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Abstract—Consider a commitment protocol between two par-
ties, Alice and Bob, in which Alice may (i) commit to a
message using a non-redundant discrete memoryless channel
whose outputs are observed by Bob; and (ii) later reveal her
committed message to Bob who must decide whether Alice is
revealing the message she actually committed to. A commitment
protocol should meet three standard requirements: concealment,
bindingness, and soundness, to ensure that no party may act
dishonestly. Our objective is to study whether one can enforce a
fourth requirement that would allow Alice to retract a commit-
ment before the reveal phase starts without Bob detecting that
she ever participated in the commit phase of the protocol. We
positively answer this question and characterize the commitment
capacity for such a setting by relying on tools developed for
covert communication.

A full version of the paper is available at https://bloch.ece.

gatech.edu/ITWretractablecommitment.pdf.

I. INTRODUCTION

A commitment protocol is a cryptographic protocol in which

a player, Alice, commits a message to another player, Bob,

hiding the value of the message until she chooses to reveal it

but without being able to change its value. Specifically, in a

commitment protocol, one wants to ensure that the protocol is

i) concealing, i.e., Alice’s message remains concealed from

Bob until revealed; ii) binding, i.e., Alice cannot alter her

message after committing to it; and, iii) sound, i.e., Alice’s

commitment is accepted as truthful when both players behave

honestly. Commitment protocols may be used as primitives

in a broad range of cryptographic applications, from online

auctions [1] to zero-knowledge proofs [2], [3] or secure

computations [4]. In the information-theoretic setting, in which

players have unlimited computational power, commitment

protocols can be constructed if the two players have access

to noisy resources, e.g., in the form of a noisy channel

between Alice and Bob [5], [6], [7]. Such commitment proto-

cols leverage the information-theoretic mechanisms related to

secure communication over wiretap channels [8] and secret-

key generation from correlated sources [9], [10].

The commitment capacity of a non-redundant Discrete

Memoryless Channel (DMC), defined as the supremum of

message rates at which Alice can run a concealing, binding,

and sound protocol using the DMC, has been fully character-

ized in [6]. The commitment capacity has also been derived

for classical-quantum channels over finite-dimensional Hilbert
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spaces [11] and for Gaussian channels, in which case it is

infinite [12]. A partial characterization of the commitment

capacity region is also known when commitment involves

multiple users connected with a single receiver through a

multiple-access channel [13]. Finally, there has been renewed

interest in studying commitment protocols over more adver-

sarial models in which one or more players partially control

the DMC between them [14], [15], [16], [17], [18].

In this paper, we study whether additional requirements can

be imposed on a commitment protocol. Specifically, we study

whether a commitment protocol can be retractable, in the

sense that Alice would be able to retract her commitment

before the reveal phase starts without Bob detecting that

she ever participated in the commit phase of the protocol.

Of course, the ability to retract should not compromise the

concealing, binding, and sound nature of a protocol. Our main

contribution is to show how to formulate the problem of

retractable commitment and to characterize the commitment

capacity by building upon concepts and tools developed for the

study of covert communications [19], [20], [21]. In particular,

we show that the number of commitment bits scales as

O(
√
n log n). For ease of exposition, we focus on binary-input

channels.

The remaining of the paper is organized as follows. After

a brief review of notation in Section II, the retractable com-

mitment model is introduced in Section III. Our main result,

the characterization of the retractable commitment capacity, is

given in Section IV, while proofs are deferred to Section V.

II. NOTATION

We denote random variables and their realizations by upper

and lower case, respectively, e.g, X and x. Unless otherwise

specified, a random variable X takes value in a generic finite

alphabet X , denoted in calligraphic case, and has distribution

PX . The cardinality of X is |X |. The n-fold product distri-

bution constructed from PX is denoted by P⊗n
X . A length

n ∈ N sequence is denoted by x, where the value of n is

given by the context, and the n components are denoted by

{xi}ni=1. Throughout the paper, log and exp are understood

to the base e. For x ∈ X and a sequence x ∈ Xn, we

define N(x;x) ≜
∑n

i=1 1{xi = x}, where 1{·} denotes the

indicator function. The Hamming distance dH(x,x′) between

two sequences x and x′ is the number of positions in which

they differ. For X ≜ {x0, x1}, the weight of a sequence x is

wt(x) ≜ dH(x,x0), where x0 is the all-x0 sequence.
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For two random variables X,Y with joint distribution

