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Abstract

Although self-/un-supervised methods have led to rapid
progress in visual representation learning, these methods
generally treat objects and scenes using the same lens. In this
paper, we focus on learning representations for objects and
scenes that preserve the structure among them. Motivated by
the observation that visually similar objects are close in the
representation space, we argue that the scenes and objects
should instead follow a hierarchical structure based on their
compositionality. To exploit such a structure, we propose a
contrastive learning framework where a Euclidean loss is
used to learn object representations and a hyperbolic loss is
used to encourage representations of scenes to lie close to
representations of their constituent objects in a hyperbolic
space. This novel hyperbolic objective encourages the scene-
object hypernymy among the representations by optimizing
the magnitude of their norms. We show that when pretrain-
ing on the COCO and Openlmages datasets, the hyperbolic
loss improves downstream performance of several baselines
across multiple datasets and tasks, including image classifi-
cation, object detection, and semantic segmentation. We also
show that the properties of the learned representations allow
us to solve various vision tasks that involve the interaction
between scenes and objects in a zero-shot fashion.

1. Introduction

Our visual world is diverse and structured. Imagine taking
a close-up of a box of cereal in the morning. If we zoom out
slightly, we may see different nearby objects such as a pitcher
of milk, a cup of hot coffee, today’s newspaper, or reading
glasses. Zooming out further, we will probably recognize
that these items are placed on a dining table with the kitchen
as background rather than inside a bathroom. Such scene-
object structure is diverse, yet not completely random. In
this paper, we aim at learning visual representations of both
the cereal box (objects) and the entire dining table (scenes) in
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Figure 1. Illustration of the representation space learned by our
models. Object images of the same class tend to gather near the
center around similar directions, while the scene images are far
away in these directions with larger norms.

the same space while preserving such hierarchical structures.

Un-/self-supervised learning has become a standard
method to learn visual representations [7,12,24,26,27,51].
Although these methods attain superior performance over
supervised pretraining on object-centric datasets such as Im-
ageNet [6], inferior results are observed on images depicting
multiple objects such as Openlmages or COCO [68]. Several
methods have been proposed to mitigate this issue, but all fo-
cus either on learning improved object representations [1,68]
or dense pixel representations [39, 64, 69], instead of explic-
itly modeling representations for scene images. The object
representations learned by these methods present a natural
topology [67]. That is, the objects from visually similar
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classes lie close to each other in the representation space.
However, it is not clear how the representations of scene
images should fit into that topology. Directly applying exist-
ing contrastive learning results in a sub-optimal topology of
scenes and objects as well as unsatisfactory performance, as
we will show in the experiments. To this end, we argue that
a hierarchical structure can be naturally adopted. Consider-
ing that the same class of objects can be placed in different
scenes, we construct a hierarchical structure to describe such
relationships, where the root nodes are the visually similar
objects, and the scene images consisting of them are placed
as the descendants. We call this structure the object-centric
scene hierarchy.

The intermediate modeling difficulty induced by this
structure is the combinatorial explosion. A finite number of
objects leads to exponentially many different possible scenes.
Consequently, Euclidean space may require an arbitrarily
large number of dimensions to faithfully embed these scenes,
whereas it is known that any infinite trees can be embedded
without distortion in a 2D hyperbolic space [25]. Therefore,
we propose to employ a hyperbolic objective to regularize
the scene representations. To learn representations of scenes,
in the general setting of contrastive learning, we sample co-
occurring scene-object pairs as positive pairs, and objects
that are not part of that scene as negative samples, and use
these pairs to compute an auxiliary hyperbolic contrastive
objective. Our model is trained to reduce the distance be-
tween positive pairs and push away the negative pairs in a
hyperbolic space.

Contrastive learning usually has objectives defined on a
hypersphere [12,27]. By discarding the norm information,
these models circumvent the shortcut of minimizing losses
through tuning the norms and obtain better downstream per-
formance. However, the norm of the representation can also
be used to encode useful representational structure. In hy-
perbolic space, the magnitude of a vector often plays the
role of modeling the hypernymy of the hierarchical struc-
ture [45, 53, 59]. When projecting the representations to
the hyperbolic space, the norm information is preserved and
used to determine the Riemannian distance, which eventually
affects the loss. Since hyperbolic space is diffeomorphic and
conformal to Euclidean space, our hyperbolic contrastive
loss is differentiable and complementary to the original con-
trastive objective.

