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Abstract—Consider a commitment protocol between two par-
ties, Alice and Bob, in which Alice may (i) commit to a
message using a non-redundant discrete memoryless channel
whose outputs are observed by Bob; and (ii) later reveal her
committed message to Bob who must decide whether Alice is
revealing the message she actually committed to. A commitment
protocol should meet three standard requirements: concealment,
bindingness, and soundness, to ensure that no party may act
dishonestly. Our objective is to study whether one can enforce a
fourth requirement that would allow Alice to retract a commit-
ment before the reveal phase starts without Bob detecting that
she ever participated in the commit phase of the protocol. We
positively answer this question and characterize the commitment
capacity for such a setting by relying on tools developed for
covert communication.

A full version of the paper is available at https://bloch.ece.
gatech.edu/ITWretractablecommitment.pdf.

I. INTRODUCTION

A commitment protocol is a cryptographic protocol in which
a player, Alice, commits a message to another player, Bob,
hiding the value of the message until she chooses to reveal it
but without being able to change its value. Specifically, in a
commitment protocol, one wants to ensure that the protocol is
i) concealing, i.e., Alice’s message remains concealed from
Bob until revealed; ii) binding, i.e., Alice cannot alter her
message after committing to it; and, iii) sound, i.e., Alice’s
commitment is accepted as truthful when both players behave
honestly. Commitment protocols may be used as primitives
in a broad range of cryptographic applications, from online
auctions [1] to zero-knowledge proofs [2], [3] or secure
computations [4]. In the information-theoretic setting, in which
players have unlimited computational power, commitment
protocols can be constructed if the two players have access
to noisy resources, e.g., in the form of a noisy channel
between Alice and Bob [5], [6], [7]. Such commitment proto-
cols leverage the information-theoretic mechanisms related to
secure communication over wiretap channels [8] and secret-
key generation from correlated sources [9], [10].

The commitment capacity of a non-redundant Discrete
Memoryless Channel (DMC), defined as the supremum of
message rates at which Alice can run a concealing, binding,
and sound protocol using the DMC, has been fully character-
ized in [6]. The commitment capacity has also been derived
for classical-quantum channels over finite-dimensional Hilbert
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spaces [11] and for Gaussian channels, in which case it is
infinite [12]. A partial characterization of the commitment
capacity region is also known when commitment involves
multiple users connected with a single receiver through a
multiple-access channel [13]. Finally, there has been renewed
interest in studying commitment protocols over more adver-
sarial models in which one or more players partially control
the DMC between them [14], [15], [16], [17], [18].

In this paper, we study whether additional requirements can
be imposed on a commitment protocol. Specifically, we study
whether a commitment protocol can be retractable, in the
sense that Alice would be able to retract her commitment
before the reveal phase starts without Bob detecting that
she ever participated in the commit phase of the protocol.
Of course, the ability to retract should not compromise the
concealing, binding, and sound nature of a protocol. Our main
contribution is to show how to formulate the problem of
retractable commitment and to characterize the commitment
capacity by building upon concepts and tools developed for the
study of covert communications [19], [20], [21]. In particular,
we show that the number of commitment bits scales as
O(y/nlogn). For ease of exposition, we focus on binary-input
channels.

The remaining of the paper is organized as follows. After
a brief review of notation in Section II, the retractable com-
mitment model is introduced in Section III. Our main result,
the characterization of the retractable commitment capacity, is
given in Section IV, while proofs are deferred to Section V.

II. NOTATION

We denote random variables and their realizations by upper
and lower case, respectively, e.g, X and z. Unless otherwise
specified, a random variable X takes value in a generic finite
alphabet X', denoted in calligraphic case, and has distribution
Px. The cardinality of X’ is |X|. The n-fold product distri-
bution constructed from Pyx is denoted by Pf?". A length
n € N sequence is denoted by x, where the value of n is
given by the context, and the n components are denoted by
{;}!_,. Throughout the paper, log and exp are understood
to the base e. For x € X and a sequence x € X", we
define N(2;x) £ Y1 | 1{z; = x}, where 1{-} denotes the
indicator function. The Hamming distance d (x,x’) between
two sequences x and x’ is the number of positions in which
they differ. For X = {z, 7}, the weight of a sequence x is
wt(x) 2 dp(x,%g), where X is the all-zo sequence.
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For two random variables X,Y with joint distribution
Px Wy |x, the mutual information is denoted by I( Px; Wy |x)
or I(X;Y’) depending on the context. We also let Px o Wy |x
denote the marginal on Y of Px Wy x. For two distributions
Pand Q, ||P — Q||, and D(P || @) denote the norm 1 distance
and the relative entropy between them, respectively. We also
use the chi-squared distance x2(P[|Q) = >, W.
The binary entropy function with parameter p € [0;1] is
denoted by hy, (p).

