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A B S T R A C T   

Retrogressive thaw slumps (RTS) are thermokarst features in ice-rich hillslope permafrost terrain, and their 
occurrence in the warming Arctic is increasingly frequent and has caused dynamic changes to the landscape. RTS 
can significantly impact permafrost stability and generate substantial carbon emissions. Understanding the 
spatial and temporal distribution of RTS is a critical step to understanding and modelling greenhouse gas 
emissions from permafrost thaw. Mapping RTS using conventional Earth observation approaches is challenging 
due to the highly dynamic nature and often small scale of RTS in the Arctic. In this study, we trained deep neural 
network models to map RTS across several landscapes in Siberia and Canada. Convolutional neural networks 
were trained with 965 RTS features, where 509 were from the Yamal and Gydan peninsulas in Siberia, and 456 
from six other pan-Arctic regions including Canada and Northeastern Siberia. We further tested the impact of 
negative data on the model performance. We used 4-m Maxar commercial imagery as the base map, 10-m NDVI 
derived from Sentinel-2 and 2-m elevation data from the ArcticDEM as model inputs and applied image 
augmentation techniques to enhance training. The best-performing model reached a validation Intersection over 
Union (IoU) score of 0.74 and a test IoU score of 0.71. Compared to past efforts to map RTS features, this 
represents one of the best-performing models and generalises well for mapping RTS in different permafrost re-
gions, representing a critical step towards pan-Arctic deployment. The predicted RTS matched very well with the 
ground truth labels visually. We also tested how model performance varied across different regional contexts. 
The result shows an overall positive impact on the model performance when data from different regions were 
incorporated into the training. We propose this method as an effective, accurate and computationally unde-
manding approach for RTS mapping.   

1. Introduction 

Permafrost thaw from a rapidly warming Arctic (Chylek et al., 2022) 
is projected to generate globally-significant levels of greenhouse gas 
emissions by the end of the century (Schuur et al., 2015; Gasser et al., 
2018; Natali et al., 2021). Thermokarst is an abrupt permafrost thaw 
process whereby an ice-rich land surface collapses from melting ground 
ice. Among the terrain-altering changes due to abrupt permafrost thaw 
events, some of the most rapid and dramatic changes are retrogressive 
thaw slumps (RTS) (Bernhard et al., 2020). RTS are slope failures that 
develop on ice-rich hillslope terrain and can progress laterally with 
headwall retreat rates of up to 40 m (Swanson and Nolan, 2018) or 
higher per year. RTS features are commonly developed in fine-grained 
marine deposits of periglacial environments (Slaymaker and Catto, 
2017; French, 2017) with high ground ice content vulnerable to melt, 

water erosion, or surface disturbations such as thermo-erosional niching 
or active layer detachment (Lafrenière and Lamoureux, 2019; Balser 
et al., 2014; Kokelj et al., 2017; French, 2017). In recent years, RTS have 
drawn considerable attention from the scientific community (e.g. Lantz 
and Kokelj, 2008; Jones et al., 2019; St. Pierre et al., 2018; Bröder et al., 
2021; Turetsky et al., 2020) due to their drastic changes on Arctic 
landscapes and potential carbon emissions. However, the impact of RTS 
on Arctic carbon-climate feedback is poorly understood, in large part 
because the spatial distribution and temporal progression of RTS fea-
tures across large scales are not well characterised. As the global tem-
perature warms, RTS will become an increasingly significant factor in 
carbon cycling. Therefore it is crucial to develop techniques to robustly 
map RTS features in different permafrost terrain and regions using high- 
resolution satellite imagery. 

RTS features were previously observed across the Arctic (e.g. Siberia, 
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Alaska and the Canadian Arctic) and on the Tibetan Plateau (e.g. Kokelj 
et al., 2017; Nitze et al., 2021; Huang et al., 2020b). RTS detection can 
use methods ranging from satellite remote sensing to airborne photo-
grammetry and field observation. Although various methods have been 
used to map RTS features, many depend on manual or semi-automated 
digitising methods (e.g. Swanson and Nolan, 2018; Jones et al., 2019; 
Kokelj et al., 2017; Lantz and Kokelj, 2008; Brooker et al., 2014). Lantz 
and Kokelj (2008) mapped approximately 1100 km2 of terrain in the 
Mackenzie Delta region of Canada using aerial photographs. A total of 
541 areas affected by thaw slumps were manually digitised. Brooker 
et al. (2014) mapped RTS in the Richardson Mountains-Peel Plateau 
region of the Northwest Territories, Canada by thresholding Tasselled 
Cap values (brightness, greenness and wetness) (Crist and Cicone, 1984) 
from a Landsat image stack. Bernhard et al. (2020) used two machine 
learning (ML) algorithms - support vector machine and random forest - 
on digital elevation model (DEM) difference images derived from the 
TanDEM-X and Sentinel-2 satellite pairs to map RTS features in northern 
Canada. Their two models achieved 86% and 87% accuracy in the study 
region. 

