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Abstract—Developers of open-source software projects tend to
collaborate in bursts of activity over a few days at a time, rather
than at an even pace. A project might find its productivity
suffering if bursts of activity occur when a key person with
the right role or right expertise is not available to participate.
Open-source projects could benefit from monitoring the way
they orchestrate attention among key developers, finding ways
to make themselves available to one another when needed. In
commercial software development, Sociotechnical Congruence
(STC) has been used as a measure to assess whether coordination
among developers is sufficient for a given task. However, STC has
not previously been successfully applied to open-source projects,
in which some industrial assumptions do not apply: management-
chosen targets, mandated steady work hours, and top-down task
allocation of inputs and targets. In this work we propose an
operationalization of STC for open-source software development.
We use temporal bursts of activity as a unit of analysis more
suited to the natural rhythms of open-source work, as well as
open source analogues of other component measures needed for
calculating STC. As an illustration, we demonstrate that open-
source development on PyPI projects in GitHub is indeed bursty,
that activities in the bursts have topical coherence, and we apply
our operationalization of STC. We argue that a measure of
socio-technical congruence adapted to open source could provide
projects with a better way of tracking how effectively they are
collaborating when they come together to collaborate.

Index Terms—Socio-Technical Congruence, Productivity,
Bursty Collaboration, Hidden Markov Model, Open-Source,
GitHub

I. INTRODUCTION

Globally distributed volunteers in open-source projects may
only sporadically find themselves available at the same time
for tightly-coupled collaboration, since the work rhythms of
volunteers with different time zones, work schedules, and
levels of commitment will rarely align by chance, in contrast
to their brick-and-mortar counterparts. Yet investigations of
success in open-source shows that these organizations can
still be productive and effective; indeed, bursty patterns of
interaction have been shown to be more strongly associated
with positive project outcomes than random (Poisson) or
periodic time distributions of behavior [1, 2], perhaps because
a bursty pattern might reflect people being responsive to each
other [3].
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Beyond the mere existence of a burst of activity, effective
work requires that the right people talk to each other about
issues that stand in the way of completing work. This is a
concept called Sociotechnical Congruence (STC) [4] — the
idea that the communication patterns among a team should
reflect the dependency structure among the tasks they are
collaborating on. In this work we propose measures of overall
burstiness of a project, and of STC adapted to the open-source
domain. These measures could be used to monitor and improve
processes in medium-to-low intensity open-source projects,
in which sporadic collaboration makes it important to make
productive use of the little time they have together.

Some research tools such as Tesseract [5], Tukan [6],
CollabVS [7], and Palantir [8] have tried to suggest rec-
ommended contacts among developers on this basis. In the
field, some recommender bots are used to promote connections
between appropriate people. Wessel et al. [9] identified seven
bots in use in a sample of 93 projects that helped assign
code reviewers, and other bots that might more indirectly
draw reviewers into conversation, for example by welcoming
newcomers. This published evidence of adoption of such bots
demonstrates that these communities are actively interested in
fostering the needed coordination and communication.

Although tools, bots, and policies have been adopted in
order to improve communication patterns, there has not been
a readily available way of assessing the extent to which these
measures are working properly. The lack of such measurement
technology is even more of a concern when considering that
the need for a particular contributor may be implicit and
unrecognized, such as in a discussion about a module where
an unnamed expert associated with that module does not show
up to participate in the discussion. It is currently difficult for
projects to maintain awareness of such missed opportunities or
their impact on productivity, much less to assess whether such
a problem is merely episodic, or is endemic to their typical
patterns of coordination. Measuring the adequacy of coordi-
nation using a method such as we propose could potentially
help not only to test the impact of an introduced bot or policy
change, but also perhaps help diagnose needs for volunteers
with different patterns of availability.

As STC has previously been measured primarily in com-
mercial projects, in this work we take on two formidable
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challenges associated with adapting STC to open-source: mea-
suring productivity, and identifying a unit of analysis. First,
measuring time to completion of tasks relies heavily on the
capability to identify discrete tasks with known endpoints, the
set of files associated with each task, developers assigned those
tasks, and the communication that occurred for accomplishing
the tasks. While these may be known apriori in commer-
cial environments with top-down planning and toolchains,
these measures are very difficult to estimate in open-source
platforms where “tasks” may not be predefined or assigned.
Second, as we will illustrate in this paper, open-source co-
ordination often involves sporadic episodes of relatively in-
tense and explicit collaboration interspersed among periods
of individual contributions in which collaboration happens
implicitly through the code and artifacts. Measures developed
for commercial development by full-time developers may only
be valid in open-source during times of active collaborative
development. Metrics that straightforwardly incorporate time
in such projects may unfairly penalize projects as unproductive
for the long spans of time in which participants are not trying
to work together.

In response to these two challenges, we propose an adap-
tation of STC that uses empirically observed bursts of col-
laborative activity as a unit of analysis, and does not rely on
the assumption of top-down assignment of tasks, roles, and
work schedules to assess team productivity. In particular, we
report on an investigation aimed at addressing three research
questions in the context of collaboration within more than
sixteen thousand PyPI projects on GitHub, investigating each
project as an independent collaboration.

Our goal is to adapt the measure of sociotechnical con-
gruence for open-source projects on GitHub, starting by
identifying the appropriate time periods as units of analysis
during which it is meaningful to measure the productivity of
collaboration.

Research Question 1: Are open-source projects’ activity
traces in GitHub truly “bursty”, or is apparent burstiness
merely a statistical artifact?

Research Question 2: To what extent do bursts represent
meaningful work episodes? More specifically, what oper-
ationalization of burst boundaries best mirrors changes in
developer task focus? Such boundaries allow us to identify
maximally distinct collaboration episodes and isolate them
from each other, thus minimizing measurement noise from
multiple, topically distinct, adjacent episodes.

