A 31-Feature, 80nW, 0.53mm² Audio Analog Feature Extractor based on Time-Mode Analog Filterbank Interpolation and Time-Mode Analog Rectification

Subhajit Ray, Peter R. Kinget

Columbia University, New York, NY, USA, email: subhajit.ray@columbia.edu

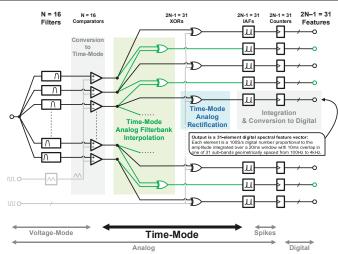
Abstract: To alleviate the feature extraction bottleneck in always-on, on-device Keyword Spotting (KWS), we propose two novel analog circuit techniques that are combined into an efficient analog feature extraction architecture: 1) Time-Mode Analog Filterbank Interpolation (TM-AFI) uses digital XOR gates to double the number of outputs of an analog filterbank, 2) Time-Mode Analog Rectification (TM-AR) uses a single digital XOR gate as an analog full-wave rectifier. Among other analog feature extractor chips using a software classifier for a KWS demo, the 31-feature, 80nW, 0.53mm² prototype is 18× more power-efficient and 3.3× more area-efficient than the most area- and power-efficient published works, respectively, while maintaining competitive >90% accuracy on 10 keywords. Motivation: Always-on, on-device KWS demands ultralow power and area. Fully-integrated KWS chips suffer from the feature extractor consuming 2.7×/2.2× more power/area than the backend classifier [1], motivating research into efficient feature extraction. Compared to digital feature extraction [2], analog [3] can be $14.6 \times$ more power-efficient, but is $10.7 \times$ less area-efficient. Simultaneously achieving power- and areaefficiency in analog feature extraction while maintaining accuracy through a backend classifier remains a challenge.

Advantages of TM-AFI: The essential architecture of analog feature extractors [3-5] has remained the same for nearly 40 years [6]: N bandpass filters followed by N rectifiers to produce N bandpass responses. By using XORs to compute subtractions between adjacent filters, TM-AFI breaks the N-to-N limitation by requiring only N/2 filters to produce N responses. This reduces filterbank power/area by $2\times/2\times$ and total power/area by $1.6\times/1.7\times$.

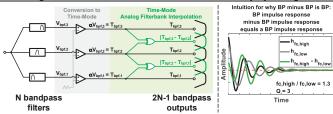
Advantages of TM-AR: The conventional diode bridge full-wave rectifier is both power- and area-hungry [7]. TM-AR replaces this with a single XOR that computes an absolute value, equivalent to full-wave rectification. This reduces rectifier power/area by $6.6 \times /2.8 \times$ (including overhead of conversion to time-mode) and total power/area by $3.7 \times /1.9 \times$.

Time-Mode Analog Signal Representation: Fig. 1 shows the architecture. After the analog audio is analyzed by a filterbank, each frequency component is compared against a triangle wave by a continuous-time comparator to convert from voltage-mode to time-mode, where an analog number is represented as a continuous-valued pulse width (Fig. 2). In this representation, an XOR gate is an efficient implementation of subtraction merged with an absolute value (Fig. 3). This property is the basis of TM-AFI and TM-AR, and, interestingly, can be linked to stochastic bitstream-based computing from the 1960s [8].

Principle of TM-AFI (Fig. 4): Each green XOR computes an absolute-valued subtraction between adjacent time-mode frequency components, merging two functions: 1) the creation of a new, interpolated component, as the subtraction between two bandpass signals is a bandpass signal, and 2) the full-wave


rectification of the interpolated component. This produces 2N-1=31 bandpass responses from N=16 bandpass filters.

Principle of TM-AR (Fig. 5): Each black XOR gate computes an absolute-valued subtraction between a "native" time-mode frequency component and a 50% duty cycle square wave. Because the latter represents a time-mode zero, the absolute-valued subtraction reduces to just an absolute value.


Integration & Conversion to Digital (Fig. 5): Next, the output duty cycle of each XOR is converted into a proportional spike rate by an integrate-and-fire (IAF) [7], and a counter integrates this spike rate by counting the number of spikes as a digital number, merging integration with conversion to digital [7]. Integration windows 20ms long with 10ms overlap are implemented using a pair of counters.

Circuit Design (Fig. 6): Selected for its power efficiency, the filter is a super source-follower (SSF) biquad [9]. To further optimize power, the output-referred noise is set equal to the input-referred offset of the comparator. With the capacitances kept the same across the bank, the center frequencies (g_m/C) are scaled geometrically from 100Hz to 4kHz via the bias current, owing to the constant g_m/I_d in deep weak inversion. Since the original SSF biquad [9] has limited Q, a crosscoupled pair is introduced to boost it to 3 because this choice results in O=3 for the interpolated responses. The comparator is a differential difference open-loop OTA. As its delay limits the min/max pulse widths, it's set to 10% of the PWM period. To efficiently reduce offset, 1 of 8 sub-comparators is selected. Measurements (Fig. 7): The 65nm LP CMOS prototype consumes 80nW from 0.6V/0.4V analog/digital supplies and 0.53mm² active area. The center left confirms that TM-AFI interpolates new responses from the native ones in the upper left, while the lower left shows that the interpolated center frequencies are between the native ones. Mismatch-induced variations are tolerated because for KWS, they can be learned by the classifier, a property exploited to reduce area. Using the Google Speech Commands (GSC) dataset [10], the chip's digital output is fed directly into a standard small-footprint software classifier [11] to achieve 91.5% accuracy on 10 keywords. Even though the max/min in a typical spectrogram is 36dB, competitive accuracy is maintained, demonstrating that KWS does not require high dynamic range from the feature extractor, a property exploited to reduce power.