Deep learning (DL) has proven to be extremely powerful in computer 
vision domains such as medical imaging, autopilot and facial recogni-
tion (Voulodimos et al., 2018). Mapping RTS with DL methods can 
greatly facilitate quantitative RTS studies, however, DL approaches have 
only rarely been applied to mapping RTS using remote sensing. For DL 
methods, Nitze et al. (2021) used three convolutional neural network 
(CNN) models - U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al., 
2019) and DeepLabV3 (Chen et al., 2017) - with different encoder 
backbones on 3-m PlanetScope (PBC, 2018) satellite images. Their best- 
performing model (U-Net++) achieved an Intersection of Union (IoU) 
score of 0.58. Huang et al. (2020b) used DeepLabv3+(Chen et al., 2018) 
on 3-m Planet CubeSat (PBC, 2018) Images to map RTS in the Beiluhe 
region on the Tibetan Plateau, achieving the highest average precision 
score (best model for different IoU thresholds) of 0.54. Huang et al. 
(2022) used a generative adversarial network (GAN) to increase the 
accuracy of a DeepLabV3+ (Chen et al., 2018) model by generating 
artificial training data to map RTS in the Southern Arctic and Northern 
Arctic in Canada. The highest single-region model F1-score reached 
0.849. Witharana et al. (2022) used U-Net-based CNN to map RTS in 
High Arctic Canada, their study provided insights into the impact of 
image size and model transferability. 

For deep learning models, the performance on vision tasks increases 
logarithmically with training data volume (Sun et al., 2017). Acquiring 
sufficient training data is usually the bottleneck of training a good DL 
model. However, there are workarounds for training a DL model with 
small data sets such as transfer learning, data augmentation and using 
GAN to generate synthetic training data (e.g. Guo et al., 2020; Wang 
et al., 2018; Yu et al., 2017; Huang et al., 2022). For our main study area, 
the Yamal and Gydan peninsulas, the number of existing RTS features is 
estimated by us to be in the thousands and distributed heterogeneously. 
In addition, RTS features only cover a tiny percentage (less than 0.01%) 
of the total area. Therefore, landscape- to regional-scale models that 
only cover a few hundred RTS features may be prone to under-fitting. 
However, RTS features can have very different characteristics (size, 
shape, rate of development) in different Arctic regions (Nitze et al., 
2021). It is therefore important to assess whether greater data avail-
ability from other Arctic regions improves model performance by 
providing more examples of within-class variances, or degrades per-
formance by introducing dissimilar RTS characteristics that are beyond 
the model’s capability. 

In this work, we aim to develop a computationally lightweight yet 
accurate DL model to map RTS using high-resolution satellite imagery 
and explore the potential for extrapolating a regional model to other 
regions across the Arctic with different geomorphological histories and 
controls. We put extra effort into making the method lightweight for 
several reasons. First, we aim to lower the barrier of using DL in RTS 
studies and make method implementation easier. Second, we avoid the 

use of costly computing resources or highly customised DL environments 
in order to facilitate reproducibility and data exchange. We primarily 
focused on the Yamal and Gydan (YG) peninsulas in Siberia but also 
introduced six ‘extensive sites’ from Russia and Canada that were 
mapped by Nitze et al. (2021) as foreign region RTS data. We used these 
data sets to address the following questions: for segmentation models 
with the U-Net paradigm, 1) Do RTS data from foreign regions improve a 
model developed and applied in a focal region?; and 2) Do RTS data 
from different regions contribute to a better generalised RTS model 
applied across all regions? These two questions will shed light on how 
within-class variance affects an RTS segmentation model. We also aim to 
understand 3) To what extent adding negative data to the training af-
fects the model performance. This question is essential to address the 
impact of between-class variance of RTS and their surrounding 
environments. 

2. Materials and methods 

2.1. Study sites 

We focus on two sets of sites for model development and application. 
Our primary region is the Yamal and Gydan peninsulas in northwestern 
Siberia. (Fig. 1 polygon). We then test and apply our model at six 
previously-mapped ‘extensive’ sites in various permafrost terrain types 
affected by RTS across Canada and Russia (Fig. 1 circles). 

We used two sets of study sites, the YG site and the extensive sites 
(see AppendixTable A2. Region details). The Yamal and Gydan penin-
sulas are located in northwestern Siberia, and collectively cover an area 
of 412,067 km2. A total of 509 RTS features were digitised from this 
region (methods detailed below), including 325 from active RTS and 
184 from significantly vegetated or stabilised RTS, and therefore 
referred to as ‘general’ RTS features. During the discovery process, 263 
RTS-like features were initially recognised as actual RTS. These were 
marked as non-RTS in the verification stage but were still included in the 
dataset as counter-examples, and are referred to as negative data. The 
negative data was used in the training, validation and testing. In this 
work, ‘RTS’ is generally used to refer to both active and general RTS 
features. The six extensive study sites are located in northwest Canada 
(Bank Island, Herschel Island, Horton Delta) and northwest Siberia 
(Kolguev Island). These sites are adapted from Nitze et al. (2021)’s 
work. A total of 456 RTS features were digitised from the extensive sites. 