When training simultaneously with the original con-
trastive objective for objects and our proposed hyperbolic
contrastive objective for scenes, the resulting representation
space exhibits a desired hierarchical structure while leaving
the object clustering topology intact as shown in Figure 1.
We demonstrate the effectiveness of the hyperbolic objective
under several frameworks on multiple downstream tasks. We
also show that the properties of the representations allow us
to perform various vision tasks in a zero-shot way, from label

uncertainty quantification to out-of-context object detection.
Our contributions are summarized below:

1. We propose a hyperbolic contrastive loss that regular-
izes scene representations so that they follow an object-
centric hierarchy, with positive and negative pairs sam-
pled from the hierarchy.

2. We demonstrate that our learned representations trans-
fer better than representations learned using vanilla
contrastive loss on a variety of downstream tasks, in-
cluding object detection, semantic segmentation, and
linear classification.

3. We show that the magnitude of representation norms
effectively reflect the scene-objective hypernymy.

2. Method

In this section, we elaborate upon our approach to learn-
ing visual representations of object and scene images. We
start by describing the hierarchical structure between objects
and scenes that we wish to enforce in the learned representa-
tion space.

2.1. Object-Centric Scene Hierarchy

From simple object co-occurrence statistics [19,41] to
finer object relationships [30,32], using hierarchical relation-
ships between objects and scenes to understand images is
not new. Previous studies primarily work on an image-level
hierarchy by dividing an image into its lower-level elements
recursively: a scene contains multiple objects, an object has
different parts, and each part may consist of even lower-level
features [14, 29, 48]. While this is intuitive, it describes
a hierarchical structure contained in the individual images.
Instead, we study the structure presented among different
images. Our goal is to learn a representation space for im-
ages of both objects and scenes across the entire dataset.
To this end, we argue that it is more natural to consider an
object-centric hierarchy.

It is known that when training an image classifier, the
objects from visually similar classes often lie close to each
other in the representation space [67], which has become
the cornerstone of contrastive learning. Motivated by this
observation, we believe that the representation of each scene
image should also be close to the object clusters it consists
of. However, modeling scenes requires a much larger vol-
ume due to the exponential number of possible compositions
of objects. Another way to think about the object-centric
hierarchy is through the generality and specificity as often
discussed in the language literature [42,45]. An object con-
cept is general when standing alone in the visual world, and
it will become specific when a certain context is given. For
example, “a desk” is thought to be a more general concept
than ““a desk in a classroom with a boy sitting on it”.

6841



Therefore, we propose to study an object-centric hierar-
chy across the entire dataset. Formally, given a set of images
S = {51,852, ,8n}, Oi = {o},02,--- 0"} are the ob-
ject bounding boxes contained in the image s;. We define
the regions of scene R; = {rl,rZ,--- ,r"} to be partial
areas of the image s; that contain multiple objects such that
rl = Ukof, where of € O; and object k is in the region j.
We define the object-centric hierarchy T' = (V, E) to be
that V = SUOUR, where R = Rq{ U ---UR, and
O=0,U---UO,.Foru,v € V,e = (u,v) is an edge of
T if u C v or v C u. Note that the natural scene images S
are always put as the leaf nodes.

2.2. Representation Learning beyond Objects

To describe our proposed model based on this hierarchy,
we begin with a brief review of hyperbolic space and its prop-
erties used in our model. For comprehensive introductions
to Riemannian geometry and hyperbolic space, we refer the
readers to [16,34].

2.2.1 Hyperbolic Space

A hyperbolic space (H™, g) is a complete, connected Rie-
mannian manifold with constant negative sectional curva-
ture. These special manifolds are all isometric to each
other with the isometries defined as O*(m,1). Among
these isometries, there are five common models that pre-
vious studies often work on [5]. In this paper, we choose
the Poincaré ball D" := {p € R" | ||p||* < r?} as our ba-
sic model [21, 45, 59], where » > 0 is the radius of the
ball. The Poincaré ball is coupled with a Riemannian met-
ric gp(p) = W‘QE, where p € D™ and g is the
canonical metric of the Euclidean space. For p, ¢ € D, the
Riemannian distance on the Poincaré ball induced by its
metric gp is defined as follows:

(1)

dp(p,q) = 2rtanh™! ( "

||—p@q||>

where @ is the Mobius addition and it is clearly differen-
tiable. In addition, the Poincaré ball can be viewed as a
natural counterpart of the hypersphere as it allows all di-
rections, unlike the other models such as the halfspace or
hemisphere models that have constraints on the directions.
The hyperbolic space is globally differomorphic to the Eu-
clidean space, which is stated in the theorem below:

Theorem 1. (Cartan—-Hadamard). For every point p €
H™ the exponential map exp,, : T,H" ~ R" — H" is a
smooth covering map. Since H™ is simply connected, it is
diffeomorphic to R".

