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Abstract— Consider Private Information Retrieval (PIR),
where a client wants to retrieve one file out of K files that are
replicated in N different servers and the client selection must
remain private when up to T servers may collude. Additionally,
suppose that the client has noisy side information about each
of the K files, and the side information about a specific file is
obtained by passing this file through one of D possible discrete
memoryless test channels, where D ≤ K. While the statistics of
the test channels are known by the client and by all the servers,
the specific mapping M between the files and the test channels is
unknown to the servers. We study this problem when the client
wants to preserve the privacy of its desired file selection and
the mapping M. For this problem setup, we derive the optimal
download rate. Our problem setup generalizes PIR with private
noiseless side information and PIR with private side information
under storage constraints.

I. INTRODUCTION

PIR refers to a problem where a client wishes to download,
as efficiently as possible, one of the K files that are replicated
among a set of distributed servers such that the servers cannot
learn anything about the client’s file selection [1], [2].

The PIR problem was studied in [3] from an information-
theoretic point of view to characterize the maximum number
of bits of desired information that can be retrieved privately
per bit of downloaded information. In [3], the authors showed
that this quantity is (1+1/N+1/N2+ · · ·+1/NK−1) when a
client wishes to retrieve one of the K files that are distributed
in N replicated and non-colluding servers. This problem was
subsequently extended to various scenarios. [4] considered a
PIR problem where T of the N servers may collude and
some of the servers may not respond. [5]–[7] studied PIR with
N non-colluding servers, where each server stores an MDS-
coded version of the K files. [8], [9], extended the results to
symmetric PIR, in which the privacy of both the client and
the servers is considered.

A. Overview of the setting studied in this paper

In this paper, we study a PIR problem where the client
wants to retrieve one of the K files that are replicated in N
servers and T of these servers may collude. As reviewed in the
next section, so far, only PIR with noiseless side information,
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which means that the client has access to a subset of the files
or portions of each file and their corresponding positions in the
original files, has been studied in the literature. By contrast,
in our problem setting, the client has a noisy version of each
file which is obtained by passing each file through a discrete
memoryless test channel. As depicted in Fig. 1, we assume that
there are D ≤ K different test channels whose statistics are
public knowledge and known by the client and the servers. We
denote the mapping between the files and the test channels by
M. We study this problem when the client wants to preserve
the privacy of both the intended file and the mapping M, and
we derive the optimal download rate.

B. Related works

As identified in [10], three main models for PIR with side
information have been studied in the literature, which are
summarized in the following.

• PIR with side information globally known by all the ter-
minals: The effect of side information on the information-
theoretic capacity of the PIR problem was first studied
in [11], where the author considers a PIR problem in
which a client wishes to privately retrieve one out of K
files from N replicated non-colluding servers. Specifi-
cally, in [11], the client has a local cache that can store
any function of the K files.

• PIR with non-private side information, where the privacy
of the side information is not required: The single-server
PIR problem where the client has access to a subset of the
files and wants to protect only the identity of the desired
file, is introduced and solved in [12]. An achievability
result for the multiserver case is also derived in [12],
and was later shown to be optimal in [13]. Single-server
PIR when the client knows M files out of K files, or a
linear combination of M files, has further been studied
in [14]–[16] under various scenarios. Also, a multiserver
PIR when the client has a noisy version of the desired
file is studied in [17].

• PIR with private side information, where the joint privacy
of the file selection and the side information is required:
[12] derived an achievable rate region for N replicated
and non-colluding servers. PIR from N replicated and
non-colluding servers, where a cache-enabled client pos-
sesses side information, in the form of uncoded portions

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 1538

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-7

55
4-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
54

71
3.

20
23

.1
02

06
73

3

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 10,2023 at 16:29:39 UTC from IEEE Xplore.  Restrictions apply. 



of the files, that is unknown to the servers, is studied
in [18]. Also, PIR from N replicated and non-colluding
servers when the client knows M files out of K files as
side information, and each server knows the identity of
a subset of the side information files, is studied in [19].
In [10], the authors studied the PIR problem where the
client wishes to retrieve one of the K files from N
replicated servers, when T of the servers may collude,
and the client has access to M files in a noiseless manner.
This problem is extended to the case where the client
wants to retrieve multiple files privately in [20].