PXWY |X , the mutual information is denoted by I
(
PX ;WY |X

)

or I(X;Y ) depending on the context. We also let PX ◦WY |X
denote the marginal on Y of PXWY |X . For two distributions

P and Q, ∥P −Q∥1 and D(P ∥Q) denote the norm 1 distance

and the relative entropy between them, respectively. We also

use the chi-squared distance χ2(P∥Q) ≜
∑

x
(P (x)−Q(x))2

Q(x) .

The binary entropy function with parameter p ∈ [0; 1] is

denoted by hb (p).

III. RETRACTABLE COMMITMENT MODEL

We assume that Alice and Bob have access to a DMC

(X ,WY |X ,Y) with X = {x0, x1}, whose input is controlled

by Alice and whose output is observed by Bob. We set

Q0 ≜ WY |X=x0
and Q1 ≜ WY |X=x1

. Similar to [6], we

assume that the DMC is non-redundant, i.e.,

Q1 ̸= Q0. (1)

We also assume that Q1 is absolutely continuous with respect

to Q0. The DMC itself is outside the control of all parties

and we assume that the input symbol x0 is an innocent input

symbol, that corresponds to the resting state of the channel,

i.e., the channel input when Alice does not use the channel.

We also assume that Alice and Bob have access to a noiseless

public channel of unlimited capacity over which they can

exchange messages.

We consider commitment protocols that operate in two

phases as illustrated in Fig. 1.

1) In the commit phase, Alice chooses a message a ∈
J1;MK. Then, she forms from a and some local random-

ness, denoted by S, a sequence Xn that is transmitted

over the DMC. Bob observes the corresponding chan-

nel outputs Y n with distribution PY n . Alice’s encoding

function is known to all parties.

2) In the reveal phase, Alice announces over the public

noiseless channel (a′, S′). Bob runs a statistical test

β(a′, S′, Y n) that returns 0 or 1 if Bob rejects or accepts

Alice’s revealed commitment, respectively.

S

0

1

WY |X
Y nXn

ENCa

Commit phase

Reveal phase

β(·)a′, S ′

Optional Retraction phase

Fig. 1. Retractable commitment protocol

A commitment protocol is ϵ-concealing if for any distinct

messages a and a′ inducing distributions P a
Y n and P a′

Y n ,

respectively, on Yn,∥∥∥P a
Y n − P a′

Y n

∥∥∥
1
⩽ ϵ. (2)

A commitment protocol is δ-binding if for any a, a′ ∈ J1;MK
such that a ̸= a′, and for any S′,

P[β(a, S, Y n) = 1 = β(a′, S′, Y n)] ⩽ δ. (3)

A commitment protocol is δ-sound if

P[β(a, S, Y n) = 1] ⩾ 1− δ. (4)

Finally, a commitment protocol is µ-retractable if, at the end

of the commit phase, we have

D
(
PY n

∥∥Q⊗n
0

)
⩽ µ. (5)

The concealing, binding, and soundness properties are iden-

tical to those of standard commitment protocols [6]. The

retractability property mandates that the distribution PY n

observed by Bob be nearly indistinguishable from the inde-

pendent and identically distributed (i.i.d.) distribution Q⊗n
0 ex-

pected if Alice were to not commit a message. It is well-known

that controlling the relative entropy between the distributions

PY n and Q⊗n
0 amounts to controlling Bob’s ability to detect

the presence of a commitment, regardless of its statistical test,

see, e.g., [20], [21], [22].