Specifically, for p € D™ and v € T,D" ~ R”", the
exponential map of the Poincaré ball exp,, : T,D" — D" is

defined as

B _rlll ) e
exp,(v) ==p & (tanh <r2 — ||p2) ||v||> @

The exponential map gives us a way to map the output of a
network, which is in the Euclidean space, to the Poincaré
ball. In practice, to avoid numerical issues, we clip the
maximal norm of v with r — ¢ before the projection, where
€ > 0. During the backpropagation, we perform RSGD [4]
by scaling the gradients by gp(p) ~*. Intuitively, this forces
the optimizer to take a smaller step when p is closer to the
boundary. The scaling factor is lower bounded by O(g?).

The immediate consequence of the negative curvature is
that for any point p € H'™, there are no conjugate points
along any geodesic starting from p. Therefore, the volume
grows exponentially faster in hyperbolic space than in Eu-
clidean space. Such a property makes it suitable to embed
the hierarchical structure that has constant branching factors
and exponential number of nodes. This is formally stated in
the theorem below:

Theorem 2. [25] Given a Poincaré ball D™ with an arbi-
trary dimension n > 2 and any set of points p1, -+ ,Pm €
D™, there exists a finite weighted tree (T, dr) and an embed-
ding f : T — D" such that for all i, j,

|dr (£ (23), £ (7)) = do (3, 25)| = O(log(1+v/2) log(m))

Intuitively, the theorem states that any tree can be em-
bedded into a Poincaré disk (n = 2) with low distortion.
On the contrary, it is known that the Euclidean space with
unbounded number of dimensions is not able to achieve such
a low distortion [36]. One useful intuition [53] to help un-
derstand the advantage of the hyperbolic space is given two
points p, ¢ € D" s.t. |[p] = lall

dp(p,q) = dp(p,0) +dp(0,q), as ||| = ll¢| = (3)

This property basically reflects the fact that the shortest path
in a tree is the path through the earliest common ancestor,
and it is reproduced in the Poincaré when points are both
close to the boundary.

2.2.2 Hyperbolic Contrastive Learning

Given the theoretical benefits of the hyperbolic space stated
above, we propose a contrastive learning framework as
shown in Figure 2. We adopt two losses to learn the object
and scene representations. First, to learn object representa-
tions, we use the standard normalized temperature-scaled
cross-entropy loss, which operates on the hypersphere in
Euclidean space. As shown in the top branch of Figure 2,
we crop two views of a jittered and slightly expanded object
region as the positive pairs and feed into the base and mo-
mentum encoders to calculate the object representations. We
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Figure 2. Our Hyperbolic Contrastive Learning (HCL) framework has two branches: given a scene image, two object regions are cropped
to learn the object representations with a loss defined in the Euclidean space focusing on the representation directions. A scene region as
well as a contained object region are used to learn the scene representations with a loss defined in the hyperbolic space that affects the

representation norms.

denote the output after the normalization to be z},. and z2,..
We follow MoCo [27] and leverage a memory bank to store
the negative representations 2, which are the features z2,
from the previous batches. Note that our framework can be
readily extended to other contrastive learning models. The

Euclidean loss for each image is then calculated as:
exp (z1

o euc Zguc/’r)
Leye = — 10g 1 2 1 n ’
exXp (Zeuc ’ Zeuc/T) + Zn exXp (Zeuc : Zeuc/T)

where 7 is a temperature parameter.

While the loss above aims to learn object representations,
we propose a hyperbolic contrastive objective to learn the
representations for scene images. We sample positive region
pairs v and v from object-centric scene hierarchy 7" such that
(u,v) € E. In other words, as shown in the bottom branch
of Figure 2, the objects contained in one region are required
to be a subset of the objects in the other. We sample the
negative samples of u to be N;, = {v|(u,v) ¢ E}. However,
building and sampling exhaustively from the entire hierarchy
explicitly is tricky. In practice, given an image s, we always
sample u € R U {s} to be a scene region, v € O to be an
object that occurs in u, and N, to be the other objects that
are not in u.

