 3. An illustrative example of a rigid particle traversing a microchannel deco-
rated with obstacles. Figure shows a slice cut through the geometry.

octree structure. Note that for channels with pillar obstacles, we
can either immerse the pillars or create boundary-fitted structures
since pillars will not move. The latter approach requires removal
of octants inside pillars. An example of such an adaptively refined
mesh (with a boundary-fitted pillar) is shown in Fig. 3.

The process in DENDRO used to build and maintain an adap-
tively refined octree mesh in parallel includes refinement, 2:1 bal-
ancing, partition, and meshing, and the algorithms of DENDRO are
detailed in [55]. We also refer readers to [44,56-59] for details on
implementation of DENDRO.

4.2. Elemental computation

Node coordinates and elemental connectivity are implicit in the
octree’s structure, so DENDRO recalculates these values on the fly as
the octree is traversed. To avoid memory overhead, we consider a
single hexahedral element. As we iterate through the octree mesh
for assembly we re-position the nodes in this hexahedral element
to match the octree element from DENDRO. Since the octree mesh
has only one possible element shape, we pre-calculate and cache
the isoparametric to physical mapping at each integration point.
During initialization, we create an ‘index’ element at each refine-
ment level in the octree and evaluate the basis functions at the
integration points. When the assembly code needs to access these
values, we pull them from the corresponding refinement level in
the cache instead of recalculating them at each element.

4.3. Refinement according to in-out test and subdomains

To adapt the mesh refinement to the in-out test in IMGA, a
coarse mesh is first constructed based on the geometry. Proceed-
ing in a top-down fashion, each cell in the mesh is refined if a sur-
face (pillar/particle) passes through it, which is determined using
an in-out test. If all eight corners of an octant are outside of the
immersed geometry, then we retain this element, but do not refine
further. If all eight points are inside the immersed geometry, then
this element is performed with the same manner as outside ele-
ment for a immersed strategy, while it is removed from the octree
for a boundary-fitted strategy. If some of the corners of the octant
are inside and others outside, then this octant is refined. This pro-
cess is repeated until the desired level of refinement is achieved.
Similarily, the octants outside the rectangular channels are also re-
moved by a channel boundary in-out test (as boundary-fitted strat-
egy) during the refinement process. Channel boundaries may also
be refined using the same way for a better approximation of the
channel dimensions (and boundary layers if needed). Since in our
case, the pillars, particles and channels are all regular geometries
(i.e., cylinder, sphere and rectangular), the in-out test can be per-
formed analytically. However for complex geometries, a ray-tracing
algorithm may be employed in the in-out test.

In addition, subdomains, which leverage the original mesh data-
structure, are created to handle meshes with rectangular geometry
and holes for boundary-fitted pillars as octants outside the channel
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and inside the boundary-fitted pillars will be removed, and also no
communications are needed for them. A different scattering map-
ping within the subdomains for current mesh is also uniquely de-
fined afterwards. The finite element computations will only take
place in subdomains (and we can discard the main octree struc-
ture for the original domain). Therefore, subdomains have an over-
all (much) smaller computation domain and store (significantly)
less data than the original mesh (for example, in our case of a
very long channel). Re-partitioning is required as creating subdo-
mains will result in load imbalance. For our target application, it
is important to identify both the external (channel) boundary as
well as the internal boundary (boundary-fitted pillar surface). The
subdomain stores two bits to keep track of whether a node is non-
boundary, external, or internal boundary.