As we shall see that logM scales sub-linearly with n, we

must identify an algebraic or transcendental function f(n),
increasing with n, independent of channels statistics and proto-

col parameters, that captures the optimal scaling of logM with

n. We call logM
f(n) the throughput of the protocol. A throughput

R is achievable if there exist commitment protocols for every

n with throughput converging to R, which are ϵ±concealing,

δ±binding, and µ-retractable with ϵ, δ → 0 as n → ∞. The

retractable commitment capacity Cretract is the supremum of

all achievable throughputs. If f(n) were overestimated, logM
f(n)

would converge to zero regardless of the channel; similarly, if

f(n) were underestimated, logM
f(n) would diverge.

Remark III.1. Commitment protocols can be either interac-

tive or non-interactive in the commit phase. Interactive pro-

tocols have been particularly useful to study the commitment

capacity with adversarial control of the channel [17], [18].

In the context of retractable commitment, however, interac-

tive protocols are incompatible with the problem setting as

interactive communication with Bob during the commit phase

would indicate that Alice is participating in the commit phase

without the possibility for her to deny it.

Remark III.2. Our notion of retractability explicitly requires

Alice to be undetectable with respect to (w.r.t.) a reference

distribution Q0, corresponding to a deterministic channel

input x0. One could also use a distribution induced by a

channel input distribution PX , in which case the scaling

f(n) would be n. This distinction is similar to that between

covertness [19] and stealth [23].

IV. RETRACTABLE COMMITMENT CAPACITY

Theorem IV.1. Consider a non-redundant DMC

(X ,WY |X ,Y) with X ≜ {x0, x1} and x0 the innocent input

symbol. Let µ > 0 be retractablity parameter. The retractable
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commitment capacity is obtained for f(n) =
√
n log n.

Further,

Cretract =

√
µ

2χ2 (Q1∥Q0)
.

Theorem IV.1 is proved in Section V but we provide here

a brief intuitive description of the proof. The crux of the

approach is to use the insights developed in [6], by which

a wiretap code with a controlled minimum distance is used

to commit messages. Specifically, during the commit phase,

Alice commits to a message a by encoding it along with a local

secret S using the wiretap code and transmitting the resulting

codeword Xn over the DMC. The semantic secrecy [24]

provided by the wiretap code against the DMC (X ,WY |X ,Y)
ensures that the protocol is concealing. During the reveal

phase, Alice discloses a′ and s′. The minimum distance of the

wiretap code ensures that the protocol is binding because Alice

cannot reveal a codeword other than Xn without the cheating

being detected. We modify the wiretap code construction of [6]

to operate in a covert regime, in which the fraction of symbols

x1 in the codewords is on the order of 1√
n

. Intuitively, the

scaling
√
n log n in Theorem IV.1 follows because the entropy

rate of the input in the covert regime scales as logn√
n

. In

addition, the leakage to the eavesdropper scales as 1√
n

, so

that the concealing property of the protocol comes almost ªfor

free.º Note that the retractable commitment capacity depends

on µ, which is consistent with the absence of a strong converse

in covert communication [20], [21].

Corollary IV.2. Consider a Binary Symmetric Channel (BSC)

with cross over probability p in which 0 is the innocent input.

Then,

Cretract =

√
µp(1− p)

2(1− 2p2)
.

V. PROOF OF THEOREM IV.1

A. Achievability proof

Our construction of a retractable commitment protocol

follows the non-interactive protocol construction of [6], with

the necessary modifications to operate in the regime where

retractability is possible. We first establish the existence of

a wiretap code with specific secrecy, minimum distance, and

weight guarantees.

Proposition V.1. Let α, ν ∈ (0; 1), σ ∈ (0; α
2 (1 − ν)), and

σ1 ∈ (0;α). Consider a distribution PX on X defined as

PX(x0) ≜ 1− α√
n

PX(x1) ≜
α√
n
.

Let Qα ≜ PX ◦ WY |X denote the corresponding chan-

nel output distribution. For all n ∈ N large enough,

there exists integers M , K, and a wiretap code C ≜
{x(a, s) ∈ Xn : a ∈ J1;MK, s ∈ J1;KK} such that

1) ∃γ0 > 0 such that ∀a, with Qn
a(y) ≜

1
K

∑K
s=1 W

⊗n
Y |X(y|x(a, s)),
∥∥Qn

a −Q⊗n
α

∥∥
1
⩽ e−γ0

√
n;

2) ∀(a, s) (α− σ1)
√
n ⩽ wt(x(a, s)) ⩽ (α+ σ1)

√
n;

3) ∀(a′, s′) ̸= (a, s) dH(x(a′, s′),x(a, s)) ⩾ 2σ
√
n;

4) the code size satistifes

logM ⩾
(α
2
(1− ν)− σ

)√
n log n

logK ⩽ (1 + ν)αD(Q1 ∥Q0)
√
n.