III. RETRACTABLE COMMITMENT MODEL

We assume that Alice and Bob have access to a DMC
(X, Wy |x,Y) with X = {2, x1}, whose input is controlled
by Alice and whose output is observed by Bob. We set
Qo £ Wy|x—y, and Q1 £ Wy |x_,,. Similar to [6], we
assume that the DMC is non-redundant, i.e.,

Q1 # Qo- (D

We also assume that ()7 is absolutely continuous with respect
to Q9. The DMC itself is outside the control of all parties
and we assume that the input symbol xg is an innocent input
symbol, that corresponds to the resting state of the channel,
i.e., the channel input when Alice does not use the channel.
We also assume that Alice and Bob have access to a noiseless
public channel of unlimited capacity over which they can
exchange messages.

We consider commitment protocols that operate in two

phases as illustrated in Fig. 1.

1) In the commit phase, Alice chooses a message a €
[1; M]. Then, she forms from a and some local random-
ness, denoted by S, a sequence X" that is transmitted
over the DMC. Bob observes the corresponding chan-
nel outputs Y with distribution Py~. Alice’s encoding
function is known to all parties.

2) In the reveal phase, Alice announces over the public
noiseless channel (a’,5’). Bob runs a statistical test
B(a’,S’,Y™) that returns 0 or 1 if Bob rejects or accepts
Alice’s revealed commitment, respectively.

Commit phase
XH Y?I
a— ENC —= Wyx [ s
[} d
@ 5
Optional Retraction phase ]
Reveal phase
a, s B()
Fig. 1. Retractable commitment protocol

A commitment protocol is e-concealing if for any distinct
messages a and ' inducing distributions P%, and Pg.,
respectively, on )",

’
a a
HPW — Pg,

<e 2
1

A commitment protocol is d-binding if for any a,a’ € [1; M]
such that a # a’, and for any S’,

P[B(a, S, Y™)=1= (', S, Y™)] <. 3)
A commitment protocol is §-sound if

P[3(a, S, Y") = 1] > 1 6. @)

Finally, a commitment protocol is p-retractable if, at the end
of the commit phase, we have

D (P || Q5") <. ®

The concealing, binding, and soundness properties are iden-
tical to those of standard commitment protocols [6]. The
retractability property mandates that the distribution Py
observed by Bob be nearly indistinguishable from the inde-
pendent and identically distributed (i.i.d.) distribution QE)@" ex-
pected if Alice were to not commit a message. It is well-known
that controlling the relative entropy between the distributions
Py« and QF™ amounts to controlling Bob’s ability to detect
the presence of a commitment, regardless of its statistical test,
see, e.g., [20], [21], [22].

As we shall see that log M scales sub-linearly with n, we
must identify an algebraic or transcendental function f(n),
increasing with n, independent of channels statistics and proto-
col parameters, that captures the optimal scaling of log M with
n. We call 1;%7?)4 the throughput of the protocol. A throughput
R is achievable if there exist commitment protocols for every
n with throughput converging to R, which are e—concealing,
0-binding, and pu-retractable with €,6 — 0 as n — oo. The
retractable commitment capacity Creyaee 1S the supremum of
all achievable throughputs. If f(n) were overestimated, ‘22
would converge to zero regardless of the channel; similarly, if

f(n) were underestimated, 1‘;%5\)4 would diverge.

Remark III.1. Commitment protocols can be either interac-
tive or non-interactive in the commit phase. Interactive pro-
tocols have been particularly useful to study the commitment
capacity with adversarial control of the channel [17], [18].
In the context of retractable commitment, however, interac-
tive protocols are incompatible with the problem setting as
interactive communication with Bob during the commit phase
would indicate that Alice is participating in the commit phase
without the possibility for her to deny it.

Remark IIL.2. Our notion of retractability explicitly requires
Alice to be undetectable with respect to (w.rt.) a reference
distribution Qq, corresponding to a deterministic channel
input xo. One could also use a distribution induced by a
channel input distribution Px, in which case the scaling
f(n) would be n. This distinction is similar to that between
covertness [19] and stealth [23].