Research Question 3: Is the open-source adapted STC mea-
sure positively associated with productivity, as the original
industrial STC was in its domain?

In the remainder of the paper we first review the literature
on identifying bursts in data streams and on coordination in
software development. Next, we explain our methodology,
outlining the corpus constructed from the PyPI ecosystem
on GitHub and the modeling approach that enables us to
identify collaborative bursts of activity and define a meaningful
measure of productivity. We explain our implementation of
the measures of congruence and the related control variables

for the collaborative bursts of the projects followed by the
results of a quantitative investigation of these bursts. We end
by discussing implications of this work and directions for
continued research.

II. RELATED WORK

Our approach to studying coordination in open-source
projects is twofold. First, we wish to segment the activity
timeline of a project into coherent and meaningful ‘units’ or
‘bursts’ of activity. Second, we attempt to study coordination
and productivity in these projects with the identified bursts
functioning as our units of work. We identify related work
done on studying and modeling bursty data streams and on
the study of coordination in software projects in the following
subsections.

A. Bursty Structure in Data Streams

Burstiness can be defined as a violation of the assumptions
behind a Poisson process. In a Poisson process, events are
distributed randomly in time such that the number of events
in two successive intervals is uncorrelated [10]. Time intervals
between successive events in a Poisson process follow a
Poisson distribution. A process is considered “bursty” if it
violates this assumption in the form of a positive correlation
between inter-event times, and conversely, long gaps between
events are more likely than expected from a Poisson distribu-
tion [10, 11]. Similarly, processes with a negative correlation
between inter-event times are considered periodic, or “anti-
bursty”. An example of this would be a heartbeat. Bursts
have been found in many traces of human activity, such as
distributions of letters in text [12], developers’ accesses of
methods in an IDE [13], or patterns of messages to other
individuals in an email archive [14].

Because of the prevalence of burstiness in human activity
streams, it makes sense to explore it as a potential lens for
understanding open-source work. Rossi et al. [15] attempted
to analyze burstiness of open-source projects by separately
detecting bursts in three streams of activity: code changes,
bug reports, and releases. They found little correlation among
them, but their data were aggregated at a monthly level.
They speculate that a finer-grained analysis would yield more
interesting results. In our work, we follow up by doing a more
fine grained analysis, and indeed, the results below report that
we find many projects characterized by quite distinct bursts
that are 1-5 days in length, much shorter than their window.

In our work, it is important to identify the boundaries of
bursts. Different approaches have been applied to measure the
burstiness of time-series data and identify the boundaries of
the bursts themselves. Kleinberg [12] used an infinite state
automaton, where each state is a distinctly higher level of
activity, to model bursts in document streams over time like
email archives. Kleinberg formalizes the bursts for any word
as intervals of time that see high frequency of the word
occurring in the documents at that time. Lappas et al. [16]
used discrepancy theory concepts to formalize the notion of
burstiness and use it to identify “bursty” intervals for a term
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appearing in a document sequence. They use this information
to develop a parameter-free, linear-time approach to identify
the time intervals of maximum burstiness for a given term.

Bursts make an attractive lens for analysis of open-source
work because they appear to be associated with successful
collaboration among teams. Riedl and Woolley [1] showed in
a controlled study that teams with bursty communication pat-
terns were more successful on a group software development
task. Doyle et al. [2] performed simulations of idea-sharing
networks, and showed that bursty communication led groups
to reach consensus faster.

Many possible distributions are “burstier” than a Pois-
son process, so there are multiple methods for detecting
and characterizing bursts. For example, Howison et al. [3]
modeled bursty contribution patterns in Wikipedia as a non-
homogeneous Poisson distribution; i.e., a state model switch-
ing among Poisson distributions with different parameters for
nights/weekends, daytime work hours, and especially high
activity periods. Riedl and Woolley [1] used the Fano factor,
a simple ratio of standard deviation to mean of inter-event
times, to characterize teams as bursty or non-bursty; however,
for their analysis they did not try to identify specific burst
boundaries. Lappas et al. [16] described a technique called
Max-Sum that identifies significant rises and falls in apparent
event rates and labels these boundaries as burst boundaries. We
explore the applicability of alternative modeling approaches
for examining the burstiness of behavior streams in our work
and describe our comparison in Sec III-B.

B. Burst Ildentification Methods

In this research we evaluate three algorithms that identify
bursty event streams simply from their timestamp. The maxi-
mal sum method identifies periods as long as possible that have
more activity than the overall project. Kleinberg assumes there
is a cost to increase or decrease in activity of an underlying
model, and balances cost of the model with its fit to observed
data. HMM also infers an unseen stochastic state model, of
which each state probabilistically generates the activity we
observe.

1) Maximal Sum Segments (Max-Sum): Lappas et al. [16]
proposed a parameter-free, linear time algorithm that we use
as our first burst-detection method. They take inspiration
from discrepancy theory that is generally used to describe
the deviation of a situation from the “expected” behavioral
baseline. They define the burstiness of events in an interval |
in a larger sequence S as the difference between the ratio of
the frequency of events in I and S, and the ratio of lengths of
I and S:

frequency in 1

length of 1
Burstiness:( net o > (1)

frequency in S B lengh of S

Therefore, intervals with frequencies higher than expected
have a positive burst score whereas the ones with frequencies
lower than expected have a negative burst score. Lappas’ al-
gorithm identifies the set of intervals that maximize the length

of burstiness functions, using a linear-time ‘All Maximal Sum
Segments’ algorithm [17].