Proof. Let M̃ and K̃ be integers. Generate M̃K̃ codewords

x(a, s), with a ∈ J1; M̃K and s ∈ J1; K̃K, independently

according to the distribution P⊗n
X . For τ > 0, define the sets

A ≜

{
(x,y) : log

W⊗n
Y |X(y|x)
Q⊗(y)

< τ

}
,

and A(x) ≜ {y : (x,y) ∈ A}. For any θ > 0, set

τ ≜ (1 + θ)I
(
PX ;WY |X

)
n. (6)

Lemma V.2 (adapted from [21]).

I
(
PX ;WY |X

)
n =

√
nαD(Q1 ∥Q0) + o(

√
n)

nH(PX) =
α

2

√
n log n+ o(

√
n log n)

D(Qα ∥Q0) =
α2

2n
χ2 (Q1∥Q0) + o

(
1

n

)
.

We shall use several tail concentration bounds to obtain

Property 1 following ideas from [6], [25]. Let Q̃n
a(y) ≜

1

K̃

∑K̃
s=1 W

⊗n
Y |X(y|x(a, s)). Note that

∥∥∥Q̃n
a −Q⊗n

α

∥∥∥
1

=
∑

y

∣∣∣∣∣
1

K̃

K∑

s=1

W⊗n
Y |X(y|x(a, s))1{(x(a, s),y) ∈ Aτ}

+
1

K̃

K∑

s=1

W⊗n
Y |X(y|x(a, s))1{(x(a, s),y) /∈ Aτ} −Q⊗n

α (y)

∣∣∣∣∣

⩽
∑

y

Q⊗n
α (y)

×
∣∣∣∣∣
1

K̃

K∑

s=1

W⊗n
Y |X(y|x(a, s))
Q⊗n

α (y)
1{(x(a, s),y) ∈ Aτ} − 1

∣∣∣∣∣

+
1

K̃

K∑

s=1

PW
⊗n

Y |X=x(a,s)
(Y /∈ A(x(a, s))) (7)

We first analyze the second term on the right-hand side of (7).

Note that the following holds because of Bernstein’s inequality

(the proof is omitted due to space constraints).

Lemma V.3. There exists γ1 > 0 such that for any γ ∈ (0; γ1]

E

[
PW

⊗n

Y |X=x(a,s)
(Y /∈ A(x(a, s)))

]
⩽ e−γ

√
n.
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Then, invoking a Chernoff bound, we have for any β > 0

P

(
∀a ∈ J1; M̃K

1

K̃

K∑

s=1

PW
⊗n

Y |X=x(a,s)
(Y /∈ A(x(a, s)))

> (1 + β)e−γ
√
n
)

⩽ M̃ exp

(
−K

3
β2e−γ

√
n

)
. (8)

We now focus on the first term on the right-hand side of (7).

For any a ∈ J1; M̃K and y ∈ Yn, denote

Ys ≜
W⊗n

Y |X(y|x(a, s))
Q⊗n(y)

1{(x(a, s),y) ∈ Aτ}.

Since 0 ⩽ Ys ⩽ eτ and E [Ys] ⩽ 1 for all s ∈ J1;LK, invoking

again a Chernoff bound we obtain

P

(
∀a ∈ J1; M̃K∀y ∈ Yn 1

K̃

K∑

s=1

W⊗n
Y |X(y|x(a, s))
Q⊗n

α (y)

×1{(x(a, s),y) ∈ Aτ} /∈
[
1± e−nθI(PX ;WZ|X)n

])

⩽ M̃ |Yn|P
(

1

K̃

K∑

s=1

Ys /∈
[
1± e−nθI(PX ;WZ|X)n

])