Difference between our model and previous models: In
this paper, we focus on PIR with private side information.
Note that the side information in the PIR problems in [10]–
[16], [18]–[22] is always noiseless, in the sense that all the
side information available at the client corresponds to sub-
sequences of each file and the client knows the corresponding
symbol positions in the original files. By contrast to [10]–
[16], [18]–[22], the side information in this paper is noisy, for
instance, if the test channels are Binary Symmetric Channels
(BSCs), then the client does not know which information bits
have been flipped by the BSCs and which ones have not been
flipped.

Previous works recovered as special case of our model: The
problem studied in this paper subsumes the PIR problem [3],
the PIR problem with colluding servers [4], the PIR problem
with noiseless private side information [12, Theorem 2], the
PIR problem with private side information under storage
constraints [18], and the PIR problem with colluding servers
and noiseless private side information [10] as special cases.

II. NOTATION

Let N∗ be the set of positive natural numbers, and R be
the set of real numbers. For any a, b ∈ N∗ such that a ≤ b,
[a : b] denotes the set {a, a + 1, . . . , b}, [a] denotes the set
{1, 2, . . . , a}. Random variables are denoted by capital letters
and their realizations by lower case letters. Superscripts denote
the dimension of a vector, e.g., Xn. For a set of indices I ⊂
N∗, XI denotes (Xi)i∈I . EX [·] is the expectation with respect
to the random variable X . The cardinality of a set is denoted
by | · |. For a mapping F : A → B, the preimage of b ∈ B by
F is denoted as F−1(b) ≜ {a ∈ A : F(a) = b}. For D ∈ N∗
and a mapping F : [D] → R, we represent the domain and
co-domain of F as a matrix of dimension 2×D as

F =

(
1 2 . . . D

F(1) F(2) . . . F(D)

)
.

III. PROBLEM STATEMENT

Consider a client and N servers, where up to T of these N
servers may collude, and each server has a copy of K files
of length n. Additionally, consider a set of D test channels,
whose transition probabilities are known to the client and the
servers, and whose outputs take value in finite alphabets. We
assume that the client has noisy side information about all
the K files in the sense that each file is passed through one
of the D test channels, and the output of this test channel is

. . .
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Fig. 1. PIR with private noisy side information and T -colluding servers,
where the side information about a specific file is obtained by passing this
file through one of D possible discrete memoryless test channels

(
C(i)

)
i∈[D]

,
where D ≤ K, i.e., for j ∈ [K], there exists some i ∈ [D] such that Y n

j is
the output of channel C(i) when Xn

j is the input. Here,
(
Xn

i

)
i∈[K]

are the
K files that are replicated in N servers, (Qi)i∈[N ] are the queries for the
servers, and (Ai)i∈[N ] are the corresponding answers of the servers. Z is
the index of the client’s file selection and Xn

Z is the file desired by the client.

available at the client but not the servers, as depicted in Fig. 1.
The mapping M between the files and the test channels is not
known at the servers. The objective of the client is to retrieve
one of the files such that the index of this file and the mapping
M are kept secret from the servers.

A. Problem definitions

Definition 1. Consider K,n,N,D ∈ N∗, (di)i∈[D] ∈ ND
∗

such that
∑D

i=1 di = K, and D distinct test channels(
C(i)

)
i∈[D]

, with C(i) ≜ (X , P
(i)
X|Y ,Yi), where X and Yi,

i ∈ [K], are finite alphabets. Without loss of generality, assume
that H(U |Vi) ≤ H(U |Vj), for i, j ∈ [D] such that i ≤ j,
where U is uniformly distributed over X and Vi and Vj are
the outputs of C(i) and C(j), respectively, when U is the
input. A PIR protocol with private noisy side information and
parameters

(
K,n,N,D, (di)i∈[D] ,

(
C(i)

)
i∈[D]

)
consists of,

• N servers;
• K independent random sequences Xn

[K] uniformly dis-
tributed over Xn, which represent K files shared at each
of the N servers;

• D distinct test channels
(
C(i)

)
i∈[D]

;
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• a mapping M chosen at random from the set
M ≜

{
M : [K] → [D] : ∀i ∈ [D],

∣∣M−1(i)
∣∣ = di

}
;

this mapping is only known at the client and not at the
servers;

• for each file Xn
i , where i ∈ [K], the client has access to

a noisy version of Xn
i , denoted by Y n

i,M(i), which is the
output of the test channel C(M(i)) when Xn

i is the input;
• the random variable Z is uniformly distributed over [K]

and represents the index of the file that the client wishes
to retrieve, i.e., the client wants to retrieve the file Xn