2) Kleinberg Burst Detection: Kleinberg [12]’s method
models the structure of bursty document streams over time
using an infinite-state automaton, where each automaton state
represents a higher level of activity. In the base state g,
events are assumed to occur at a rate consistent with even
distribution throughout the whole dataset’s time range. For
higher states ¢;, the gaps between events are assumed to be
shorter by a factor of 27%. The state transitions are associated
with a cost to control the frequency of such transitions to
prevent very short bursts due to transient changes in the stream.
For a sequence of n 4+ 1 messages with n inter-arrival gaps
x = (x1,22, "+ ,&,), the goal is to find a automaton state
sequence q = (gi,, - ,qi, ), Where g;; best fits the observed
data while minimizing number and size of assumed upward
state transitions (i.e. a jump from gg to g2 is assumed to be
more costly than from ¢ to ¢i; transitions from ¢; to qo are
free).

The HMM formalism reflects the intuition that bursts rep-
resent a distinct collaborative phase of activity.

3) Hidden Markov Model: (HMM) A Hidden Markov
Model is a doubly stochastic process with an underlying
stochastic process that is not observable (it is hidden), but
can only be observed through another set of stochastic pro-
cesses that produce the sequence of observed symbols [18].
It has traditionally been used to characterize the properties of
real world signals in a wide range of domains like speech-
processing, signal-processing, weather-forecasting and so on.

Elements of an HMM include:

NN, the number of states S; in the model. These states are
hidden (un-observed) and often have a physical significance.
Generally, these states are interconnected in such a way that
any state can be reached from any other state.

M, the number of distinct observation symbols v, per state.
A = {a;;}, a matrix of state transition probabilities of any
state to any other state.

B = {bj;(k)}, a matrix giving the probability of observing a
symbol v, during state 5.

7 = {m;}, the likelihood that the system begins in state .S;.

Given appropriate values of N, M, A, B and w, an HMM
can generate an observation sequence O = 01,03, ,Op.
The model is trained by adjusting the parameters and the three
probability measures A, B and 7 to maximize P(O|A, B, )
on a training set of observation sequences. The model that
fits the data best (has the best likelihood for P(O|A, B, 7))
is then selected for further prediction. Given this trained
model, it can then be used to compute the optimal state
sequence Q = qi1,q2, - ,qr for any observation sequence
O =04,04,---,0r.

An HMM is more general than Kleinberg’s automata model.
Unlike the Kleinberg model, an HMM'’s states are not con-
strained to have increasing rate of emissions. Instead, the rate
of emissions and the probability of transitioning between the
states is learned from the observable properties of the data to
create a probabilistic model that infers a best-fitting sequence
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of states for a data stream. In comparison to the Max-Sum
model which is a parameter free model, the HMM has far more
parameters to learn. It is more interpretable in the sense that
inferences about the states of a trained HMM can be drawn by
looking at the distribution of the mean values of the parameters
in the states.

4) Topical Segmentation: TextTiling [19] is a well-
established method of text segmentation designed to segment
texts into coherent units that reflect the subtopical structure.
It does not identify temporal bursts, but it can nonetheless be
used to segment a data stream if the stream contains text. The
underlying assumption in this model is that a shift in the word
distribution from one segment to the next indicates a shift in
the underlying topic of the text. We omit a detailed explanation
of the original algorithm, but describe our application of it to
software engineering data traces in the methods section.

C. Coordination in Open-Source

Many successful open-source software (OSS) projects are
characterized by a globally distributed developer force and
a rapid software development process. They succeed despite
spanning geographical, organizational and social boundaries,
and achieve productive collaboration among their developers.
Coordination in these environments can happen both explicitly
and implicitly.

Bolici et al. [20] observe that a majority of coordination
visible from the behavior traces on open-source projects
is stigmergic: contributors are seen to coordinate implicitly
through changes to the artifact as much or more than they are
seen to coordinate explicitly through discussion. Discussion
in Github issue traces is generally sparse [21], but explicit
coordination also happens in discussions across a profusion
of different channels including GitHub, mailing lists, blogs,
conferences, personal emails, Slack and Twitter [22]. Dabbish
et al. [23] find that software developers generally engage
in discussion in order to make social connections with the
team when joining an OSS project. Ko and Chilana [24]
studied how developers discuss and negotiate problems and
solution designs in bug reports. Tsay et al. [25, 26] identified
technical and social signals, some of which were related to
discussion, that exhibited strong associations with contribution
acceptance. Burke and Kraut [27] found that the content of
discussions impacted future participation: more polite opening
threads were more likely to get a reply. So discussion is clearly
a consequential part of coordination in Github projects.

There are multiple challenges associated with appropri-
ately measuring the effectiveness of open-source coordination.
One of the difficulties is identifying an appropriate unit of
analysis. Rossi et al. [15] noted the bursty nature of open-
source projects. However, as far as we know, no research has
attempted to empirically investigate these bursts as possible
episodes of collaboration. Another difficulty is defining an
effective measure of success for the projects. Ghapanchi
et al. [28] point out that there is no universally agreed upon
definition of success in OSS and there are several factors that
contribute to a project’s success or failure. They identify six

broad areas of success namely: project activity, efficiency,
effectiveness, performance, user interest and product qual-
ity. Automatic quantification of these measures for GitHub
projects has been minimal. Furthermore, there is a very limited
understanding of the effect of coordination on these measures.

Prior work has studied the effect of coordination on the
productivity of software projects [29]. In particular, Cataldo
et al. [4] introduced the measure of congruence to quantify
the quality of coordination and studied its effect on the
effectiveness of commercial software projects. Bolici et al.
[21] attempted to explore the effects of congruence in free/libre
open-source software (FLOSS) development in GitHub. How-
ever, they found that analyzing a project as a whole yielded
too little developer communication to assess congruence.

