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Abstract—Consider the problem of storing data in a distributed
manner over T servers. Specifically, the data needs to (i) be
recoverable from any τ servers, and (ii) remain private from
any z colluding servers, where privacy is quantified in terms of
mutual information between the data and all the information
available at any z colluding servers. For this model and under a
leakage symmetry requirement at the servers, our main results
are (i) the fundamental trade-off between storage size and the
level of desired privacy, and (ii) the optimal amount of local
randomness necessary at the encoder. As a byproduct, our
results provide an optimal lower bound on the individual share
size of ramp secret sharing schemes under a more general
leakage symmetry condition than the ones previously considered
in the literature.

I. INTRODUCTION

Secure distributed storage schemes, e.g., [1]–[4], often rely
on the idea of secret sharing as introduced in [5], [6] – we
refer to [7] for a comprehensive literature review on secret
sharing. Hence, there is a fundamental lower bound on the
required storage space necessary to securely store information
in a distributed manner. Specifically, in any threshold secret
sharing scheme, the total amount of information that needs to
be stored must at least be equal to the entropy of the secret
times the number of participants, see e.g., [8], and it is thus
impossible to reduce the storage space without any changes to
the model assumptions.

In this paper, we propose to determine the optimal cost
reduction, in terms of storage space, that can be obtained
in exchange of tolerating a controlled amount of reduced
privacy. Specifically, we focus on a setting where a file F
needs to be stored at T servers. The file must be recoverable
from τ servers, and needs to remain private from any z
colluding servers. Here, privacy is quantified in terms of
mutual information between the data and all the information
available at any z colluding servers. In particular, we introduce
a parameter α ∈ [0, 1], to be chosen by the users, and require
that no more than a fraction α of the file can be learned by a set
of z colluding users. As a function of the parameters (τ, z, α),
under the assumption of leakage symmetry, i.e., when the
information leakage about the file at a given set of colluding
servers only depends on the cardinality of the set and not on
the identities of the servers among this set, we establish the

This work was supported in part by NSF grants CCF-2201824 and CCF-
2201825.

optimal individual share size for each server. Secret sharing
schemes that satisfies such a leakage symmetry are sometimes
referred to as uniform secret sharing schemes, e.g., [9], [10].
A major difference between [9], [10] and our work is that,
in [9], [10], optimal individual share sizes are derived for a
fixed access function, i.e., the information leakage about the
file tolerated at a given set of colluding servers is a fixed
and given value. In contrast, in our setting we derive optimal
individual share sizes for secret sharing schemes whose access
functions are not fixed but are allowed to belong to a set of
access functions, indeed, in our setting, only two points of the
access functions are fixed as parameters: one point indicates a
reconstruction threshold τ , another point indicates a maximum
number of colluding servers z, and all the other points of the
access function are optimized to minimize the share sizes. This
difference introduces an optimization problem over a set of
access functions to determine optimal individual share sizes
that we solve in this study. As a byproduct of our results,
when the privacy parameter is α = 0, i.e., perfect privacy is
required, we prove that among all uniform ramp secret sharing
schemes, the ones that have a linear access function have the
minimum individual share size.

We note that the idea of trading storage space against
privacy is also closely related to non-perfect secret sharing [9]–
[11], including ramp secret sharing with linear [12], [13] or
non-linear access functions [14], [15]. Similar to our previous
comment, these settings have been studied for fixed access
functions, whereas, in this study, to minimize share sizes, we
consider secret sharing schemes with access functions allowed
to belong to a set of access functions.

The remainder of the paper is organized as follows. We
formulate our problem statement and review known results
in Section II. We present our main results in Section III
and relegate the proofs to Section IV. Finally, we provide
concluding remarks in Section V. Some proofs are omitted
due to space constraints.

