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Abstract—Recent progress in scientific machine learning
(SciML) has opened up the possibility of training novel neural
network architectures that solve complex partial differential
equations (PDEs). Several (nearly data free) approaches have
been recently reported that successfully solve PDEs, with exam-
ples including deep feed forward networks, generative networks,
and deep encoder-decoder networks. However, practical adoption
of these approaches is limited by the difficulty in training these
models, especially to make predictions at large output resolutions
(≥ 1024× 1024).

Here we report on a software framework for data parallel
distributed deep learning that resolves the twin challenges of
training these large SciML models training in reasonable time
as well as distributing the storage requirements. Our framework
provides several out of the box functionality including (a) loss
integrity independent of number of processes, (b) synchronized
batch normalization, and (c) distributed higher-order optimiza-
tion methods.

We show excellent scalability of this framework on both cloud
as well as HPC clusters, and report on the interplay between
bandwidth, network topology and bare metal vs cloud. We
deploy this approach to train generative models of sizes hitherto
not possible, showing that neural PDE solvers can be viably
trained for practical applications. We also demonstrate that
distributed higher-order optimization methods are 2-3× faster
than stochastic gradient-based methods and provide minimal
convergence drift with higher batch-size.

Index Terms—Deep generative models; Distributed training;
PDEs; Loss functions; Cloud vs HPC; Higher-order optimization

I. INTRODUCTION

Numerical simulation is a critical tool in analysis, optimiza-

tion, design, and control of complex engineered systems. The

status quo has predominantly been describing and modeling of

such systems through partial differential equations (PDEs) and

their numerical approximations. For increasingly complex en-

gineered applications (aircraft, rockets, autonomous systems,

etc.) the availability of fast predictive models becomes critical,

§Equal contribution

especially if the intent is to use these models for design and/or

control (so called model-predictive control, MPC).

Modern deep learning approaches have transformed a host

of application areas that involve assimilating large data streams

to make useful predictions. There has been increasing interest

in leveraging these advances for analysis, optimization, design

and control of complex engineered systems ([1], [2], [3], [4],

[5], [6]). However, off-the-shelf utilization of deep learning

strategies have had limited applicability, primarily due to the

following drawbacks:

• Reliance on abundance of data: Current ML approaches

tend to entirely let data dictate the narrative. As a result,

the data requirements for training such systems is very

large, which may be a major bottleneck for complex

simulations;

• Lack of generalizability: They are of narrow scope, i.e.,

they typically only succeed on the task that they are

trained on. Additionally, contextual constraints and do-

main knowledge known from physical system are left

unused.

These key issues have motivated the development of Scientific
Machine Learning (SciML) strategies that seek to bridge

modern deep learning concepts with numerical solutions of

PDE’s. Recent very exciting advances ([7], [8], [9], [10], [11])

have shown the efficacy of deep networks in solving partial dif-

ferential equations (PDEs). Specifically, methods as described

in [10], [11] rely on convolutional neural networks as a natural
representation of the domain for a PDE. The reliance on data

is reduced by explicitly incorporating notions of symmetry,

invariance or constraints into the network (either in the loss

function, or in the network definition). This also enables better

generalizability (due to the satisfaction of the constraints).

By training a deep neural network to act as (an arbitrarily

accurate) surrogate for a PDE (either a specific instance, or

a class of PDEs), significant gains in computational speed

have been shown to be possible. This is because the inference
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stage of neural networks is (near) real time, compared to the

cost of training. Thus, given a trained network that acts as a

PDE solver for arbitrary boundary and initial conditions, the

time-to-solve from a practitioner perspective is simply the time

for inference. This is consistent with ML standard practices,

where the (non-trivial) cost of training is amortized over the

large number of inferences required in, say, model predictive

control of complex systems.
While this field is evolving very rapidly, a preliminary

taxonomy of ‘neural-PDE’ approaches (through the lens of

computational science) is as follows: (a) PDE instance vs
PDE family solvers: Some approaches focus on improving

the numerical linear algebra ([10], [12], [13], [14], [15]), and

are limited to a single instance of a PDE, while other strategies

([7], [11], [16], [17]) focus on solving a general class of

PDEs. Instance solvers have the advantage of excellent perfor-

mance, but need to be retrained for each problem realization;

(b) point-wise predictions vs full field predictions: Some

approaches focus on making point wise predictions in the

domain ([7], [8], [9], [12], [18], [19], [20]), while others ([1],

[11], [16]) make full field predictions. Point-wise predictions

have the advantage of easier trainability (since the output is

usually a single scalar), but full-field predictions naturally

account for boundary conditions. A common bottleneck to
these ’neural-PDE’ approaches is that nearly all of them
scale poorly for making predictions on high resolution outputs,
prohibiting their use in real-world applications. In particular,

higher resolution outputs are needed to model multi-scale

phenomena [21], [22]. This serves as the motivation for the

work presented here, and we illustrate our developments by

training DiffNet, a data-free conditional generative model, to

solve a parametric family of PDEs. DiffNet belongs to the full-

field predictions and PDE family solver classification in the

taxonomy introduced above. As such, it serves as a canonical

example of a complicated neural architecture that predicts full

field outputs for a space of initial/boundary conditions defining

a PDE class. We specifically focus on training DiffNet to

solve the inviscid Burgers’ equation, which is a fundamental

non-linear PDE with wide applicability in fluid mechanics,

gas dynamics and acoustics (i.e. conservation laws with shock

formation):
∂u

∂t
+ u

∂u

∂x
= 0 (1)