2.2. Satellite imagery data processing 

A schematic overview of the complete workflow is shown in Fig. 2. 
Source imagery for all RTS features included Maxar high-resolution 
imagery (4-m, Imagery ©2017–2021 Maxar), Sentinel-2 imagery (10- 
m, 2017–2021, ESA) and the ArcticDEM 2-m elevation data (Porter 
et al., 2018). The satellite imagery data processing workflow (Fig. 2, 
Data Processing) was done using Google Earth Engine (GEE) (Gorelick 
et al., 2017) to process and fuse the multi-source data into a 6-channel 
composite. The multi-source data represent the components for the 
three informational aspects of modelling RTS using satellite images: 
topography, vegetation and elevation. Specifically, we derived a 6-chan-
nel composite that included red-green–blue channels (RGB, 1–3 chan-
nels), normalised difference vegetation index (NDVI, 4th channel), 
relative elevation (RE, 5th channel) and enhanced shaded relief (ESR, 
6th channel). Processing techniques are further described below. 

2.2.1. Sampling 
We used the following method to sample the RTS features and ras-

terise the satellite images to NumPy array objects: for each RTS feature, 
the centroid coordinates of the RTS location were calculated, and a 
region-of-interest (ROI) was generated by buffering the centroid with a 
distance of 0.0025 degrees (around 280 m). We then applied an offset 
parameter (range from −0.0025 to 0.0025 degrees) to randomly shift 
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the ROI, allowing the RTS to be located randomly within the ROI. 
Without such an adjustment, a model training bias would be introduced 
by the fact that RTS features would only appear in the centre of an 
image. The same ROI box was used for all the input and target layers 
including RGB, NDVI, RE, ESR and the corresponding RTS label. An 
example of the training images for one RTS site is shown in Fig. 3. 

2.2.2. RGB 
The colour channels, RGB, are derived from the Maxar data (see 

Appendix ‘Maxar data information’). We acquired 10,551 individual 
tiles of Maxar Vivid Basic base imagery from 2003 to 2020, of which 
more than 75% are later than 2015, and composed an image mosaic 
using GEE. This layer provides information on the visible reflectance of 
an RTS feature and its surroundings. The resolution of the Maxar data 
that we purchased is 4-m and it was up-sampled to 2-m to adapt to the 
ArcticDEM resolution. Values of all three channels were normalised to 
0–1. The same upsampling and normalisation were also applied to all 
other layers described below, resulting in a stack of 2-m resolution 
inputs. 

2.2.3. NDVI 
To represent vegetation, we used an NDVI layer, or the normalised 

difference between the red and the infrared bands, derived from 10-m 
Sentinel-2 imagery. This layer provides quantification of the green 
vegetation on and around the RTS site (Fig. 3, NDVI). It is common for 
an RTS to have lower NDVI values than its surroundings due to the 
destruction of vegetation through slope failure. 

2.2.4. Relative elevation 
Relative elevation (RE) was derived from ArcticDEM by subtracting 

the original image with a mean filter. The RE layer characterizes the 
difference in elevation between an RTS feature and its surroundings, for 
example where the elevation is higher due to the headwall of RTS 
(Fig. 3, Relative Elevation). We tested different values of the kernel size 
for the mean filter and chose a value of 15 (pixels) as the best parameter 
for visual comparisons. There are two important considerations for using 
relative elevation instead of the direct use of absolute elevation values 
from the DEM. First, after a systematic evaluation of the ArcticDEM 
quality, we noticed that the DEM quality is often compromised due to 
interpolated pixel values, null values, artefacts and noise. By using RE, 

Fig. 1. Map of the study sites. Our primary study site is the Yamal and Gydan peninsulas in northern Siberia. Extensive sites span across the circumpolar domain and 
are adapted from Nitze et al. (2021). A total of 671 Active RTS features were digitised and labelled in the blue caption. 294 stabilised RTS (referred to as General) 
were digitised and labelled in the black caption. 263 non-RTS or RTS-like features were digitised and labelled in the red caption. 

Fig. 2. A schematic workflow of the study. Raw satellite imaging data were processed in Earth Engine into training input data. The training data were split into a 
training set, a validation set and a testing set using a roughly 8:1:1 ratio. The training set was augmented (Table 1) before input into the DL model. The trained model 
can be used to make inferences on the whole domain to predict and map undiscovered RTS features. 
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many of the quality issues are alleviated because the RE layer only fo-
cuses on relative elevation changes. Second, we consider RE as a nor-
malisation process that removes the undulation of the terrain while 
enhancing the signal of an RTS headwall. 