4.4. Sampling the immersed boundary and adding corrections

In order to reduce memory overhead and better parallelize the
surface assembly in IMGA, we distribute surface quadrature points
over processors. The object boundary mesh is generated as a tri-
angulated mesh. Surface quadrature point coordinates, along with
other necessary parameters, such as the unit normal vector and
boundary values of velocity at each quadrature point, are then cal-
culated in each triangle element using standard Gaussian quadra-
ture. The surface quadrature points are then sorted and distributed
over processes. This is done by associating each surface quadra-
ture point with an octree element (real or virtual) with the maxi-
mum refinement that contains the quadrature point. Note that this
octree element is not necessarily an existing octant in the octree
mesh. This associated octree element represented by its bottom-
left-back (minimum) node can be then aligned on the space-filling-
curve, and the processor it belongs to can be easily found by
the partitioning of the space-filling-curve. To find the actual back-
ground octree element that contains the quadrature point, we loop
over all the octree elements in the process to check if the oc-
tree element is an ancestor of the associated octree element, or
if they are exactly the same octree element. Since the octree el-
ements and the surface quadrature points are both sorted based
on the space-filling-curve, we can loop over them - in parallel -
with an efficiency of O(m + n)instead of a nested loop with an
efficiency of O(m x n),(unstructured meshes usually have to per-
form a nested loop), where mis the local number of elements in
the background mesh and nis the local number of surface quadra-
ture points. Boundary conditions imposed on the surface quadra-
ture points can be then evaluated and distributed to the nodes of
the background octree element. The distribution of surface quadra-
ture points over processes and finding their background elements
are challenging in unstructured meshes, as the process boundaries
are usually complex in most graph-based partitioning approaches.
When the object is moving, this is even more cumbersome since it
has to be performed at each time step.

Another computational efficiency issue caused by the IMGA is
that the immersed geometry is likely localized on a small subset
of processes. These processes are the only ones that perform the
surface assembly for weakly imposing no-slip boundary condition
on the immersed boundary. A potential solution is to perform a
weighted partition - increasing the weight of the intercepted el-
ements by the additional relative cost of surface assembly with
volume assembly. This weighted partition will ensure better load
balancing. We defer this development to a subsequent paper.

4.5. Adaptive remeshing and intergrid transfers

An essential requirement for computational efficiency is to
adapt the spatial mesh as the particle moves across the channel.
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Fig. 4. A representative mesh illustrating the refinement around the particle, and contours of velocity magnitude at two representative time instances.

In the distributed memory setting, this also indicates a need to re-
partition and re-balance the load. We adaptively remesh the do-
main at each time step based on the current position of the parti-
cle using results of the in-out test in IMGA followed by the subse-
quent 2:1 balance enforcement, partitioning and meshing process.
Once the new mesh is generated, we transfer the data from the old
mesh to the new mesh using interpolation. To keep things sim-
ple at this stage, we remesh each time from scratch followed by
the repartition of new octree (reuse the same code of initial octree
generation and partition because they are sufficiently optimized in
DENDRO [59]), and then interpolate the local new mesh. The nodes
of the local new mesh are distributed over processes based on the
old mesh partitioning similarly as described in Section 4.4 to per-
form interpolation. Again, the intergrid transfer is challenging in
unstructured meshes as repartitioning usually offers no guaran-
tee of good overlap between the old and new partitions in most
graph-based approaches, and the distribution of local new mesh
will be difficult across complex process boundaries. A construction
of global old mesh may be required for intergrid transfer in un-
structured meshes.

5. Experiments and results
5.1. Implementation specification

The DENDRO framework is implemented in C++ using MPI for
distributed memory parallelism and OpenMP for shared memory
parallelism. This is integrated with a C++ module (Section 4.2) for
evaluating basis functions and weak form of governing equations
to support elemental computation. Our code is tightly integrated
with PETSc v3.7’s distributed matrix and vector data-structures
and utilizes its SNES and KSP solvers. These tests were compiled
and run on Oak Ridge’s Titan supercomputer (before its decom-
missioning in 2019). PETSc, DENDRO, and the main program were
compiled with the GNU 4.9.3 compiler with -02 optimization flags.
Timing information was reported using PETSc’s logging framework.