Owing to the diverse and complex nature of OSS, we
cannot rely on congruence alone to provide a holistic view
of open-source coordination, even along the single dimension
of productivity. For example, if the success of a project is
measured by the time taken to resolve the issues, there are
various external factors that can delay the resolution time,
even though the coordination requirements were met by the
developers involved. The reasons can range from pending
higher priority work, external dependency, negligence on be-
half of a developer and so on. These events are not inherently
captured by congruence. Investigating them further may help
us understand whether these factors are measurable and likely
to have an effect. Our eventual aim is to formalize and
quantify these factors to characterize collaborative behavior
in projects, in order to provide useful information about
the project’s current, and likely future, challenges. In this
paper we lay the foundation by first developing a baseline
measure of productive collaboration, so that other hindrances
to productivity can be explored in future work.

D. Sociotechnical Congruence

In a software project, task dependencies drive the need to
coordinate work activities. One of the important questions
about such coordination is who must coordinate with whom
in order to get the work done. STC attempts to quantify this
coordination. It is the measure of “fit” or “match” between
the coordination requirements and the actual coordination
activities of a project. In other words, it gives a measure of
how much of the coordination that was required to happen,
did happen.

Cataldo et al. [4] identified three main components to
estimating STC: the dependencies among the tasks (7ask
Dependencies), the people responsible for these tasks (Task
Assignments) and the actual coordination that occurs among
the people (Actual Coordination). Congruence is defined as the
ratio of the actual coordination to the required coordination.
These are further detailed as follows:

Coordination Required (C'r): Given a set of dependencies
among the tasks of a project, this people-by-people matrix
identifies the individuals that need to coordinate. It is com-
puted using the following matrices:
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o Task Assignment (Ta): a people-by-task binary matrix
where T [i][j] = 1 indicates that person; is assigned to
task;.

o Tusk Dependency (Tp): a task-by-task matrix where
Tpli][j] # 0 indicates that task; is dependent on task;.

o Coordination Requirements (Cr): a person-by-person
matrix calculated as shown in equation 2 where
Crli][j] # O indicates that person; should coordinate
with person; while working on the assigned tasks.

Cr=TaxTp T4 2

Actual Coordination (C4): a people-by-people matrix.
Cali][j] # O indicates that person; actually coordinated with
person;.

Congruence is then calculated as a logical conjunction
between the corresponding cells in the Cr and C'4 matrices
as shown in equation 3.

>.(CaNCr)
>_(Cr)

III. METHODOLOGY

Congruence(Cr,Ca) = (3)

In this section we explain the protocol used to collect and fil-
ter the projects, as well as our implementation and comparison
methods for evaluating three algorithms for identifying burst
boundaries. Finally, we explain our operationalization of the
measures of sociotechnical congruence and associated control
measures that are used to examine the effect of coordination
on the productivity of a project.

A. Data Collection

We used GitHub’s API to collect all commits, issue com-
ments, pull request comments, and open, close, and merge
events for 16,337 projects associated with PyPI modules.
PyPI! is a software ecosystem with a history of fifteen years
and a large pool of projects available on GitHub. We chose
this domain in order to investigate a popular and relevant
type of project while still limiting variability by sticking to
a single language and project type. We extracted data from
all PyPI modules as of 2016, with GitHub projects having
at least 10 stars and 3 contributors, in order to sift out small
projects with minimal collaboration needs. We anticipated that
collaboration metrics would rarely be meaningful with less
than 3 contributors, and since about 90% of GitHub projects
have fewer than 10 stars, this limit is a way of choosing a
tractable data set of projects that are rated as important by an
admittedly rough measure. We have made the data [30] and
code [31] available.

B. RQI: Data Burstiness

One useful and common way of segmenting a GitHub’s
project trace for research is by issues (bug reports or feature
requests) or pull requests (proposed code changes), since these
are identifiable tasks, over an identifiable period, with a known
list of participants. However, if development is truly bursty,

Uhttps://pypi.python.org/pypi
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Fig. 1. Bursts cut across issues. In this depiction of activity in a GitHub
project, horizontal lines are open issues or pull requests, marked by symbols
at the start and end, and vertical grey bars highlight bursts. Short vertical lines
at the bottom are commits not associated with an issue.

this unit of analysis could be misleading as a way to study
coordination among developers. Comparing two developers’
contribution frequency in a long-open issue, for example,
would provide little information about their coordination if
those contributions were actually concentrated in different
bursts months apart. Additionally, projects do not always link
issues to the pull requests or other merged code that solves
them, so it is difficult to reliably collect all events associated
with an issue and its resolution.

For those reasons we instead sought to analyze productivity
from the perspective of the bursts that seem to emerge from
volunteers working when they are motivated, available, and
become aware that their help is needed [3]. We first ask
whether the bursts really exist as temporal patterns (RQ1),
whether they start and end along with one or more topics
of collaboration (RQ2), and whether they are an appropriate
use as a unit of analysis for measuring STC in open-source
projects. (RQ3).

“Burstiness” is the intermittent increases and decreases in
activity or frequency of an event. A common measure of
burstiness that takes into account temporal dependence in
traffic [32] is the Fano Factor, also known as the Index of
Dispersion. 1t is the ratio between the variance and the mean of
the event counts, where a value greater greater than 1 signifies
a bursty event stream and a value less than 1 depicts a non-
bursty stream.

As a first step towards understanding the nature of our
activity streams, we computed the Fano Factor values for all
the projects over their activity streams.