We seek to solve this PDE for a one-parameter family of initial

conditions defined as

u(x, t = 0) =
1

2
(1− cos(2πcx)) (2)

where c ≥ 0 is the parameter, and the domain of interest is the

unit square, (x, t) ∈ [0, 1] × [0, 0.2]. Conventional numerical

strategies for solving this PDE require some stabilization

to gracefully resolve the formation of shocks, and can be

computationally expensive for resolved simulations. Fig 1

shows a representative solution (generated via space-time finite

element solution) for a 1024 × 1024 mesh. This took about

400 seconds on 1 SKX node on TACC Stampede2, and serves

as our comparative baseline for performance.

DiffNet is a convolutional generative neural network that

takes in instances of parameterized boundary conditions as

input and outputs a full field. In order to train DiffNets, we

leverage the form of the PDE and minimize the sum of two

losses: PDE residual error, and reconstruction error of the

initial and boundary conditions. This approach has two major

advantages: (1) we only need to train a single neural network
for the entire parametric family of initial/boundary conditions

and/or coefficients, thus allowing fast inference for users; (2)

being data-free, we do not need any prior solutions of the PDE.

However, our prior experience with DiffNets [23] revealed that

training DiffNets for larger domain sizes (> 512 × 512) is

often impossible on standard GPUs (even on state-of-the-art

NVIDIA Tesla V100’s). Stable training for such generative

models also requires large batch sizes which leads to increas-

ingly larger GPU memory requirements.

Our primary contribution is a generalized approach to train

such large neural network architectures (that are data free)

which can serve as (near) real-time neuralPDE solvers. Our

main contributions include (a) a software framework (called
DeepFusion) for data parallel distributed deep learning, (b)
a hybrid distributed programming approach using OpenMP +
MPI for efficient inter/intra node communication, (c) leverag-
ing Intel MKLDNN for very fast forward and back propaga-
tion, (d) synchronized batch normalization, (e) loss integrity
independent of number of processes, (f) support for Hessian
based optimization methods, (g) illustrating this framework to
train DiffNet models for 1024 × 1024 domain sizes, which
was hitherto not possible on GPUs, and (h) providing results
that show 40× speed-up in time to solve a PDE using
DiffNets compared to conventional PDE solvers, considering
only inference-time.

Fig. 1: A solution to the inviscid Burgers’ equation showing

shock formation, solved through finite element method

formulated in full space-time domain. Physically (x, t) ∈
[0, 1]× [0, 0.2] but all contour plots are rendered in a scaled

square grid
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II. MATHEMATICAL PRELIMINARIES

Using the notation in Hsieh et. al. [10], we consider a PDE

defined as

Aν(u) = f, B(u) = b (3)

where u is the solution to the PDE over the domain Ω ∈
R

s, Aν is the non-linear functional form of the PDE defined

by its coefficients ν, and f is a forcing function. Here, B(·)
refers to the boundary conditions for the PDE. Without loss

of generality, we assume that Ω is the unit square.

A. DiffNets

Variable no. of
Upsampling blocksÀ

Convolutional Layer

Residual Block with
2x2 upsamplingÀ
Dense Layer

���� ��

���� ��

Residual
Block with upsampling

�� BN � � ��

Fig. 2: An exemplar architecture of DiffNets. A specific initial

condition, u(x, 0) is given as input to the generative model,

which then generates the solution for the specified initial value

problem. The primary building blocks for the network include

residual blocks with upsampling operations. The number of

upsampling blocks in the network depends on the resolution

of the domain.

For numerically solving the PDE, the standard approach is

to discretize Ω into S ∈ D
s where D is a discrete subspace

of Rs. Subsequently,the field u can be discretized into a finite

dimensional vector, ū. This is accomplished by using a basis

of piecewise-constant functions defined over each discrete

element. One can similarly discretize the boundary conditions.

Given a guess solution, ū, standard computing approaches

(Finite Difference or Finite Element) linearize the non-linear

PDE about this guess solution, defining the PDE Jacobian, Aū

and iteratively solve

Aū(δū) = res(ū); (4)

ū ← ū+ δū (5)

where res(ū) is the residual of the current guess w.r.t. the

PDE. The key computational cost lies in the repeated solution

to the linear equation, Eq. 4, while computing the residual is

computationally trivial. Most modern ’NeuralPDE’ approaches

exploit this computational asymmetry – checking to see if

a guess ū is in fact a solution is far more computationally

cheaper than actually solving the PDE for the solution.

The DiffNet approach is built on this concept, and is a

completely data-free strategy. The solution space is modeled

using a generative neural network. The network consists of a

generator Gθ : Rk → R
d that takes as input the PDE coeffi-

cients ν and the initial/boundary conditions b. The generator

is trained to produce a solution to the PDE that satisfies these

initial/boundary conditions and coefficients. Such an approach

can also model the stochastic PDE scenario where b and ν
are stochastic.

For Gθ(·) to correctly represent the solution, the generator

outputs must satisfy: (1) Gθ(·) must satisfy the PDE, and (2)

Gθ(.) must respect the provided initial/boundary conditions.