5.2. Validation

We first validate the framework by comparing the particle tra-
jectory and velocity against a benchmark experimental data of a
sphere dropping in a quiescent fluid [60]. We consider a container
with dimension of 0.1m x 0.16 m x 0.1 m. We simulate a sphere
with a diameter of D = 0.015 m,released at a height of 0.12 min the
middle. The fluid has a density of oy = 960 kg/m3,and a dynamic

viscosity of u = 0.058 kg/(m -s). The density of the sphere is ps =

1120 kg/m3. Reynolds number, defined as prOD,is Re = 31.9with a
reference velocity ug = 0.128 m/s. Time step size Atis set to 1.2 x
10~3s. Initial conditions are set as zero velocity in the whole fluid
domain. No-slip boundary condition is imposed on lateral and bot-
tom walls, and traction-free boundary condition is imposed on the
top wall. We adaptively refine the mesh around the interface of the
sphere and fluid. We refine three levels deeper than the rest of the
background mesh. Specifically, we refine to a minimum/maximum
level, r = 5/8(successively bisect and divide the octree root five and
eight times, respectively). We remesh after each time step as the
sphere drops. Note that such frequent adaptive remeshing is one of
the challenges of our target application®. We set the surface trian-
gular mesh size of the sphere in sync with the background inter-
face element size, keeping a ratio of 1:2 (surface to background) to
ensure adequate surface integration. The mesh example and visual-
izations of velocity magnitude contour, and the validation of non-
dimensional height and sedimental velocity as the sphere settles
downwards are presented in Figs. 4 and 5, respectively. As can be
seen, both the sedimental velocity and the trajectory of the sphere
match with the experiment results well.

5.3. Parallel scalability

We next show scaling performance of the framework. We col-
lect timing for the case of a dropping sphere. We run each
case for 5 time steps. The same setup and (re)meshing strategy
as in last section is adopted. We run this experiment on four
minimum/maximum refinement levels: r = 5/8,6/9,7/10,and 8/11.
Each refinement level has roughly seven to eight times more de-
grees of freedom to solve for than the previous level, with r=
5/8having 203,000 and r = 8/11reaching 70.2 million degrees of
freedom.

We note that given specific minimum/maximum refinement
level and the same initial and boundary conditions, the overall
problem size (total degrees of freedom) in spite of remeshing is
independent of the number of processes being used for the sim-
ulation. To this effect, we believe presenting performance for dif-
ferent minimum/maximum refinement levels with different num-
bers of processes, in the style of a strong scaling is appropriate.
Indeed, performing weak scaling for such real-world applications

3 While remeshing after every time step is not necessary, we perform this to il-
lustrate scaling behavior of each part of the framework
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Fig. 5. Comparisons of the non-dimensional height and sedimental velocity of the particle as it settles downwards with an experimental benchmark of a particle setting in
a viscous fluid [60]. Note as the particle nears the bottom surface, its velocity rapidly zeros out.
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Fig. 6. Strong and approximated weak scaling for a non-dimensional sphere of unit size dropping in a channel of size 8 x 8 x 8running for 5 time steps with number of

processes up to 16,384 on Titan.

is more difficult than strong scaling, since it is much harder to en-
sure that N/p,i.e., the grain size stays relatively constant with such
frequent adaptive remeshing and consequently changes in problem
size, where Nis the total degrees of freedom and pis the number
of processes. Therefore, given the somewhat fixed increase in prob-
lem size with increasing minimum/maximum refinement level and
corresponding increase of number of processes, we can combine
multiple strong scaling results to derive approximate weak scal-
ing results for the overall simulation time. The approximated weak
scaling results are presented in Fig. 6(b). Note that minor fluctu-
ations in the approximation of the weak scalability are expected
due to the inconsistent grain size.

5.3.1. Strong scalability

For our target application, the key goal is to be able to per-
form the simulations quickly. Given this, and the relatively moder-
ate size of our problems, the focus is on strong scalability. We first
present strong scalability results for the overall simulation time in-
cluding the cost of everything in Fig. 6(a) for three problem sizes.
Overall our code scales well, with continued reductions in simu-
lation time. A breakdown of the total simulation time into vari-
ous significant components for the refinement level of r = 8/11is
also presented in Fig. 7. We can see that the amount of solve time
and matrix assembly time, which are comparable, dominate the to-

Total simulation time breakdown for r = §/11

[ IMGA setup
[l Global matrix
1,500 ! Global vector ||
_ B  Solve
% 1’000 | . Remesh
g B Other
=
500 -
Al -]
(| Lo
1,000 10,000
Number of MPI Tasks

Fig. 7. Total simulation time broken down by category for refinement level r =
8/11. IMGA setup refers to the setup required to perform immersed boundary
method. Global matrix and Global vector refer to the time taken to build the global
Jacobian matrix and residual vector. Solve refers to the time taken to actually solve
the system (i.e. PETScBCGS solver + ASM preconditioner). Remesh refers to the
time taken to create the mesh of next time step and interpolate data onto it.
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Fig. 8. Total time of adaptive remeshing for refinement level r = 6/9,7/10,and 8/11.

tal simulation time for most of the cases. The immersed boundary
method corrections (IMGA setup) involving the distribution of im-
mersed surface points on the octree mesh also scales reasonably
well.

