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Holistically-Attracted Wireframe Parsing:
From Supervised to Self-Supervised Learning

Nan Xue, Tianfu Wu, Song Bai, Fu-Dong Wang, Gui-Song Xia, Liangpei Zhang, Philip H.S. Torr

Abstract—This article presents Holistically-Attracted Wireframe Parsing (HAWP), a method for geometric analysis of 2D images

containing wireframes formed by line segments and junctions. HAWP utilizes a parsimonious Holistic Attraction (HAT) field representation

that encodes line segments using a closed-form 4D geometric vector field. The proposed HAWP consists of three sequential components

empowered by end-to-end and HAT-driven designs: (1) generating a dense set of line segments from HAT fields and endpoint proposals

from heatmaps, (2) binding the dense line segments to sparse endpoint proposals to produce initial wireframes, and (3) filtering false

positive proposals through a novel endpoint-decoupled line-of-interest aligning (EPD LOIAlign) module that captures the co-occurrence

between endpoint proposals and HAT fields for better verification. Thanks to our novel designs, HAWPv2 shows strong performance in

fully supervised learning, while HAWPv3 excels in self-supervised learning, achieving superior repeatability scores and efficient training

(24 GPU hours on a single GPU). Furthermore, HAWPv3 exhibits a promising potential for wireframe parsing in out-of-distribution

images without providing ground truth labels of wireframes.

Index Terms—Wireframe Parsing, Line Segment Detection, Holistic Attraction Field Representation, Self-Supervised Learning

I

1 INTRODUCTION

D EPICTING image contents with geometric enti-
ties/patterns such as salient points, line segments, and

planes/surfaces has been shown as an effective encoding
scheme of visual information evolved in primate visual
systems, which in turn has long motivated the computer
vision community to make tremendous efforts on comput-
ing the primal sketch [1] of natural images consisting of
different forms including, but not limited to, the blobs [2],
[3], [4], corners/junctions [4], [5], [6], [7], edges [8], [9],
[10], and line segments [11], [12] since the 1960s. Modeling
and computing the primal sketches have remained a long-
standing problem, and it plays important roles in many
downstream tasks including 3D reconstruction [13], [14],
[15], [16], [17] and scene parsing [18], [19], as well as high-
level visual recognition tasks [20], [21], [22].

In this paper, our focus lies on modeling, learning, and
parsing wireframes [25] from images, which represent a par-
simonious form of the primal sketch. As depicted in Fig. 1,
wireframes capture line segments and their associated end-
points (primarily junctions) in images, enabling vectorized
representations of the underlying boundary structures of
objects and generic regions (stuff). Despite line segments be-
ing simple geometric patterns/symbols by definition, effec-
tively modeling and computing them from images presents
an exceedingly challenging problem due to the inherent
uncertainty and ambiguity in grounding line segments to
image pixels (referred to as the symbol-to-signal gap).

We present a learning-based approach for wireframe
parsing (Fig. 5), aiming to bridge the gap between pixels
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(a) HAWPv1 on the Wireframe Dataset (FSL Model)

(b) HAWPv2 on the Wireframe Dataset (FSL Model)

(c) HAWPv3 on the Wireframe Dataset (SSL Model)

(d) HAWPv3 on the BSDS Dataset (SSL Model)

(e) HAWPv3 on the AICrowd Dataset (SSL Model)

Fig. 1. The proposed HAWP models excel in wireframe structure per-
ception using both fully-supervised learning (FSL) and self-supervised
learning (SSL). HAWPv1 [23] and improved HAWPv2 are FSL models
trained with human-annotated wireframes, primarily in indoor images.
HAWPv3, an SSL model built on HAWPv2, enables wireframe parsing in
out-of-distribution images such as those from the BSDS-500 dataset [8]
and AICrowd dataset [24], without requiring labeled wireframes.
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(2D signals) and symbols (line segments and junctions) pro-
gressively. Our method involves three key steps: (1) learning
a novel Holistic Attraction (HAT) field representation that
characterizes the geometry of line segments, including their
endpoints, by incorporating both edge and non-edge pixels;
(2) binding densely predicted line segments to a reduced
set of junction/endpoint proposals, eliminating the need for
complex non-maximum suppression (NMS); and (3) achiev-
ing wireframe parsing through a proposal verification mod-
ule. This paper extends our previous work [23] (HAWPv1,
published in CVPR’20) with significant modifications in
two aspects. Firstly, we address the effective and robust
learning of the proposed HAT fields in the fully supervised
learning setting, resulting in improved HAWPv2. Secondly,
we broaden the applicability of our HAT fields through self-
supervised learning, leading to HAWPv3 as an extension
of HAWPv2 for wireframe parsing in diverse scenarios.
Notably, our ablation studies in Appx. D demonstrate that
HAWPv1 does not support self-supervised learning well.
We summarize and discuss the modifications and develop-
ment path of the HAWP models as follows.

Our proposed HAT field representation stands out from
other methods in the literature due to two novel aspects.
Firstly, it incorporates a conceptually simple yet expressive
line-segment-to-attraction-region lifting, which aligns with
the population coding principle [26] observed in primate
visual systems and naturally incorporates visual context
awareness. Secondly, it features a rigorously formulated
closed-form differentiable HAT field parameterization (see
Sec. 3 for detailed formulations), promoting representational
parsimony and encouraging inferential consistency among
the population, i.e., all (foreground) pixels within an at-
traction region. These aspects contribute to the stability
and efficiency of learning HAWP. In fully supervised learn-
ing settings, follow-up studies on wireframe parsing [27],
[28], [29] without HAT fields typically require hundreds of
training epochs to achieve comparable performances to our
HAWPv1 [23], which is trained in just 30 epochs. Intrigu-
ingly, the combination of these two aspects facilitates a sig-
nificantly more efficient self-supervised learning paradigm.

In the development of HAWPv2, we explore novel as-
pects within the fully supervised learning paradigm. We
investigate the closed-form property of the HAT field rep-
resentation and unveil a simple yet effective differentiable
loss function, which penalizes the endpoint fitting error in
2D Euclidean space for densely predicted line segments,
thereby reducing invalid proposals. To address the densely
predicted line segment proposals and leverage complemen-
tary endpoint/junction information, we propose a method
for binding line segment proposals and endpoint/junction
proposals. This approach significantly reduces the number
of joint proposals by incorporating geometry co-occurrence,
serving as an effective and efficient replacement for non-
maximum suppression (NMS) of line segment pairs. Fur-
thermore, we introduce a novel and lightweight verification
module called endpoint-decoupled LOIAlign (EPD LOIAlgin).
This module captures geometry-aware discriminative fea-
tures for verification in a lightweight design. Taking ad-
vantage of HAT fields, which produce high-quality pro-
posals together with informative point-line co-occurrence
patterns by the endpoint predictions from heatmaps, the

hand-crafted designs used in L-CNN [30] and HAWPv1 are
no longer necessary to train the verification module.

Obtaining ground-truth wireframes and other structural
annotations for supervised learning is a time-consuming,
costly, and often biased process. As a result, fully supervised
wireframe parsers often struggle to produce satisfactory
parsing results for images that differ significantly from the
limited training data, leading to out-of-distribution fail-
ures. Motivated by this and aiming for more generalized
wireframe parsers, we introduce HAWPv3, empowered by
the expressive HAT field representation and inspired by
the successes of SuperPoint [31] for keypoint detection
and SOLD2 [32] for self-supervised wireframe parsing. To
overcome the limitations of fully supervised learning, we
adopt a simplified homographic adaptation pipeline from
the self-supervised learning approach of SOLD2. Using this
approach, HAWPv3 achieves remarkable efficiency and ef-
fectiveness , requiring approximately 10 times less syn-
thetic pretraining overall and can be trained within 24
GPU hours on a single-GPU workstation. In particular,
it significantly increases the crucial metric of structural
repeatability scores for line segments, improving from 61.6%
to 75.1% in the wireframe dataset [25], and from 62.9% to
71.1% in the YorkUrban dataset [33], respectively. These
results underscore the expressive power of the HAT field
representation and the elegantly designed wireframe pars-
ing workflow. Fig. 1 (c)-(e) provide illustrative examples of
the impressive HAWPv3 results in three diverse datasets.

In summary, this paper makes three key contributions to
the field of wireframe parsing:

• The proposed line-segment-to-attraction-region lifting
provides a new paradigm for learning expressive HAT
fields for line segment representation, thanks to the rich-
ness of learnable information at the regional level. It
shows significantly better effectiveness and expressive-
ness in both fully-supervised learning and self-supervised
learning.