II. PROBLEM STATEMENT AND REVIEW OF KNOWN
RESULTS

Notation: Let N, R, and Q be the sets of natural, real, and
rational numbers, respectively. For a, b ∈ R, define Ja, bK ,
[bac, dbe] ∩ N and [a]+ , max(0, a). Consider two arbitrary
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sets S and T , a sequence of elements xt ∈ S, t ∈ T , indexed
by the set T is written as (xt)t∈T .

A. Problem statement

Consider T > 2 servers indexed by T , J1, T K. For t ∈ T ,
define [T ]>t as the set of all the subsets of T that have a
cardinality larger than or equal to t, i.e., [T ]>t , {S ⊂ T :
|S|> t}. Similarly, define [T ]6t , {S ⊂ T : |S|6 t} and
[T ]=t , {S ⊂ T : |S|= t}.

Definition 1. Let (λt)t∈T ∈ NT , ρ ∈ N, and τ ∈ T . A
(τ, (λt)t∈T , ρ) coding scheme consists of
• A file F ∈ {0, 1}|F |;
• Local randomness in the form of a sequence R of ρ bits

uniformly distributed over {0, 1}ρ and independent of F ;
• T encoders (et)t∈T , where for t ∈ T ,

et : {0, 1}|F | × {0, 1}ρ → {0, 1}λt ,
(F,R) 7→Mt,

which takes as input the file F and the local randomness
R, and outputs the sequence Mt, referred to as share in
the following, of length λt ∈ N. λt is referred to as share
size in the following.

• T servers, where Server t ∈ T stores Mt. In the
following, for any subset S ⊆ T of servers, we use the
notation MS , (Mt)t∈S .

Definition 2. For τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K,
a (τ, (λt)t∈T , ρ) coding scheme is (α, z)-private if

max
S∈[T ]>τ

H(F |MS) = 0, (Recoverability) (1)

max
S∈[T ]6z

I(F ;MS)

H(F )
6 α, (Privacy). (2)

Requirement (1) means that any subset of τ or more
servers can reconstruct the file F . Note that since conditioning
reduces entropy, it is sufficient to take the maximization over
S ∈ [T ]=τ in (1). Requirement (2) means that any subset
of servers with size smaller than or equal to z must not
learn more than αH(F ) bits of information about F . In the
following, τ is referred to as reconstruction threshold, α is
referred to as privacy leakage parameter, and z is referred to
as privacy threshold. The setting is illustrated in Figure 1 when
(T, τ, z) = (3, 3, 2).

Remark. In Definition 2, α is restricted to be a rational
number. However, note that by density of Q in R, for any
β ∈ [0, 1], for any ε > 0, there exists α ∈ Q ∩ [0, 1] such that
|α− β|6 ε.

Definition 3. Let τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K.
Then, for t ∈ T , define

λ?t (α, z, τ) , min{λt ∈ N : there exists an (α, z)-private

(τ, (λt′)t′∈T , ρ) coding scheme

for some ρ ∈N and (λt′)t′∈T \{t} ∈NT−1},
ρ?(α, z, τ) , min{ρ ∈ N : there exists an (α, z)-private
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Fig. 1: Secure distributed storage (a) and retrieval (b) with
privacy leakage for T = 3 servers, reconstruction threshold
τ = 3, privacy threshold z = 2, and privacy leakage parameter
α. Mi is stored at Server i ∈ {1, 2, 3} and created from the
File F and the local randomness R available at the encoder.

(τ, (λt)t∈T , ρ) coding scheme

for some (λt)t∈T ∈NT }.

For fixed T , α, τ , and z as in Definition 3, our objective in
this paper is to characterize the optimal storage size λ?t (α, z, τ)
at Server t ∈ T , and the optimal amount of local randomness
needed at the encoder ρ?(α, z, τ).

B. Previous results

The special case α = 0 has been studied in the literature
and corresponds to ramp secret sharing [12], [13]. Specifically,
by choosing α = 0 and z = τ − L, for some L ∈ J1, τ − 1K,
the problem statement of Section II-A describes a so-called
(τ, L, T ) ramp secret sharing scheme. Additionally, for ramp
secret sharing, we have, e.g., [16], [17],

ρ?(α = 0, z = τ − L, τ) = τ − L
L

H(F ),

and the optimal size of the sum of the T shares is T
LH(F ).