IV. RETRACTABLE COMMITMENT CAPACITY

Theorem IV.l. Consider a non-redundant DMC
(X, Wy x,Y) with X 2 {29,71} and g the innocent input
symbol. Let i1 > 0 be retractablity parameter. The retractable
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Vnlogn.

commitment capacity is obtained for f(n)
Further,

Y
2x2 (Q1]|Qo)”

Theorem IV.1 is proved in Section V but we provide here
a brief intuitive description of the proof. The crux of the
approach is to use the insights developed in [6], by which
a wiretap code with a controlled minimum distance is used
to commit messages. Specifically, during the commit phase,
Alice commits to a message a by encoding it along with a local
secret .S using the wiretap code and transmitting the resulting
codeword X™ over the DMC. The semantic secrecy [24]
provided by the wiretap code against the DMC (X', Wy |x,))
ensures that the protocol is concealing. During the reveal
phase, Alice discloses a’ and s’. The minimum distance of the
wiretap code ensures that the protocol is binding because Alice
cannot reveal a codeword other than X" without the cheating
being detected. We modify the wiretap code construction of [6]
to operate in a covert regime, in which the fraction of symbols
x1 in the codewords is on the order of ﬁ Intuitively, the

Crelract =

scaling v/nlog n in Theorem IV.1 follows because the entropy

. . . 1
rate of the input in the covert regime scales as O\/gﬁ". In

addition, the leakage to the eavesdropper scales as %’ SO
that the concealing property of the protocol comes almost “for
free.” Note that the retractable commitment capacity depends
on p, which is consistent with the absence of a strong converse
in covert communication [20], [21].

Corollary IV.2. Consider a Binary Symmetric Channel (BSC)
with cross over probability p in which 0 is the innocent input.
Then,

pp(1 —p)

2(1 —2p%)°
V. PROOF OF THEOREM IV.1

A. Achievability proof

Our construction of a retractable commitment protocol
follows the non-interactive protocol construction of [6], with
the necessary modifications to operate in the regime where
retractability is possible. We first establish the existence of
a wiretap code with specific secrecy, minimum distance, and
weight guarantees.

Cretract =

Proposition V.1. Let o,v € (0;1), 0 € (0;5(1 — v)), and
o1 € (0; ). Consider a distribution Px on X defined as
@ @
% =
Let Q, & Px o Wy |x denote the corresponding chan-
nel output distribution. For all n € N large enough,
there exists integers M, K, and a wiretap code C =
{x(a,s) € X" :a € [1; M],s € [1; K]} such that

1) 3y > 0 such that Ya, with QU(y) £

XL Wk (yIx(a, 5)),

oz - @z, < e

Px(l‘o)él— Px(ﬁcl)é

B

2) Y(a,s) (o —o1)y/n < wt(x(a,s)) < (a+ o1)v/n;
3) V(d, ) # (a,s) dy(x(d', s'),x(a, s)) = 20+/n;
4) the code size satistifes
log M > (%(1 —v)— 0’) Vnlogn
log K < (1+v)aD(Q1 ]| Qo) vn.
Proof. Let M and K be e integers. Generate MK codewords

x(a,s), with @ € [1;M] and s € [1;K], independently
according to the distribution P®” For 7 > 0, define the sets

<T},

{y : (x,y) € A}. For any 0 > 0, set

W?G( (ylx)

A= {(x,y):log 0°)
and A(x) £

£ (14 60)I(Px; Wy x)n. (6)
Lemma V.2 (adapted from [21]).

I(Px; Wy x)n = vnaD(Q1 || Qo) + o(v/n)

nH(Px) = %\/ﬁlogn—&—o(\/ﬁlogn)
2
D(Qu 1 Qn) = 5re (@1@0) 07 ).

We shall use several tail concentration bounds to obtain
Property 1 following ideas from [6], [25]. Let Qf(y) £

K n
%= Yoo Wik (ylx(a, 5)). Note that

H@Z—Q®”
ZVV?& (vlx(a, s))1{(x(a, s),y) € A}
+= ZVV?& (vIx(a,)1{(x(a,5),y) ¢ A-} — QF"(¥)
< ZQ@TL
K W (ylx(a, s
x g2%1{<x<a,s>,y> e A}-1

+= ZPW,@& o, YA ) )

We first analyze the second term on the right-hand side of (7).
Note that the following holds because of Bernstein’s inequality
(the proof is omitted due to space constraints).