One significant trend with increasing number of processes is
“total remeshing”, as shown in Fig. 8 (also listed as “Remesh” in
Fig. 7). This refers to the overall remeshing stage combining gen-
erating a new mesh, interpolating between two meshes and reini-
tializing the matrix, vector and solver. Effectively, this is the over-
head paid for having good adaptivity. The scaling of remeshing is
poor compared with other parts of the code, but the magnitude
of time it takes is much smaller than solving the Navier-Stokes
equations for most of the cases except using relatively large num-
bers of processes (last two data points) in the refinement level of
r = 8/11. The remeshing time is comparable with the solve time
(shown in Fig. 7) in these two cases when the communication
becomes considerable. This is due to the interpolation between
two meshes because the generation of a new adaptively refined
mesh is sufficiently optimized. Note at the current stage, we per-
form a remeshing and repartitioning from scratch (due to the suf-
ficiently optimized meshing code) first, followed by a subsequent
interpolation. However, the interpolation may not be optimal since
a large amount of communication may be required by distribut-
ing new local mesh. We are exploring alternatives (to be reported
in a subsequent paper). Specifically, we could remesh (refine or
coarsen octants) in each process while keeping the local geome-
try domain unchanged in each process. This means the old and
new local mesh are overlapping and consequently there is no need

z
G
X

Computers and Fluids 214 (2021) 104764

Force and velocity vs. distance traveled

2.5 : . 1.4
—— Magnitude of lateral force
- = Velocity
o {13
o 2F
5 IS o e e e e e —-—————~
= v
o ’ 11.2
S15F , -
© F; £
G [ {1105
I ¢ o
z | 15
C
g
=0of 109
0 p v ; . z 0.8
0 10 20 30 40 50 60

Distance traveled

Fig. 10. Lateral force and velocity magnitude of the particle vs. distance it traveled
downstream.

to distribute new local mesh over processes during interpolation.
We could then perform interpolation (no communication needed)
first in each process, and then repartition the new octree and cor-
responding newly interpolated solution vector for load balancing.

5.4. Results for particle tracking in microchannels

We finally present two results for the application of this frame-
work. The first is particle tracking in a channel with a square cross-
section, and the other is our canonical problem of particle tracking
in a channel with pillar obstacles. The schematics of both cases
are shown in Fig. 9, and we present both cases in non-dimensional
units.

5.4.1. Square channel

Case setup: We consider a long channel with dimensions 96 x
4 x 4. We simulate a spherical particle released at(10,2,1) with
diameter of D = 1. The origin is located at the bottom-left-front
corner (oriented as shown in Fig. 9) of the channel. We set the
particle Reynolds number, Rep = 5. We assume the particle is of
the same density as the fluid, so that there is no buoyancy effect.
Time step size Atis set to 0.05. The inlet has unit velocity normal
to the inlet. No-slip boundary condition is imposed on surround-
ing walls, and zero pressure is imposed on the outlet. The initial
condition for the fluid velocity as well as the particle velocity are
both set to be the same as the inlet velocity. We note that such
long simulations - tracking the temporal evolution of the particle
as it traverses nearly 50D downstream - is fairly atypical in the
microfluidics community.

Results: We are interested in the magnitude of lateral force
acting on the particle and the magnitude of the particle velocity
as the particle reaches its equilibrium cross-sectional position as
shown in Fig. 10. After the particle has traveled 30Ddownstream,

Fig. 9. Schematics of particle tracking in different configurations.
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Fig. 12. Velocity magnitude of particle in channel with pillars at different time steps, and force magnitude on the particle during its motion.

it is clear that the velocity have converged to a steady value (rep-
resenting pure streamwise motion, and very small lateral motion),
which suggests that the particle has reached its equilibrium po-
sition. Additionally, the net lateral force becomes negligibly small.
The final cross sectional location in y — zplane is (2.0, 1.04) which
matches the experimentally determined equilibrium position [61].