However, as remarked in [17], in general, one does not have
λ?t (α = 0, z = τ − L, τ) = 1

LH(F ),∀t ∈ T , as for some t ∈
T , the share size could be zero. For this reason, [17] considers
linear ramp secret sharing schemes, where the leakage on the
file F for a set S of colluding servers scales linearly with the
size of S between τ − L to τ . In other words, a linear ramp
secret sharing satisfies the condition

∀S ∈ [T ]>τ−L+1 ∩ [T ]6τ−1, H(F |MS) =
τ − |S|
L

H(F ).

(A1)

For such linear ramp secret sharing schemes, [17] establishes
the following optimal individual share size:

λ?t (α = 0, z = τ − L, τ) = 1

L
H(F ), ∀t ∈ T .

Remark that the definition of linear secret sharing schemes
means that a fixed value is assigned to the information leakage
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at a given set of colluding servers, i.e., (A1) can be rewritten as

∀S∈[T ]>τ−L+1∩ [T ]6τ−1, I(F ;MS) =
|S|−(τ − L)

L
H(F ).

III. MAIN RESULTS

A. Preliminary discussion of leakage symmetry conditions

For any τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K, we will
establish the optimal individual share size λ?t (α, z, τ) for any
t ∈ T under the following leakage symmetry condition (A2)

∀t ∈ T ,∃Ct ∈ R+,∀S ∈ [T ]=t, I(F ;MS)
H(F )

= Ct, (A2)

where, by convention, we define C0 , 0. Condition (A2)
means that when considering a subset of servers S ⊆ T , the
privacy leakage about F , i.e., I(F ;MS), must only depend on
the cardinality of S and not the specific members in S. Note
that after normalization by H(F ), I(F ;MS)

H(F ) ∈ [0, 1] for any
S ⊆ T . Note also that, by (2), we must have Ct 6 α for any
t ∈ J1, zK.

In the the special case α = 0, observe that Condition (A2)
is more general than Condition (A1), which is reviewed in
Section II-B and used to derive the optimal size of individual
share for linear secret sharing schemes. Indeed, Condition (A1)
is recovered by setting Ct ,

t−(τ−L)
L for t ∈ Jτ −L+1, τ −

1K in Condition (A2) with L , τ − z. Hence, when α =
0, Condition (A2) describes a class of ramp secret sharing
schemes that contains linear ramp secret sharing schemes.

Note that the leakage symmetry condition (A2) is introduced
under the term uniform secret sharing in [9], where the
adjective uniform is used in [9] to reflect that (A2) holds.
In [9], the optimal share size is established when the constants
(Ct)t∈T in (A2) are fixed. By contrast, in this paper, we
are interested in finding the constants (Ct)t∈T that minimize
the individual share size and the necessary amount of local
randomness at the encoder. To this end, we will carry an
optimization over all possible secret sharing schemes that
satisfy the leakage symmetry condition (A2).

B. Results

We first establish in Theorem 1 the optimal individual
share size and optimal amount of local randomness under
the leakage symmetry condition (A2). We then derive three
corollaries from Theorem 1 that recover or extend known
results, as outlined below.

Theorem 1. Let τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K.
Suppose that the leakage symmetry condition (A2) holds. Then,
for any t ∈ T , we have

λ?t (α, z, τ)

H(F )
= max

(
1− α
τ − z

,
1

τ

)
=

{
1−α
τ−z if α < z

τ
1
τ if α > z

τ

,

ρ?(α, z, τ)

H(F )
=

[z − τα]+

τ − z
=

{
z−τα
τ−z if α < z

τ

0 if α > z
τ

.