• The proposed wireframe parsing frameworks (HAWPv2
and HAWPv3) are elegantly designed and well-cooked.
The proposed line segment binding module and the pro-
posed end-point-decoupled LOIAlign facilitate built-in
robustness and geometry awareness in wireframe parsing.

• In experiments, we demonstrate the superiority of our
proposed HAWPv2 in supervised learning and our
HAWPv3 in self-supervised learning with state-of-the-art
performance obtained. Our HAWPv3 shows great poten-
tial for general wireframe parsing in images out of the
training distributions. In addition, our codes and trained
models are publicly available1.

Paper Organization. The remainder of this paper is orga-
nized as follows. Sec. 2 reviews the recent efforts in learning
wireframe parsing and line segment detection and then
summarizes our contributions. In Sec. 3, we present the
HAT field of line segments and discuss it with alternative
representations. Sec. 4 and Sec. 5 describe the framework of
HAWP and the details of learning HAWPv2 and HAWPv3
models, respectively. In the experiments, we evaluate the
proposed HAWPv2 model in Sec. 6 and HAWPv3 model in
Sec. 7. Last but not least, we conclude this paper in Sec. 8.

1. https://github.com/cherubicXN/hawp
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2 RELATED WORK

As mentioned earlier, wireframe parsing is a relatively new
concept that focuses on modeling and computing line seg-
ments and junctions in 2D images, providing a concise rep-
resentation for the robust geometric understanding of the
visual world. The roots of wireframe parsing can be traced
back to the early days of computer vision, such as Larry
Roberts’ work on understanding the ”Blocks World” [34],
[35], as well as the primal sketch concept proposed by
David Marr [1]. Over time, significant progress has been
made in developing more expressive yet parsimonious rep-
resentations and powerful yet efficient parsing algorithms
to enhance the geometric understanding of images. Notable
examples include the alignment-based LSD framework [36]
with an a-contrario verification before the era of modern
deep learning. In this section, we review recent advance-
ments in learning-based wireframe parsing, which is the
domain to which the proposed HAWP models belong.

Inductive and Deductive Wireframe Parsing. Wireframe
parsing computation involves two phases: proposal gen-
eration and verification. For endpoint/junction proposals
in wireframe parsing, methods commonly use heatmap
regression. There are two main categories of approaches
for line segment modeling in proposal generation: inductive
parsing, which leverages line segment biases (e.g., learned
line heatmaps) and deductive parsing, which enumerates all
pairs of detected endpoints for line segment proposals.

The Deep Wireframe Parsing method and Wireframe
dataset [25] introduced an inductive approach, connecting
endpoints using learned line heatmaps for line segment pro-
posals. Our previous work on regional attraction fields [37],
[38] also falls into the inductive category, extracting line
segments from attraction fields using a heuristic squeezing
module. Deductive approaches [30], [39] bypass challenges
by enabling end-to-end training. L-CNN [30] improves pars-
ing with LOIPooling for proposal verification. Deductive ap-
proaches tackle class-imbalance issues caused by exhaustive
enumeration, requiring careful sampling strategies during
training. Subsequently, both our preliminary HAWPv1 [23]
and the LGNN method [40] build on the success of LOIPool-
ing in L-CNN [30] while addressing the inefficiency of line
segment proposal generation. These approaches demon-
strate that modeling the inductive biases of line segments in
a more direct and appropriate manner can further enhance
the accuracy and efficiency of wireframe parsing, all while
retaining the benefits of end-to-end training. The LGNN
method [40] introduces the center-offset representation for
line segments, which, as discussed in Sec. 3.4, may exhibit
slower convergence during the learning process.

Compared with prior art, the proposed HAWPv2 has the
core HAT field representation first proposed in our prelimi-
nary HAWPv1, and harnesses the best of both line segment
and endpoint proposals (the co-occurrence modeling and
the end-point-decoupled LOIAlign as briefly discussed in
Sec. 1) in a systematic way. The proposed HAWPv3 further
extends the horizon of how wireframes can be learned by
developing an effective SSL paradigm.

Line Segment Representations. As one of the most prim-
itive geometric patterns/symbols, line segments are easy to
describe and define mathematically, but have been shown

to be extremely challenging to induce their conceptually
simple inductive biases end-to-end in wireframe parsing.
The key question is how to parameterize line segments in
a differentiable way in the rasterized image lattice. There
are three types of formulations that allow fully end-to-end
training with different levels of effectiveness.

The center-offset and query-to-endpoints representations. Un-
like the exhaustive enumeration in deductive approaches,
alternative inductive representations based on center offset
and Transformers [41], [42] have been explored for line
segment detection and wireframe parsing. Inspired by the
”objects as points” concept in object detection [43], line
segments are parameterized by their center point, tangent
angle, and Euclidean length in TP-LSD [29], F-Clip [27], M-
LSD [44], and E-LSD [45]. Meanwhile, LETR [28] transforms
latent queries into the endpoints of line segments using
attention mechanisms. These representations, focusing on
points along the line segments, are sparse and lack explicit
context awareness. Consequently, these methods often re-
quire extensive training epochs (e.g., 300 epochs in F-Clip
and 800 epochs in LETR).

The HAT field representation. It is first proposed in our
preliminary HAWPv1 [23] before the two representations
stated above. In contrast to them, the HAT field lifts line
segments to non-overlapping attraction regions following
our previous work on the regional attraction field repre-
sentation [37], [38]. It then forms context-aware population
coding for a line segment using “foreground” points in the
attraction region with points on the line segment excluded.
As a result, our HAWP models often use vanilla convolution
operations and need only 30 epochs in training with state-
of-the-art performance obtained in testing.

Self-Supervised Learning of Wireframe Parsing. Seeking
proper pre-text tasks [46], [47] or self-consistency predic-
tion/matching is one of the keys to self-supervised learning
of modern deep vision models. In terms of the wireframe
parsing and the related geometric tasks, pipelines that
explore the simulation-to-reality workflow has also been
studied. By utilizing the simulation-to-reality workflow, the
SuperPoint [31] presented the first self-supervised learning
method for interest point detection and description with the
proposed Homography Adaptation approach. Inspired by
the SuperPoint, SOLD2 [32] presents the first self-supervised
learning method for line detection using the deductive
wireframe parsing framework similar to L-CNN [30].

SOLD2 requires a heavy synthetic pretraining using 160k
synthetic data. Due to its deductive nature, it also suffers
from the severe class-imbalance issue in the proposal verifi-
cation, but cannot use the carefully-designed sampling strat-
egy proposed in L-CNN in SSL. It thus resorts to the edge
maps as the primal cues for verifying proposals in training
with real unlabeled images, and achieves better perfor-
mance in terms of detection repeatability across viewpoints,
thus facilitating the learned detectors in downstream tasks
such as SLAM and SfM. Our proposed HAWPv3 adopts
the overall SSL pipeline used by SOLD2. The expressiveness
and effectiveness of the core HAT field representation result
in a much more efficient SSL (e.g., 10x less synthetic pretrain-
ing cost) while being more accurate in terms of detection
repeatability.
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strong intuition that has not been fully exploited by the
alternatives. As a toy example in Fig. 3(a) that has 3 line
segments defined on the image grid, the center-offset repre-
sentation (and its variant) has to face two challenging cases
to be solved: (1) how to accurately detect the center locations
and (2) how to cope with the large variation for the small-
length and large-length line segments that are presented
in the same image to accurately regress the length of line
segments. As a result, the methods built on the center-offset
representations usually have long training schedules with
hundreds of epochs. To further improve the learning ability,
some hand-crafted neural modules based on [48], [49] were
studied [27], [29], [45] for feature aggregation.

Different from center-offset representations, which are
strictly defined on center pixels, the regional representations
in Fig. 3(c) and Fig. 3(d) have a more relaxed definition
by incorporating non-edge pixels. With the involvement
of more pixels, there is no need to precisely localize the
foreground pixels during learning; instead, the focus can
solely be on the regression of the fields. However, the 4D
attraction field in Fig. 3(c), which utilizes long-range vectors
to depict line segments, is susceptible to large structural
variations during the learning process. By contrast, our HAT
field representation normalizes the two long-range vectors
using three angles (or unit vectors) in the local coordinate
system, and incorporates the distance to transform the local
line segments into the image coordinate system. This type
of ”representation normalization” eliminate many nuisance
factors in the data, thereby facilitating more effective learn-
ing. Moreover, the joint encoding that exploits displacement
distance and angle effectively decouples the attraction field
with respect to complementary spanning dimensions.