2.2.5. Enhanced shaded-relief 
The enhanced shaded-relief (ESR) layer was derived from ArcticDEM 

and Maxar and highlights the slope and headwall of an RTS (Fig. 3, 
Enhanced Shaded Relief). The ESR layer is produced using the following 
three steps: First, we computed a multi-directional hillshade from the 
ArcticDEM using the weighted sum of hillshades from the eight di-
rections (N=0.1, W=0, S=0.1, E=0.3, NE=0, SE=0.1, SW=0.3, 
NW=0.1). For each direction, the illumination was defined by azimuth 
and altitude. Different weights, azimuth and altitude combinations were 
tested and an optimal combination was decided based on visual com-
parison. Secondly, we used weighted matrix addition with hillshade and 
slope calculated from the ArcticDEM to produce a weighted shaded re-
lief. Different weights of the slope and hillshade were tested, and we 
found equal weights yielded the best result. Third, the weighted shaded 
relief was alpha-blended with the grey scale Maxar data, which 
enhanced the contrast of an RTS feature from its surroundings. Although 
the ESR layer and the RE layer both use elevation information from 
ArcticDEM, they serve different purposes. The RE layer represents the 
elevation difference between an RTS and its surroundings. The ESR layer 
represents indirect information derived from elevation i.e. slope and 
hillshade. Another important consideration for the ESR layer is alpha- 
blending DEM data with the Maxar data to alleviate mismatch 

between different sources of satellite imageries by creating a ‘fuzziness’ 
on where a discrepancy exists. 

2.2.6. RTS labelling 
RTS features were manually identified within the imagery and 

digitised into shapefile polygons using Esri’s ArcGIS Pro software. The 
features served as ground truth data for the model training. High- 
resolution Esri base map imagery was used as a reference overlay dur-
ing the RTS delineation process. Every RTS feature was examined at 
least twice by two trained experts to ensure the RTS features were 
genuine. If questionable RTS features were found, they were either 
thrown out or inspected closely using an alternative source of imagery, 
such as Google base imagery. In some cases, we requested further input 
from regional experts. 

2.2.7. Multi-source satellite data fusion 
The use of multi-source satellite data on RTS mapping has an 

inherent limitation of mismatched features due to the rapid develop-
ment of RTS. The date of satellite images from different sources can 
range from a few months to a few years. For the satellite image data 
source we used, the Sentinel-2 data were from the summer scenes (June- 
September) between 2017 to 2021. The Maxar images were acquired 
between 2017 to 2021 for 95% of the 10551 image tiles. The ArcticDEM 
images we used represent mosaics derived from the strip data files and 
have an acquisition range of 2009 to 2017. Our approach considered this 
limitation and mitigated it in two ways: 

First, we categorised all the training data into three tiers based on 

Fig. 3. Visualisation of the input image layers for an example of active RTS feature. (a) The first layer (Maxar) has three visible light channels: red, green and blue 
showing the colour and outline of the RTS. (b) The second layer (NDVI) emphasises the vegetation characteristics of the RTS. (c) The third layer (RE) emphasises the 
elevation characteristics of the RTS. (d) The fourth layer (ESR) emphasises the slope and curvature of the RTS. The green polygon overlay on each figure is the 
manually delineated RTS label. 
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their degree of mismatch. Only 20% of the training data have well- 
matched (overlapped boundaries) RTS features between the base map, 
NDVI and elevation. About 35% of the training data had an intermediate 
mismatch (boundaries partially overlapped or offset by a few pixels), 
and 45% of the training data have a significant mismatch (boundaries 
not overlapped or significantly offset). We then used an oversampling 
approach by applying weights to the data of different quality so that 
higher-quality data were trained on more frequently. This weight was 
set as 10:5:1, i.e. the first-tier data were trained on two times more than 
the second-tier data and ten times more than the third-tier data. 

Secondly, we applied a label smoothing factor to the ground truth 
images to turn ‘hard labels’ into ‘soft labels’, where the confidence in 
label values was relaxed. We used a label smoothing value of 0.1, which 
resulted in changing the background-foreground values from 0,1 to 
0.05,0.95 on the RTS labels. This method has been theoretically and 
experimentally shown to benefit partially mislabelled training datasets 
(Chen et al., 2020; Müller et al., 2019). 

2.3. Deep learning model for semantic segmentation of RTS 

2.3.1. Development environment 
We used TensorFlow and Keras (Python API) to build the DL model 

based on its integrated ecosystem with GEE and other Google products. 
Google Cloud Platform and Google Drive were used to host the training 
data. We used Google Colaboratory Pro+ (Colab) to script the processing 
and training workflows. We used the cloud GPU (T4/P100) provided by 
Colab to train the model. The training dataset, model configurations and 
hyper-parameters were configured using JSON files. The entire work-
flow was designed to be transferable and undemanding regarding 
computing resources. 

2.3.2. Data augmentation 
Deep convolutional neural networks have proven to be effective in 

semantic segmentation tasks (e.g. Chen et al., 2017; Ronneberger et al., 
2015). However, the training of a powerful model relies heavily on a 
large amount of training data (Shorten and Khoshgoftaar, 2019). One of 
the biggest challenges in training an RTS segmentation model is the lack 
of training data because the discovery of RTS features using remote 
sensing and manual delineation is time-consuming. Data augmentation 
is a conventional approach to enlarge the training dataset and alleviate 
issues related to data shortage. Data augmentation, specifically image 
augmentation, is done by applying transformation, synthesis or degra-
dation to existing data to inflate the training dataset artificially. The 
basic assumption is that more information can be extracted from the 
original dataset through augmentations (Shorten and Khoshgoftaar, 
2019). 