5.4.2. Channel with pillars

Case setup: In our canonical problem, we consider a sphere of
diameter of D = 1lin a channel of dimensions of 32 x 5 x 2.5. Two
half pillars of radius 1.25 and height 2.5 are placed in the chan-
nel, forming a converging-diverging type of cross section. The par-
ticle is released from (3, 1.4, 1.25) with the same placement of the
origin as the previous example. The particle Reynolds number is
Rep = 50using the channel flow rate, which ensures that inertial
effects are prominent [3]. Time step size Atis set to 0.015. The
boundary conditions are the same as the previous case except for
the two half pillars. Note, we also immerse the two half pillars, and
therefore the no-slip boundary condition on the pillars are weakly
enforced. The initial condition of fluid velocity is the same as in-
let velocity. The sphere is held stationary until t = 5to wait for the
channel flow to fully develop, so that a physically meaningful force
is imposed on the released particle.

Results: Fig. 11 plots the particle path as it navigates the channel
with the pillar obstacles. This path curves in as the particle passes
the pillars, and due to the inertial regime that the flow is in, the
cross-sectional position of the particle close to outlet is offset from
the initial cross-sectional location. This is in line with expected be-
havior from experiments in Stoecklein and Di Carlo [3], which sug-
gest that inertial microfluidics with pillars can produce irreversible
cross-sectional displacements.

Fig. 12 (a) illustrates the ‘squeezing’ effect due to the presence
of pillars and plots the flow velocity magnitude contour along the
x — zplane (i.e., side view) at 3 different time steps (before, during
and after the particle interacts with the pillars). Note that there
is no direct interaction between the particle and the pillars, but

instead all interactions are mediated by the fluid. Fig. 12(b) quan-
tifies this observation by plotting the force acting on the particle.
Note the large jump in force as the particle traverses the channel
(close to the pillar) is due to the squeezing effect. Furthermore, the
simulation was performed on a mesh with around 105,000 hexa-
hedra elements, the average number of degrees of freedom for this
problem is around 350K, and the number of time steps needed to
track the particle across the channel dimension is 790 steps. The
total simulation time for this canonical problem is around 10 hours
using 12 KNL nodes on TACC Stampede2. This is very promising as
it allows us to proceed with computing cross-sectional displace-
ment maps under different pillar configurations, which essentially
translates to executing this type of simulation for a large set of dif-
ferent release locations across the inlet cross-section.

6. Conclusions and future directions

We developed a scalable, adaptively refined octree-based im-
mersogeometric analysis framework, and validated this framework
using a benchmark case of sphere dropping in fluids. Our frame-
work demonstrates excellent strong (and weak) scalability for the
overall simulation time, even with frequent remeshing in the
benchmark case. Our framework can keep the overhead of adaptive
remeshing and IMGA corrections relatively low. We anticipate ad-
ditional code optimization will make the approach even more scal-
able. We further deployed the framework to track particle in mi-
crochannels with different (complex) geometries. This framework
allows us to efficiently construct the deformation maps for parti-
cles under a broad range of experimentally accessible parameters,
which will result in a passive approach for particle localization.
We identify several avenues of future work. Immediate computa-
tional goals include (1) transitioning to a matrix-free solver that
can significantly reduce the solve-time, while ensuring sustained
adaptivity for larger processor counts, (2) designing a local refine-
ment/coarsening algorithm and subsequent repartitioning to opti-
mize intergrid transfer, (3) incorporating a more rigorous dynamic



S. Xu, B. Gao, A. Lofquist et al.

load balancing that accounts for the additional work involved in
the surface computations, and (4) accounting for multiple mov-
ing objects. From the flow physics perspective, we plan to deploy
this framework to characterize the inertial displacement maps for
a range of particle sizes and pillar placements.
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