C. RQ2: Burst Detection Models

As Fig. 1 shows, bursts in GitHub activity are often evident
in a graph of events over time. They look like flurries of
activity separated by quieter periods. However, defining their
boundaries can be a difficult judgment call. Recent research [3]
has suggested that online collaborative bursts may be caused
in part by people being aware of each other’s contributions,
and responding to them. Such cascades are probably not
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the sole driver of bursts, since they could overlap, or fizzle
out, or lead participants to notice other unrelated tasks to
work on, but we sought to find a segmentation that would
approximate these coordinative cascades as well as possible.
Therefore, we experimented with three different approaches to
delimit the bursts in the project activity timeline, described in
Section II-B — a linear time maximal-sum segments algorithm
[16], the burst detection method proposed by Kleinberg [12]
and a Hidden Markov Model (HMM) [33]. Our goal was to
select from this set the approach that yielded what could be
considered the most coherent segments of work, i.e., ones that
showed greater topic coherence in the discussions within a
burst than across those bursts. In order to do this comparison,
we used a fourth segmentation method called Text Tiling [19],
frequently used in the field of computational linguistics as a
means for topic segmentation of running discourse.

The comparison of topical coherence among the first three
burst segmentation methods is important, because although a
sociotechnical congruence measure should give a high congru-
ence score when distinct groups of people are simultaneously
working on distinct tasks, and making congruent social con-
nections within those groups, our choice of burst as a unit of
analysis means that shifts of task over time within a burst will
blur the relationship between one collaboration and the next.
For example, suppose a developer works on Alice’s module
A in week 1 of a two-week burst, then works on Bertram’s
module B in week 2; but doesn’t converse with Alice until
week 2. A congruence measure applied over the two weeks
as a single unit will be unable to detect that the developer
failed to talk to Alice in week 1. However, if applied to each
week separately, the measure will reflect this failure. For that
reason we use topical coherence to assess how well these
bursts isolate such shifts of task from each other, in order
to get better precision from our congruence measure.

1) Maximal Sum Segments (Max-Sum): For the Maximal
Sum Segmentation, we sum up the activity counts at each
day in the project timeline and compute the burst scores, and
use the maximal sum segments algorithm to identify spans
of days with maximal scores. Figure 2 shows the burstiness
or the sequence of burst scores for the activity stream of a
typical project in our dataset. The activity is bursty in nature
with positive (upward facing) bars interspersed with negative
(downward facing) bars. A contiguous interval of positive bars
with maximal sum forms an activity burst.

2) Kleinberg Burst Detection: We used the kleinberg()
function in the R “bursts” package for the calculation [34],
using total activity during each day of a project as the
frequency. Inferred states were then grouped together to define
bursts of days with identical states. Therefore, the output is
a series of bursts with varying intensities, depending on the
automata state assigned to the days in the burst.

3) Hidden Markov Model (HMM): We use a Multivariate
Gaussian HMM, a variant where the observation symbols are
a combination of multiple gaussian variables: the daily counts
of commits, merges, pushes, issue comments, issues opened,
issues closed, commit comments, pull request rejections and

Bti

Timeframe

Fig. 2. Burstiness sequence, B, as used by the MaxSum algorithm, over
GitHub activity counts of a project.

issues remaining open. We ran the prediction with several
choices of N (the number of states), and chose the model with
the best fit. The states with mean activity values less than a
threshold (we chose a natural cutoff point by visual inspection
of activity histograms, which amounted to 3.3 events per day)
are labelled as “dormant” states and the rest are labelled as
“active” states. The trained model is used to predict the state
sequences for each project. A contiguous run of ‘active days’
(allowing a maximum gap of 3 days between subsequent active
days), is grouped together to define a burst.

D. Evaluation of Segmentation Methods

To get the cleanest possible signal of activity for So-
ciotechnical Congruence, we sought segment boundaries that
would separate periods where the focus of work is noticeably
different. As STC captures the extent to which people are
available to one another when they are needed, it would have
less utility if the notion of who is needed did not change
between segments. If who is needed is related to expertise,
then the notion of focus of work should also be related to
expertise. We adopt topical content of issue threads as a proxy
for relevant expertise. We do not claim that bursts need to be
about a single topic for an STC measurement to make sense,
merely that there should be some distinction in topic focus
across segments of work.

To identify the best performing segmentation method of
the three discussed above for our data, we evaluated the
topical coherence of the natural language snippets, in the
form of issue thread and pull-request discussions, belonging
to each burst in the project trace. To do this we applied
TextTiling [19] (see Section II-B) to the project history as
if it were a long document, and compared the average number
of segment boundaries within bursts identified by each of the
three burst-detection algorithms to find which models’ burst
boundaries aligned best with shifts in topic in the events’
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associated text. The approach is further elucidated in the
following subsections.

Although we use topic segmentation as a means for validat-
ing our selection of burst segmentation algorithms, note that
it would not have made sense as a primary burst segmentation
approach, since discussion is relatively sparse across the
timeline of a project. Thus, there are long periods of time
during which there would be no signal of whether there is a
boundary or not. Furthermore, there is no reason to assume that
a single work focus should not have multiple topical segments.
Thus, while we expect to see a shift in topic when the burst
segment changes, it is not unusual to observe some shifts
between topics within a collaborative work episode.

1) Topical Segmentation: To perform topical segmentation
we adapted the TextTiling algorithm Hearst [19]: we first fo-
kenized the text, removing punctuation and short grammatical
words (such as “of”, “and”, and “the”), and isolated word
stems (i.e. we substituted “run” for “running” or “ran”) of
each comment, commit message, issue title, or pull request
title, and computed a word vector for each whole calendar
day of activity. We then computed cosine similarity between
adjacent days’ vectors. Finally we computed a depth score for
each pair: the sum of the relative heights of the nearest local
maximum in each direction; that is, the depth of the bottom
of each “trough” in the similarity score graph. We declare a
text tile boundary wherever the depth score was greater than
p— 5, where p and o are the mean and the standard deviation
of the depth scores for that project. explains the algorithm in
more detail.

The segments thus obtained are called ‘TT Segments’ in
our analysis.