The training loss can therefore be written in terms of two

components:

L = Lp + λLb, (6)

where Lp(θ) = Eb,ν [‖Aν(Gθ(b, ν))− f‖22], (7)

Lb(θ) = Eb‖B(Gθ(b, ν))− b‖22]. (8)

The first term, Lp, minimizes the residual of the PDE while

the second term, Lb, minimizes the deviation from the given

initial/boundary conditions. As stated in the introduction, this

is the overarching strategy for a variety of neural-PDE solvers

(e.g., PINN [8] and other works such as [16]). The distinction

of our approach lies in our choice (a) of predicting the full

field, u(x), rather than a single point in the domain. This

allows natural enforcement of boundary and initial conditions;

and (b) of using a generative model in contrast to other

recent approaches. Generative models naturally account for

uncertainty, and the network can be extended to produce higher

resolution outputs in a straight forward way.

For training, we sample from the space of possible boundary

conditions and coefficients, {bi, νi}, i = {1, 2, · · · , k} and

minimize the summed loss with respect to θ using stochastic

gradient descent. Sampling from a distribution of b and ν
allows the generator to learn the solutions for the family

of PDEs parameterized over (b, ν). We emphasize that the

method is data-free as the training only utilizes the PDE inputs

and does not need any PDE solutions for training.

Implementing the forward model. The derivatives of

Lp(θ) with respect to θ require calculating ∂Aν

∂θ . This is

generally non-trivial and to make this tractable we borrow

ideas from finite difference methods. We approximate the kth

order derivative operator, ∇k
(x,t) with convolutional operators

defined using finite-difference kernels. In practice, we use 3×3
Sobel kernels [24] for first order derivatives and Laplacian

kernels [25] for second order derivatives. This is identical to

the approach adopted by Zhu et. al. [16]; however, their setup

is somewhat restrictive since they use Encoder-Decoder (ED)

networks to construct solutions for a given specific PDE.

In the case of time-dependent PDEs, the generator Gθ must

learn to first reproduce the initial condition u0 at t = 0 in order

to successfully generate the rest of the solution. An incorrect

choice of the Lagrangian coefficient, λ, leads to failure either
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by the model learning to generate the trivial solution (0) or

failing to converge. Additionally, the derivative operators in x
and t need to be scaled appropriately in order to satisfy the

Courant-Friedrichs-Lewy condition for stability.

We show an exemplar architecture for a DiffNet in Fig. 2.

Note that we rely on additional residual upsampling blocks

for finer resolution, so as to keep the parameter count low.

The advantage of training a conditional generative model is

that we only need to train a single model for a distribution of

parameters characterizing the system. Our approach allows for

interpolating and (possibly) extrapolating over unseen bound-

ary conditions and coefficients to generate solutions. While

our approach uses convolutional layers to reduce the number

of parameters, standard GPU based training still restricts us to

solving PDEs for limited domain sizes. However, scaling our

method to large scale distributed training allows us to bypass

this specific disadvantage. In the following section, we discuss

our approach for distributed training of DiffNets.

III. ALGORITHMIC DEVELOPMENTS

GPUs remain the overwhelmingly popular compute plat-

form for training these models. GPU memory utilization

during training is driven by three factors: 1) number of model

parameters in the network, 2) mini-batch size, and 3) size of

intermediate tensors created during loss and gradient compu-

tations. A known limitation of GPUs is their relatively small

available memory: for example, a state-of-the-art NVIDIA

Tesla V100 GPU has only 32GB memory. Peak memory

utilization to train a DiffNet for domain size 512 × 512 and

mini-batch size 64 is ∼64GB, which is twice the available

GPU memory. Due to these memory limitations, training on

GPUs is done using mini-batches as small as 16, which in

turn results in slow convergence and prohibitive wall-clock

times. On Table I, we show maximum batch size and GPU

memory utilization for different domain sizes that we were

able to train on a NVIDIA Tesla RTX with 24GB memory.

DiffNet training on domain sizes > 512× 512 is not feasible
on currently available GPUs including Tesla V100.

Domain Size Batch Size GPU Memory (GB) Time/Epoch (s)
128×128 16 0.7 105
256×256 16 2.1 340
512×512 16 16.4 1401

TABLE I: GPU memory utilization and time per epoch for

4096 samples for different domain and batch sizes. On Titan

RTX with 24GB memory, Diffnet training on domain sizes

> 512× 512 with batch size 16 is not feasible.

NVIDIA AI Servers like DGX-2 can accommodate bigger

batch sizes by distributing the batches across multiple GPUs

in a single unit with more cumulative GPU memory (256GB

with 8 GPUs and 32GB/GPU). However, they come with an

expensive price tag of ∼$0.5M and are not affordable for the

general practitioner. In spite of this price tag, the maximum

available memory is still the same as the cumulative memory

available on 1 or 2 nodes of a CPU cluster.

In order to overcome those memory limitations, our Deep-
Fusion framework is based on data parallel distributed train-

ing on multi-node CPU clusters with 5-10x more memory-

per-node than a single GPU, and multiple cores-per-node

connected via high-end interconnects with low latency and

high bandwidth, which can match or exceed the performance

of single GPU. In addition to data parallelism, extension to

model parallelism can further push the envelope on accessible

network sizes.

The rest of this section is organized as follows: in section

III-A we provide details on data parallel training; in section

III-B we discuss the need for synchronized batch normaliza-

tion; the OpenMP and MPI based hybrid distribution model is

explained in section III-C; time complexities for computation

and communication are discussed in section III-D, and a

comparison to open-source software is made in section III-E.

