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Abstract—Consider a secret sharing model where a dealer
shares a secret with several participants through a Gaussian
broadcast channel such that predefined subsets of participants
can reconstruct the secret and all other subsets of participants
cannot learn any information about the secret. Our first contri-
bution is to show that, in the asymptotic blocklength regime, it
is optimal to consider coding schemes that rely on two coding
layers, namely, a reliability layer and a secrecy layer, where the
reliability layer is a channel code for a compound channel without
any security constraint. Our second contribution is to design such
a two-layer coding scheme at short blocklength. Specifically, we
design the reliability layer via an autoencoder, and implement the
secrecy layer with hash functions. To evaluate the performance
of our coding scheme, we empirically evaluate the probability of
error and information leakage, which is defined as the mutual
information between the secret and the unauthorized sets of
users channel outputs. We empirically evaluate this informa-
tion leakage via a neural network-based mutual information
estimator. Our simulation results demonstrate a precise control
of the probability of error and leakage thanks to the two-layer
coding design.

I. INTRODUCTION

[1] and [2] pioneered the secret sharing model where a
dealer distributes a secret among a set of participants with
the requirement that only pre-defined sets of participants
can recover the secret, while any other sets of colluding
participants cannot learn any information about the secret. In
such traditional secret sharing models (we refer to [3] for
an excellent literature review of the subject), it is assumed
that the dealer and each participant can communicate over an
individual and perfectly secure channel at no cost. Later, with
the goal to avoid this assumption, noisy resources aided secret
sharing schemes have been studied for channel models [4] and
source models [5]-[9], where no secure communication links
are available between the dealer and the participants.

In this paper, we consider the same secret sharing model
as in [4] where noisy resources, in the form of a Gaussian
channel, are available between the dealer and participants.
Specifically, the dealer can communicate with the participants
over a Gaussian broadcast channel where each participant
observes scalar Gaussian channel outputs. The dealer transmits
a secret message by encoding it into a codeword, which is then
sent over n uses of the channel and yields the channel output
observations at the participants. In this setting, a reliability
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constraint ensures that any subset of participants with size t
is able to recover the secret from their vector of ¢ channel
outputs, and a security constraint ensures that any subset of
participants with size z < t cannot learn any information
about the secret from their vector of z channel outputs. These
two constraints define a threshold access structure similar to
traditional secret sharing models as in [1], [2], [10], [11].

A. Contributions

1) Optimal coding scheme design in the asymptotic regime:
The secret sharing capacity has been established in [4] with a
random coding argument that jointly considers the reliability
and secrecy constraints. One of our contributions is to show
that it is optimal to consider coding schemes that rely on
two coding layers, namely, a reliability layer and a secrecy
layer, to achieve the secret sharing capacity. Specifically, the
secrecy layer can be implemented with hash functions, and the
reliability layer can be implemented with a channel code for
a compound channel without any security constraint.

The main insights and benefits of our result are (a) a
modular approach that allows a simplified code design, for
instance, if only one of the two layers need to be (re)designed,
(b) a code design that offers a universal way of dealing with
the secrecy constraint via hash functions, which is useful to
ensure security against multiple subsets of colluding users that
are associated with different channel statistics, (c) guidelines
for a simplified code design at finite blocklength as discussed
in Section I-A2.

2) Coding scheme design at finite blocklength: Following
the two-layer coding approach described above, we design se-
cret sharing schemes at finite blocklength. Specifically, we use
a neural network-based autoencoder to design the reliability
layer, and hash functions to design the security layer.

To evaluate the performance of our constructed code, we
empirically evaluate the probability of error and estimate the
information leakage for blocklengths n at most 20. Specifi-
cally, the information leakage is defined as the mutual infor-
mation between the secret and the channel output observations
for unauthorized sets of users. We evaluate the information
leakage by using the mutual information neural estimator
(MINE) from [12]. Our simulation results demonstrate a
precise control of the probability of error and leakage thanks
to the two separate coding layers.
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B. Related works

1) Prior related works on compound wiretap channels:
Theoretical and non-constructive results: The compound wire-
tap channel [13], [14] is a generalization of Wyner’s wiretap
channel [15] to the case of multiple unknown channel states,
where secure and reliable communication needs to be guaran-
teed regardless of the channel state. The connection between
compound wiretap channels and secret sharing over noisy
channels has been established in [4] by remarking that, similar
to compound settings, an access structure for secret sharing
yields multiple security constraints and multiple reliability
constraints that must be ensured simultaneously. While the
capacity for the secret sharing model we consider has been
established in [4], one of our contributions (see Section I-A1)
is to show the optimality of a two-layer coding scheme design.