Lemma V.3. There exists y; > 0 such that for any v € (0; 1]

E IP)W@?L

Y| X=x(a,s)

(Y ¢ Ax(a, s)))} eV,
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Then, invoking a Chernoff bound, we have for any 5 > 0

1 &
P (Va € [1; M] = ;PW{?& e (Y ¢ A(x(a,s)))
> (1+ B)e™ V")
< Mexp (—§626_7ﬁ> . (3)

We now focus on the first term on the right-hand side of (7).
For any a € [1; M] and y € Y™, denote

Wyl (ylx(a, 5))

Yy, & YiX 1{(x(a,s),y) € A.}.
o (y) {(x(a,9),y) }
Since 0 < Y < €7 and E [Y;] < 1 for all s € [1; L], invoking

again a Chernoff bound we obtain

~ 1 S WY (vIx(a, s))
P(Vae [1; MVy € Y E;W

<1{(x(a,5),3) € A} ¢ [L£ e AP n))

MIy™ 1 S —n x;Wzix )n
<MY |P<I~<§Y;¢[1ie 01 PxiWz, )D

K 620H(PX§WZX)'"') . (9)

3-e7

< 2M|y"\ exp <

To ensure that the exponent in the right-hand-side of (9) is
positive in light of the value of 7 in (6), we set

log K 2 (1 + 46)1(Px; Wy x )n. (10)

Consequently, combining (8), (9) with (7), we obtain

P <Va € ﬂl;Mﬂ, ||QZ - an’h
> (14 B)e V" + B_QH(P’“WZ‘X)”)

2
S Mexp (—ée(1+49)H(PX§WZX)n—’Y\/ﬁ)
+ 2]T/f|y"| exp <—;69H(PX;WZ|X)TL> )

Since we can always choose 0 < v < (1+460)I(Px; Wz x)n

by Lemma V.2 and Lemma V.3, for n large enough we have

with probability at least 2 that Va € [1; M] Q" — Q%™|, <

(14 B)e V" + e PxiWz1x)n < =12V for some v2 > 0.
We shall now prove Property 2. By a Chernoff bound,

P (wt(x(a, s)) ¢ [(a — 01)v/ni (a + 01)v/n]) <

By Markov’s inequality, with probability at least % the fraction
of codewords with weight not in [(« — o1)v/n; (@ + 1)/
is at most 6e~ 3710V,

We shall now prove Property 3 using the ideas of [6] and
the following lemma, whose proof is omitted due to space

constraints.

267%a'fa\/ﬁ

Lemma V4. There exists £ > 0 such that for any set S C X"
with P pon (S) = e%V™ we have for any p € (0;1)

S| > e3(1=p)vnlogn

for n large enough.

Let B(x,7) C X™ denote the Hamming ball of radius r > 0
centered around x € X™. For any a € [1; M]] and s € [1; L],
adapting [6]

P (x(a,s)e |J s'),20/n)

(a’,s")#(a,s)

) ~~1—-20 n 2o
< max {P(.A) DAl < MLil . (2\/50)”/ }
(an

B(x(d',

We set

log M £ (%(1—2p)—0) Vnlogn (12)
so that the right-hand side of (11) is bounded by e V™ for
n large enough. By Markov’s inequality, with probability at
least % the fraction of codewords within distance 20+/n of
another in the code is at most 3e~5V7™, N

Hence, there exists a codebook with the parameters K
in (10) and M in (12) such that

1) Va € [1; M] |Q" — Q®"||, < e 2V,

2) the fraction of codewords w1th welght not in [(a —

01)V/n; (o + 01)y/n] is at most 6e~ 3710V,
3) the fraction of codewords within distance 20+/n of an-
other in the code is at most 3e—0V7,

By the pigeonhole principle, there exist M £ M /2 indices
a for which there are at most (e V™ 4 126’%"?“\/5)?(
indices s corresponding to codewords x(a, s) within distance
20+/n of others in the code. We construct a new code C
keeping only those indices a and the K £ (1 — 6e=SovV™ —
126*%‘750‘\/5)K indices s for which codewords all have dis-
tance 20/n to others. Without loss of generality, we assume
that we keep the indices a € [1; M] and s € [1; K]. Note
that the code C then satisfies Property 2 and Property 3 in
Proposition V.1. It remains to check that Property 1 remains
true. With Q" (y) £ + Zf 1 W}@&(y\x(a, s)), we have

0z - @="l,
- Qu| + @ - e,
< 12¢ oV + 246_%‘7%(1\/77 + H@ZL _ Q®n 1 <

e—"/m/ﬁ,

for some 79 > 0. The result then follows by defining an
appropriate constant v > 0 and noticing that v can be made
arbitrarily small. O

Remark V.5. The scaling of log M and log K is different
because of our choice of a biased distribution Px in the
random codebook generation. This is consistent with the
approach of [6], because log M is again scaling with H(Px)
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and log K is scaling with I(Px; Wy |x) (see (12) and (10))
but their behavior is now dictated by Lemma V.2.