In Table II, we summarize the notations used in this section.

Ns Total number of samples
bs Number of samples in a mini-batch

N loc
s Local number of samples

blocs Local mini-batch size
Nb Number of mini-batches
Nw Number of weights in the model
p Number of MPI tasks in comm
Nt Number of threads per MPI task
F Forward propagation complexity
B Backward propagation complexity
L Loss function
θ Model parameters
Gθ Generator model

TABLE II: Notations used in this section

A. Data Parallel Distributed Deep Learning

We use the data parallel strategy, where multiple replicas

of a model are simultaneously trained to optimize a single

objective function [26]. In this approach, the training mini-

batches are equally split among the available workers, as

shown in Figure 3. Each of these workers asynchronously

perform forward and back-propagation of their local mini-

batch through the neural network. After each mini-batch, the

locally computed gradients are averaged among workers via

an MPI Allreduce operation, and that average is used by

each local optimizer to update the layer parameters. The loss

function is also computed locally, and the objective value is

averaged among workers.

It is important that the samples (training examples) are split

among workers in such a way that the same exact problem

gets solved no matter the number of processes (MPI ranks).

For that purpose, we adjust the total number of samples Ns

and the batch size bs to make them divisible by the number

of workers p, such that the local sample count and batch size

are given by

N loc
s = 	Ns

p

, (9)

blocs = �bs
p
�. (10)
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Fig. 3: Data Parallel Deep-Learning : multiple replicas of the

model are asynchronously trained by workers, each worker

using a subset of the global mini-batch.

Furthermore, as shown in Figure 4, each worker draws their

local mini-batch sequentially from the global sample pool, in

such a way that their union (global mini-batch) would equal

the one used in a single-processor run with the same values of

Ns and bs. This guarantees exactly identical results (modulo

rounding errors due to gradient reduction) for any number

of workers used. Finally, one can easily show that, when Ns

is not divisible by bs, the remainder Ns mod bs will still

be divisible by p, which enforces optimal load balancing by

guaranteeing that the local mini-batches processed by each

worker at any given time have identical sizes.

Fig. 4: Data splitting across workers in a parallel run: mini-

batches are always guaranteed to have the same size across

workers at any given time, promoting optimal load balance.

Algorithm 1 summarizes our per-epoch strategy for dis-

tributed training using the data parallel paradigm.

Algorithm 1 Data parallel distributed deep learning (1 epoch)

Require: Generate pN loc
s samples, split in mini-batches of size blocs

1: for mb = 1 to Nb do
2: xi ← {blocs samples} � Worker i local mini-batch
3: �i(θ) ← L(xi, Gθ(b, ν)) � Forward pass and local loss
4: gi(θ) ← ∇�i(θ) � Back-prop and local gradient
5: �(θ) ← 1

p

∑
�i(θ) � Average loss using MPI Allreduce

6: g(θ) ← 1
p

∑
gi(θ) � Average grad using MPI Allreduce

7: Δθ ← u(g, θ, t) � Run local optimizer
8: θ ← θ +Δθ � Update network parameters
9: end for

B. Synchronized Batch-normalization
Batch Normalization (BN) is a procedure that dramatically

improves the convergence of neural networks by re-scaling

and re-centering data using running statistics, namely mean

and variance, accumulated from each mini-batch in the course

of an epoch [27]. This creates a dependency on the local mini-

batch size, breaking the paradigm of problem independence on

the number of workers discussed in section III-A. To remove

this dependency, we developed a scheme to synchronize the

mean and variance statistics at all BN layers by performing an

MPI Allreduce operation after each epoch. This is especially

important when the local mini-batch size on each processor is

small, which would result in poor statistics and have a neg-

ative impact on validation accuracy. Our BN synchronization

scheme is explained in Algorithm 2. Although similar to the

idea proposed in [28], our implementation is optimized to only

communicate batch statistics before inference, which reduces

communication costs without any qualitative change in results.

Algorithm 2 Batch-normalization synchronization algorithm

1: for epoch do
2: for BN layer in network do
3: if in evaluation then
4: μB ← 1

p

∑p
i μ

(i)
B � Allreduce BN means

5: σ2
B ← 1

p

∑p
i σ

2
B
(i)

� Allreduce BN variances
6: end if
7: end for
8: end for

C. Hybrid Distribution Model
Our parallel distribution scheme is based on the so called

hybrid MPI-OpenMP programming paradigm, in which com-

munication between processes is done via MPI, while each

process can spawn its own OpenMP threads that run inside

a single shared-memory processor (SMP) node, as illustrated

in Figure 5. Furthermore, since the OpenMP threads only

communicate with other threads within the same SMP node,

and MPI routines are only invoked outside of OpenMP parallel

regions, our distribution scheme can be said to model the

process-to-process hybrid paradigm. In particular, our applica-

tion spawns p processes via the usual mpirun utility, which

can land on up to p SMP nodes. The number of processes per

node depends on the specific specs of the host machines and

on details of the experiment. A few underlying libraries used

by our application (e.g., libtorch and mkldnn) spawn up to Nt

local threads of their own, where Nt can be controlled via the

OMP NUM THREADS environment variable.