4 THE PROPOSED HAWP FRAMEWORK

In this section, we present details of the proposed HAWP
framework that is built on the HAT field representation of
a wireframe. As illustrated in Fig. 5, the proposed HAWP
consists of three components: line segment and proposal
generation (Sec. 4.2 and Sec. 4.3), line segment and binding
(Sec. 4.4), and endpoint-decoupled line-of-interest verifica-
tion (Sec 4.5).

4.1 Notations

Let I represent an image defined on the image lattice Λ
with dimensions H × W pixels (e.g., 512 × 512). For the
wireframe associated with image I , we define L̈ as the set
of annotated line segments in I , and J̇ as the set of unique
endpoints belonging to all line segments in L̈. It is worth
noting that many of these endpoints are junction points
formed by multiple line segments.

We denote fb(·; Ωb) as the deep neural network fea-
ture backbone with parameters Ωb. Given an input image
I , the feature backbone produces an output feature map
F = fb(I) with dimension C , height Hs = H

s , and width

Ws = W
s . The output resolution depends on the overall

stride s of the backbone, and the resulting lattice is Λ′, a
sub-sampled version of the original lattice Λ. On top of the
feature map F , we employ lightweight head sub-networks
to regress both the 4D HAT field for line segments and

the endpoint heatmap. Detailed network architectures can be
found in Appx. A. In this section, we refer to them as general
mapping functions in defining our HAWP.

The predicted HAT field is computed at the resolution
of Hs × Ws, we prepare the ground-truth field maps at
the same resolution for computing the loss of the predicted
holistic attraction field in training accordingly. Since a wire-
frame is a vectorized representation, the mapping from the
original image lattice Λ to the (sub-sampled) lattice Λ′ is
straightforward. Without loss of generality, we directly use
the lattice Λ′ when referring to line segments and junction
points in the formulations hereafter.

4.2 Learning the HAT Field of Line Segments

We use two separate head sub-networks in learning the
distance and the three angles in our proposed 4D holistic
attraction field A.

The distance map: Ad = fd(F ; Ωd) ∈ R
1×Λ′

, (3)

The angle field: Aa = fa(F ; Ωa) ∈ R
3×Λ′

. (4)

Considering an annotated line segment l̈ ∈ L̈, a fore-
ground point p′ ∈ Λ′ within the attraction region of l̈
is reparameterized as p′(l̈) = (d, ¹, ¹1, ¹2) using Eq. (1).
Here, p′ = +p/s, ∈ Λ′ is the mapped point from
p ∈ Λ. The ground-truth distance map and angle field
are denoted as Agt

d and Agt
a , respectively. To facilitate

neural network training, we normalize the distance map
by min(max(d/Äd, 0), 1), where Äd controls the foreground
pixels. The angles are normalized as ( θ2π + 1

2 ,
θ1
π/2 ,

θ2
π/2 + 1).

This normalization ensures that the predicted values of the
HAT field fall within the range of [0, 1], and they can be
unnormalized to obtain line segment proposals.

Residual Learning of the Distance Map. As aforemen-
tioned, we observe that the distance map is more difficult
to learn than the angle fields in our experiments. To address
this, we propose a residual learning method by introducing
another light-weight sub-network to predict the distance
residual,

A∆d = f∆d(F ; Ω∆d) ∈ R
1×Λ′

. (5)

The ground-truth of the distance residual map is computed
on the fly, Agt

∆d(p
′) = |Agt

d (p′)−Ad(p
′)|. Fig. 6 shows some

examples of the learned distance maps and residual maps.
Note that we learn the unsigned residual instead of the

signed one, which is mainly due to that the distance field
and its residual take the same feature map as input to avoid
unnecessary increase of model complexity. Furthermore, the
learning of unsigned residual can be viewed as a kind
of uncertainty estimation for the distance prediction, thus
facilitating the learning of HAT fields as shown in our
experiments. Given by this, we enumerate their signs and
modulate the scales to get a set K = {−k, . . . , 0, . . . , k} (k
is a hyperparameter, to be specified in experiments), and
eventually yield a set of rectified distance maps by,

A
(i)
d (p′) = Ad(p

′) + i · A∆d(p
′), ∀i ∈ K. (6)

With the rectified distance maps, 2k+1 line segment propos-
als will be generated at each foreground point and refined
by the line-of-interest verification step.
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J̇ in an image, we use the “hard” (binary) heatmap as the
ground truth,

J̇
gt
pt(p

′) = 1, ∀p ∈ J̇, (10)

where p′ = +p/s, ∈ Λ′ and p ∈ Λ. The associated offset is
then defined by,

J̇gto (p′) = p/s− p′ (11)

Loss Functions. We use the binary cross-entropy loss
BCE(·, ·) for the endpoint heatmap regression, and the ℓ1
loss for the offset field,

Lpt = BCE(J̇pt, J̇
gt
pt), (12)

Lo =
∑

p′

ℓ1(J̇o(p
′), J̇gto (p′)) · J̇gtpt(p

′), (13)

The total loss of learning endpoints is LJ̇ = ´pt ·Lpt+´0 ·
Lo, where ´pt and ´o are trade-off hyperparameters. In our
experiments, ´pt and ´o are set to 8.0 and 0.25, exactly same
to L-CNN [30] and our preliminary version, HAWPv1 [23].

Extracting Endpoints from the Dense Predictions. With
the predicted heatmap scores, we first apply the local NMS
using a 3 × 3 window, and then keep the top-N endpoints
using a sufficiently large number N . In our experiments, we
use N = max(2×Ngt, 300) in the training phase where Ngt
the number of junctions in an image. In testing, we use N =
max(Npred, 300) with Npred =

∑
p′ 1J̇pt(p′)gτȷ

, where Äj is
set to 0.008, same as L-CNN [30] and our HAWPv1 [23]. For
the top-N endpoints, their (sub-pixel) locations are updated
based on the predicted offsets in J̇o.

4.4 Binding Line Segment and Endpoint Proposals

Denote by
ˆ̈
L the set of line segment proposals from the HAT

field prediction and by
ˆ̇
J the set of endpoint proposals.

Binding them captures their co-occurrence and improves
the fidelity of line segment proposals while significantly
reducing the computational cost to handle the total of

| ˆ̈L| = (2k + 1) · Hs ·Ws proposals in
ˆ̈
L, particularly those

strongly supported by endpoint proposals.
Specifically, we first find the nearest endpoint proposals

in
ˆ̇
J for the two endpoints of a line segment proposal in

ˆ̈
L.

Without loss of generality, consider a line segment proposal
ˆ̈
l = (x̂1, x̂2), denote by ŷ1 ∈ ˆ̇

J the nearest endpoint
proposal for x̂1 and the squared Euclidean distance between
them is ¶1. The same is done for x̂2 and we obtain ŷ2 and
¶2. The figure of merit of the binding is defined by the
maximum distance ¶ = max(¶1, ¶2), and the smaller the

distance, the higher the quality of the line segment
ˆ̈
l (i.e., the

likelihood of the co-occurrence is high). A threshold Äδ is
used to select proposals of high-quality line segments whose
binding costs ¶ are smaller than the threshold (Äδ = 10

in our experiments). Based on this, the | ˆ̈L| number of line

segments
ˆ̈
L in are anchored by the set

ˆ̇
J in a sparse set

without incurring any non-maximal suppression schema of
line segments, and eventually yield a new set of endpoint-
augmented line segment proposals consisting of line seg-

ments
ˆ̈
lj = (ŷ1, ŷ2; x̂1, x̂2), where

ˆ̈
lj is used to indicate that

the line segment is formed by the binding process, and the

endpoints from both
ˆ̈
L and

ˆ̇
J are retained for preserving the

instrinsic uncertainty of proposals. Eventually, the endpoint-

augmented line segment proposals generate a new set
ˆ̈
LJ̇.

4.5 Line Segment Verification

Recall that in the proposed HAT field, points on line seg-
ments are treated as “background” points. Even after the
binding, those points have not been verified. Thus, verifying

line segment proposals in
ˆ̈
LJ̇ entails grounding the entirety

of a line segment proposal to the data evidence, i.e., Line-of-
Interest (LOI) Pooling, to compute the final score for wire-
frame parsing, where the entirety is defined with respect to
a point-sampling strategy. We give details of our proposed
endpoint-decoupled (EPD) LOIAlign method, which is built
on the vanilla LOIPooling method [30].