⩽ 2M̃ |Yn| exp
(
− K

3 · eτ e
−2θI(PX ;WZ|X)n

)
. (9)

To ensure that the exponent in the right-hand-side of (9) is

positive in light of the value of τ in (6), we set

log K̃ ≜ (1 + 4θ)I
(
PX ;WZ|X

)
n. (10)

Consequently, combining (8), (9) with (7), we obtain

P

(
∀a ∈ J1; M̃K,

∥∥Qn
a −Q⊗n

α

∥∥
1

> (1 + β)e−γ
√
n + e−θI(PX ;WZ|X)n

)

⩽ M̃ exp

(
−β2

3
e(1+4θ)I(PX ;WZ|X)n−γ

√
n

)

+ 2M̃ |Yn| exp
(
−1

3
eθI(PX ;WZ|X)n

)
.

Since we can always choose 0 < γ < (1+4θ)I
(
PX ;WZ|X

)
n

by Lemma V.2 and Lemma V.3, for n large enough we have

with probability at least 2
3 that ∀a ∈ J1; M̃K ∥Qn

a −Q⊗n
α ∥1 ⩽

(1 + β)e−γ
√
n + e−θI(PX ;WZ|X)n ⩽ e−γ2

√
n for some γ2 > 0.

We shall now prove Property 2. By a Chernoff bound,

P
(
wt(x(a, s)) /∈ [(α− σ1)

√
n; (α+ σ1)

√
n]
)
⩽ 2e−

1
3σ

2
1α

√
n.

By Markov’s inequality, with probability at least 2
3 the fraction

of codewords with weight not in [(α − σ1)
√
n; (α + σ1)

√
n]

is at most 6e−
1
3σ

2
1α

√
n.

We shall now prove Property 3 using the ideas of [6] and

the following lemma, whose proof is omitted due to space

constraints.

Lemma V.4. There exists ξ0 > 0 such that for any set S ⊆ Xn

with PP
⊗n
X

(S) ⩾ e−ξ0
√
n we have for any ρ ∈ (0; 1)

|S| ⩾ e
α
2 (1−ρ)

√
n logn.

for n large enough.

Let B(x, r) ⊆ Xn denote the Hamming ball of radius r > 0

centered around x ∈ Xn. For any a ∈ J1; M̃K and s ∈ J1; L̃K,

adapting [6]

P


x(a, s) ∈

⋃

(a′,s′) ̸=(a,s)

B(x(a′, s′), 2σ
√
n)




⩽ max

{
P (A) : |A| ⩽ M̃L̃

1− 2σ

1− 4σ

(
n

2
√
nσ

)
|X |2

√
nσ

}
.

(11)

We set

log M̃ ≜
(α
2
(1− 2ρ)− σ

)√
n log n (12)

so that the right-hand side of (11) is bounded by e−ξ0
√
n for

n large enough. By Markov’s inequality, with probability at

least 2
3 the fraction of codewords within distance 2σ

√
n of

another in the code is at most 3e−ξ0
√
n.

Hence, there exists a codebook with the parameters K̃
in (10) and M̃ in (12) such that

1) ∀a ∈ J1; M̃K ∥Qn
a −Q⊗n∥1 ⩽ e−γ2

√
n;

2) the fraction of codewords with weight not in [(α −
σ1)

√
n; (α+ σ1)

√
n] is at most 6e−

1
3σ

2
1α

√
n.

3) the fraction of codewords within distance 2σ
√
n of an-

other in the code is at most 3e−ξ0
√
n.