Z .
• a stochastic and one-to-one query function Fi : [K] ×

M × Yn
[K] → Qi, for i ∈ [N ], where Qi is a finite

alphabet;
• for i ∈ [N ], a deterministic answer function Ei : Qi ×

XnK →
[
2nR(Qi)

]
;

• a decoding function D : [K] × M ×
[
2n

∑N
i=1 R(Qi)

]
×

YnK → Xn;

and operates as follows,

1) the client creates the queries Qi ≜ Fi

(
Z,M,Yn

[K],M
)
,

where Yn
[K],M ≜

(
Y n
i,M(i)

)
i∈[K]

, and sends it to Server

i ∈ [N ]; we assume that the queries must be of negligible
length compared to the file length n, i.e., log |Qi| = o(n),
for i ∈ [N ];1

2) then, for all i ∈ [N ], Server i creates the answer Ai ≜
Ei
(
Qi,X

n
[K]

)
, where Xn

[K] ≜ (Xn
i )i∈[K], and sends it to

the client; therefore,

H
(
Ai

∣∣Qi,X
n
[K]

)
= 0, ∀i ∈ [N ]; (1)

3) finally, the client computes an estimate of Xn
Z as

D
(
Z,M,A[N ],Y

n
[K],M

)
, where A[N ] ≜ (Ai)i∈[N ].

Therefore, the probability of error at the client is,

Pe ≜ lim sup
n→∞

P
[
D
(
Z,M,A[N ],Y

n
[K],M

)
̸= Xn

Z

]
. (2)

R
(
Q[N ]

)
≜
∑N

i=1 R (Qi), where Q[N ] ≜ (Qi)i∈[N ], is
the rate of the PIR protocol and is random with respect to
Q[N ], which makes the protocol a variable length coding
scheme. We also define the expected rate of the protocol as
R ≜ EQ[N]

[R
(
Q[N ]

)
].

We keep the index of the desired file Z and the mapping
M private from the servers.

Definition 2 (CPIR-PNSI capacity). An expected rate R ∈ R+

is achievable with private noisy side information, when up to

1When D = 1 and the test channel is a Binary Erasure Channel (BEC)
with parameter ϵ1 = 1, or when D = 2 and the test channels are BECs
with parameters ϵ1 = 0 and ϵ2 = 1, which correspond to PIR without side
information in [4] and PIR with side information in [10], respectively, it is
shown in [4], [10] that there is no loss of generality by making this assumption.
In general, allowing the query rate to be non-negligible with the file length
n is a different problem. However, similar to [12, Remark 1] and [18], this
assumption can also be removed in our converse proofs when the queries Qi,
for i ∈ [N ], are only allowed to depend on (Z,M).

T servers may collude, if there exists PIR protocols such that,
for any set T ⊆ [N ] such that |T | = T ,

Pe = 0, (3a)

I
(
QT ,AT ,X

n
[K];Z,M

)
= 0. (3b)

The privacy metric (3b) means that the client file choice Z
and mapping M must be kept secret from any T colluding
servers. The supremum of all achievable rates is referred to
as the PIR capacity with private noisy side information, and
is denoted by CPIR-PNSI.

B. Examples

In Example 1, Example 2, and Example 3, we show
that our problem setup recovers the problem setup for PIR
with colluding servers [4], PIR with colluding servers and
noiseless side information [10], [12], and PIR with private side
information under storage constraints [18]. Then, we illustrate
our definitions when K = D = 2 and T = 1 in Example 4.

Example 1 (PIR with colluding servers). When D = 1 and the
test channel is a BEC with parameter ϵ = 1, then the client has
no side information about the files. In this case, Definition 1
reduces to PIR without side information as introduced in [4],
and the privacy constraint in Definition 2 is equivalent to the
privacy constraint in [4].

Example 2 (PIR with private noiseless side information).
When D = 2 and the test channels are BECs with parameters
ϵ1 = 0, and ϵ2 = 1, the client has access to d1 files in a
noiseless manner as side information. This case corresponds
to PIR with side information as introduced in [12, Theorem 2]
for non-colluding servers and in [10, Theorem 1] for colluding
servers.