To enable an efficient design of the verification head
MLP classifier, we ask the question: Do we need to encode
every sampled point in the same high-dim space as done in the
vanilla LOIPooling? By definition, the two endpoints of a
line segment play a critical role. So, we propose to encode
the two endpoints and the sampled intermediate points of
a line segment differently in a high-dim feature space and
a low-dim feature space, respectively, that is, to develop the
EPD LOIAlign.

Denoted by a linear-sampling function Èt(l̈) that maps a
line segment l̈ = (x1,x2) to a point in the line segment by

Èt(x1,x2) = (1− t) · x1 + t · x2, t ∈ [0, 1], (14)

where a predefined number of evenly-sampled points ti =
i
n is typically used (e.g., n = 31 and i ∈ {0, 1, · · ·n}).

Consider an endpoint-augmented line segment
ˆ̈
lj =

(ŷ1, ŷ2; x̂1, x̂2), for the LOI verification, we maintain three
subsets of sampled points:

• The two endpoints: {(ŷ1, ŷ2)};
• The intermediate points between ŷ1 and ŷ2: Y =
{Èyti = Èti(ŷ1, ŷ2)); i = 1, 2, · · · , n− 1};

• The intermediate points between x̂1 and x̂2: X =
{Èxti = Èti(x̂1, x̂2)), i = 1, 2, · · · , n− 1}.

By decoupling endpoints and intermediate points, the
model will be geometrically aware for line segments in
learning to verify the proposals. We note that our proposed
EPD LOIAlign captures the co-occurrence between the HAT-
drive inductive line segment proposals and the junction-
guided deductive line segment proposals for better verifi-
cation.

The Verification Head Classifier. To exploit the EPD
LOIAlign and to enrich the information flow for the low-
dimensional feature extractor fψ , we utilize a parallel
branch design of the verification head classifier. As shown
in Fig. 5(b), we use three convolution layers to transform
the backbone network to FJ ∈ R

C×Hs×Ws for the two end-
points, as well as FY ∈ R

CÈ×Hs×Ws and FX ∈ R
CÈ×Hs×Ws

for the sampled point set Y and X . Note that the feature
maps FY and FX have fewer channels than FJ to deal
with the sample points (n − 1) for each proposal. The
bilinear interpolation is used to sample all features, and

yield three feature vectors for each proposal, Zy(
ˆ̈
lj) for the
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two endpoints, as well as Zψy
and Zψx

for the sampled
point set Y and X for the line verification, denoted by

Zy(
ˆ̈
lj) = [FJ(y1), FJ(y2)] ∈ R

2C , (15)

Zψy
(
ˆ̈
lj) = [FY(È

y
t1), . . . , FY(È

y
tn−1

)] ∈ R
(n−1)·CÈ , (16)

Zψx
(
ˆ̈
lj) = [FX (Èxt1), . . . , FX (Èxtn−1

)] ∈ R
(n−1)·CÈ . (17)

Let Zψ(
ˆ̈
lj) = [Zψy

(
ˆ̈
lj),Zψx

(
ˆ̈
lj)] ∈ R

2·(n−1)·CÈ be the
concatenated features of the intermediated sample points

and Z(
ˆ̈
lj) = [Zy(

ˆ̈
lj),Zψ(

ˆ̈
lj)] ∈ R

2·(n−1)·CÈ+2·C be the
concatenated features of all sample points, we first apply
two separate MLPs to transform Zψ and Z into the D-
dim feature space (e.g., D = 128) respectively, and then
sum them, followed by appling a linear transformation to
compute the final score (or logit) of the line segment. For

simplicity of notation, we will omit “(
ˆ̈
lj)” and instead use

Zψ and Z.

Score(
ˆ̈
lj) = Linear(MLP(Zψ) + MLP(Z)). (18)

To further enhance the learning of the low-dimensional
feature extractor fψ , we use an auxiliary verification layer
(linear transformation) that is used in training only,

AuxScore(
ˆ̈
lj) = Linear(Zψ). (19)

The Ground-Truth Assignment in Training. A line seg-

ment proposal
ˆ̈
lj = (ŷ1, ŷ2; x̂1, x̂2) is assigned as positive

if and only if there exists a ground-truth line segment l̈

within the close proximity of
ˆ̈
lj . Similar to the binding

between line segment proposals and endpoint proposals,
the proximity is defined by the maximum distance between
the two endpoints of the ground-truth line segment and
(ŷ1, ŷ2). By close, it means that the maximum distance
needs to be smaller than a predefined threshold, Äver (e.g.,
Äver = 1.5 used in our experiments). This ground-truth
assignment method facilitates learning the negatives on
the fly and end-to-end, unlike previous work [23], [30]
that exploit static negative line segment samples (e.g., by
sampling two s that do not come from any ground-truth
line segments). As we shall show, this on-the-fly and end-
to-end generation of negative samples enables much more
effective self-supervised learning of our HAWP model.

Loss Functions. The verification is posed as the binary
classification problem. We utilize the BCE loss in training
both the verification head classifier and the auxiliary head
classifier. Denote by Lver and Laux the BCE loss functions
for training Eq. (18) and Eq. (19) respectively.

5 LEARNING HAWP MODELS

In this section, we present details of training and inference
of both HAWPv2 and HAWPv3. Due to the space limit, we
present network architectures used in our experiments in
the Appx. A.

(a) Checkboard (b) Lines (c) A Cube (d) Gaussian

(e) Strips (f) A Polygon (g) Polygons (h) A Star

Fig. 8. Some training examples generated in the synthetic dataset for
the initialization of self-supervised learning. There are 8 primitives in
total used in the dataset and we show one random synthesized image
for each primitive.

5.1 HAWPv2 with Fully-Supervised Learning

Training Details Our proposed HAWPv2 is trained on the
Wireframe dataset [25] with their official annotations. In
the training, a total of 5000 training samples with precisely
annotated wireframes are augmented by the flipping op-
erations along the horizontal, vertical, and diagonal direc-
tions, as well as the rotation operations2 by 90◦ and −90◦.
Finally, the augmented dataset with 30k samples is used
to train HAWPv2 with a total of 30 epochs. The ADAM
optimizer [52] is used for training, and the learning rate is
initially set at 4e-4 for the first 25 epochs and then reduced
to 4e-5 for the last 5 epochs. The image resolution of the
training samples is set to 512×512. The total loss is the sum
of the loss functions defined in Sec. 4.

Inference Details Given an input image, we forward the
trained HAWPv2 model to get the junctions and line seg-
ments. We only keep the line segments of which the clas-
sification score ci is greater than a given threshold ε as the
final prediction. The input image is also resized to 512×512
tensors for the forward to obtain the wireframes that are
then scaled to their original resolution according to the
scaling factors in both horizontal and vertical directions.

5.2 HAWPv3 with Self-Supervised Learning

We adopt the simulation-to-reality pipeline for SSL as in
the SuperPoint [31] and the SOLD2 [32]. In the synthetic
pretraining using simulated data consisting of simple prim-
itives (Fig. 8), ground-truth wireframes are naturally avail-
able. We can thus train our HAWPv2 model. The challenge
is how to leverage the synthetically pretrained HAWPv2 to
“annotate” wireframes in real images. If we directly run the
synthetically trained HAWPv2 on an input unlabeled image.
The putative wireframe is often quite noisy due to the gap
between synthetic data and real images. To address this
challenge, we need to introduce additional inductive biases
of line segments that are more transferrable from simulation
to reality, such that we can exploit them to “clean up” the

2. After 2020, the more complicated data augmentation techniques in-
cluding the rotational augmentation used in F-Clip [27] and ELSD [45],
the random cropping and color jittering used in LETR [28] were
explored to boost the final performance.
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TABLE 1
Quantitative results and comparisons. Our proposed HAWPv2 sets new records in the most challenging metrics of structural correctness. For
heatmap-based evaluation results, our proposed HAWPv2 obtains better average precision and performance comparable to heatmap-based F

scores. In the last column, the inference speed is compared for all learning-based approaches. The numbers with ∗ are extracted from the original
paper. The best scores are highlighted in bold fonts.