The pair of scene and object images are fed into the
base and momentum encoders that share the weights with
the Euclidean branch. However, instead of normalizing the
output of the encoders, we use the exponential map defined
in the equation 2 to project these features in the Euclidean
space to the Poincaré ball, which are denoted as zﬁyp and
zﬁyp. Further, we replace the inner product in the cross-
entropy loss with the negative hyperbolic distance as defined

in equation 1. We calculate the hyperbolic contrastive loss
as follows:

1,2
exp (— do (2, (th: Zigp) )

Lpyp = —log

T

dp(z} ,z2 dp(z} ,z"
(- £ >) 3 (- (2 )

When minimizing the distances of all the positive pairs, with
the intuition from equation 3, it would be beneficial to put
the nodes near the root, i.e. objects, close to the center to
achieve an overall lower loss. The overall loss function of
our model is as follows:

L= Eeuc + )\ﬁhyp7

where ) is a scaling parameter to control the trade-off be-
tween hyperbolic and Euclidean losses.

3. Experiments

3.1. Implementation Details

Pre-training phase. We pre-train on three datasets:
COCO [35], the full Openlmages labelled dataset [33](~ 1.7
million samples) and a subset of Openlmages (~ 212k) [44].
All these datasets are multi-object datasets; Openlmages
contains 12 objects on average per image and COCO con-
tains 6 objects on average. We experiment with both the
ground truth bounding box (GT) and using selective search
(SS) [61] to produce object bounding boxes in an unsuper-
vised fashion, following previous work [68]. As the goal
of this paper is not to present another state-of-the-art self-
supervised learning method, we implement our sampling
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AP® APY, APE. AP™ APY APY Pre-train  Bbox VOC IN-100 IN-1k
MoCo-v2 pre-trained on COCO: MoCo-v2 COCO - 64779 64.84 51.17
Baseline 38.5 58.1 421 348 553 373 HCL w/o Ly,  COCO SS 73.13 73.84 54.21
HCL w/o Lyyp, 39.7 60.1 434 360 573 388 HCL w/o Ly,  COCO GT 75.55 7622 54.52
HCL CC 40.6 61.1 445 37.0 583 39.7 HCL COoCoO SS  74.19 75.16 55.03
Dense-CL pre-trained on COCO: HCL COCO GT 76.51 76.74 55.63
Baseline 39.6 59.3 433 357 565 384 MoCo-v2 Openlmages -  69.95 72.80 54.12

HCL w/o Ly, 413 615 447 375 595 404
HCL 425 625 458 385 60.6 414
ORL pre-trained on COCO:

Baseline 403 60.2 444 363 573 389
HCL 414 614 455 373 585 40.0

Dense-CL pre-trained on Openlmages:

Baseline 382 589 426 348 553 378
HCL w/o Ly, 41.1 615 444 372 583 397
HCL 42.1 62.6 455 383 594 40.6

Table 1. Comparison with state-of-the-art methods. This table
shows object detection (columns 1-3) and semantic segmentation
(columns 4-6) results on COCO using MoCo-v2, Dense-CL and
ORL by pre-training on COCO and Openlmages using unsuper-
vised object bounding boxes generated by the selective search. The
first row in each sub-table shows the results using random crops on
pre-training datasets. The second and third rows set HCL/ Ly, to O,
which means we are pre-training baseline methods on just proposal
boxes. Our model consistently improves both object detection and
semantic segmentation tasks across multiple contrastive learning
baselines by pre-training on both COCO (800 epochs) and the full
Openlmages dataset (75 epochs, last 3 rows).

procedure and hyperbolic loss on top of three popular con-
trastive learning methods: MoCo-v2 [13], Dense-CL [64],
and ORL [68]. Dense-CL is a contrastive learning framework
which extracts dense features from scene images and gener-
ally achieves better object detection results than MoCo-v2.
ORL is a pipeline that learns improved object representa-
tions from scene images. We also consider HCL without the
hyperbolic loss Lyy,. This approach, which we denote as
“HCL w/o Lyy,”, adopts the same cropping strategy as HCL
but applies only a standard contrastive loss. We show that
adding the hyperbolic loss improves results under various
settings. More details on the datasets as well as training
setups can be found in Appendix A.