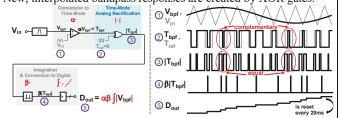

Conclusion (Fig. 6 lower right, Fig. 8): By leveraging time-mode analog signal processing, the demonstrated feature extractor chip simultaneously achieves high power- and area-efficiency while maintaining competitive accuracy through a software classifier, proving the quality of the extracted features. References: [1]J. Giraldo, VLSI, 2019. [2]W. Shan, ISSCC, 2020. [3]M. Yang, JSSC, 2021. [4]D. Wang, ISSCC, 2021. [5]D. Villamizar, TCASI, 2021. [6]N. Bui, JSSC, 1983. [7]M. Yang, ISSCC, 2018. [8]B. Gaines, AFIPS, 1967. [9]M. Matteis, JSSC, 2015. [10]P. Warden, arXiv:1804.03209, 2018. [11]R. Tang, ICASSP, 2018.

Fig. 1: Chip architecture of the analog feature extractor. Input is an analog audio signal and output is a digital spectral feature vector. Stacking feature vectors over time forms an auditory spectrogram.

Fig. 4: Principle of Time-Mode Analog Filterbank Interpolation. New, interpolated bandpass responses are created by XOR gates.

Fig. 5: Principle of Time-Mode Analog Rectification, along with channel waveforms (behaviorally-simulated). Full-wave rectification is performed by a single XOR gate.

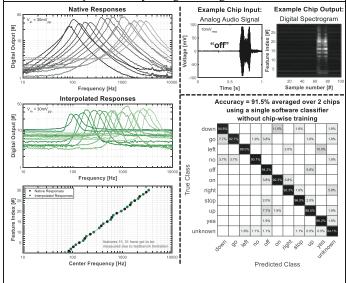


Fig. 7: Sinewave (left) and audio (right) measurement results.

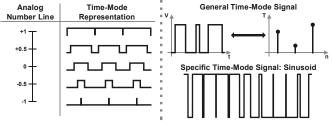


Fig. 2: Time-Mode analog signal representation used in the chip.

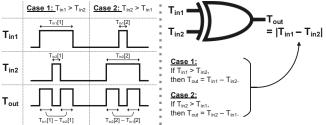
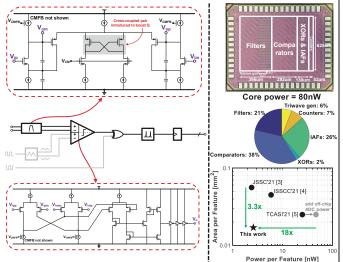



Fig. 3: In Fig. 2's signal representation, an XOR gate is an efficient implementation of subtraction merged with an absolute value.

Fig. 6: Schematics of key circuit blocks—filter, comparator—in a channel. Die photo, power breakdown, and performance plot.

		10-keyword demo		< 10-keyword demo	
		This work	TCASl'21 [5]	JSSC'21 [3]	ISSCC'21 [4]
Signal processing technique	[x]	Time-Mode	Switched-Capacitor	Nonlinear	Nonlinear + Normalization
Technology	[nm]	65	130	65	65
Input/output format	[x]	analog/digital	analog/analog	analog/events	analog/events
Off-chip ADC required?	[x]	no	yes, to interface with classifier	no	no
Num of bandpass features	[#]	31	32	16	16
Power*	[nW]	80	800 (w/o off-chip ADC) 1500 (w/ off-chip ADC ⁸)	38	94
Area	[mm ²]	0.53	0.79 ^b	0.90	0.72
Power per feature	[nW]	2.6	25.0 (w/o off-chip ADC) 46.9 (w/ off-chip ADC)	2.4	5.9
Area per feature	[mm ²]	0.017	0.025 ^b	0.056	0.045
Frequency Range	[Hz - Hz]	100 - 4k	30 - 8k	100 - 5k	100 - 5k
Bandwidth-normalized power per feature [†]	[nW]	9.5	66.2 (w/o off-chip ADC) 124.1 (w/ off-chip ADC)	7.0	17.5

no, nora opotang rippnoanon zomononanon								
Accuracy on GSC	[%]	91.5% on 10 words	82.4 - 87.4% ^c on 10 words	94.2% on 1 word	90.2% on 4 words			
Keywords used	[x]	yes, no, up, down, left, right, on, off, stop, go	yes, no, up, down, left, right, on, off, stop, go	four	N/A			
Classifier	[x]	off-chip software CNN	off-chip software RNN	off-chip software CNN	off-chip hardware SNN			
for fair comparison, power of mic pre-amp subtracted from [3], [4]								

Tealculated according to eqn used in [5]: $P_{\rm norm} = P_{\rm total} \cdot \frac{1-r}{1-r^2} \frac{r}{y_{\rm max}}$, $r = \left(\frac{r_{\rm min}}{f_{\rm max}}\right)^{N-1}$.

Fig. 8: Comparison table of audio analog feature extractor chips using off-chip classifiers for a keyword spotting application demo.