Image Size # Epochs
Wireframe Dataset YorkUrban Dataset

FPS
sAP5 sAP10 sAP15 mAPJ APH FH sAP5 sAP10 sAP15 mAPJ APH FH

DWP [25] 320×320 200 3.7 5.1 5.9 40.9 67.8 72.2 1.5 2.1 2.6 13.4 51.0 61.6 2.24

AFM [37] 320×320 200 18.5 24.4 27.5 23.3 69.2 77.2 7.3 9.4 11.1 12.4 48.2 63.3 13.5

AFM++ [38] 512×512 200 27.7 32.4 34.8 30.8 74.8 82.8 9.5 11.6 13.2 TBD 50.5 66.8 5.2

L-CNN [30] 512× 512 30 59.7 63.6 65.3 60.2 81.6 77.9 25.0 27.1 28.3 31.5 58.3 62.2 15.6

F-Clip (HG2-LB) [27] 512× 512 300 62.6 66.8 68.7 48.7 85.1 80.9 27.6 29.9 31.3 28.3 62.3 64.5 28.3

LETR (R101) [28] 800 (short) 825 59.2 65.2 67.7 44.1 85.5 79.8 23.9 27.6 29.7 24.5 59.6 62.0 5.25
LETR (R50) [28] 800 (short) 825 58.5 64.6 67.3 44.2 84.7 79.1 25.7 29.6 32.0 25.9 61.7 63.4 5.25

ELSD (HG) [45]
512× 512

170 62.7∗ 67.2∗ 69.0∗ N/A 84.7∗ 80.3∗ 23.9∗ 26.3∗ 27.9∗ N/A 57.8∗ 62.1∗ 47∗

ELSD (Res34) [45] 170 64.3∗ 68.9∗ 70.9∗ N/A 87.2∗ 82.3∗ 27.6∗ 30.2∗ 31.8∗ N/A 62.0∗ 63.6∗ 42.6∗

HAWPv1 (Ours) [23]
512× 512

30 62.5 66.5 68.2 60.2 84.5 80.3 26.1 28.5 29.7 31.6 60.6 64.8 29.5
HAWPv2 (Ours) 30 65.7 69.7 71.3 61.8 88.0 81.4 28.8 31.2 32.6 32.5 64.6 64.5 40.8

previous methods to resize predictions and grountruth wire-
frames to 128× 128, and report sAP scores with thresholds
ϑ of 5, 10, 15, i.e., sAP5, sAP10, and sAP15, respectively.

Heatmap based F score and Average Precision. These
are traditional metrics used in LSD and wireframe pars-
ing [25]. Instead of directly using the vectorized repre-
sentation of line segments, heatmaps are used, which are
generated by rasterizing line segments for both parsing
results and the ground truth. The pixel-level evaluation is
used to calculate the precision and recall curves with which
the heatmap F score, indicated by FH and the heatmap
average precision, indicated by APH are computed. Unlike
the evaluation protocol that computes the F scores and AP
by averaging the per-image evaluation result in [25], [37],
[38], we follow L-CNN [30] to first calculate the true positive
and false negative edge pixels over the entire dataset and
then compute the F scores and AP.

Vectorized Junction Mean AP. It is calculated in a similar
way to the sAP of line segments. Let ϑJ be the threshold
for the distance between a predicted junction and a ground
truth one. The mAPJ is computed w.r.t. ϑJ = 0.5, 1.0, 2.0.
For the line segment detection approaches compared that
did not yield junctions, we take the endpoints as the de-
tected junctions for evaluation as in L-CNN [30].

6.2 Main Comparisons with State of the Arts

6.2.1 Baselines

We compare with the recent deep learning based approaches
which are summarized as follows:

1) In 2018, the Wireframe dataset [25] was proposed with
a baseline wireframe parser, DWP, which groups the
learned junctions and line heatmaps into vectorized
wireframe graphs. We use the DWP as the earliest
baseline for wireframe parsing.

2) In 2019, there are several line segment detectors includ-
ing AFM [37] and AFM++ [38], PPG-Net [39] and L-
CNN [30]. The AFM approaches [37], [38] are not fully
end-to-end, while PPG-Net [39] and L-CNN [30] use
neural networks to obtain the final wireframe graphs
end-to-end. We compare our HAWPv2 with the AFM
approaches [37], [38] and L-CNN [30].

3) After 2019, many works focused on the direct regres-
sion of line segments by learning center-based repre-
sentations or exploiting Attention mechanisms in line
segment detection. All these approaches require long
learning schedules with hundreds of training epochs.
We choose the best performing approaches, ELSD [45],
F-Clip [27] and LETR [28] for comparison.

6.2.2 The Results

We present the quantitative evaluation results using metrics
including sAP5, sAP10, sAP15, APH , and FH for detected
line segments, as well as mAPJ for detected junctions
(Tab. 1). Precision-recall curves for sAP5 and heatmap-based
metrics are plotted in Fig. 10.

Compared to L-CNN [30] and HAWPv1 [23], our
proposed HAWPv2 achieves significant improvements in
challenging metrics such as sAP with varying strictness.
HAWPv2 outperforms HAWPv1 by 3.2 and 2.7 points in
sAP5 on the Wireframe dataset and the YorkUrban dataset,
respectively. Compared to F-Clip [27] and ELSD [45], both
employing direct regression methods with the Stacked
Hourglass Network [54] backbone, HAWPv2 outperforms
them by at least 3 points in sAP5, the strictest metric. De-
spite F-Clip and ELSD using larger backbones or advanced
design techniques, HAWPv2 still surpasses them. Moreover,
HAWPv2 requires significantly fewer training epochs, being
5.67 times less than ELSD and 10 times less than F-Clip.

In terms of heatmap-based evaluation, HAWPv2 demon-
strates superior performance on the Wireframe and YorkUr-
ban datasets compared to other approaches. However,
AFM++ [38] remains the best approach with FH scores of
82.8 and 66.8 on these two datasets.

We also conducted a qualitative comparison between
HAWPv2, AFM++ [38], HAWPv1 [23], F-Clip [27], and
LETR [28]. As shown in Fig. 11, HAWPv2 achieves over-
all better results compared to other methods. F-Clip oc-
casionally produces erroneous line segments (e.g., second
row), while HAWPv1 and HAWPv2 exhibit greater stability.
HAWPv2, with improved visualization accuracy, outper-
forms HAWPv1 in sAP metrics. While AFM++ does not
achieve competitive sAP scores due to its heuristic post-
processing, it still produces good visualization results, albeit
with localization issues in line segment endpoints.
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TABLE 2
The ablation study for the proposed EPD LOIAlign module.

End-Point
Decoupled

Features of Zψx
(
ˆ̈
lj)

Initial Lines

AuxScore (Eqn. 19)
BCE Loss

sAP5 sAP10 sAP15

No No No 64.0 68.0 69.8
Yes No No 65.3 69.1 70.8
Yes Yes No 65.4 69.2 70.8
Yes Yes Yes 65.7 69.7 71.3

the number of proposals for verification by 20%, and thus
boosts the inference speed. The expressive power of both
EPD LOIAlign and the differentiable HAT field end-point
error loss ensures overall effectiveness and efficiency in a
disentangled way.

6.3.1 The Design of the End-Point Decoupled LOIAlign

We evaluate the effectiveness of the proposed EPD LOIAlign
by comparing it to the baseline, vanilla LOIPooling [30]. We
analyze three aspects: (1) endpoint-decoupled feature aggre-
gation versus uniform feature aggregation; (2) inclusion or
exclusion of features from intermediate points on the HAT

field proposed line segments (Zψx
(
ˆ̈
lj)); and (3) presence or

absence of the auxiliary score loss (Eqn. 19).
The results in Tab. 2 show that the EPD LOIAlign im-

proves performance by 1.3, 1.1, and 1.0 points for sAP5,
sAP10, and sAP15, respectively. Additionally, incorporating

features Zψx
(
ˆ̈
lj) in line segment verification yields positive

effects. The auxiliary classification task aids in learning bet-

ter features Zψx
(
ˆ̈
lj), resulting in performance improvements

of 0.3, 0.5, and 0.5 points for sAP5, sAP10, and sAP15,
respectively. In App. B, we compare different feature map
dimension Cψ used for representing intermediate points in
the EPD LOIAlign, and thus set Cψ = 4 in our final models.