In this study, we applied six different types of basic augmentations: 
scaling, flipping, affine transformations, elastic transformations, degra-
dation and dropout (Table 1). 

Because the purpose of augmentation is to synthesise more hetero-
geneous training data, we applied each basic augmentation stochasti-
cally to maximise the permutation and combination of the 
transformations on the augmented images. The transformations were 
applied to each single training image using a probability-based scheme: 
first, the probability that an image will not receive any augmentation is 

10%, which ensures at least 10% of the input is original. Second, there is 
a 50% probability for each augmentation to be applied. For augmenta-
tions that have multiple effects, there is also a 50% probability to choose 
one/some of the effects. Last, each transformation has a few controlling 
parameters for its behaviour or intensiveness, and the parameter values 
are generated randomly by a uniform distribution within a default or 
arbitrary range. This scheme drastically increases the number of possible 
outcome augmentations. 

When training a neural network, a dataset is trained for many iter-
ations (epochs). To prevent training the exact same images repetitively, 
which will lead to overfitting, the images were augmented on-the-fly 
while being sent into the neural network (Fig. 2 Modelling). This al-
lows different augmentations to be applied to the same dataset 
throughout the training. 

2.3.3. Model architecture 
We tested four recently-designed models in this study: U-Net++

(Zhou et al., 2019), U-Net3+ (Huang et al., 2020a), TransU-Net (Chen 
et al., 2021) and ResU-Net (Diakogiannis et al., 2020) (implemented 
using Sha (2021) GitHub repository). They all belong to the U-Net 
family, which is a powerful model architecture that proved very suc-
cessful in all ranges of computer vision tasks. U-Net was first proposed 
by Ronneberger et al. (2015) as a convolutional neural network archi-
tecture for medical imaging. This architecture has been improved in 
recent years and widely adapted to various scenarios such as remote 
sensing imagery (e.g. He et al., 2020; Sun et al., 2020; Abdollahi et al., 
2021). 

A U-Net architecture has three main components (Fig. 4): the en-
coders, the decoders, and the bottleneck. They are connected by down- 
sampling and up-sampling paths to form a U-shaped topology. In addi-
tion, the skip connections preserve information that could have been lost 
after many layers of ‘passing’. 

The encoder blocks can be convolutional layers, which extract 
different levels of features from the image pattern. The more levels of 
encoder blocks, the higher level of features can be abstracted, e.g. from 
lines and curves to complicated semantic meanings (RTS). The encoder 
of the U-Net is also no longer limited to convolutional layers, and at-
tempts to bring the attention mechanism (Vaswani et al., 2017) into U- 
Net are ongoing (e.g. TransU-Net and SwinUNet) (Cao et al., 2021). The 
bottleneck serves as a constraint that ‘compresses’ feature representa-
tions to contain only useful information to reconstruct the input into a 
segmentation map. The decoder restores the high-dimensional image to 
the original image size and produces a segmentation map. 

Table 1 
Basic types of augmentations and their effects.  

Basic augmentation Effect 
Scaling Resize an image 
Flipping Flip an image horizontally, vertically or both 
Affine transformation Rotate and/or shear an image 
Elastic transformation Distort an image elastically 
Image degradation Sharpen and/or blur an image 
Dropout Randomly erase pixel values of an image  

Fig. 4. The abstract topological architecture of U-Net-like models. The model 
uses an encoder-decoder paradigm, skip-connections connect encoder blocks 
with decoder blocks by concatenation. 
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2.3.4. Metrics 
We use the Intersection over Union (IoU) score to evaluate the RTS 

segmentation model accuracy. IoU measures the extent of overlap be-
tween predictions and ground truths. An IoU score can range from zero 
to one, where zero is non-overlap and one represents a perfect overlap. 

The IoU metric reveals the model performance on a pixel level, i.e. as 
a semantic segmentation problem. However, IoU does not indicate the 
model performance in terms of omission and commission errors when 
treating each RTS site as an individual object. To fully evaluate the 
model’s performance, we further treated the task as a statistical classi-
fication problem and used a confusion matrix to shed light on the ac-
curacy of the model. 

We performed a model prediction on the test set and counted 
numbers of 1) True Positive (TP) when the model prediction identifies a 
complete RTS, or a portion of an RTS, which can nonetheless help 
identify the RTS location 2) omitted RTS site as False Negative (FN) and 
3) False Positive (FP) when the prediction has zero overlaps with the 
ground truth. TP, FN and FP were used to calculate the True Positive 
Rate (TPR/recall), False Discovery Rate (FDR), False Negative Rate 
(FNR/miss rate), Positive Predictive Value (PPV/precision) and F1 
score. Each of the above metrics reveals one aspect of the model’s ac-
curacy in terms of detecting RTS features. 