2) Model Comparison and Selection (Py): To compare
segmentations, we use Beeferman’s Pj [35], a metric of
similarity between two sets of segmentation boundaries. It is
the probability that “a pair of contributions at a distance of k
contributions apart are inconsistently classified; that is, for one
of the segmentation outputs the pair lies in the same segment,
while for the other it spans a segment boundary.” [35] Lower
Py, values indicate a higher overlap and are therefore preferred.
The ideal value of k, as suggested in their paper, is half the
average segment length (in days for our dataset).

For our data, the segmentation boundaries predicted by
each of segmentation methods (Max-Sum, Kleinberg, HMM
and the evaluation segmentation TT), are projected onto the
project timeline. Pairwise P} values are computed for each
pair of segmentations by checking all pairs of days that
are k days apart. Since the value of k£ depends on which
segmentation method is selected as the first/reference method
@it is the average reference segment length), for each pair
we compute the Pj in each direction and take the average
value. For example, for HMM and Max-Sum we compute
two Py values: Py, (ref = HMM,hyp = MaxzSum) and
Py, (ref = MaxSum,hyp = HMM). The final value is the
average of Py, and Pj,.

E. RQ3: Coordination - Socio-Technical Congruence

Our final research question employs these HMM-identified
activity bursts as a unit of analysis to operationalize a measure
of socio-technical congruence [36] and test it is associated with
productivity as has been observed in industry. The following
sections describe our implementation and the results obtained.

We propose a measure of STC appropriate to the different
conditions in open-source, using communication through issue
and pull request interactions as the medium of communication.
The basic definition of the matrices, explained in Section II-D,
remains the same, but we operationalize them differently for
GitHub.

Task Assignment Ta[i][j] — Since the “task” a person
undertakes during a burst may not be clearly defined, we
operationalize it as the set of files they changed during the
burst. A non-zero value in the matrix at [¢][j] indicates that
file; was committed by person; in the burst.

Task Dependence Tpli][j] — We assume, as Cataldo
et al. [36] did, that if files have ever previously been changed
together in the same commit, that there is at least an implicit
dependency between them, and this implies a dependency
among our operationalized tasks. We thus define T [#][j] = 1
if file; and file; have been changed together in some prior
commit.

Actual Communication Cal[t][j] — In order to commu-
nicate with each other for the changes made for an issue
or a pull-request (PR) on GitHub, people comment on the
discussion thread for those issues and PRs. Therefore, a non-
zero value for C4[é][j] indicates that person; and person;
communicated with each other by commenting on the same
issue thread for the active issues in the burst.

F. Control Measures

Cataldo et al. [4, 36] identified numerous factors that impact
the productivity (measured as the resolution time of Modifi-
cation Requests (MRs)) of the commercial software systems
they studied, and used these factors as control measures in
their regression models. Since these factors were designed with
commercial systems in mind, we cannot directly translate all
of them to the open-source systems, and we instead propose
an analogous set of factors.

1) Component Experience - This measure is calculated as
the average number of times that the active committers
of the burst had committed the same files prior to the
burst. Therefore, for k£ people (p; to px) committing a
total of n files (f; to f,) in the burst, the component
experience is calculated as shown in equation 4 where
ci; represents the number of commits made by person;
to the file; before the current burst started. We applied
a log transformation to this variable, since it was heavily
skewed towards zero.

PRy szifl (cij)
(kxn)

2) Tenure - For the active committers in the burst, this
measure represents the average number of days that they

component_experience =

4)
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had been a part of the GitHub project at the time of
completion of that burst. We applied a log transformation
since this variable was heavily skewed towards zero.

3) Number of Issues - The number of distinct issues or
pull requests that were either opened or resolved during
the burst. We applied a log transformation since this
variable was heavily skewed towards zero.

4) Number of Teams - Using the co-commit matrix 7,
we partitioned the graph of co-commits using the fast
unfolding method by Blondel et al. [37], in order to
infer logical groups of files often changed together. This
measure is a count of the distinct number of these file
groups involved in the burst.

Since we are interested in capturing productivity of a group
of collaborators, we normalize for the size of the group and
the length of time by adding them as factors as well:

1) Committing Users - The number of people who com-
mitted during the burst. We applied a log transformation
since this variable was heavily skewed towards zero.

2) Burst duration days - The length of the burst in days.

G. Impact on Productivity

In the commercial setting, the goal of a development effort
was fixed, but the time was uncertain, so Cataldo used time to
completion as a measure of productivity. In the open-source
case, the opposite is true: the length of a burst is known,
but we have little information about the goal to be achieved.
Instead we use lines of code added during the burst as a
rough operationalization of productivity of the burst. Both
measures can be seen as capturing the ratio of work to unit
time, but holding a different part of the ratio fixed. We used
code insertions, rather than subtracting removed lines to yield
net lines of code, on the theory that replacement of code
with no net gain is nonetheless productive. We applied a log
transformation since this variable was heavily skewed towards
zero. We use a linear regression model detailed in equation
5 in order to understand the impact of congruence and the
control measures on the prediction variable - lines of code
added (log transformed)).

log(insertions + 1) = a  (congruence_measure)

+ Z Bj * (control_measure); + €
J
o)

We estimated two models: one without the congruence mea-
sure (Model I) and one with the congruence measure (Model
II). We discarded bursts where these factors could not be cal-
culated (no commits were made, only one person was present,
or no prior file history was available to calculate tenure,
experience, modularity, and coordination requirements). The
remaining dataset consisted of 45981 bursts across 6401
projects. The parameter estimates for both the models are
detailed in the next section.