6.3.2 The Designs of Learning Line Segment Proposals

Line segment proposal quality is crucial for both accuracy
and efficiency in wireframe parsing. We conduct detailed
experiments on four aspects: (1) EPE loss (Eqn. 7) and
binding threshold Äδ (Sec. 4.4) in (2) training and (3) testing,
respectively. Additionally, we verify (4) the effectiveness
of residual learning for distance maps and rectified dis-
tance maps (Eqn. 6). Throughout these experiments, the
EPD LOIAlign component remains unchanged. We compare
overall accuracy performance and the average number of
line segment proposals per image during inference. Ad-
ditionally, we provide references to the average inference
latency and breakdown profiling for binding and scoring,
allowing further insight into the performance of the system.

Regarding the EPE loss and Äδ settings, we observe that
they do not significantly affect the final performance, as
shown in Row 6 of Tab. 3. This is due to the expressive
power of our EPD LOIAlign verification. However, the
efficiency drops significantly due to the increased number
of line segment proposals (6.19k vs. 2.24k in Row 1). This
indicates that HAWPv2 maintains consistently high recall
rates of line segments at the proposal generation stage and
achieves significant precision improvements with EPE loss.

Residual Learning of Distance Maps. In Tab. 4, not learn-
ing distance residuals (Row 1) yields sAP scores of
{61.1, 65.2, 67.1} for different evaluation strictnesses. How-
ever, learning distance residuals as auxiliary supervision

TABLE 3
The ablation study for the EPE loss and the specification of the line

segment binding in training and testing.

EPE Loss
(Eqn. 7)

τδ
(train)

τδ
(test)

sAP5 sAP10 sAP15 # Proposals

1 Yes 10 10 65.7 69.7 71.3 2.24k
2 Yes 10 ∞ 65.1 69.2 70.8 4.73k

3 Yes ∞ 10 65.5 69.4 71.2 2.22k
4 Yes ∞ ∞ 65.7 69.6 71.3 4.61k

5 No ∞ 10 65.3 69.4 71.1 2.79k
6 No ∞ ∞ 65.5 69.5 71.2 6.19k

7 No 10 10 65.6 69.5 71.2 2.83k
8 No 10 ∞ 65.1 69.0 70.7 6.32k

TABLE 4
Ablation study evaluating the impact of residual learning on distance

maps and scale modulation during the testing phase, including average
inference latency and breakdown profiling on a single V100 GPU for

binding and scoring.

Learning
Distance Residuals

# Residual
Scales

sAP5 sAP10 sAP15 # Proposals Overall Latency Binding Scoring

No N/A 61.1 65.2 67.1 894.84 21.821ms 5.948ms 1.876ms

Unsigned
0 62.9 67.1 68.8 931.35 22.096ms 6.046ms 2.016ms

{-1,0,1} 65.2 69.2 70.9 1704.36 23.261ms 7.117ms 2.335ms
{-2,-1,0,1,2} 65.7 69.7 71.3 2240.09 24.571ms 8.065ms 2.515ms

Signed
0 62.6 66.3 68.2 979.78 21.915ms 5.979ms 2.036ms

{0,1} 62.7 66.8 68.6 995.13 22.568ms 6.625ms 2.036ms
{0,1,2} 62.7 66.9 68.6 1010.23 23.047ms 6.990ms 2.043ms

signals improves sAP scores by an average of 1.8 points
across evaluation thresholds (Row 2), indicating enhanced
accuracy in distance map learning. Using the learned dis-
tance residuals to generate three rectified distance maps
(Eqn. 6) significantly improves performance by an average
of 2.17 points (Row 3). For the most strict metric, sAP5,
learned distance residuals boost performance by 2.3 points.
Modulating the residual scales by adding the modulated
distance residuals with 2× scales (-2 and +2) leads to the
best precision for our HAWPv2 (Row 4).

Additionally, we compare our strategy for learning un-
signed distance residuals with the signed version. We find
that signed residual learning only marginally affects per-
formance for different k values, while unsigned residual
learning accurately captures the residual distance predic-
tions despite the unknown sign. Unsigned residual learning
can be seen as a form of uncertainty estimation rather
than regression, while signed residual learning aligns with
distance field prediction.

7 EXPERIMENTS OF HAWPV3

In this section, we test our HAWPv3 under the SSL setting.
We also show the out-of-distribution (OOD) capability and
potential of our HAWPv3.

7.1 Evaluation Protocol and Metrics

We follow the evaluation protocol presented in SOLD2 [32].
In detail, we use the repeatability and the localization error
as the main metrics across the original input images and
the warped ones by the randomly generated homographies.
The images in the Wireframe dataset [25] and YorkUrban
dataset [33] are used for evaluation.

Repeatibility Scores and Localization Errors The metrics
of repeatability and localization error were extensively used
for keypoint detectors and line segment detectors. Given
a pair of input images I and I ′ = Warp(I|H), where
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HAWPv2@0.95
(26/68)

HAWPv3@0.05
(405/404)

SOLD2 [32]@0.05
(642/443)

Fig. 12. Parsing result comparisons between HAWPv2, HAWPv3 and
SOLD2 [32]. The numbers in the brackets are the number of parsed line
segments for the two images, respectively, by each method.

Warp(·|H) is a homographic image warping function with
homography H ∈ R

3×3, the repeatability score is calculated
by checking if a line segment l̈ in the image is successfully
detected again in the warped image up to a distance metric.
Denoted by the line segment l̈ = (x1,x2) and the re-
detected one l̈′ = (x′

1,x
′
2), the structural distance (i.e., the

Euclidean endpoint distance)

ds(l̈, l̈
′) =

1

2
min(∥x1 − x

′
1∥2 + ∥x2 − x

′
2∥2,

∥x1 − x
′
2∥2 + ∥x2 − x

′
1∥2),

(24)

and the orthogonal distance

dorth(l̈, l̈
′) =

1

2
(∥x1 − pl̈′(x1)∥2 + ∥x2 − pl̈′(x2)∥2

+∥x′
1 − pl̈(x1)∥2 + ∥x′

2 − pl̈(x
′
2)∥2),

(25)

are used to compute the repeatability scores. In the orthog-
onal distance metric do(l̈, l̈

′), the function pl̈′(x1) orthogo-

nally maps the endpoint x1 into the line segment l̈′.
Using the distance metrics ds and dorth, we calculate

the repeatability scores by counting the co-detected line seg-
ments in the image pair (I, I ′) and its swapped counterpart
(I ′, I) among all detected line segments in the first image of
the input pair. A distance threshold ε of 5 pixels is used.
The localization error is then obtained by averaging the
distance values over the pairly-detected line segments. We
denote the repeatability and localization error for distance
threshold ε as Repε and Locε, respectively. In contrast to the
fully-supervised learning evaluation protocol that resizes
predictions to a 128 × 128 image domain, Eq. (24) and
Eq. (25) employ the ℓ2 norm (without squaring) on the same
domain as the input images for SSL evaluation.

Random Homography Generation We adopt the homog-
raphy configurations from SOLD2 to compute repeatability
scores and localization errors. The random homography
generator takes a patch ratio of 0.85 as input. The per-
spective displacement, left horizontal displacement, and
right horizontal displacement values are obtained using a
Gaussian noise generator with a perspective amplitude of
0.2 in both x and y directions, twice the standard deviation.
The scaling matrix follows a zero mean Gaussian distribu-
tion with a standard deviation of 0.1. Random translations
follow a uniform distribution within valid areas, and the
rotation matrix follows a uniform distribution with rotation
angles ranging from −Ã/2 to Ã/2.

Datasets Similar to the experiments of the FSL pipeline,
we use the 462 test images of the Wireframe dataset and
the 102 images of the YorkUrban dataset as image sources.
For each original image, we generate two homographies
and independently evaluate the repeatability scores and
localization errors on these two datasets. So, there are 924
and 204 pair of images in the Wireframe and YorkUrban
datasets for evaluation.

7.2 Comparisons with the State of the Arts

We comprehensively compare our proposed HAWPv3
model with the traditional LSD [36], the fully supervised
approaches including L-CNN [30], DeepHough [55], TP-
LSD [29], HAWPv1 [23] and HAWPv2, as well as the state-
of-the-art SSL method, SOLD2 [32].

Tab. 5 reports the results of the quantitative comparison.
In terms of the structural distance metric ds defined in
Eq. (24), our HAWPv3 model improves the Rep-5 repeata-
bility scores by 13.8 points at most while obtaining a local-
ization error of 1.487 pixels on the Wireframe dataset com-
pared to the state-of-the-art SOLD2 without the candidate
selection scheme. For the model SOLD2 with a candidate
selection scheme (w/ CS), our HAWPv3 model obtains an
improvement by about 20 points.