2.3.5. Training 
Our full dataset contained 965 RTS features that were split into 827 

for the training set, 69 for the validation and 69 for the test set. Due to 
the clustered distribution of RTS in some regions, the sampling method 
we used can cause partly overlapped training and validation/test im-
ages. For this reason, a conventional random split for training- 
validation-testing can potentially cause data leakage and lead to over-
estimated accuracy. Therefore our validation and test set were derived 
manually with RTS locations that are significantly distant from the 
training RTS locations. The tiling method is defined in Section 2.2.1, the 
input image dimension is (256,256,6), where the third dimension in-
dicates a 6-band input (R, G, B, NDVI, RE and ESR). Besides the 965 RTS 
features, we also included the 263 negative data (empty labels) in the 
training, validation and testing sets. 

We trained and tested a total of six models, constituting three 
different regions with and without the negative dataset. The three 
different regions are YG, Extensive Sites, and a combination of YG and 
Extensive Sites. YG is our focal region and the corresponding model 
represents the baseline of our modelling approach. Extensive Sites were 
used as ‘foreign data’ that represent the within-class variance of RTS 
outside of our focal region. The model trained on the combined region 
reveals the model’s ability to upscale and accept larger within-class 

variance. Another three models were trained on the three regions 
using our negative training dataset. The negative dataset represents the 
highest possible between-class variance and provided the model with 
counter-examples to learn. The six models were tested on the three re-
gions individually. 

Fig. 5 shows the training log of the best-performing model. A total of 
185 epochs were trained, which took around 13 h to complete by T4/ 
P100 GPUs on Colab. The length of the training depended on an early 
stopping criterion to prevent overfitting. We set the stop tolerance to 30 
epochs, which resulted in ceasing the training when the validation ac-
curacy did not increase for 30 consecutive epochs. The model parameter 
on the 30th from the last epoch was saved as the best model. Other stop 
tolerances from 10 to 50 were tested and 30 was chosen for the best 
balance between the time allowance to find the best model and training 
time. The highest IoU achieved on the validation set was 0.74, and the 
IoU score on the test set was 0.71. Details of the model configuration and 
training hyperparameters are provided in the appendix. 

For tuning the model structure and training hyperparameters, we 
employed a hybrid tuning method that combines manual, empirical and 
automatic tuning using Hyperopt (Bergstra et al., 2013), which uses the 
Tree of Parzen Estimators (Bergstra et al., 2011). Because Hyperopt’s 
tuning results for all the hyperparameters did not result in the best- 
performing model, only parts of the suggested hyperparameter values 
were adopted. See Appendix ‘Model Parameters and Training Hyper- 
Parameters’ for a full range of tested model configurations and hyper- 
parameters tuning details. 

3. Results 

We evaluated the four fully trained models on our test data set. The 
best-performing model was U-Net3+ (0.71), followed by ResU-Net 
(0.68) and U-Net++ (0.64), where all three models use convolutional 
layers. The TransU-Net model, which adopts the attention mechanism, 
performed less well (0.52). The following description of model results 
will focus on the U-Net3+ model. 

Fig. 6 shows six representative examples of the U-Net3+ model 
prediction on the test set, illustrating both the model’s strengths and 
weaknesses. Overall, the model predictions are visually reliable on both 
large and small RTS. The predicted RTS boundaries are natural and do 
not exactly mimic the ground truth labels, which are inherently sub-
jective in many cases, and would otherwise indicate severe overfitting. 
False positives and false negatives both exist to an acceptable degree (e. 
g. Fig. 6-c and -f). Most of the RTS headwalls were accurately predicted, 
and the main discrepancies were located on the edges of the RTS or the 
thaw slump floors. Lastly, small RTS features can be omitted by the 

Fig. 5. Loss and accuracy in training and validation by epoch.  
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model (e.g. Fig. 6-f). 
The confusion matrix and metrics values are shown in Table 2. The 

results on the test set show that the model can detect RTS features with 
an accuracy of 76.79%. The likelihood of detecting false RTS features is 
14.85%, and the likelihood of missing a true RTS feature is 23.21%. For 
all model-detected RTS, 85.15% of them are genuine RTS. F1 score 
(0.81) is the harmonic mean of precision and recall and gives an overall 
estimation of the model’s reliability. The metrics imply that the model is 
more prone to omission errors than commission errors. We also per-
formed another model prediction with the negative data in the test set 
(Table 2). We found that 46 out of 61 false positive predictions resulted 
from the negative data. All metrics decreased significantly and the F1 
score dropped to 0.66. Commission errors became more prevalent when 
the negative data is added to the testing set. 

Fig. 7 shows the model prediction results on the negative data. Fig. 7- 
a shows an example of a false positive prediction where a high-confident 
RTS prediction is located on an expert-verified non-RTS feature, which 
used to be mistakenly recognised as an RTS feature by humans. Fig. 7-b 

Fig. 6. Examples of RTS segmentation results on the test set. A diverging colour map is used to distinguish prediction probability over and under 0.5. (a) A 
completely presented RTS cluster adjacent to a waterbody and a partially presented RTS. (b) A well-predicted single, mid-sized inland RTS. (c) A single, large RTS is 
adjacent to a waterbody with a minor false-positive prediction adjacent to it. (d) A large, connected inland RTS, well-predicted headwalls and ambiguous thaw slump 
floors. (e) A well-predicted small stabilised RTS. (f) Partially predicted and completely missed RTS. 