Fig. 5: Process-to-process hybrid distribution paradigm: pro-

cesses communicate via MPI, and spawn local threads of their

own that communicate via OpenMP inside an SMP node. MPI

routines are only invoked outside of OpenMP parallel regions.

D. Complexities
In this sub-section, we will discuss computation and com-

munication complexities of our approach. As shown in Figure
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3, the entire data set with Ns samples is split into Nb

mini-batches with bs samples per mini-batch. Each MPI task

computes loss and gradients for the local mini-batch of size

blocs . Loss and gradient computations have a complexity of

O
(
F (Nw, b

loc
s ) +B(Nw, b

loc
s )

)
. (11)

Forward (F ) and backward (B) propagation complexities are

non-linear functions of Nw, blocs , number of cores allocated

per MPI task and the network architecture. We use libtorch

C++ APIs to execute forward and backward propagation in

a single MPI task, which internally uses MKLDNN [29]

for optimal performance on Intel CPUs. Local gradients are

averaged using MPI Allreduce, which has a communication

complexity of O(Nw+ log(p)). Since Nw 
 p, we expect the

communication time to remain almost constant, independent

of p and of the underlying algorithm used by the OpenMPI

implementation. Network weights on each process are updated

using this averaged gradient via a stochastic gradient descent

(SGD) method. Synchronization of statistics for all batch

normalization layers after each epoch has a complexity of

O(Nw). The overall complexity per epoch is, therefore,

O
(
Nb

(
F (Nw, b

loc
s ) +B(Nw, b

loc
s ) +Nw

))
. (12)

E. Comparison to Open Source Software

Tensorflow and Pytorch are the most popular open source

libraries for deep learning, and both provide support for

distributed deep learning. Out of the box, they handle all-

reduce operations on gradients computed on a local mini-

batch on each device. Horovod is an open source library

[30] from Uber that enables data parallelism and gradient

averaging. However, optimal load balancing, guarantees of loss

independence on processor count, p (Figure 8), synchronized

batch normalization and hybrid distributed implementation

discussed in the previous sections are not provided out of the

box by these open source libraries.

DeepFusion democratizes the ability of data scientists to

train models that are too big for GPUs with desired system

performance and convergence rates without any distributed and

high performance computing experience.

Out of the box
functionality TF Pytorch Horovod DeepFusion
All reduce on

Gradient Yes Yes Yes Yes
Loss Integrity

independent of p No No No Yes
Synchronized

Batch Normalization No No No Yes

TABLE III: Qualitative comparison of DeepFusion function-

ality with Open Source Software

IV. RESULTS AND DISCUSSIONS

One of the key outcome of our experiments was to demon-

strate a practical approach to train DiffNets on domain sizes

> 512 × 512 that are too big for GPUs. We tested our

framework on both TACC Stampede2 HPC clusters with

bare-metal access, as well as Microsoft Azure and Amazon
Web Services (AWS) HPC clusters built using on-demand

virtual machines. We target these computational resources as

representative of what is easily accessible for the general data

science practitioner unlike DGX-2 that requires significant

investment. We report results obtained from AWS, Microsoft

Azure and Stampede2. On Table IV, we provide all relevant

specifications for Azure and Stampede2 used in our experi-

ments. Care was taken to select configurations on AWS and

Azure to reasonably match the CPU as well as interconnect

speeds of Stampede2. This allows rational assessment of

performance of DeepFusion across nearly similar platforms.

We present wall-clock time comparisons between AWS, Azure

and Stampede2 in section IV-A to determine the cluster to use

for our large domain runs. In section IV-B, we conduct strong

scaling experiments for 128 × 128 and 256 × 256 domain

sizes for 1 to 128 nodes (48 to 6144 cores) on Stampede2

to demonstrate scalability of our software. Finally, in section

IV-C, we present results for training a DiffNet model for

512×512 and 1024×1024 domain sizes for Burgers’ inviscid

equation (Eq. 1) for parameter distributions characterizing the

initial conditions (Eq. 2), which are currently not possible to

train.

Specification AWS Azure Stampede2

Type
Virtual

Machine
Virtual

Machine Bare-Metal

CPU
Intel Xeon

Platinum 8000
Intel Xeon

Platinum 8168
Intel Xeon

Platinum 8160
CPU cores 72 44 48

Memory (GB) 192 352 192

Interconnect
Elastic

Fabric Adapter
EDR

Infiniband
Intel

Omni-Path
Bandwidth 100 Gb/sec 100 Gb/sec 100 Gb/sec
Topology AWS Proprietary Fat tree Fat tree

TABLE IV: Functional specifications of AWS, Microsoft

Azure and Stampede2 infrastructure used in our experiments.

A. Conventional HPC vs. Cloud Based HPC

In this section, we compare wall-clock times between AWS,

Microsoft Azure, and Stampede2 in order to determine the

optimal HPC cluster configuration to train DiffNet with very

large (1024 × 1024) resolutions. On Table V, we show per-

epoch wall-clock times (in seconds) to train DiffNet with

64× 64 resolution using 1, 2 and 4 nodes. The total number

of samples used for this experiment was Ns = 4096 and the

global batch size was bs = 1024; the number of processes

per node was fixed at 4, with each process spawning 8 local

threads. Single node performance on bare-metal Stampede2 is

∼ 2× faster than on Azure and AWS VM. On the same table,

we also compare per-epoch wall-clock times (in seconds) for

different resolutions on 4 compute nodes (with 4 processes per

node, 8 threads per process). Even though the infrastructure

specifications of Azure, AWS and Stampede2 are almost

identical, slowness on Azure and AWS can be attributed to

the overheads associated with virtual machines.