Results on code constructions: Explicit compound wiretap
codes have been proposed for discrete memoryless channels
for the asymptotic blocklength regime in [16]. Finite-length
code constructions for scalar Gaussian compound channels
have been studied in [17]. In contrast, in this paper, one of our
contributions (see Section [-A2) is to not only design finite-
length compound wiretap codes but to also consider vector
Gaussian channel observations, which is needed in the context
of the secret sharing problem we consider.

2) Prior related works on wiretap channels: While several
wiretap code designs have been proposed for various chan-
nel models under non-information-theoretic security metrics,
e.g., [18]-[25], we focus our discussion on works that, similar
to our work, consider an information-theoretic security metric.

Results for the asymptotic blocklength regime: A coding
strategy that separately handles the reliability and secrecy
constraints with two separate coding layers has previously
been used for the discrete wiretap channels in [26], [27], and
the Gaussian wiretap channel in [28]. The above references
consider the asymptotic blocklength regime. One of our con-
tributions (see Section I-A1) is to not only generalize the result
in [28] to a compound setting, but also to generalize it to
vector, rather than scalar, Gaussian channel outputs.

Related code constructions in the non-asymptotic regime:
Coding scheme designs based on feed-forward neural network
autoencoders have also been proposed in [29], where the
security and reliability constraints are handled jointly, and
in [30], where the security and reliability constraints are
handled separately. As discussed in Section I-A2, one of
our contributions is to design a short blocklength coding
scheme that, unlike the above references, handles (a) multiple
reliability constraints and multiple security constraints simul-
taneously, i.e., a compound model, and (b) vector Gaussian
channel outputs.

C. Organization of the paper

The remainder of the paper is organized as follows. The
problem statement is provided in Section II. The main results
are provided in Section III. A capacity-achieving two-layer
coding scheme in the asymptotic regime is provided in Sec-
tion IV, its analysis is omitted due to space constraints. In

Section V, a finite blocklength implementation of the coding
scheme of Section IV is proposed using a deep learning
approach. Finally, Section VI provides concluding remarks.

II. PROBLEM STATEMENT

Notation: For a,b € R, define [a] = [1, [a]] NN, [a,b] =
[la], [b]]NN. The components of a vector X™ of length n € N
are denoted with subscripts, i.e., X" 2 (X1, Xo,..., X,,). |||
denotes the Euclidean norm and ||.||; denotes the L' norm.

Consider a dealer and J participants indexed in J = [J].
We assume that the dealer can communicate with the partici-

pants over a Gaussian broadcast channel defined as
n A n n -
Y*=X"+N!, VjeJ, (1

where X" is the signal transmitted by the dealer with the
power constraint %Z?:l X 22 <P, Y;-” is the channel obser-
vation at Participant j € J, 7 € J, and NV, ]” is a random vector
of length n with components independent and identically
distributed according to a zero-mean Gaussian random variable
with variance O'JZ-. The noise vectors V. J", J € J, are assumed
independent.

For ¢ € [J], the set of authorized sets of users is defined
as Ay = {AC J : |A| > t}, and, for z € [t — 1], the set of
unauthorized sets of users is defined as U, £ {UCT U<
z}. The parameters ¢ and z are chosen by the system designer.
In the following, for any &/ € U, and A € A,, we use the
notation Yy} = (Y")jeu, Nij = (N})jeu. Y4 = (Y])jen
and N} £ (N')jea such that

Yi21,X" + N3,
Y 21,.X" + Ng,

A€ Ay, 2
Uels, 3)

where 1; and 1, are all-ones column vectors of size ¢ and z,
respectively, and the covariance matrices of N4 and IV, are
Y4 £ diag((0?) ea) and Xy £ diag((07)jew ). respectively.

Definition 1. A (2" t z,n) secret sharing strategy con-
sists of
e A secret S uniformly distributed over S = [2"];
e An encoding function f:S — R";
o A decoding function g4 : R" — S for each set A € Ay;
and operates as follows:
1) The dealer encodes the secret S € S as X™;
2) The dealer sends X™ over the channel and Participant
j € J observes Y';
3) Any subset of participants A € Ay can form an estimate
of S as S(A) 2 ga(Y3)

Definition 2. A secret sharing rate Ry is achievable if there
exists a sequence of (2" t,z,n) secret sharing strategies
such that

li P[S =

RJim  max [S(A) # 5] =0,
li I(5:,") =0.
oL max I(55Y) =0

(Reliability)  (4)
(Security) %)

(4) means that any subset of at least t participants is able to
recover the secret, and (5) means that any subset of at most

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 10,2023 at 16:32:10 UTC from IEEE Xplore. Restrictions apply.