Example 3 (PIR with private side information under storage
constraints). Suppose that T = 1, D = M + 1, for M ∈ N∗
and M ≤ K, the test channels are BECs with parameters
ϵD = 1, ϵi = 1 − ri, for i ∈ [M ], with r1 ≥ r2 ≥ · · · ≥
rM , and di = 1, for i ∈ [M ]. This problem setup, under the
privacy constraint in Definition 2, is related to the problem
studied in [18]. The difference with [18] is that the positions
of the erasures are known at the servers in [18], whereas
in our setting, the positions of the erasures are random and
unknown at the servers. Therefore, the optimal download rate
for our problem setup in this example might be higher than
the download rate in [18]. However, we will show in the next
section that the same download rate as in [18] is achievable.

Example 4 (When K = D = 2, T = 1, and d1 = d2 = 1).
Let Xn

1 and Xn
2 be the two files at the server and Y n

i,M(i)

be the side information about Xn
i , i ∈ {1, 2}, available at

the client but unavailable at the server, where Y n
i,M(i) is the

output of the test channel CM(i) when the input is Xn
i . Note

that M can take two values (with the notation introduced in
Section II):

M1 ≜

(
1 2
1 2

)
, M2 ≜

(
1 2
2 1

)
.
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When Z = 1, since there are two different possibilities for the
side information about Xn

1 , that are Y n
1,1 and Y n

1,2, we define,

P (1)
e

(
Z = 1,M1

)
≜

P
[
D
(
Z,M,A[N ], Y

n
1,1, Y

n
2,2

)
̸= Xn

1

∣∣∣Z = 1,M = M1

]
,

P (2)
e

(
Z = 1,M2

)
≜

P
[
D
(
Z,M,A[N ], Y

n
1,2, Y

n
2,1

)
̸= Xn

1

∣∣∣Z = 1,M = M2

]
.

Similarly, when Z = 2, since there are two different possibil-
ities for the side information about Xn

2 at the server, that are
Y n
2,1 and Y n

2,2, we define,

P (3)
e

(
Z = 2,M1

)
≜

P
[
D
(
Z,M,A[N ], Y

n
1,1, Y

n
2,2

)
̸= Xn

2

∣∣∣Z = 2,M = M1

]
,

P (4)
e

(
Z = 2,M2

)
≜

P
[
D
(
Z,M,A[N ], Y

n
1,2, Y

n
2,1

)
̸= Xn

2

∣∣∣Z = 2,M = M2

]
.

Therefore, the probability of error in (2), by taking lim sup
when n → ∞, is equal to

P[Z = 1]P
[
M = M1

]
P (1)

e

(
Z = 1,M1

)
+ P[Z = 1]P

[
M = M2

]
P (2)

e (Z = 1,M2)

+ P[Z = 2]P
[
M = M1

]
P (3)

e

(
Z = 2,M1

)
+ P[Z = 2]P

[
M = M2

]
P (4)

e (Z = 2,M2) .

IV. MAIN RESULTS

In this section, we provide the main results of the paper and
present some examples that recover and extend known results.

Theorem 1. Consider K files that are replicated in N servers
where up to T of them may collude. Then, the capacity of PIR
with private noisy side information is

CPIR-PNSI =

D∑
ℓ=1

H
(
X1|Y1,ℓ

)( T

N

)d[ℓ+1:D]

Ψ−1

(
T

N
, dℓ

)
,

where Ψ−1(A,B) ≜
(
1 +A+A2 + · · ·+AB−1

)
, and for

i, j ∈ N∗, d[i:j] ≜
∑j

t=i dt, when i ≤ j, and d[i:j] ≜ 0, when
i > j.

Proof. The achievability proof, which is outlined here, is
based on source coding with side information and the achiev-
ability schemes in [4], [10]. We use a nested random binning
scheme and assign D nested random bin indices to each file
Xn

i , for i ∈ [K]. Specifically, the ℓth random bin indices
of all the files, referred to as ℓth database, enable lossless
reconstruction of the dℓ files that are associated with the test
channel C(ℓ). Therefore, by downloading the database ℓ, the
client, in addition to being able to reconstruct the dℓ files that
are associated with the test channel C(ℓ), also receives the ℓth

random bin indices of all the other files. The achievability
scheme consists in successively downloading each of the
D databases, in ascending order, by using the same coding
scheme and query structure as [10], for each database. The
details of the proof are available in Section V-A. The converse

proof is omitted due to the space limitation and is available
in [23].

Remark 1 (Index of random variables). Since all the files
are generated according to the same distribution, namely, the
uniform distribution over Xn, the index 1 of X1 and Y1,ℓ in
Theorem 1 can be replaced with any other index i ∈ [K].