In terms of the orthogonal distance metric dorth, as it is
friendly to the overlapped detection results, the repeatabil-
ity score of our HAWPv3 is worse than SOLD2, placing it in
the second place among all state-of-the-art approaches. For
the localization error with dorth, our HAWPv3 is still the
best. Similar conclusions can be drawn from the YorkUrban
dataset. Benefitting from the fast convergence speed of our
HAWPv3, we are able to train it within 24 hours on a single
GPU (Nvidia RTX 3090) from scratch to obtain very compet-
itive performances. For detailed analysis of our HAWPv3,
please refer to Appx. C.

Remarks on the FSL and SSL of Wireframe Parsing. For the FSL
pipeline, wireframes are typically annotated in a viewpoint-
specific manner based on given images, often consisting of
long line segments. This poses a challenge for FSL wire-
frame parsers to achieve high repeatabilities across (warped)
views, as viewpoint occlusions can break long line segments
into shorter visible ones (see results in Tab. 5). To visually
demonstrate this, we compare parsing results in Fig. 12
between our HAWPv2, HAWPv3, and SOLD2. It is evident
that many long line segments detected by HAWPv2 are
”split” into several short line segments by HAWPv3 and
SOLD2. This difference highlights two key observations: (1)
Applying an FSL wireframe parser directly to multiview
tasks requiring correspondences across viewpoints can be
more challenging compared to SSL wireframe parsers, and
(2) SSL wireframe parsers should explore stronger SSL
pretext tasks and more effective inductive biases that are
learnable and transferable from simulation to reality, in ad-
dition to learned edge maps, to approach human perception
of line segments. Between our HAWPv3 and the SOLD2 [32]
at a lower threshold of 0.05, our HAWPv3 can cover more
geometry structures in the images than SOLD2, while using
a less number of, but longer, line segments. SOLD2 often
computes many overlapped co-linear line segments with



IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

TABLE 5
The repeatability evaluation results. Numbers with bold font and underline indicate the best and second best performance on specific metrics.

The image resolutions are fixed to 512× 512 for both Wireframe and YorkUrban datasets in evaluation.

Method
Wireframe Dataset YorkUrban Dataset

ds dorth #lines / image
ds dorth #lines / image

Rep-5 ↑ Loc-5 ↓ Rep-5 ↑ Loc-5 ↓ Rep-5 ↑ Loc-5 ↓ Rep-5 ↑ Loc-5 ↓

L-CNN [30]@0.98 0.434 2.589 0.570 1.725 76 0.318 2.662 0.449 1.784 103
DeepHough [55]@0.9 0.419 2.576 0.618 1.720 135 0.315 2.695 0.535 1.751 206

TP-LSD [29]TP512 0.547 2.479 0.695 1.474 77 0.447 2.491 0.610 1.491 130

LSD [36] 0.383 2.198 0.719 1.028 441 0.419 2.123 0.723 0.959 591
SOLD2 [32] w/CS 0.566 2.039 0.805 1.135 116 0.585 1.918 0.824 1.097 196

SOLD2 [32] 0.613 2.060 0.921 0.809 482.6 0.629 1.951 0.939 0.693 1031

HAWPv1 [23]@0.97 0.451 2.625 0.537 1.738 47 0.295 2.566 0.368 1.757 59
HAWPv2 (Ours)@0.9 0.514 2.375 0.577 1.548 34 0.385 2.205 0.425 1.397 30
HAWPv3 (Ours)@0.5 0.751 1.487 0.874 0.841 145 0.711 1.454 0.829 0.839 225

LSD [12] SOLD2 [32] HAWPv3 (Ours)

Fig. 13. Qualitative OOD comparisons between the LSD [12], the
SOLD2 [32] and our HAWPv3. The first two rows show results on images
in the ImageNet [56] dataset, and the last two rows show results on
images in the AICrowd [24] dataset.

different end-points, which contributes to its higher repeata-
bility score, dorth.

7.3 The OOD Potential of our HAWPv3

To achieve robust geometry understanding of the visual
world, it is crucial to possess out-of-distribution (OOD)
perception generalizability for low-level structures like line
segments and junction points. We qualitatively tested this
aspect and observed that our HAWPv3 model exhibits
remarkable OOD potential (Fig. 13). We compared it with
the training-free LSD method [36] and the SOLD2 ap-
proach [32]. By utilizing SSL models trained on the wire-
frame dataset [25] and evaluating them on images from the
ImageNet dataset [56] and the AICrowd dataset [24], which
differ significantly from the indoor images in the wire-
frame dataset, we observed promising OOD results with

our HAWPv3 model. These results offer valuable insights
for the development of geometry-guided semi-supervised
learning (SSL) approaches for downstream tasks such as im-
age classification and object detection, as well as multi-view
3D vision problems including but not limited to Structure
from Motion and SLAM.

8 CONCLUSION

This paper comprehensively studies the problem of wire-
frame parsing from the perspective of line segment rep-
resentation, the algorithmic design of wireframe parsing,
as well as the learning of wireframes in both supervised
and self-supervised pipelines. With the proposed novel
HAT field representation of line segments that has built-
in geometry-awareness, context-awareness and robustness,
the presented HAWP models set several new records on
challenging benchmarks of Wireframe and YorkUrban while
being efficient for training and inference. For the fully-
supervised learning with precisely-annotated wireframe la-
bels, the proposed HAWPv2 model is leading the perfor-
mance on the Wireframe and YorkUrban datasets. For self-
supervised learning, the proposed HAWPv3 model shows
its advantages of learning the appropriate inductive biases
of line segments via the HAT field representation. Besides
the strong performance on the structural repeatability, the
proposed HAWPv3 model is of great potential for general
wireframe parsing in images out of the training distribu-
tions.
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and J. G. Jiménez, “PL-SLAM: A stereo SLAM system through the
combination of points and line segments,” IEEE Trans. Robotics,
vol. 35, no. 3, pp. 734–746, 2019.

[17] Y. Li, J. Mao, X. Zhang, B. Freeman, J. Tenenbaum, N. Snavely,
and J. Wu, “Multi-plane program induction with 3d box priors,”
in Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[18] Y. N. Wu, Z. Si, H. Gong, and S.-C. Zhu, “Learning active basis
model for object detection and recognition,” Int. J. Comput. Vis.,
vol. 90, no. 2, pp. 198–235, 2010.

[19] L. Duan and F. Lafarge, “Image partitioning into convex poly-
gons,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, 2015, pp.
3119–3127.

[20] J. Lazarow, W. Xu, and Z. Tu, “Instance segmentation with mask-
supervised polygonal boundary transformers,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, 2022, pp. 4372–4381.

[21] G. Xia, J. Huang, N. Xue, Q. Lu, and X. Zhu, “Geosay: A geomet-
ric saliency for extracting buildings in remote sensing images,”
Comput. Vis. Image Underst., vol. 186, pp. 37–47, 2019.

[22] B. Xu, J. Xu, N. Xue, and G. Xia, “Accurate polygonal mapping of
buildings in satellite imagery,” CoRR, vol. abs/2208.00609, 2022.

[23] N. Xue, T. Wu, S. Bai, F. Wang, G. Xia, L. Zhang, and P. H. S. Torr,
“Holistically-attracted wireframe parsing,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2020, pp. 2785–2794.

[24] S. P. Mohanty, J. Czakon, K. A. Kaczmarek, A. Pyskir,
P. Tarasiewicz, S. Kunwar, J. Rohrbach, D. Luo, M. Prasad, S. Fleer,
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APPENDIX A

NETWORK ARCHITECTURES

To facilitate real-time inference speed, we utilize light-
weight neural building blocks for different components in
the HAWP models. We summarize them as follows. More
details are referred to our open-sourced code.

• For the image feature backbone fb(·; Ωb), we use the
Stacked Hourglass Networks [54] (2 stacks). The dimen-
sion of the output feature map F is C = 256, and the
overall stride s = 4.

• In learning the HAT field (Sec. 4.2), we use a vanilla
convolution block configuration for fd(F ; Ωd) (Eqn. 3),
fa(F ; Ωa) (Eqn. 4) and f∆d(F ; Ω∆d) (Eqn. 5).

fd, f∆d : Ã ◦ ConvD→1
1×1 ◦ ReLU ◦ ConvC→D

3×3 , (26)

fa : Ã ◦ ConvD→3
1×1 ◦ ReLU ◦ ConvC→D

3×3 , (27)

where Ã(·) is the sigmoid function, Convu→v
k×k denotes

the convolution layer that transforms a u-channel fea-
ture map to a v-channel one using a k × k kernels. In
our experiments, we set D = 128.