TABLE I
EFFECTS ON LINES OF CODE ADDED DURING A BURST

Model I Model II
(Intercept) 0.49** —0.62**
log(Issue count+1) 1.31** 1.15**
log(Tenure+1) —0.03** —0.03**
log(Component Experience + 1) 0.02** —0.004**
log(Committing Users + 1) 0.30** 0.84**
# Teams 0.22%* 0.18**
Burst Duration (days) —0.003**  —0.004**
Congruence 1.33**
N 45981 45981
Adjusted R? 0.253 0.288
(**p < 0.0001, *p < 0.001)

IV. RESULTS

A. RQI: Burstiness is Real

As explained in section III-A, we computed Fano factor
over counts of pull request events (open, merge, close, com-
mit, comment) issue events (open, close, and comment) and
commits for each project. Measured this way, 99.4% of the
16,337 projects were classified as bursty, that is they had a
Fano factor greater than 1.0, with an average of 12.7, and a
median of 9.0.

Note that this measure is conservative in that it includes
most of the events that are visible through GitHub’s affor-
dances: not just actions like issue comments that are explicitly
collaborative, but even actions like commits that happen on an
individual’s own development machine.

B. RQ2: HMM Segmentation Best Aligns with Topic Changes

As Table II shows, HMM-Kleinberg and MaxSum-
Kleinberg have a high Py indicating that the segmentation
boundaries drawn by them are quite different, but the low
value for HMM and MaxSum suggest that they have similar
segment boundaries.

To find the best segmentation method among these three, we
computed the pairwise Pj values of each of the methods with
the Text Tiling (TT) segments (Table III) as well as the average
number of TT segments in one segment of the segmentation
method. Kleinberg has the worst P, values and an average of
7 TT segments per Klein burst. This indicates that one Klein
segment contains on average 7 lexically different segments.
Between HMM and Max-Sum, HMM has a slightly lower P
but is much closer to one TT segment per burst than MaxSum.
We conclude that our HMM identifies bursts that are more
lexically coherent than the units predicted by MaxSum.

The three result in very different boundaries, and of the
three, the HMM’s boundaries are the most lexically coherent.
This comports with HMM’s underlying assumption that the
data reflect a hidden underlying state, but that particular levels
of activity are not best modeled by emphasizing inertia (contra
Kleinberg), and that there is no apriori reason to insist that
burst length should be maximized (contra Lappas).
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TABLE II
PAIR WISE Pj, VALUES. LOWER P}, MEANS SEGMENTATIONS ARE MORE
ALIGNED.
Model 1| Model 2 |Average Py
HMM |[Klein-Aligned 0.51
HMM Klein-Raw 0.52
HMM Max-Sum 0.20
Max-Sum |Klein-Aligned 0.52
Max-Sum| Klein-Raw 0.53
TABLE III

P;, VALUES WITH TEXT-TILED SEGMENTS. LOWER Pj, MEANS
SEGMENTATIONS ARE MORE ALIGNED.

Model 1 [Avg. Segment|Avg # TT Seg-|Avg P with TT
Length (days) |ments Per Burst|segments
HMM (39 1.3 0.35
Max-Sum |84 1.8 0.38
Klein |364 72 0.41

C. RQ3: Sociotechnical Congruence Associates with Produc-
tivity in Bursts

The results of the regression support the applicability of the
adapted congruence measure to the GitHub data. Table I shows
the results of our regression experiments. Model I is a baseline
regression model that considers only the control measures.

The effect of burst duration was unexpected, showing a
negative effect. This appears to be influenced by a few outliers
in the form of very long bursts that last for years. In some of
the largest projects in our dataset, like Ansible, there are so
many contributors that significant activity is always going on.
If we exclude as outliers the 1.4% of bursts longer than 30 days
(614 out of 43689), the burst duration becomes a positive, but
still small, effect. This reinforces our caveat that measuring
congruence over bursts works best when bursts are defined in
a way that they do not encompass many changes of topic.

Number of Teams had a positive effect on productivity. It
is a linear factor, so adding a team meant a 22% increase
in lines of code added. The 1.3 estimate for log(issue count)
means that doubling the number of issues increases the lines of
code added by 130%, i.e. more than doubling. Recall that we
operationalized teams in terms of code files that were worked
on together: in other words modularity as revealed by working
patterns. Modular code allows teams to work independently
with less coordination needed.

Committing Users: Doubling the people involved in a burst
means adding 30% more lines of code; this effect indicates
that more people produce more code, but there are diminishing
returns on adding more people to a burst.

Tenure and Component Experience both had very small
effects, tenure negative and experience positive (in Model I).
Although both are statistically significant effects in this large
sample of bursts, they’re not meaningfully large effects.

Model II introduces the measure of Congruence in our
analysis. It has a statistically significant effect on lines of code
produced, and slightly improves the model’s predictivity. Pre-
vious findings on the effect of congruence in large commercial
systems have also shown that high congruence leads to higher
productivity, as measured, in their case, by shorter resolution
times of tasks (“modification requests” in [4, 29, 36]; see
Sec. III-G). Our model revealed a smaller contribution due
to congruence than Cataldo (e.g. .09 r? improvement in
predicting issue resolution time [29, Table 5] vs. our .03
r2 improvement in predicting lines of code added, Table I).
However, like Cataldo’s results, the actual effect of congruence
is practically significant: the coefficient of 1.33 in the table
means that the difference between worst (0.0) and best (1.0)
coordination by our metric is associated with a 133% increase
in lines of code produced in a burst.

Adding congruence to the model increases the R? slightly,
and changes the coefficients of several of the factors; however
relationships among the coefficients’ changes appear to be
complex. The most changed factor, number of committing
users, has a -0.21 correlation with congruence, suggesting that
congruence is more critical for small groups of developers.