Proof. The achievability proof of Theorem 1 relies on ramp
secret sharing and is omitted due to space constraints. The
converse proof of Theorem 1 is presented in Section IV. �

Corollary 1. Assume that the privacy leakage is α = 0 and the
privacy threshold is z = τ −1. Observe from (1) and (2) that,
in this case, Condition (A2) is always satisfied, in particular,
Ct = 0 when t ∈ J1, τ − 1K, and Ct = 1 when t ∈ Jτ, T K.
Then, by Theorem 1, we have

λ?t (α, z, τ)

H(F )
= 1,∀t ∈ T

ρ?(α, z, τ)

H(F )
= τ − 1.

Hence, we recover the well-known fact, e.g., [8, Th. 1], that
the optimal share size is the entropy of F for perfect threshold
secret sharing, first introduced in [5], [6]. Note that, in this
special case, λ?t (α,z,τ)

H(F ) , t ∈ T , is independent of τ , which is
not true in general.

Corollary 2. Suppose that the leakage symmetry condi-
tion (A2) holds. Assume that the privacy leakage is α = 0 and
the privacy threshold is z = τ − L, for some L ∈ J1, τ − 1K.
Then, by Theorem 1, we have

λ?t (α, z, τ)

H(F )
=

1

L
,∀t ∈ T

ρ?(α, z, τ)

H(F )
=
τ − L
L

.

Hence, it recovers the result in [16], [17], for (τ, L, T ) linear
ramp secret sharing schemes, i.e., secret sharing schemes that
satisfy Condition (A1), and generalizes it to the larger class of
uniform secret sharing schemes, i.e., secret sharing schemes
that satisfy Condition (A2). The result can also be interpreted
as follows: Among all uniform secret sharing schemes, linear
secret sharing schemes are optimal in terms of individual share
size and local randomness necessary at the encoder.

Corollary 3. Assume that the reconstruction threshold is τ =
T , the privacy threshold is z = T −1, and the Condition (A2)
holds. Then,

λ?t (α, z, τ)

H(F )
=

{
1− α if α < 1− 1

T
1
T if α > 1− 1

T

,∀t ∈ T

ρ?(α, z, τ)

H(F )
=

{
T (1− α)− 1 if α < 1− 1

T

0 if α > 1− 1
T

,

which recovers the results found in [18] and generalize them
to the case where the shares are not assumed to be of equal
size in the problem statement.

IV. CONVERSE PROOF OF THEOREM 1

Under the leakage symmetry Condition (A2), we prove
lower bounds on the individual share size and the necessary
amount of local randomness at the encoder in Sections IV-A
and IV-B, respectively.
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A. Lower bound on individual share size

Let τ ∈ T , α ∈ [0, 1], z ∈ J1, τ−1K, and consider an (α, z)-
private (τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈ NT ,
ρ ∈ N, as defined in Definition 2 under the leakage symmetry
Condition (A2). In Sections IV-A1 and IV-A2, we prove that
for any t ∈ T ,

λt
H(F )

>
1− α
τ − z

, (3)

and
λt

H(F )
>

1

τ
, (4)

respectively. We will thus deduce from (3) and (4) that for any
t ∈ T ,

λt
H(F )

> max

(
1− α
τ − z

,
1

τ

)
=

{
1−α
τ−z if α < z

τ
1
τ if α > z

τ

. (5)

1) Proof of the first lower bound (3) on λt: Fix t ∈ T . For

i ∈ Jz, τ − 1K, define Si ,

{
J1, iK if t > i

J1, i+ 1K\{t} if t 6 i
and

Sτ , Sτ−1 ∪ {t}. Then, for i ∈ Jz + 1, τ − 1K, we have

H(Mt|MSi)
(a)
= H(MtF |MSi)−H(F |MSiMt)

(b)
= H(F |MSi) +H(Mt|FMSi)−H(F |MSiMt) (6)
(c)
= (1− Ci)H(F ) +H(Mt|FMSi)− (1− Ci+1)H(F )