By the pigeonhole principle, there exist M ≜ M̃/2 indices

a for which there are at most (6e−ξ0
√
n + 12e−

1
3σ

2
1α

√
n)K̃

indices s corresponding to codewords x(a, s) within distance

2σ
√
n of others in the code. We construct a new code C

keeping only those indices a and the K ≜ (1 − 6e−ξ0
√
n −

12e−
1
3σ

2
1α

√
n)K̃ indices s for which codewords all have dis-

tance 2σ
√
n to others. Without loss of generality, we assume

that we keep the indices a ∈ J1;MK and s ∈ J1;KK. Note

that the code C then satisfies Property 2 and Property 3 in

Proposition V.1. It remains to check that Property 1 remains

true. With Qn
a(y) ≜

1
K

∑K
s=1 W

⊗n
Y |X(y|x(a, s)), we have

∥∥Qn
a −Q⊗n

∥∥
1

⩽
∥∥∥Qn

a − Q̃n
a

∥∥∥
1
+
∥∥∥Q̃n

a −Q⊗n
∥∥∥
1

⩽ 12e−ξ0
√
n + 24e−

1
3σ

2
1α

√
n +

∥∥∥Q̃n
a −Q⊗n

∥∥∥
1
⩽ e−γ0

√
n,

for some γ0 > 0. The result then follows by defining an

appropriate constant ν > 0 and noticing that ν can be made

arbitrarily small.

Remark V.5. The scaling of logM and logK is different

because of our choice of a biased distribution PX in the

random codebook generation. This is consistent with the

approach of [6], because logM is again scaling with H(PX)
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and logK is scaling with I(PX ;WY |X) (see (12) and (10))

but their behavior is now dictated by Lemma V.2.

We construct a commitment protocol from the wiretap code

of Proposition V.1 as follows.

1) Commit phase: Alice commits a message a by choosing

S uniformly at random in J1;KK and transmitting x(a, S)
over the channel, resulting in an observation Y n for Bob;

2) Reveal phase: Alice publicly reveals a′ and S′ to

Bob. Let S ≜ {i ∈ J1;nK : xi(a
′, s′) = x1} and Y0 ≜

{y ∈ Y : Q0(y) ̸= Q1(y)}. Bob runs the test

β(a′, S′, Y n) =
{
1 if ∀y ∈ Y0

∣∣∣ 1
|S|N(y;Y n

S )−Q1(y)
∣∣∣ ⩽ εQ1(y)

0 else

where ε > 0 will be determined a bit later.

Lemma V.6. The commitment protocol is ϵ-concealing with

ϵ = 2e−γ0
√
n.

Proof.

∥Qn
a −Qn

a′∥1 ⩽
∥∥Qn

a −Q⊗n
∥∥
1
+
∥∥Qa′ −Q⊗n

∥∥
1

⩽ 2e−γ0
√
n.

Lemma V.7. The commitment protocol is µ-retractable if α <√
2µ

χ2(Q1∥Q0)
and n is large enough.

Proof. let ζ ≜ miny Q0(y). The scheme is also retractable

because,

D
(
PY n

∥∥Q⊗n
0

)

= D
(
PY n

∥∥Q⊗n
α

)
+ nD(Qα ∥Q0)

+
∑

y

(
PY n(y)−Q⊗n

α (y)
)
log

Q⊗n
α (y)

Q⊗n
0 (y)

⩽ 2 log

(
1

ζ

)
e−γ

√
n +

α2

2
χ2 (Q1∥Q0)

+ e−γ
√
n|log ζ|+ o(1),

where we have used the reverse Pinsker inequality [26, Eq.

(323)] and the convexity of ∥·∥1 to bound the first term and

Lemma V.2 to bound the second term. Note that the constraint

D
(
PY n

∥∥Q⊗n
0

)
⩽ µ can be achieved upon choosing any

α <

√
2µ

χ2 (Q1∥Q0)
,

and taking n large enough.

Lemma V.8. The commitment protocol is δ-binding and δ-

sound.

Proof. Let x ≜ x(a, s) denote the sequence committed to and

let x′ ≜ x(a,′ s′) denote the sequence revealed. If x = x′,
then

E

[
1

|S|N(y;Y n
S )

]
= Q1(y)

and a Chernoff bound ensures that

P

(
∃y ∈ Y0 :

∣∣∣∣
1

|S|N(y;Y n
S )−Q1(y)

∣∣∣∣ > εQ1(y)

)

⩽ |Y0|e−
|S|miny Q1(y)ϵ2

3

⩽ e−ε1
√
n

for some ε1 > 0, so that the protocol is sound.