Downstream tasks. We evaluate our pre-trained models on
image classification, object-detection and semantic segmen-
tation. For classification, we show linear evaluation (lineval)
accuracy with MoCo-v2, i.e. we freeze the backbone and
only train the final linear layer. We test on VOC [18],
ImageNet-100 [58] and ImageNet-1k [15] datasets. For
object detection and semantic segmentation, we show re-
sults with all 3 baselines on the COCO datasets using Mask
R-CNN, following [13]. We closely follow the common

HCL w/o Ly, Openlmages SS 71.82 75.33 56.58
HCL w/o Lyyp, Openlmages GT 73.79 77.36 57.57
HCL Openlmages SS 74.31 78.14 58.12
HCL Openlmages GT 75.40 79.08 58.51

Table 2. Classification results with linear evaluation. The first
row shows the results using random crops on pre-training datasets.
In the last two rows we use our hyperbolic loss and we see improved
performance by using both Ground Truth (GT) boxes and Selective
Search (SS) boxes. HCL improves scene-level classification on the
VOC dataset, and object-level classification on ImageNet-100 and
ImageNet-1k datasets.

protocols listed in Detectron2 [66].
3.2. Main Results

Object detection and semantic segmentation. Table 1
reports the object detection and semantic segmentation re-
sults by pre-training on COCO and full Openlmages dataset
(last 3 rows) by using selective search boxes. HCL shows
consistent improvements over the baselines on COCO ob-
ject detection and COCO semantic segmentation. Although
Dense-CL and ORL improve the object-level downstream
performance over MoCo-v2 through improved object rep-
resentations or dense pixel representations, they still lack
the direct modeling of scene images. We show that learning
representations for scene images in hyperbolic space is ben-
eficial to object-level downstream performance. Note that
pre-training Dense-CL on ImageNet for 200 epochs gives
40.3 mAP [64], while pre-trainng on OpenImages for only
75 epochs with our method gives 42.1 mAP. This shows the
importance of efficient pre-training on datasets like OpenIlm-
ages.

Image classification. As shown in Table 2, HCL improves
image classification on both scene-level (VOC) and object-
level (ImageNet) datasets. When pretraining on OpenImages,
HCL improves ImageNet lineval accuracy by 0.94% points
and VOC lineval classification accuracy by 1.61 mAP. We
observe similar improvements when pretraining on COCO.
HCL improves accuracy whether we use ground truth object
bounding boxes or boxes generated by selective search. In
general, we observe a larger improvement of using HCL on
Openlmages than COCO, which supports our hypothesis
that HCL provides larger improvements on datasets with
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Figure 3. Average representation norms of images with different
number of labels in ImageNet-Real.

. Datasets
Method Indicator IN-Real COCO
MoCo Entropy 0.633 0.791
Supervised Entropy 0.671 0.793
HCL Norm 0.655 0.839
Ensemble  Entropy+Norm | 0.717 0.823

Table 3. NDCG scores of the image rankings based on the different
indicators and models, and evaluated by the number of labels per
image.

more objects per image.

3.3. Properties of Models Trained with HCL

The visual representations learned by HCL have several
useful properties. In this section, we evaluate the repre-
sentation norm as an measure of the label uncertainty for
image classification datasets, and evaluate the object-scene
similarity in terms of out-of-context detection.

3.3.1 Label Uncertainty Quantification

ImageNet [15] is an image classification dataset consist-
ing of object-centered images, each of which has a single
label. As the performance on this dataset has gradually
saturated, the original labels have been scrutinized more
carefully [3, 52, 55, 60, 62]. Prevailing labeling issues in
the validation set have been recently identified, including
labeling errors, multi-label images with only a single label
provided, and so on. Although [3] provides reassessed labels
for the entire validation set, relabeling the entire training set
may be infeasible.

Our learned representations provide a potential automatic
way to identify images with multiple labels from datasets like
ImageNet. Specifically, we first show in Figure 3 that there
is a strong correlation between the representation norms and
the number of labels per image according to the reassessed

labels. For each class of the ImageNet training set, we
use a pre-trained Openlmages model and rank the images
according to their norms. The extreme images of some
classes are shown in Figure 4 and also in the Appendix.
Images with smaller norms tend to capture a single object,
while those with larger norms are likely to depict a scene.