55

Authorized licensed use limited to: Iowa State University Library. Downloaded on October 10,2023 at 14:42:27 UTC from IEEE Xplore.  Restrictions apply. 



Domain Size Nodes AWS Azure Stampede2
64x64 1 131.0 113.1 67.2
64x64 2 65.2 54.9 34.9
64x64 4 32.4 28.6 19.4

128x128 4 138.4 126.2 68.5
256x256 4 650.5 597.6 279.8

TABLE V: Comparison of per-epoch wall-clock times (in

seconds) between AWS, Azure and Stampede2 for varying

resolutions and different number of nodes (see Table IV for

cluster specs). For all three clusters, 4 processes were used

per node (spawning 8 threads each).

B. Scaling Experiments

In Figure 6, we report strong scaling results to train DiffNet
for 128 × 128 and 256 × 256 resolutions, using from 4 to

128 nodes on Stampede2. In this experiment, we used 8 MPI

processes per node and each process spawned 12 threads, to

a total of 96 threads per node. This matches the full capacity

of the Stampede2 Skylake nodes, which have 48 physical

hyperthread-enabled CPU cores, resulting in 96 hardware

threads per node. In Table VI, we compare per-epoch wall

clock time between a single GPU (Titan RTX as well as Tesla

V100) with the wall clock time using 128 Stampede2 nodes.

We show this (potentially unfair) comparison to illustrate the

advantage of scale-up on CPUs using a distributed training

approach.

Fig. 6: Strong scaling results for training DiffNet on Stam-

pede2: per-epoch times (in seconds) versus number of nodes

for 128 × 128 and 256 × 256 resolutions, using 8 processes

per node and 12 threads per process.

As discussed in section III-D, our computation time com-

plexity scales with p and communication complexity is in-

dependent of p. In Figure 7, we show the computation and

communication wall-clock times for different p. We observed

that our communication times increase only slightly with p, as

expected. Note that the communication times are significantly

(100×) smaller than compute times.

As discussed in section III-A, the training samples are split

Output
resolution

1 Titan RTX
(seconds)

1 Tesla V100
(seconds)

128 Stampede2 nodes
(seconds)

128×128 105 130 4.6
256×256 340 494 12.7
512×512 1401 1961 25.3

1024×1024 N/A N/A 89.5

TABLE VI: Comparison of per-epoch wall-clock time between

Titan RTX, Tesla V100 and DeepFusion on 128 Stampede2

nodes to train Diffnet (of different resolutions) with 4096

samples. Training on large CPU clusters using DeepFusion

is 20− 60× faster than training on both GPU’s. The 30-40%

change between the Titan RTX vs Tesla V100 is attributable

to the 30% difference in clockspeed between them.

Fig. 7: Computation and communication wall clock times for

different p corresponding to strong scaling results for domain

size 256×256 in Figure 6. Computation time decreases linearly

with p, while communication time increases only slightly with

p.

in such a way as to guarantee loss decay integrity, i.e., the

same exact problem is solved independently of the number

of MPI processes. In Figure 8, we show the loss vs. epoch

for different values of p. The small deviation in loss values

for different p is due to rounding errors in MPI Allreduce
operations for computing gradient averages.

C. High Resolution DiffNet

In this sub-section, we illustrate the ability of the framework

to train DiffNet models with very high resolution outputs

(sizes ≥ 512 × 512). This typically requires ≥ 2000 epochs

until convergence (for different ranges of the initial condition

frequency c) using a first-order optimizer like SGD.

Example 1: In the first example, we train a DiffNet to

produce outputs of resolution 1024 × 1024. We emphasize

that generative models of this size have hitherto fore not been

trained (to the best of our knowledge). We train the DiffNet

to be predictive in a range of the parameter c ∈ [3, 6]. We

remind the reader that c represents a one-parameter family of

initial conditions to the inviscid Burgers equation. The training
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Fig. 8: Comparison of loss decay vs. epoch for a subset of p
used in strong scaling experiments in Figure 6. Loss decay is

preserved (independent of p).

sample set consists of 256 points from c ∈ [3, 6]. We set the

mini-batch size to 64. This model was trained on 8 nodes of

Stampede2 (with 8 processes per node), taking 2200 epochs

till convergence (see Fig. 10). The runtime for this training

was 32 hours.

After training, we performed inference using the DiffNet

for a set of initial conditions from the one-parameter family.

Results for c = 3 are shown in Fig. 9, where we compare the

DiffNet inference result with the solution from an optimized

FEM solver (based on the Petsc library) of the inviscid Burgers

equation. While the general trend of the solution (as the

wave evolves – from left to right in the figures – and forms

shocks) is captured well, there is still room for improvement

as the more diffused nature of the ML solution indicates.

We hypothesize that using higher order Sobel filters (i.e.

computing the gradients using higher order stencils) could help

in eliminating the diffusive features of the ML solution. We

continue to explore these aspects.