Assume now that Alice cheats and reveals another codeword

such that dH(x,x′) ⩾ 2σ
√
n. Assume that dH(xS ,x′

S) <
(σ−σ1)

√
n, that is, the sequences differ on S on strictly less

than (σ − σ1)
√
n positions. Then,

dH(x,x′) = dH(xS ,x
′
S) + dH(xSc ,x′

Sc)

< (σ − σ1)
√
n+ wt(xSc)

= (σ − σ1)
√
n+ wt(x)− wt(xS)

⩽ (σ − σ1)
√
n+ wt(x)− (wt(x′)− (σ − σ1)

√
n)

⩽ 2σ
√
n.

Hence, the sequences x and x′ differ on S in at least (σ −
σ1)

√
n positions denoted by D. Then, for any y ∈ Y0,
∣∣∣∣E
[

1

|S|N(y;Y n
S )

]
−Q1(y)

∣∣∣∣ =
|D|
|S| |Q0(y)−Q1(y)|

⩾
σ − σ1

α+ σ1
min
y∈Y0

|Q0(y)−Q1(y)| > 0. (13)

Consequently, choosing ε sufficiently small in light of (13),

another Chernoff bound ensures that

P

(
∀y ∈ Y0 :

∣∣∣∣
1

|S|N(y;Y n
S )−Q1(y)

∣∣∣∣ ⩽ εQ1(y)

)

⩽ e−ε2
√
n

for some ε2 > 0.

Since σ > 0 can be chosen arbitrarily, (12) ensures

sup lim
n→∞

logM√
n log n

⩾ sup
{px}x ̸=x0

:
∑

x ̸=x0
px=1

√
µ

2χ2 (Q1∥Q0)
.

B. Converse proof

We only sketch the converse due to space constraints. The

crux of the proof is to use the retractability constraint to

identify the optimal scaling of logM with n, together with

the standard proof for the converse of commitment capacity

in [6, Proposition 9]. A bit more specifically, upon setting

βn ≜
√

2µ
nχ2(Q1∥Q0)

, one can show that

logM√
n log n

⩽
nHb(βn)

(1− ϵn)
√
n log(n)

+O

(
1√

n log(n)

)
(14)

and

Hb(βn) ⩽
1

2

√
2µ

nχ2(Q1∥Q0)(1−
√
αn)

log (n) + o

(
log(n)√

n

)
.

(15)

from which the upper bound follows.

2023 IEEE Information Theory Workshop (ITW)

264Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 10,2023 at 16:34:45 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Juels and M. Szydlo, ªA two-server, sealed-bid auction protocol,º in
International conference on financial cryptography. Springer, 2002,
pp. 72±86.

[2] G. Brassard, D. Chaum, and C. CrÂepeau, ªMinimum disclosure proofs
of knowledge,º Journal of computer and system sciences, vol. 37, no. 2,
pp. 156±189, 1988.

[3] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, ªZero-knowledge
from secure multiparty computation,º in Proceedings of the thirty-ninth

annual ACM symposium on Theory of computing, 2007, pp. 21±30.
[4] C. CrÂepeau, J. v. d. Graaf, and A. Tapp, ªCommitted oblivious transfer

and private multi-party computation,º in Annual International Cryptol-

ogy Conference. Springer, 1995, pp. 110±123.
[5] C. CrÂepeau, ªEfficient cryptographic protocols based on noisy channels,º

in Proc. of EUROCRYPT 1997, Springer, Ed., 1997, pp. 306±317.
[6] A. Winter, A. C. A. Nascimento, and H. Imai, ªCommitment capacity

of discrete memoryless channels,º in Proc. of 9th IMA international

conference, Cirencester, UK, 2003, pp. 33±51.
[7] H. Imai, K. Morozov, A. C. A. Nascimento, and A. Winter, ªEfficient

protocols achieving the commitment capacity of noisy correlations,º in
Proc. of 2006 IEEE International Symposium on Information Theory,
Seattle, USA, July 2006, pp. 1432±1436.

[8] A. D. Wyner, ªThe wire-tap channel,º Bell System Technical Journal,
vol. 54, no. 8, pp. 1355±1367, October 1975.