We construct a commitment protocol from the wiretap code

of Proposition V.1 as follows.

1) Commit phase: Alice commits a message a by choosing
S uniformly at random in [1; K] and transmitting x(a, S)
over the channel, resulting in an observation Y™ for Bob;

2) Reveal phase Alice publicly reveals ' and S’ to
Bob. Let S = {i € [1;n] : z;(a/,s') =1} and Yy =
{y €YV :Qoly) # Q1(y)}. Bob runs the test
ﬁ(a/7S/7Yn) —

{1 if Yy € Vo |57 N (y; YE) —

0 else

Q1(y)| < eQ1(y)

where £ > 0 will be determined a bit later.

Lemma V.6. The commitment protocol is e-concealing with
€ = 2e0Vn,

Proof.

Q8 — Qv lly <[|Qs — Q%™ +[|Qu — Q%]

% ’Yoﬁ

//\ N

O

Lemma V.7. The commitment protocol is p-retractable if o <

\ /m and n is large enough.

Proof. let ( £ min, Qo(y). The scheme is also retractable
because,

D(Py~ || Q5™)
=D (Pyx || Q%") + nD(Qa || Qo)
N
+ ) (Pyn(y) — Q5™ (y)) log Q W)
" 0 (Y)

2
+ eV log (| + o(1),

where we have used the reverse Pinsker inequality [26, Eq.
(323)] and the convexity of ||-||; to bound the first term and
Lemma V.2 to bound the second term. Note that the constraint

2
< 2log (2) eV 4 Q*XQ (Q11Qo)

D(Pyn || Q?”) < p can be achieved upon choosing any
2p
o< | ————,
x2 (Q1]|Qo)
and taking n large enough. O

Lemma V.8. The commitment protocol is §-binding and §-
sound.

Proof. Let x = x(a, s) denote the sequence committed to and
let X' = x(a,’s’) denote the sequence revealed. If x = x/,
then

E | V078 = i

and a Chernoff bound ensures that

1
P (ay €| N T8 - Ql(y)‘ > EQl(y)>
min 2
< Yl S
< e—Elﬁ

for some €1 > 0, so that the protocol is sound.

Assume now that Alice cheats and reveals another codeword
such that dy(x,x’) > 20+/n. Assume that dy(xs,xs) <
(o —01)+/m, that is, the sequences differ on S on strictly less
than (o — o1)+/n positions. Then,

dy(x,x") = dy(xs,Xs) + dp (Xse, Xge)

< (0 — )V + wilxs:)

— (0 — a1V + wi(x) — wi(xs)
(0 — o)/ + wi(x) — (wi(x') —

20/n.

Hence, the sequences x and x’ differ on S in at least (o —

o1)+/n positions denoted by D. Then, for any y € Vo,

(0 —o1)vn)

<
<

B [V - | = e - @)
T min |Qoly) — Qu(y)| > 0. (13)

=
o+ o1 yedo

Consequently, choosing ¢ sufficiently small in light of (13),
another Chernoff bound ensures that

P <Vy eV éN(y;Yﬁ) - Ql(y)‘ < 6@1(7;))
< e—c2Vn

for some 5 > 0. O]

Since o > 0 can be chosen arbitrarily, (12) ensures
log M S m
sup _
2x2 (Q1]/Qo)

{Px }w¢10 :Ex¢m0 pz=1

sup nh—%o Vnlogn ~

B. Converse proof

We only sketch the converse due to space constraints. The
crux of the proof is to use the retractability constraint to
identify the optimal scaling of log M with n, together with
the standard proof for the converse of commitment capacity
in [6, Proposition 9]. A bit more specifically, upon setting

& /2w
Bn - nx2(Q1]]Qo)’ one can show that

log M nHy(8n) 1
Valogn S T en)ylog(m) ¢ (ﬁlogm)) (1
and
1 2 on () o o (108
HolFn) < 2\/71X2(Q1Q0)(1—\/(Tn)1 ao-+o (7).
(15)

from which the upper bound follows.
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