Table 2 
Confusion matrix on the test set and accuracy metrics.  

Metrics Note Without 
Negative Data 

With 
Negative data 

True Positive (TP) number of correctly 
predicted RTS 

86 86 

False Positive (FP) number of wrongly 
predicted RTS 

15 61 

False Negative (FN) number of missed RTS 26 26 
True Positive Rate 

(TPR) 
TP

TP + FN 
0.7679 0.7679 

False Discovery 
Rate (FDR) 

FP
TP + FP 

0.1485 0.4150 

False Negative Rate 
(FNR) 

FN
TP + FN 

0.2321 0.2321 

Positive Predictive 
Value (PPV) 

TP
TP + FP 

0.8515 0.5850 

F1 2*
PPV*TPR

PPV + TPR 
0.8075 0.6641  
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shows a true negative prediction on the negative data where no RTS 
feature is presented. 

The model testing result is shown in Table 3. The results show that: 
1) for a particular region or set of regions, adding training data from 
foreign regions does not affect the model prediction accuracy signifi-
cantly in the target region; 2) there is a consistent accuracy drop when 
applying a model developed in one region to foreign regions, indicating 
insufficient model generalisation; 3) a multi-regional model benefits 
from more data from different regions, and 4) the YG region has overall 
lower scores than the Extensive Sites. This is consistent with our 
observation that RTS in the YG region are generally smaller and harder 
to recognise compared to other previously-studied regions across the 
Arctic. 5) Results on the negative data show a consistent minor drop in 
almost all testing IoU scores. 

4. Discussion 

We trained a well-performed, multi-regional U-Net3+ model to map 
RTS features in the Yamal and Gydan peninsulas and other six Arctic 
regions. We established a DL training workflow to map RTS features 
using remote sensing data. This workflow is effective, accurate and 
computationally undemanding and can be conveniently adapted to 
other computer vision tasks using remote sensing data. 

To compare our model with existing models, our multi-region U- 
Net3+ model (highest IoU=0.76) significantly out-performed Nitze 
et al. (2021)’s multi-region U-Net++ model (highest IoU=0.58) on the 
same mapping regions in terms of semantic segmentation. Nitze et al. 
(2021) chose six different regions in Arctic Canada and Russia to 
represent a broad variety of environmental conditions and geographic 
settings, which we adapted as our extensive sites. They used a regional 
cross-validation training scheme, and the F-score of their model (F- 

score=0.73) has less detection accuracy than our model (F1=0.81). Our 
model predictability dropped to F1=0.66 when strongly disturbing RTS- 
like features from the negative data were included in the test set. 
Another comparable model is Huang et al. (2022)’s DeepLabV3+ model. 
Their model is trained with 621 RTS polygons from three regions in 
Canada’s Arctic using PlanetScope imagery. Their F1 score ranged from 
0.676 to 0.849 in the three study areas, which fluctuates around our F1 
score (0.81). Their highest pixel-wise IoU (pIoU) reached 0.844 on the 
validation set. However, their model performance on the test set can 
range from 0.1–0.8, which is much less robust than our model 
(0.64–0.76). Nevertheless, comparing model performance across re-
gions is challenging due to the heterogeneous nature of RTS feature 
characteristics and training data. 

One of the main challenges in using deep learning approaches to map 
RTS is building a training dataset, including acquiring a satellite base 
map with good RTS coverage and creating RTS training labels. Manual 
delineation of RTS features is time-consuming in three aspects. 1) It 
requires adequate training and experience to identify and label RTS 
features using satellite imagery, making crowd-sourcing to develop a 
large-scale RTS training dataset more challenging compared to other DL 
computer vision projects. 2) The spatial distribution of RTS is sparse and 
therefore requires time for searching. 3) Drawing RTS polygons manu-
ally is time-consuming due to their highly irregular, even fractal 
boundaries. Hundreds of edges are required for an accurately defined 
RTS polygon. Often RTS boundaries can be ambiguous due to limited 
image resolution, which both increases the time for delineation as well 
as uncertainty. These factors limit the development of an RTS training 
dataset. The RTS datasets used in previous studies (e.g. Nitze et al., 
2021; Huang et al., 2020b) are on the order of a few hundred RTS 
polygons, yet training models with an under-sized dataset can easily 
lead to poor generalisation and underfitting. Although data augmenta-
tion techniques can alleviate the data shortage, the fundamental solu-
tion to this problem is enlarging RTS training datasets from a wider 
range of Arctic regions. Data sharing across different research groups 
can accelerate the dataset development process. Additional field data 
would also help validate and constrain RTS training data derived from 
remote sensing. 