[9] R. Ahlswede and I. CsiszÂar, ªCommon randomness in information theory
and cryptography. I. Secret sharing,º IEEE Transactions on Information

Theory, vol. 39, no. 4, pp. 1121±1132, July 1993.
[10] U. Maurer, ªSecret key agreement by public discussion from common

information,º IEEE Transactions on Information Theory, vol. 39, no. 3,
pp. 733±742, May 1993.

[11] M. Hayashi and N. A. Warsi, ªCommitment capacity of classical-
quantum channels,º in Proc. of IEEE International Symposium on

Information Theory, Jun. 2022.
[12] A. C. A. Nascimento, J. Barros, S. Skludarek, and H. Imai, ªThe com-

mitment capacity of the gaussian channel is infinite,º IEEE Transactions

on Information Theory, vol. 54, no. 6, pp. 2785±2789, 2008.
[13] R. Chou and M. R. Bloch, ªCommitment over multiple-access chan-

nels,º in Proc. of 58th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2022, pp. 1±6.

[14] A. K. Yadav, M. Mamindlapally, A. J. Budkuley, and M. Mishra,
ªCommitment over compound binary symmetric channels,º in 2021

National Conference on Communications (NCC), jul 2021.
[15] A. J. Budkuley, P. Joshi, M. Mamindlapally, and A. K. Yadav, ªCommit-

ment over unreliable noisy channels: When awareness meets control,º
in Proc. of IEEE Information Theory Workshop, 2022.

[16] A. K. Yadav, M. Mamindlapally, P. Joshi, and A. J. Budkuley, ªOn com-
mitment over general compound channels,º in 2022 14th International

Conference on Communication Systems & Networks, jan 2022.
[17] A. J. Budkuley, P. Joshi, M. Mamindlapally, and A. K. Yadav, ªOn re-

verse elastic channels and the asymmetry of commitment capacity under
channel elasticity,º IEEE Journal on Selected Areas in Communications,
vol. 40, no. 3, pp. 862±870, mar 2022.

[18] C. Crepeau, R. Dowsley, and A. C. A. Nascimento, ªOn the commitment
capacity of unfair noisy channels,º IEEE Transactions on Information

Theory, vol. 66, no. 6, pp. 3745±3752, jun 2020.
[19] B. Bash, D. Goeckel, and D. Towsley, ªLimits of reliable communication

with low probability of detection on AWGN channels,º IEEE Journal

on Selected Areas in Communications, vol. 31, no. 9, pp. 1921±1930,
September 2013.

[20] L. Wang, G. W. Wornell, and L. Zheng, ªFundamental limits of
communication with low probability of detection,º IEEE Transactions

on Information Theory, vol. 62, no. 6, pp. 3493±3503, Jun. 2016.
[21] M. R. Bloch, ªCovert communication over noisy channels: A resolv-

ability perspective,º IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2334±2354, May 2016.

[22] M. Tahmasbi and M. R. Bloch, ªFirst and second order asymptotics
in covert communication,º IEEE Transactions on Information Theory,
vol. 65, no. 4, pp. 2190 ±2212, Apr. 2019.

[23] J. Hou and G. Kramer, ªEffective secrecy: Reliability, confusion and
stealth,º in Proc. of IEEE International Symposium on Information

Theory, Honolulu, HI, July 2014, pp. 601±605.
[24] M. Bellare, S. Tessaro, and A. Vardy, ªSemantic security for the wiretap

channel,º in Advances in Cryptology & CRYPTO 2012, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol.
7417. Springer Berlin Heidelberg, 2012, pp. 294±311, hard-copy.

[25] P. Cuff, ªSoft covering with high probability,º in Proc. of IEEE Interna-

tional Symposium on Information Theory, Barcelona, Spain, Jul. 2016,
pp. 2963±2967.

[26] I. Sason and S. VerdÂu, ªf -divergence inequalities,º IEEE Transactions

on Information Theory, vol. 62, no. 11, pp. 5973±6006, Nov. 2016.

2023 IEEE Information Theory Workshop (ITW)

265Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 10,2023 at 16:34:45 UTC from IEEE Xplore.  Restrictions apply. 