Example 2: In the second example, we explore if the

DiffNet can be trained to predict solutions for a much larger

distribution of the initial conditions. We train a DiffNet to

predict solutions at 512×512 resolution, but for initial condi-

tions from c ∈ [3, 16]. At higher values of c (which represent

initial conditions exhibiting higher frequencies), we expect

the formation of multiple shocks. The traditional numerical

solutions for these initial conditions have to be carefully

performed. We set the mini-batch size to 64. This model was

trained on 8 nodes (64 processors) on Stampede2, taking 4000

epochs till convergence (see Fig. 11). The runtime for training

this model was 15 hours. Notice that the loss in this case is

significantly larger than the previous example. This is due to

two reasons: the reduced resolution (1024 → 512) and, more

importantly, the larger c space.

After training, we again performed inference using the

DiffNet for a set of initial conditions from the one-parameter

family. Results for c = 3, 5, 10, 13 are shown in Fig. 15, where

we compare the DiffNet inference result with the solution from

N c ||ug ||2 ||ufd||2 ||ufe||2 ||δgfd||2 ||δfefd||2
512 3 0.506 0.570 0.570 0.134 0.007
512 5 0.495 0.527 0.527 0.077 0.009
512 10 0.497 0.493 0.493 0.038 0.013
512 13 0.507 0.493 0.493 0.043 0.016
1024 3 0.544 0.570 0.570 0.063 0.004

TABLE VII: Norm of different solutions (denoted u) and their

differences (denoted δ). ug is the solution generated through

DeepFusion, ufd is the solution obtained using explicit time

marching with finite difference approximation; and ufe is the

“space-time” solution obtained through finite element approxi-

mation in both space and time. The differences between them:

δgfd = ug−ufd and δfefd = ufe−ufd. All norms are calculated

over the entire spatiotemporal domain

an optimized FEM solver (based on the Petsc library) of the

inviscid Burgers equation. As before, the general trend of the

solution (as the wave evolves – from left to right in the figures

– and forms shocks) is captured well, but there is still room

for improvement.

Fig. 12 and Table VII show additional, quantitative com-

parison between the DiffNet results with a stabilized Finite

Element solution (at 512×512 resolution) against a very high

resolution (2048×2048) finite difference solution. Fig. 12 plots

the solution at one time point (t = 0.2), and suggests that

stabilized finite element space-time approach is still unable

to capture the shocks, while the DiffNet is able to accurately

capture the shock without any dispersive effects. This is partic-

ularly promising as the loss function used in the DiffNet is the

simplest one possible, with significant room for improvement.

Table VII shows the L2 error norm (defined as the sum of

squared error of the solutions in space-time) of the DiffNet

and FEM solution against the high resolution FDM solution

(which we take as our ’reference’ solution). The relative error

(||δgfd||2/||ufd||2 (for the worst case of c = 3) drops from

0.23 for N = 512 to 0.11 for N = 1024 making the case for

the need for networks that produce higher resolution outputs.

Interestingly, we find that the DiffNet approach produces more

accurate results for initial conditions exhibiting more waves

(larger c). This is in contrast to what is observed in traditional

approaches (compare the last two columns of Table VII). We

find it promising that the DiffNet is able act as a general PDE

solver for a wide range of initial conditions. This strongly

suggests that, with the proper training infrastructure, it is

possible to develop truly general PDE solvers that produce

accurate solutions for general classes of PDE’s.

Effect of batch size on solution using first order (SGD)
and second order (L-BFGS) optimizers: The data paral-

lelism afforded by DeepFusion potentially allows one to use

larger batch sizes. However, it is well known that increasing

batch sizes can decrease the convergence of Stochastic Gra-

dient Descent (SGD). We explore this effect of batch size on

the training performance. Fig. 13(top) plots evolution of the

loss function with training epochs for increasing batch size

(BS) for a 64 × 64 resolution DiffNet. We clearly see some

degradation in convergence rate as the batch size is increased
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DeepFusion solution Finite element solution

Fig. 9: Inviscid Burgers’ equation solved on 1024× 1024 pixels (left) or elements (right)

Fig. 10: Loss vs. epoch for training DiffNet with domain size

1024×1024 on Stampede2 using 256 sample points and batch

size 64.

to 64. We next trained the same network using a second order

optimizer (L-BFGS) implemented in the DeepFusion frame-

work. Fig 13(bottom) shows negligible impact of increasing

batch size on convergence. As expected, the second order

method converges in fewer epochs, with similar reduction in

loss happening within 10 training epochs as compared to 150

epochs for SGD. L-BFGS optimizers require larger memory

(to evaluate the Hessian) which a distributed approach (like

DeepFusion or LBANN) can gracefully accommodate.

The increased computational overhead results in increased

time per epoch, and this is plotted in Fig. 14. While L-

BFGS takes an order of magnitude less number of epochs

to converge, each epoch is more expensive due to memory

and compute requirements from evaluating the Hessian. It is

informative also to look at the results in terms of compu-

tational time to reach a certain convergence threshold, with

L-BFGS schemes about 3× faster than the SGD scheme. This

reduction in computational time to reach a desired loss thresh-

old can be enhanced via parallelization. DeepFusion allows

Fig. 11: Loss vs. epoch for training DiffNet with domain size

512 × 512 on Stampede2 using 256 sample points and batch

size 64.
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FEM, space-time
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Fig. 12: An example of the solution profile u vs. x at the final

time (t = 0.2), compared for different methods. Resolution =

512× 512 and c = 10

parallelization of L-BFGS based training across multiple CPU
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Fig. 13: Loss vs. epoch for 64 × 64 domain DiffNet with