962



2023 IEEE International Symposium on Information Theory (ISIT)

z participants cannot learn any information about the secret.
The secret sharing capacity Cy is defined as the supremum of
all achievable secret sharing rates.

Note that when the secret sharing capacity is positive, the
length of each share always scales linearly with the size of
the secret, since, by definition, the size of the secret is linear
with the number of channel observations n.

Theorem 1 (Adapted from [4]). The secret sharing capacity
is given by

Cs =

1 . .
— min min log
2 Aeh,UEU,

III. MAIN RESULTS
A. Asymptotic optimality of two-layer coding scheme

We first introduce two-layer coding schemes in Definition 3.

3 RIWSN
1 T xen Yy % i(yin)ieA PR,
..... ¢ i %0} Sl K3
(a) Encoder ﬁ’% (b) Decoder
| --------- Security layer ---Reliability layer |

Fig. 1. Two-layer code design. The reliability layer is implemented using a
channel code (eq, do) without any security constraints, and the security layer
is implemented using the functions 1 and ¢.

Definition 3. A two-layer secret sharing coding scheme con-
sists of
o A reliability layer defined by an encoder/decoder pair
(eo,do) without any security constraints for the com-
pound channel defined in (2) such that if X" = eo(V) is
the channel input, where V' is uniformly distributed over
{0,1}", reN, and | X" ||*< nP and Y7}, A € Ay, are the
channel outputs, then nll)r_{}w max Pldo(YR) # V]=0;
o A secrecy layer is defined by two functions 1 : {0,1}* —
{0,1}" and ¢ : {0,1}" — {0,1}%, for some k € N;
and operates as follows:

1) Encoding: The dealer encodes a secret message S that
is uniformly distributed over S = {0, l}k as eo(o(9)).
Hence, the encoder e of a two-layer secret sharing coding
scheme is

e:S—R"
s+ ep(o(s)).

2) Decoding: From the channel output observations Y,
A € Ay, the participants in A estimate S as S(A) £
¥(do(Y})). Hence, the decoder d of a two-layer secret
sharing coding scheme is

d:R* 5 S
Y™ = P(do(y™)).

100
107" ¢
R
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o
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& 1077 &
—
1074 L
—-9-—2=8
—p—z=
z =10
109 I I I I I I I
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Rate R; [bits/channel use]

Fig. 2. Information leakage nax I(S;Y;}) versus secret sharing rate Rs =
cl;

£ for z € [10].
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The architecture of a two-layer coding scheme, as described
in Definition 3, is depicted in Figure 1.

Theorem 2. There exists a two-layer secret sharing scheme,
as in Definition 3, that achieves the secret sharing capacity
Cs. A two-layer secret sharing scheme that achieves Cg is
presented in Section 1V, its analysis is omitted due to space
constraints.

B. Design of a secret sharing coding scheme at short block-
length and performance evaluation

We design a two-layer coding scheme at finite blocklength,
as defined in Definition 3. As detailed in Section V-A, we
design the reliability layer using an autoencoder (eg,dp) and
the secrecy layer via a two-universal hash function .
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In our simulations, detailed in Section V-B, we consider
J = 200 participants, t = 100, z € [10], and o7 £ 10~SNR/10,
jJ € J, with a signal-to-noise ratio (SNR), SNR = —16dB.
Figure 2 shows the information leakage maxyey, 1(S;Y;})
with respect to the secret sharing rate R; = % when z varies
in [10], k¥ = 1, and n € {5,10,15,20}. Figure 2 confirms
the intuition that the information leakage increases as the
secret rate increases, and, for a fixed rate, decreases as z
decreases. Figure 3 shows the average probability of error
max gca, P[S(A) # S] with respect to the secret sharing rate
R, = % when k =1, and n € {5, 10, 15, 20}.

IV. A TWO-LAYER CODING SCHEME

A. Sufficient statistics

Using Lemma 1 below, one can prove that there is no loss
of generality in considering the following Equations (6) and
(7) as channel model instead of (2) and (3). Hence, in this
section, we consider the following channel model: For any
i € [n],

Vii2od Xi+ Ny Achy, (©6)
Yii 203 Xit Ny UEU., )
where
O’%A 217851, (8)
GO v B ©
Na;, 2175 Ny ~ /\/'(O,Uf;A), (10)
Ny 2105, Ny ~ N(O,af;u). (11

Lemma 1 ( [31, Lemma 3.1]). Consider the channel model
YSZ]_‘S‘X-FNs, ScJ,

where Ng is a Gaussian vector of length |S| with zero mean
and covariance matrix Xs. A sufficient statistic to correctly
determine X from Ygs is the scalar Ys = 1%‘E§1Y5, ScJ.