= (Ci+1 − Ci)H(F ) +H(Mt|FMSi), (7)

where
(a) and (b) hold by the chain rule;
(c) holds for some constants Ci and Ci+1 by (A2).
Next, we have

H(Mt|MSτ )
(a)
= H(F |MSτ ) +H(Mt|FMSτ )−H(F |MSτMt)

(b)
= H(Mt|FMSτ )
(c)
= (Cτ+1 − Cτ )H(F ) +H(Mt|FMSτ ), (8)

where
(a) holds as in (6);
(b) holds by (1);
(c) holds by defining Cτ+1 , Cτ = 1.
We also have

H(Mt|MSz )
(a)
= H(F |MSz ) +H(Mt|FMSz )−H(F |MSzMt)

(b)

> (1− α)H(F ) +H(Mt|FMSz )− (1− Cz+1)H(F )

= (Cz+1 − α)H(F ) +H(Mt|FMSz ), (9)

where
(a) holds as in (6);

(b) holds by (2) and (A2).
In the following, for convenience, we define Cz , α. Next,
we have

H(Mt)

(a)

> H(Mt|MSz ) (10)
(b)
= H(Mt|MSz )−H(Mt|MSτ )

=

τ−1∑
i=z

(
H(Mt|MSi)−H(Mt|MSi+1

)
)

(c)

>
τ−1∑
i=z

[(Ci+1 − Ci)H(F ) +H(Mt|FMSi)

−(Ci+2 − Ci+1)H(F )−H(Mt|FMSi+1
)
]+

(d)

> H(F )

τ−1∑
i=z

[(Ci+1 − Ci)− (Ci+2 − Ci+1)]
+

(e)
= H(F )

τ∑
i=z+1

[(φ(i)− φ(i− 1))− (φ(i+ 1)− φ(i))]+

(f)

> H(F )min
φ∈F

τ∑
i=z+1

[(φ(i)− φ(i− 1))− (φ(i+ 1)− φ(i))]+

(11)

where
(a) holds because conditioning reduces entropy;
(b) holds because t ∈ Sτ ;
(c) holds because H(Mt|MSi)−H(Mt|MSi+1) > 0 (condi-

tioning reduces entropy and Si ⊂ Si+1) and by (7), (8),
(9);

(d) holds because conditioning reduces entropy;
(e) holds with the function φ : Jz, τ + 1K → [0, 1] defined

such that φ(i) = Ci for i ∈ Jz, τ + 1K;
(f) holds with the minimum taken over the set F of all

the functions φ : Jz, τ + 1K → [0, 1] that are non-
decreasing (by (A2) because for any S ⊂ S ′ ⊂ T ,
I(F ;MS)
H(F ) 6 I(F ;MS′ )

H(F ) ) and such that φ(z) = α (because
Cz = α), φ(τ+1) = φ(τ) = 1 (because Cτ+1 = Cτ = 1).

We now lower bound the minimum in the right-hand side
of (11). Let φ ∈ F and let φ+ be the concave envelope
of φ over Jz, τ + 1K, i.e., for i ∈ Jz, τ + 1K, φ+(i) ,
min{ψ(i) : ψ > φ, ψ is concave}. Note that φ+(z) = φ(z)
and φ+(τ + 1) = φ(τ + 1).

Next, we have
τ∑

i=z+1

[(φ(i)− φ(i− 1))− (φ(i+ 1)− φ(i))]+

(a)

>
τ∑

i=z+1

(φ+(i)− φ+(i− 1))− (φ+(i+ 1)− φ+(i))) (12)

= φ+(z + 1)− φ+(z) + φ+(τ + 1)− φ+(τ)
(b)
= φ+(z + 1)− φ+(z)
(c)

>
1− α
τ − z

, (13)
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where

(a) can be proved as in [19], details are omitted due to space
constraints;

(b) holds because φ+(τ + 1) = φ+(τ) = 1;
(c) holds because φ+(z+1)−φ+(z) > (φ+(τ)−φ+(z))/(τ−

z) by concavity of φ+ and where we have used that
φ+(τ) = 1 and φ+(z) = φ(z) = α.