varying batch-size (BS). Second order optimizers (L-BFGS)

provide minimal convergence drift with higher batch-size. All

training done on 1 node of Nova

p 64× 64 128× 128
2 63.6 208.4
4 42.5 113.4
8 32.0 67.2
16 23.6 46.2

TABLE VIII: Time (in minutes) taken to complete 100 epochs

of the L-BFGS method for the 64×64 and 128×128 domain

DiffNet on different number of processors

nodes, and this training across multiple nodes proportionally

decreases the time-to-train, as shown in Table VIII

These results are very promising as they allow using second

order methods – which are less sensitive to large batch sizes –

and data parallelization to reduce time-to-solve, which in turn,

will allow us to solve such problems faster compared to SGD

based approaches.

Comparison of run-times between DiffNet and FEM
based solutions: While the training times for ML models is

admittedly long, once trained, the inference step is often very

fast. This allows one to amortize the cost of training across

multiple users and instances. The availability of a general

’NeuralPDE’ makes this a viable possibility. We quantify

this argument by comparing the time it takes for a trained

DiffNet to make a prediction (i.e. inference) with the time

it takes for a well optimized FEM solver to perform the

same prediction. Both DiffNet inference and FEM solve are

performed on one node of Stampede2. This comparison is

reported in Table IX, which shows a 40x improvement in

prediction time. We emphasize that the inference step is not

optimized, suggesting that the 40x improvement we show is a

lower bound.
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Fig. 14: Loss vs. time to solve for 64×64 domain DiffNet with

varying batch-size (BS). Second order optimizers (L-BFGS)

are substantially slower than SGD. All training done on 1

node of Nova

Domain Size FEM (seconds) DeepFusion (seconds)
512×512 23.2 3.6

1024×1024 395.6 9.8

TABLE IX: Comparison of solve time for the finite element

solution and the inference time for the DeepFusion solution

V. CONCLUSIONS

We report on a data distributed computing approach for

training large neural network architectures, especially in the

context of data-free generative models that serve as PDE

solvers. We have addressed twin challenges of GPU memory

limitations and wall-clock times for large-scale training. Key

contributions of our framework over other data-parallel ap-

proaches include loss integrity independent of the number of

processes, synchronized batch normalization, and higher-order

optimization methods. We demonstrated excellent scaling on

current supercomputers. Our software allows practitioners to

train very large models, thus enabling practical applications of

such data-free ’neuralPDE’ solvers. We believe that availabil-

ity of such approaches will democratize the ability to produce

(near) real time predictions of complex systems characterized

by PDEs. Our future goals include extension of the framework

to incorporate model parallelism for increased scaleup, as

well as apply second order strategies to train DiffNets for a

wide range of PDE’s. Other tasks include exploring (a) more

complex loss functions (e.g. variational loss), and (b) more

complex PDE’s like Navier-Stokes, where the performance of

such methods remain unclear.
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DeepFusion solution Finite element solution

Fig. 15: Contour plots of the solution to the inviscid Burgers’ equation: solutions from DiffNet (left) vs solutions from a

finite element solver (right). The initial condition is characterized by the wave number c (defined in 2). The first row presents

solution for c = 3 and subsequently for c = 5, 10 and 13 in the latter rows respectively. On the left, the image size is

512× 512 pixels, whereas on the right, the discretization is a mesh of 512× 512 bilinear quadrilateral elements.
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VII. APPENDIX

A. Batch size effect on convergence

We continue exploring the effect of batch-size on conver-

gence rates of both first order optimizers (SGD) as well as

second order optimizers (L-BFGS) both of which are imple-

mented in a data parallel way in DeepFusion. Fig. 16 plots the

loss evolution with training epochs for a 128 × 128 DiffNet

model that was trained on 1 node on Nova. These results are

consistent with those shown in Fig. 13 for a 64 × 64 reso-

lution DiffNet model, where L-BFGS optimizer is relatively

insensitive to the batch-size ranges chosen. As expected, the

second order method converges in fewer epochs, with similar

reduction in loss happening within 30 training epochs as

compared to 150 epochs for SGD. L-BFGS optimizers require

larger memory (to evaluate the Hessian) which a distributed

approach (like DeepFusion) can gracefully accommodate. The

increased computational overhead results in increased time per

epoch, and this is plotted in Fig. 17.
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Fig. 16: Loss vs. epoch for 128 × 128 domain DiffNet with

varying batch-size (BS). Second order optimizers (L-BFGS)

show faster convergence rate and provide minimal convergence

drift with higher batch-size.
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Fig. 17: Loss vs. time for 128 × 128 domain DiffNet shown

in Fig. 16
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B. Additional quantitative comparison between DiffNet and
conventional PDE solvers

In this subsection, we provide additional results over those

shown in the main text to quantitatively compare the DiffNet

inferences with conventional PDE solver technology. Figure 18

plots the solution at a particular time instance (t = 0.2) where

there is formation of shocks. Notice that the DiffNet solution

is very close to the fully resolved FDM solution for the large

wave-number case (c = 13), with increasingly large deviations

as the wave-number is decreased.
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Fig. 18: The solution profile u vs. x at t = 0.2, compared for

different methods. Resolution = 512× 512 and c values are 3
(top), 5 (middle) and 13 (bottom)
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