B. Coding scheme

We first describe the reliability layer and secrecy layer
in Sections IV-B1 and IV-B2, respectively. Then, in Sec-
tion IV-B3, we describe the encoding and decoding of our
proposed secret sharing scheme.

1) Reliability layer: By a random coding argument, there
exists an encoder ey : {0,1}" — R, v — eg(v) such that
Yo € V, Lleg(v)||? < P, and a decoder dy : R™ — {0,1}",
y™ s v, where

. r 1 . 2
lim — = 5;&1& log(l + U?AP>,

n—o00 N

(12)

such that if V' is uniformly distributed over {0, 1}" and eq (V)
is sent over the channel described by (6), then
lim max P[do(Y})) # V] = 0.

n—+o00 A€,

13)

| v
I
I
I
I

|

Dense layers
Normalization
Dense layers

One-hot encoder
Softmax activation

Lmmm— =

(a) Encoder (b) Decoder

Fig. 4. Architecture of the autoencoder (eg,do) via feed-forward neural
networks.

2) Secrecy layer: Define £ = {0,1}"\{0}, and consider
the two-universal hash family of functions P £ {v
Y(A ) }aee [32], where 1) is defined as

¥ Lx{0,1}" — {0,1}F

(A 0) = (A O V), (14)

where © is the multiplication in GF(2"), and (-); selects the
k most significant bits. Define also the mapping ¢

¢:Lx{0,1}" x {0,1}"7% — {0,1}"

(A, 5,0) = XL o (s]b),  (15)

where (-||) represents concatenation of two sequences of bits.

3) Encoding and decoding: The dealer draws a seed A
uniformly at random from £. This random seed A corresponds
to a random choice of a hash function in the family P and
is assumed to be known by all parties. Then, the dealer
generates r — k bits, denoted by B, uniformly at random from
B2 {0,1}—*.

Encoding: The dealer encodes a secret .S that is uniformly
distributed over S 2 {0,1}" as X™ £ ¢(¢(A, S, B)).

Decoding: From }7}{, the set of participants in A € A
estimates V 2 ¢(A, S, B) as V(A) 2 do(Y%), and forms
an estimate of S as S(A) £ (A, V(A)).

V. SECRET SHARING SCHEME AT FINITE BLOCKLENGTH
A. Secret sharing scheme design

1) Reliability layer design: The design of the reliability
layer consists in designing an encoder/decoder pair (eg, do)
as described in Definition 3. Let V £ [27] be the message
set. (ep,dp) is implemented with an autoencoder as in [33].
As depicted in Figure 4, the encoder ey consists of three
layers. An embedding layer, where the input v € V is mapped
to a one-hot vector 1, € RQT, which is a vector whose
components are all zeros except the v-th component which
is one. Dense hidden layers that take v as input and return an
n-dimensional vector. And, a normalization layer that ensures
that the codeword eg(v), v € V, meets the average power
constraint x|leg(v)[|> < P. As depicted in Figure 4, the
decoder consists of dense hidden layers and a softmax layer.
More specifically, let p/Yl be the output of the last dense
layer in the decoder. The softmax layer takes p!V! as input
and returns a vector of probabilities p/YI € [0,1]V], whose
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components p,, v € V, are p, = exp(uv)(zml exp(p;))?

Finally, the decoded message v corresponds to the index of
the component of p/¥! associated with the highest probability,
ie., ¥ € argmax, ¢y, py. The autoencoder is trained over all
messages v € V using a stochastic gradient descent (SGD) as
in [34] and the categorical cross-entropy loss function.

2) Secrecy layer design: We implement the secrecy layer
with the functions v and ¢ defined in Equations (14) and (15),
respectively. Note that, unlike the asymptotic regime, we will
choose a fixed seed A € £ rather than a random seed.

3) Encoding and decoding for secret sharing scheme: The
idea of the coding scheme below is to repeat v € N times the
coding scheme described in Section IV-B. Hence, after the ~
repetitions, ~y secrets have been shared. With the objective to
reduce the information leakage, the dealer and the participants
extract another secret from these ~ secrets with a two-universal
hash function. The price paid for this reduced leakage is a
decrease of the secret sharing rate.

Fix a seed A € L, a seed a € {0,1}"\{0}, and set the
length of the secret to k = 1.

Encoding: For i € [v], the dealer generates r — k bits, denoted
by B;, uniformly at random from {0,1}"~%, and a bit M;
uniformly at random in {0, 1}. The dealer sends the codeword
X2 eg(d(N\, M;, By)), i € [y], such that the channel obser-
vations of the participants in A € A, are Y}, £ 175 'V} .
Then, the dealer forms the secret S = (o, Mi.), where
My = (Mi)iely).-.