To quantitatively evaluate this property, we report the
NDCG metric on the ranked images as shown in Table 3.
NDCG assesses how often the scene images are ranked at the
top. As a baseline, we rank the images based on the entropy
of the class probability predicted by a classifier, which is a
widely adopted indicator of label uncertainty [11,47]. We
use both MoCo-v2 and supervised ResNet-50 as the classifier.
As shown in Table 3, using norms with HCL achieves similar
rank quality as using entropy with the supervised ResNet-50
on the ImageNet-Real dataset. In addition, when combining
two ranks using simple ensemble methods such as Borda
count, the score is further improved to 0.717. This shows
that the entropy and the norm provide complimentary signals
regarding the existence of multiple labels. For example, the
entropy indicator can be affected by the bias of the model
and the norm indicator can be wrong on the images with
multiple objects from the same class.

Compared to supervised indicators of label uncertainty,
HCL has the additional advantage that it is dataset-agnostic
and can be applied to new data without further training.
To demonstrate this benefit, we report the same metric on
the COCO validation, where we also have the number of
labels for each image. Our method achieves much better
NDCG scores than the supervised ResNet-50 as shown in
Table 3. This finding can be potentially useful to guide label
reassessment, or provide an extra signal for model training.

3.3.2 Out-of-Context Detection

Our hyperbolic loss Ly, encourages the model to capture the
similarity between the object and scene. We apply the result-
ing representations to detect out-of-context objects, which
can be useful in designing data augmentation for object de-
tection [17]. We are especially interested in out-of-context
images with conflicting backgrounds. To this end, we use the
out-of-context images proposed in the SUN(9 dataset [14].
We first compute the representations of each object and entire
scene image with that object masked out. We then calculate
the hyperbolic distance between the representations mapped
to the Poincaré ball. Some example images from this dataset
as well as the distance of each contained object are shown in
Figure 5. We find that the out-of-context objects generally
have a large distance, i.e. smaller similarity, to the overall
scene image. To quantify this finding, we compute the mAP
of the object ranking on each image and obtain 0.61 for HCL.
As a comparison, the MoCo similarity gives mAP = 0.52
and the random ranking gives mAP = 0.44.
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Figure 4. Imaes from ImaeNet training set. The 5 images on the left have the smallest representation norms aongall the images from the
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Figure 5. Out-of-context images from the SUN09 dataset. The bounding box of each object and its hyperbolic distance to the scene are
shown. Regular objects are in blue and out-of-context objects are in purple. Note that the out-of-context objects tend to have large distances.

4. Main Ablation Studies

In this section, we report the results of several important
ablation studies with respect to HCL. All the models are
trained on the subset of the Openlmages dataset and linearly
evaluated on the ImageNet-100 dataset. The top-1 accuracy
is reported.

Similarity measure and the center of the scene-object hi-
erarchy. We propose to use the negative hyperbolic distance
as the similarity measure of the scene-object pairs. As an al-
ternative, one can use cosine similarity on the hypersphere as
the measure as in the original contrastive objective. However,
this would attempt to maximize the similarity between a sin-
gle object and multiple objects. It is likely that these objects
belong to different classes, and hence this strategy impairs
the quality of the representation. As shown in Table 4, re-
placing the negative hyperbolic distance with the Euclidean
similarity impairs downstream performance. The resulting

model performs even worse than the baseline without loss
function on the scene-object pairs, demonstrating the neces-
sity of using hyperbolic distance. We also validate our choice
of an object-centric hierarchy by comparing its performance
with that of a scene-centric hierarchy [48,49] generated by
sampling the negative pairs as objects and unpaired scenes.
This scene-centric hierarchy leads to substantially lower ac-
curacy (Table 4).

Trade-off between the Euclidean and hyperbolic losses.
We adopt the Euclidean loss to learn object-object similarity
and the hyperbolic loss to learn object-scene similarity. A
hyperparameter A\ controls the trade-off between them. As
shown in Table 5, we find that a smaller A = 0.01 leads
to marginal improvement. However, we also observe that
larger As can lead to unstable and even stalled training. With
careful inspection, we find that in the early stage of the
training, the gradient provided by the hyperbolic loss can be
inaccurate but strong, which pushes the representations to be
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Distance Center IN-100 Accuracy A IN-100 Accuracy Optimizer A IN-100 Accuracy
- - 77.36 0.01 77.70 RSGD 0.1 79.08
Hyperbolic ~ Scene 79.08 0.1 79.08 RSGD 0.5 0
Hyperbolic ~ Object 76.96 0.2 78.64 SGD 0.1 70.16
Euclidean Scene 76.68 0.5 0 SGD 0.5 74.18

Table 4. Similarity measure and hierarchy center.

close to the boundary. As a result, since Riemannian SGD
divides gradients by the distance to the boundary, updates
become small and training ceases to make progress.