Corollary 1. Consider K files, that are replicated in N
servers where up to T of them may collude. Additionally, the
test channels are BECs with parameters (ϵi)i∈[D] ∈ [0, 1]D

such that ϵi < ϵj , for i, j ∈ N∗ and i < j. Then, the capacity
of PIR with private noisy side information is

CPIR-PNSI =

D∑
ℓ=1

ϵℓ

(
T

N

)d[ℓ+1:D]

Ψ−1

(
T

N
, dℓ

)
.

Example 5 (No side information). In Corollary 1, if we set
D = 1, and ϵ1 = 1, which means that the client has no
side information and dD = K, then the capacity result in
Corollary 1 reduces to [4, Theorem 1], i.e.,

CPIR-PNSI =

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−1
)
.

Example 6 (Private noiseless side information). In Corol-
lary 1, if we set D = 2 and T = 1, ϵ1 = 0, which
means that the client knows d1 files as side information in
a noiseless manner, and ϵ2 = 1, which means that there is
no side information about d2 files, then the capacity result in
Corollary 1 reduces to [12, Theorem 2], i.e.,

CPIR-PNSI =

(
1 +

1

N
+

(
1

N

)2

+ · · ·+
(

1

N

)K−d1−1
)
.

Example 7 (PIR with private side information under storage
constraints). Set T = 1, D = M + 1, for M ∈ N∗ and
M < K. If we set di = 1, for i ∈ [M ], dM+1 = K −M , and
ϵi = 1 − ri, with r1 ≥ r2 ≥ · · · ≥ rM , and ϵD = 1 then the
capacity in Corollary 1 reduces to

CPIR-PNSI =
1− r1
NK−1

+
1− r2
NK−2

+
1− r3
NK−3

+ · · ·+ 1− rM−1

NK−M+1
+

1− rM
NK−M

+ 1 +
1

N
+

1

N2
+ · · ·+ 1

NK−M−1
.

Note that, this result is stronger than that of [18, Theorem 1],
since in [18] it is assumed that the client knows the first ri
bits, for i ∈ [M ], of M randomly selected files, whereas, in
our setting, the ri bits of side information for file i are chosen
at random and we obtain the same capacity.

V. PROOF OF THEOREM 1

A. Achievability proof

A high level description of the achievability scheme is
provided after Theorem 1. Assume that each file is of length
n = NK with symbols in a sufficient large finite field Fq . Fix
δ > 0.
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1) Random Binning: For every file xn
i , i ∈ [K], assign D

random bin indices as follows. For ℓ ∈ [D], randomly and
independently assign a bin index j

(i)
ℓ ∈ Jℓ ≜

[
qnℓ

]
to xn

i ,

where qℓ ≜ qRℓ , with Rℓ > 0, to be defined later, and R0 ≜ 0.
We refer to Mℓ ≜

(
j
(1)
ℓ , . . . , j

(K)
ℓ

)
ℓ∈[D]

as the database

ℓ. The query is constructed to retrieve each one of the Mℓ

databases in ascending order.
2) Query Structure Construction: The client constructs the

query in D different levels. In the first level, we apply to
the database M1 the same query structure as in [4], which
consists of K sublevels. In the level ℓ ∈ [2 : D], we apply
to the database Mℓ the same query structure as in [10],
which also consists of K sublevels. Specifically, as in [10],
the kℓ

th sublevel consists of sums of kℓ symbols, which
are called k-sums. There are

(
K
kℓ

)
different types of k-sums

and (N − T )kℓ−1TK−kℓ different instances of each type in
the kℓ

th sublevel. Hence, the total number of symbols that
will be downloaded from each server is

∑K
kℓ=1

(
K
kℓ

)
(N −

T )kℓ−1TK−kℓ .
3) Query Specialization: For ℓ ∈ [D], we do the query

structure construction and query specialization without con-
sidering availability of any side information as in [10], and
denote this scheme by Πℓ. Then, we do query redundancy
removal based on availability of noiseless side information
similar to [10]. Specifically, after each level ℓ ∈ [D], the client
is able to recover the dℓ files that are associated with the ℓth test
channel, and therefore considering the files that it has decoded
in the previous levels, the client knows Xn

[d[ℓ]]
and therefore

it knows
(
j
(1)
ℓ+1, . . . , j

(d[ℓ])
ℓ+1

)
, which is used as noiseless side

information to recover
(
j
(d[ℓ]+1)
ℓ+1 , . . . , j

(K)
ℓ+1

)
in level ℓ + 1.