We also identified critical inconsistencies when delineating RTS 
features. The inconsistencies include 1) whether only the active part of 
the RTS is delineated or a more general RTS-affected area is included; 2) 
whether to include or exclude the headwall in the polygon, and 3) how 
to delineate the ambiguous area where RTS is ending. When these issues 
are encountered, a common practice is making arbitrary decisions 
because there is no universally-accepted standard and protocol to 
follow. These inconsistencies will bring at least two problems, 

Fig. 7. Examples of model prediction results on the negative dataset. (a) A false-positive RTS feature is predicted on the negative data. (b) A true-negative non- 
RTS area. 

Table 3 
IoU scores of RTS segmentation models trained and tested in different regions 
(YG, Extensive sites and the combination of both), experimented with negative 
data included and excluded in both training and testing.  

Model Training Region Model Testing Region 

YG Extensive Sites Combined 

YG 0.65 0.64* 0.52 0.51* 0.57 0.55* 
Extensive Sites 0.57 0.54* 0.76 0.73* 0.69 0.68* 
Combined 0.63 0.68* 0.76 0.65* 0.71 0.67* 

Note: IoU scores without asterisk represent the models trained and tested 
without negative data. IoU scores with asterisks represent models trained and 
tested with negative data. 
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inaccurate delineation and contradicting datasets. 
The use of negative data produced a surprising result that counter- 

examples have a minor negative impact on the model performance, 
the cause of which is not fully understood. We expected an increase in 
model performance by adding negative data because it introduces more 
examples of between-class variation to the model, therefore, increasing 
its ability to separate. It is worth stressing that the negative data arose 
from confusing features on the ground that were originally identified as 
RTS but later rejected, hence they are more challenging features than the 
average background. One explanation could be that the scale of the 
current model does not provide the capability to handle highly ambig-
uous features that are even difficult for humans to differentiate. In this 
case, the result implies that the RTS-like negative data is a disturbance to 
the model. 

Our experimental results provide important implications for the use 
of deep learning to map RTS using satellite imagery. First, the within- 
class variance of RTS is large, and therefore a model trained on one 
region may not represent RTS well in other regions, as shown by Nitze 
et al. (2021). Data from foreign regions also does not improve the model 
performance for a given region. However, when mapping RTS in a set of 
regions, adding more data from the subset of regions can benefit the 
model performance i.e. the within-class variance of RTS can be over-
come by training a multi-regional model. This supports the hypothesis 
that it is possible to build a general model that can account for all RTS 
variances across the Arctic. Second, the between-class variance of RTS is 
small, as our current model does not have the capability to outperform 
humans in differentiating highly ambiguous non-RTS features from 
genuine RTS features. More expansive testing is needed to confirm our 
approach across other or larger regions. 

4.1. Future research directions 

Based on our findings, we suggest the following for future research 
priorities: 1) Using our model formulation, wall-to-wall maps and spatial 
analysis of RTS features across the Yamal and Gydan Peninsulas can be 
generated. 2) Building a common, open-source, pan-Arctic RTS training 
dataset would be highly beneficial for a variety of RTS-related research 
including mapping, analysis, and process modelling. 3) Developing an 
agreed-upon RTS labelling protocol would unify dataset standards and 
facilitate data sharing. 4) We suggest training and testing models with 
more neutral negative data where there are no confusing RTS features to 
further understand the impact of negative data as model inputs. 5) More 
extensive and systematic studies can explore the relative differences, 
mechanisms, and model performances between deep learning model 
architectures when mapping RTS features. 6) We suggest training a 
similar model with 3-m Planet imagery, which has a different cost 
structure and may be feasible for scaling to large areas. Finally, we 
suggest employing our modelling approach across different regions in 
the Arctic, prioritising areas where RTS occurred frequently in recent 
years, such as Banks Island and the Peel Plateau in Canada. This is 
particularly important considering our favourable model performance 
compared to past work, and the fact that we focused on one of the most 
challenging domains to map RTS given their size - the YG peninsulas. 

5. Summary 

In this study, we aimed to map RTS using deep neural networks. We 
established a framework for multi-source data fusion, data processing 
and DL model training with remote sensing that other researchers can 
utilise and build from. We trained multi-regional semantic segmentation 
models using U-Nets to map RTS in selected circumpolar regions. We 
tested four different U-Net-like models and the best-performing model 
(U-Net3+) reached an IoU score of 0.71 on the test set, which out-
performed most of the published deep learning models created for this 
task. We also tested the impact of training on different regions and 
training with negative data, and the results show a positive impact of 

enlarging the training dataset on the multi-regional model. Adding 
foreign training data to a single-region model has a neutral impact. 
Training with counter-examples has a minor negative impact on the 
deep learning model performance. We believe that the bottleneck for the 
current model is increasing the size of the training set. The overall result 
is encouraging for a more generalised RTS segmentation model that 
accounts for different regional contexts of RTS in the pan-Arctic. 
Because we expect many more RTS events to occur in the near future 
due to climate warming, it is crucial to have a model approach capable 
of detecting and quantifying these features so we can be prepared to 
track these rapid disturbances. Consistently mapping RTS across the 
Arctic would improve the scientific community’s ability to document 
and understand rapid changes, and to project permafrost carbon feed-
back under various climate scenarios. 
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