Optimizer. Given the observation above, we ask whether
RSGD is necessary for practical usage. We replace the
RSGD optimizer with SGD. To avoid numerical issues when
the representations are too close to the boundary, we increase
¢ from 1e® to le~!. This allows a larger \ to be used as
opposed to the RSGD. However, SGD always yields inferior
performance compared to RSGD.

5. Related Work

Representation Learning with Hyperbolic Space. Rep-
resentations are typically learned in Euclidean space. Hy-
perbolic space has been adopted for its expressiveness in
modeling tree-like structures existing in various domains
such as language [45, 46, 53], graphs [2, 8, 50], and vi-
sion [10,57]. The corresponding neural network modules
have been designed to boost the progress of such applica-
tions [9,21,37,56]. The hierarchical structure presented in
the datasets can arise from three factors that motivate the
use of hyperbolic space. The first factor is generality: the
hypernym-hyponym property is a natural feature of words
(e.g. WordNet [42]) and the hyperbolic space is extensively
exploited to learn word and image embeddings that preserve
that property [20, 38,40, 53,59, 70]. The second factor is
uncertainty: Several studies have found that applying hyper-
bolic neural network modules to different tasks leads to a
natural modeling of the uncertainty [23,31,57]. The third fac-
tor is compositionality of different basic elements to form a
natural hierarchy. Motivated by these factors, previous work
in computer vision has applied hierarchical representations
learned in the hyperbolic space to various tasks such as image
classification [31] or segmentation [65], zero-/few-shot learn-
ing [38], action recognition [40], and video prediction [57].
In this paper, we focus on learning the representations that
capture the hierarchy between the objects and scenes with
the goal of learning general-purpose image representations
that can transfer to various downstream tasks.

Self-Supervised Learning on Scenes. Self-Supervised
Learning (SSL) has made great strides in closing the perfor-
mance with supervised methods [12, 13,22] when pretrained
on the object-centric datasets like ImageNet. However, re-
cent work has shown that SSL is limited on multi-object
datasets like COCO [43, 54,64] and Openlmages [33]. Sev-

Table 5. Losses trade-off.

Table 6. RSGD versus SGD optimizers.

eral papers mitigate this issue by proposing different tech-
niques. Dense-CL [64] operates on pre-average pool features
and uses dense features on pixel level to show improved per-
formance on dense tasks such as semantic segmentation. Det-
Con [28] uses unsupervised semantic segmentation masks
to generate features for the corresponding objects in the two
views. PixContrast [69] uses pixel-to-propagation consis-
tency pretext task to build features for both dense down-
stream tasks and discriminative downstream tasks. Pixel-
to-Pixel Contrast [63] uses pixel-level contrastive learning
to learn better features for semantic segmentation. Self-
EMD [39] uses earth mover distance with BYOL [24] for
pretraining on the COCO dataset. ORL [68] uses selective
search to generate object proposals, then applies object-level
contrastive loss to enforce object-level consistency. Below-
par performance of SSL methods can be attributed to treating
scenes and objects using similar techniques, which often re-
sults in similar representations. In our work, instead of treat-
ing scenes and objects similarly, we use a hyperbolic loss,
which builds representation that disambiguates scenes and
objects based on the norm of the embeddings. Our method
not only separates scenes and objects, but also improves
downstream tasks such as image classification.

6. Conclusion

We present HCL, a contrastive learning framework that
learns visual representation for both objects and scenes in
the same representation space. The major novelty of our
method is a hyperbolic contrastive objective built on an
object-centric scene hierarchy. We show the effectiveness
of HCL on several benchmarks including image classifi-
cation, object detection, and semantic segmentation. We
also demonstrate useful properties of the representations un-
der several zero-shot settings, from detecting out-of-context
objects to quantifying the label uncertainty in the datasets
like ImageNet. More generally, we hope this paper will
encourage future work towards building a more holistic vi-
sual representation space, and draw attention to the power of
non-Euclidean representation learning.
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