For level ℓ = 1, the client does not have any noiseless side
information and cannot perform query redundancy removal
but, for level ℓ ∈ [2 :D], since it has recovered

∑ℓ−1
t=1 dt

files, the client can perform query redundancy removal. For
each ℓ ∈ [D] and for each server, let pℓ,1 denote the number
of symbols downloaded with Πℓ. Out of these pℓ,1 symbols,
we denote by pℓ,2 < pℓ,1 the number of symbols that the
client already knows by decoding some of the files in the
previous levels. For ℓ ∈ [D], let Uℓ,j ∈ Fpℓ,1

qℓ denote
the symbols downloaded from the jth server with Πℓ. For
each server, use a systematic (2pℓ,1 − pℓ,2, pℓ,1) Maximum
Distance Separable (MDS) code [24], with generator matrix
G(2pℓ,1−pℓ,2)×pℓ,1

= [Vpℓ,1×(pℓ,1−pℓ,2)|Ipℓ,1×pℓ,1
]⊺ to encode

the pℓ,1 symbols into 2pℓ,1 − pℓ,2 symbols, of which pℓ,1 are
systematic, and pℓ,1 − pℓ,2 are parity symbols, such that it is
sufficient to download V⊺

pℓ,1×(pℓ,1−pℓ,2)
Uℓ,j . For level ℓ = 1,

since the client does not have any noiseless side information
about M1, p1,2 = 0.

4) Decoding: For ℓ ∈ [D], after reconstructing (j
(t)
i )i∈[ℓ]

from 3), for t ∈ M−1(ℓ), given Yn
[K],M, the client declares

X̂n
t to be an estimate of the sequence Xn

t if it is a unique
sequence that is typical with Y n

t,ℓ in the bin (j
(t)
i )i∈[ℓ]. Ac-

cording to the Slepian-Wolf theorem, e.g. [25], the decoding
is successful, i.e., P

[
X̂n

t ̸= Xn
t

]
−−−−→
n→∞

0, if

ℓ∑
i=1

Ri = H
(
Xt|Yt,ℓ

)
+ δ. (4)

5) Rate Calculation: Similar to [10], for the scheme Πℓ,
the total number of downloaded symbols from each server is
pℓ,1 =

∑K
kℓ=1

(
K
kℓ

)
(N − T )kℓ−1TK−kℓ , ℓ ∈ [D] and out of

these pℓ,1 symbols pℓ,2 =
∑d[ℓ−1]

kℓ=1

(d[ℓ−1]

kℓ

)
(N −T )kℓ−1TK−kℓ

symbols are already known at the client, where d[ℓ−1] ≜∑ℓ−1
i=1 di and d[0] = 0. Then, similar to [10, Eq. (22), (25)],

we have

pℓ,1 =
NK − TK

N − T
, (5a)

pℓ,2 =
TK−d[ℓ−1]

(
Nd[ℓ−1] − T d[ℓ−1]

)
N − T

. (5b)

Therefore, the transmission rate for the level ℓ is,

R(ℓ) =
RℓN(pℓ,1 − pℓ,2)

n
(a)
=

RℓN(pℓ,1 − pℓ,2)

NK

(b)
=

Rℓ

(
1−

(
T
N

)K−d[ℓ−1]

)
(
1− T

N

)
(c)
=
(
H
(
X1|Y1,ℓ

)
−H

(
X1|Y1,ℓ−1

))K−d[ℓ−1]−1∑
i=0

(
T

N

)i

,

where
(a) follows since n = NK ;
(b) follows from (5);
(c) follows from (4).
Therefore, the total transmission rate is,

R =

D∑
ℓ=1

R(ℓ)

=

D∑
ℓ=1

(
H
(
X1|Y1,ℓ

)
−H

(
X1|Y1,ℓ−1

))K−d[ℓ−1]−1∑
i=0

(
T

N

)i

=

D∑
ℓ=1

H
(
X1|Y1,ℓ

)( T

N

)K−d[ℓ] dℓ−1∑
i=0

(
T

N

)i

.

6) Privacy Analysis: Note that for all the D levels, the
client does not use any side information to construct the
queries. Indeed, the systematic MDS codes of all the levels
in the query redundancy removal do not depend on the
side information that the client obtain after each level. The
decoding in 4) starts when the client collects all the answers
from the servers for all the D levels. Thus, the side information
is used only when the client collects all the answers from the
servers for all the D levels. Therefore, privacy is inherited
from the privacy of the schemes in [10] and [4].
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