Finally, we have

λt > H(Mt)

> H(F )
1− α
τ − z

,

where the last inequality holds by (11) and (13), which is valid
for any φ ∈ F .

2) Proof of the second lower bound (4) on λt: Note that
in the proof of (3), one can substitute the variable z by zero
such that one can show

λt > H(Mt)

> H(F )(φ+(1)− φ+(0))

> H(F )
1

τ
,

where the last inequality holds because φ+(1) − φ+(0) >
(φ+(τ) − φ+(0))/τ by concavity of φ+ and where we have
used that φ+(τ) = 1 and φ+(0) = 0.

B. Lower bound on the amount of local randomness

Let τ ∈ T , α ∈ [0, 1], z ∈ J1, τ−1K, and consider an (α, z)-
private (τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈ NT ,
ρ ∈ N, as defined in Definition 2 under the leakage symmetry
Condition (A2). Then, we have

ρ+H(F )

(a)
= H(R) +H(F )

(b)
= H(RF )

(c)

> H(MT )

(d)
= H(MJ1,zK) +H(MT \J1,zK|MJ1,zK)

(e)
=

z∑
t=1

H(Mt|MJ1,t−1K) +H(MT \J1,zK|MJ1,zK)

(f)

>
z∑
t=1

H(Mt|MSz,t) +H(MT \J1,zK|MJ1,zK)

(g)

> z
1− α
τ − z

H(F ) +H(MT \J1,zK|MJ1,zK)

(h)
= z

1− α
τ − z

H(F ) +H(MT \J1,zKF |MJ1,zK)

−H(F |MT \J1,zKMJ1,zK)

(i)

> z
1− α
τ − z

H(F ) +H(F |MJ1,zK)

(j)

> z
1− α
τ − z

H(F ) + (1− α)H(F )

= τ
1− α
τ − z

H(F ), (14)

where
(a) holds by uniformity of R;
(b) holds by independence between F and R;
(c) holds because MT is a deterministic function of (R,F );
(d) and (e) hold by the chain rule;
(f) holds because conditioning reduces entropy and we have

defined Sz,t , J1, z + 1K\{t} for t ∈ J1, zK;
(g) holds because for any t ∈ J1, zK, H(Mt|MSz,t) >

1−α
τ−zH(F ), by the converse proof of Theorem 1 starting
from (10);

(h) holds by the chain rule;
(i) holds because H(F |MT \J1,zKMJ1,zK) = H(F |MT ) =

0 by (1), and H(MT \J1,zKF |MJ1,zK) >
H(MT \J1,zK|MJ1,zK) by the chain rule and positivity of
conditional entropy;

(j) holds by (2).
Finally, from (14), we have

ρ >

(
τ
1− α
τ − z

− 1

)
H(F )

=
z − τα
τ − z

H(F ),

and since we also have ρ > 0, we conclude

ρ

H(F )
>

[z − τα]+

τ − z
=

{
z−τα
τ−z if α < z

τ

0 if α > z
τ

.

V. CONCLUDING REMARKS

We considered a setting where a file must be stored in L
servers such that: (i) any τ servers that pool their information
together can reconstruct the file, and (ii) any z servers cannot
learn more than a fraction α ∈ [0, 1] of the file, where τ , z,
and α are parameters to be chosen by the users. This setting
generalizes ramp secret sharing in that information leakage
about the file is allowed up to a fraction α, and goes beyond
existing works on uniform secret sharing by considering share
size optimization over a set of access functions rather than
for a fixed access function. Specifically, for given parameters
τ , z, α, and under the leakage symmetry assumption that
any set of colluding servers must have the same information
leakage about the file that any other set of colluding servers
of same size, we derived the optimal individual share size at
each server. As a byproduct, in the case α = 0, our results
prove that among all uniform secret sharing schemes for our
model, linear ramp secret sharing schemes require the smallest
individual share size at the servers.
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