Decoding: From Y} ., i € [y], the participants in A € A,
estimate V; £ ¢(\, S, B;) as V; £ do(fiji), M; as M; £
¥(\, Vi), and the secret S as S(A) 2 9(a, My.,).

B. Performance evaluation

1) Simulation parameters: In our simulations, we consider
J = 200 participants, t = 100, z € [10], and O'j2- £ 10—SNR/10,
j € J, with a signal-to-noise ratio (SNR), SNR = —16dB.
We also consider a secret of length £ = 1 and power P = 1.
Note that since the SNR is the same for all the participants,
we have for A* £ [t] and U* £ [2], max 4cn, P[S(A) # S] =
P[S(A*) # S], and maxyecy. 1(S;Yy}) = I1(S; Y;1).

2) Performance evaluation of the reliability layer: For the
parameters defined in Section V-B1, using Python 3.7 and
Tensorflow 2.3, we train the autoencoder for (n,r) = (5,2)
using SGD with the Adam optimizer [34] at a learning rate
of 0.0001 over 100,000 random encoder input messages. To
evaluate the performance of (eg,dy), we first generate the
input V' € {0,1}". Then, V is passed through the trained
encoder eg, which generates the codewords X" and the chan-
nel output YA*. By Lemma 1, without loss of generahty, we
consider YZ. £ 1YY, where ¥ 4- £ diag((o )]eA*)
lfmally, the tgamed decoder dy forms an estlmate of V,
V(A*) £ do(YR).

3) Information leakage: Consider ¢ and v with n = 5 and

= 2. Generate uniformly at random M., € {0,1}" and
By, € {0,137~ For i € [y], generate

X7 £ eo(o(N, My, By)), (16)

such that the channel observations of the participants in /*

are Y. ; £ X'+ Njj. ;. Using Lemma 1, there is no loss
of generality in considering Yu* ;= lTZu*lYu* ; instead of
Y;j. ;- Finally, generate the secret as

S £ (o, Myy). (17)

All possible combinations of A and « are tested to minimize
the leakage. The optimal seeds found are A = 11, o = 10
when v = 2, « = 110 when v = 3, and o = 1110 when
v =4.

Then, to evaluate the leakage I (S;?ﬁ*71:7), we use the
mutual information estimator MINE from [12]. Specifically,
we use a fully connected feed-forward neural network with
4 hidden layers, each having 400 neurons, and used rectified
linear unit (ReLU) as an activation function. The input layer
has k+n neurons, and the Adam optimizer with a learning rate
of 0.0001 is used for the training. The samples of the joint
distribution Psyn, - are produced as described above. The
samples of the marglnal distributions are generated by drop-
ping either s or yj;. .., from the joint samples (s, y;y 1. )-
We trained the neural network over 40000 epochs of 20,000
messages with a batch size of 2500. Figure 2 shows the
information leakage I(S; Yu* 1y ) with respect to the secret
sharing rate R, = - when z varies in [10].

4) Probability of error: To evaluate the probability of
error between S and S(A*), generate uniformly at random
M., € {0,1}" and By., € {0,1}"=F)7. Then, for i € [y,
generate the codeword X' as in (16) so that the channel
outputs at the participants in A* are Y. ; £ XP+ N4
Using Lemma 1, there is no loss of generahty in con51dermg
Y}{*’i 217y Y. ; instead of Y. ;. Finally, generate the
secret S as in (17).

At the partlclpants in A*, for i € [y], M; is estimated
from YA*74 as M; 2 (), do(YA* ;). Then, the secret is
estimated as S(A*) £ Y(a, M;.,). Figure 3 shows the average
probability of error P[S(A*) # S| with respect to the secret

sharing rate R, = 2.
yn

VI. CONCLUDING REMARKS

We considered a secret sharing model where a dealer can
communicate with participants over a Gaussian broadcast
channel. We proposed a coding approach that consists in
separating the code design into a secrecy layer and a relia-
bility layer. Our first contribution was to show that, in the
asymptotic blocklength regime, it is optimal to consider such
two-layer coding schemes. Our second contribution was to
design a two-layer coding scheme at finite blocklength, where
we implemented the reliability layer with an autoencoder
and the secrecy layer with two-universal hash functions. We
empirically evaluated the probability of error and estimated
the leakage for blocklength at most 20 with neural network-
based mutual information estimator. Our simulation results
demonstrated a precise control of the probability of error and
leakage thanks to the two separate coding layers.
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