Although congruence is a continuous measure between 0
and 1, in more than half of bursts (67%) the congruence is
either 0.0 (10229 bursts) or 1.0 (20563 bursts), meaning no or
perfect coordination according to our operationalization. This
distribution is not surprising since many of the features of
bursts (committers, issue threads, files touched, or commits)
used to calculate the congruence ratio are integers with small
median values and long-tailed distributions. Thus it is likely
that there are only two of some critical feature, making
0 or 1 the only possible values. For example, the median
number of participants in a burst is 4 participants and 21%
of bursts have only two participants. As a result, in many
cases congruence is simply present or absent. This explains
why adding congruence to the model increases the weight of
the “committing users” parameter

Note that the relationship we have shown between high
STC and lines of code added may not be causative — it could
be, for example, that bigger changes attract the appropriate
contributors attention. Nonetheless, this shows that congruence
is related to this measure of productivity.

V. DISCUSSION

The method we have described produces a congruence ratio
for each burst of coordination in a project. This number in
itself could be useful for tracking the effects of changes in
tools or practices, for example when introducing a bot that
does reviewing assignments. However, although the effect
of this metric is large in terms of lines of code, it is also
noisy — compare our open source model’s R? = .29) with
Cataldo’s measure [4] for a commercial development setting
(.87), which we believe is more easily predicted, for the
reasons we described in the introduction.
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However, our method also provides incidental information
that could be useful for providing more actionable feedback
about practices, tools, and individual volunteers.

First, the burst segments themselves are a byproduct of
the calculation that project participants could try to align
with known events such as scheduled releases, meetings,
or hackathons as another way to evaluate how these events
contribute to project productivity and engagement.

The matrices underlying the congruence calculation could
inform project leadership exactly what module was edited dur-
ing a burst for which no expert showed up during a discussion
about it. Anecdotally, we have observed that sometimes key
people not showing up when needed can delay development.
A quick check in the dataset of PyPI projects illustrates the
problem: when a user is specifically mentioned in an issue
comment with an @-sign (i.e. @-mentions, a common practice
because the mentioned person will receive a notification that
their participation is wanted), about 18% of the time the
mentioned user does not respond until more than 2 days
later — longer than the median length of a burst of activity
— thus missing the chance to provide timely help during
a productive spurt of collaboration. Prior work by Kavaler
et al. [38] showed that such @-mentions were associated with
the visibility and productivity of a mentionee, but not with
the person’s responsiveness, suggesting that the timeliness or
responsiveness of contributors is not a particularly visible di-
mension of their participation. Burst-based STC measures and
matrices could help reveal the responsiveness of contributors,
as well as reveal contributions patterns of people whose timely
contributions have not been explicitly noticed enough to draw
@-mentions.

Finally, although our HMM technique produces a fairly rich
modeling of project state, inferring a state model based on
daily counts of each event type, for segmentation purposes we
simply combined the most active states. These states, however,
are characterized by different mixes of event types. We expect
that more can be learned about the anatomy of bursts by
investigating the sequence of such states within bursts, and the
frequency of the different states in different kinds of projects.
For example, there could be distinct phases of recruitment and
retention of developers in a project, or there might exist diverse
patterns of work on different artifacts (code, documentation,
tests) over a project’s lifecycle.

VI. THREATS TO VALIDITY

Construct Validity For all the volume of data available about
open source projects, a lot of the context of development has
to be inferred. Lines of code, for example, is known to be an
imperfect measure for productivity, however, it is a commonly-
used operationalization in the absence of better measures.

Our operationalizations of quantity of activity and connec-
tivity among participants are also likely to be incomplete.
Some of the periods we have classified as “low activity” due
to a lack of development events in GitHub may in fact involve
collaboration on the many other communication platforms that
are known to be used by open-source projects [22]. Future

work could establish whether activity on other platforms tends
to alternate with GitHub activity or correlate with it; however,
we hypothesize that in small to medium projects that use
GitHub’s issue and code review features, GitHub activity will
play a key, central role, since its conversations are persistent
and tightly linked with the code.

Internal Validity and Conclusion Validity It is difficult to
separate cause and effect among the factors associated with
bursts: for example poor coordination could cause bursts to
end sooner because a needed person was absent, or, conversely,
bursts that end sooner could give less time for a needed person
to find time to participate. The measurement of productivity
itself could as easily be treated an independent or dependent
variable. We mitigate this by not describing relationships as
causative except when context makes such a relationship clear.

External Validity Finally, we focused on one type of project,
PyPI modules, to reduce variability due to differences in
language and development style, but this limits our knowledge
of how the technique generalizes to other kinds of projects.
We have also shown that the burst model does not generalize
well to large, busy communities in which development never
pauses.

VII. CONCLUSION

Understanding coordination in open-source projects is not
a trivial task. We attempted to study this by adapting a
measure of coordination previously used to study commercial
software systems, to open-source projects on GitHub, taking
into account the bursty, undirected nature of volunteer work.
This is a novel effort and one of the few attempts in this
domain. We used a Hidden Markov Model to construct a
meaningful unit of work and identify coherent phases of
activity in a project where coordination might be necessary.

Our results show that coordination, as measured through
congruence, is associated with an effect on the productivity of
a project in the active phases of its timeline.

This paper presented our effort to synthesize a model of
productive collaboration in open-source projects on GitHub.
We examined when the collaboration occurs, and who should
coordinate for successful completion of the tasks. We pre-
sented and used an unsupervised computational model, as a
novel tool that was able to detect interesting and coherent
episodes of activity in the open-source projects’ timeline.
These episodes were used to quantify a meaningful unit of
work and a measure of productivity. Our quantitative analysis
showed that socio-technical congruence and related control
variables had an impact on the productivity of the active
phases of the projects. These improved ways of measuring
collaborative episodes in open-source environments may help
provide ways to empirically ground future improvements to
bots and practices that seek to spur appropriate coordination
in open-source projects.
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