• In learning the heatmap-offset field of endpoints
(Sec. 4.3), fpt(F ; Ωpt) (Eqn. 8) and fo(F ; Ωo) (Eqn. 9) are
implemented by ConvC→1

1×1 and ConvC→2
1×1 respectively.

• In computing features for the intermediate points
on a line segment proposal in the proposed EPD
LOIAlign (Sec. 4.5), fψ(F ; Ωψ) is implemented by

ReLU ◦ Conv
C→Cψ
3×3 , where Cψ = 4 in our experiments.

• The MLPs used in the verification head classifier
(Eqn. 18) are implemented by two hidden layers with
the ReLU nonlinearity function.

APPENDIX B

THE LOW-DIMENSIONAL FEATURE MAPS Fψ IN THE

EPD LOIALIGN VERIFICATION

In this ablation study following those in Sec. 6.3.1, we show
the performance differences in terms of the dimensions Cψ’s
of computing the “thin” feature maps Fψ . As reported in
Tab. 6, when the number of feature channels is set to Cψ = 4,
our proposed HAWPv2 model obtains the best performance
in terms of accuracy. For the model that uses Cψ = 1, the
performance of accuracy is degenerated by 1.6% in terms of
sAP5. When we increase the channels from 4 to 8, there is

no performance gain in both aspects of accuracy and speed.
Overall, since the used feature maps in comparisons are all
sufficiently “thin”, the inference speed change with respect
to the number of feature channels is less apparent.

TABLE 6
The performance change by the different number of feature channels

for the thin feature maps.

Feat. Dim. Cψ sAP5 sAP10 sAP15 FPS

1 64.1 68.1 69.8 42.5
2 64.6 68.6 70.2 41.4
4 65.7 69.7 71.3 40.8
8 65.6 69.3 71.0 40.0

APPENDIX C

MORE DETAILED ANALYSES OF HAWPV3

TABLE 7
The quantative evaluation results of the synthetically trained models,
SOLD2 and our HAWPv3. All the evaluation results are obtained with

the detection threshold of 0.5 and inlier threshold of 0.75.

SOLD2 SOLD2 (w/ CS) HAWPv3

ds
Rep-5 ↑ 0.306 0.282 0.356

Loc-5 ↓ 2.697 2.636 2.912

dorth
Rep-5 ↑ 0.573 0.384 0.629

Loc-5 ↓ 1.233 1.367 1.890

#lines/image 310 95 170

Evaluation of Synthetically-Trained Models As the self-
supervised wireframe parsers spring from the synthetically-
trained models, we evaluate our HAWPv3 and SOLD2 [32]
before adopting the Homography Adaptation learning
scheme on the real-world images. We use the metrics of
repeatability scores and localization errors as in Sec. 7.2 on
the Wireframe dataset. As reported in Tab. 7, our proposed
HAWPv3 model that is trained only using the synthetic data
achieves better repeatibility scores for both ds and dorth
distance metrics than SOLD2 and SOLD2 (w/CS). For the
localization error, SOLD2 obtains the best on dorth metric
and the candidate selection (w/ CS) scheme improves the
localization error on the ds metric. Although the localization
error by our HAWPv3 is larger than SOLD2, our final model
is significantly better than SOLD2 (see Tab. 5).

Iterative Learning and Refinement (Cascade SSL)

Thanks to the fast pseudo wireframe label generation and
the efficient training schedule of our proposed HAWPv3,
we have the computational budget for iteratively training
the HAWPv3 model with more and more accurate pseudo
wireframe labels (i.e., cascade SSL). In this ablation study,
we run several experiments to study the possible settings
of the iterative learning and refinement: (1) Random model
initialization v.s. Warmp-up model initialization. (2) The
training schedules in terms of the initial learning rate, the
number of epochs and the learning rate decay milestone(s).
In the comparisons, we denote the HAWPv3 models by
HAWPv3(k) as the model trained with the pseudo labels
generated by the HAWPv3(k−1) (k g 1). HAWPv3(0) is the
synthetically-pretrained model and used in generating the
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TABLE 8
The ablation study on the settings of iteratively training HAWPv3

models. It is done based on the repeatibility and localization
performance on the Wireframe dataset. For the training schedule, we
denote its initial learning rate, the total training epochs and the decay

milestone by lr/epochs/milestone.

Model
Name

Init.
Type

Sched.
ds dorth #lines

/imageRep-5↑ Loc-5↓ Rep-5↑ Loc-5↓

HAWPv3(1)-A* Random 4e-4/30/25 0.691 1.672 0.806 0.944 104
HAWPv3(1)-B HAWPv3(0) 4e-4/30/25 0.610 1.790 0.762 0.946 101

HAWPv3(2)-A Random 4e-4/30/25 0.700 1.504 0.833 0.844 147
HAWPv3(2)-B HAWPv3(1)-A 4e-4/30/25 0.707 1.569 0.835 0.888 141
HAWPv3(2)-C* HAWPv3(1)-A 4e-5/30/25 0.751 1.487 0.874 0.841 145

HAWPv3(3)-A HAWPv3(2)-C 4e-5/30/- 0.741 1.509 0.883 0.847 166
HAWPv3(3)-B HAWPv3(2)-C 4e-6/30/25 0.739 1.503 0.879 0.844 161

initial pseduo wireframe labels for real images. The results
are summarized in Tab. 8. We have the observations as
follows.

First, at the first stage of the cascade SSL, we do not
need to use the synthetically pre-trained model weights to
warm up the model to be trained on the real images with the
pseudo-wireframe labels. With the same training schedule,
HAWPv3(1)-A outperforms HAWPv3(1)-B by large margins,
which can be intuitively understood based on the semantic
gap between synthetic images and real images. Compared
to SOLD2 (see Tab. 5), HAWPv3(1)-A obtains an absolute
improvement by 9.6 points on the repeatability score.

Second, after the first stage of the cascade SSL, the real
image-trained HAWPv3 model can be leveraged in warm-
ing up the model weights in the next stage, and better per-
formance can be achieved with a more conservative initial
learning rate. With the same training schedule, HAWPv3(2)-A
and HAWPv3(2)-B have very similar performance. With a
reduced initial learning rate, HAWPv3(2)-C improves the
repeatability scores by 3 points and 4.4 points for the two
distance metrics respectively, while reducing the localization
errors by about 14% for both ds and dorth. Compared with
HAWPv3(1) models, the average number of SSL “annotated”
line segments is significantly increased (e.g.., 98 vs. 134).
Note that the overall training cost of HAWPv3(2)-C is still
significantly less than that used by the SOLD2 [32].

Last but not least, the potential of the cascade SSL is
quickly saturated, which is reasonably expected due to the
essence of the simulation-to-reality SSL pipeline. On top
of the model weights of HAWPv3(2)-C, we do not observe
further improvement with different training schedules in
HAWPv3(3)-A and HAWPv3(3)-B. For more training rounds
with lower learning rates (e.g., 4e-7), we also did not observe
any improvement. We did not explore the mixed training
in which both the synthetic training data and the SSL
“annotated real data are used.

APPENDIX D

SSL EXTENSIBILITY FOR HAWPV1 AND HAWPV2

Because the architecture of HAWPv3 is primarily based
on HAWPv2, which has demonstrated outstanding perfor-
mance in fitting human annotation wireframe labels, a nat-
ural question arises: ”Is it necessary to upgrade HAWPv1 to
HAWPv2 first in order to obtain HAWPv3 in self-supervised
learning?” To quantitatively address this question, we adapt
the HAWPv1 model by adding a high-resolution edge map

TABLE 9
The ablation study on the model architecture designs for

self-supervised learning. HAWPv3 inherits the main design of HAWPv2
while HAWPv3† comes from HAWPv1 [23].

Model
Name

Learning Stage
ds dorth #lines

/imageRep-5↑ Loc-5↓ Rep-5↑ Loc-5↓

HAWPv3
Synthetic

0.388 2.863 0.608 1.887 76
HAWPv3† 0.278 3.429 0.536 2.439 89

HAWPv3
Real (Round 1)

0.691 1.672 0.806 0.944 104
HAWPv3† 0.541 3.054 0.772 1.895 178

HAWPv3 Real (Round 2) 0.751 1.487 0.874 0.841 145

learning branch and train a series of models to evaluate
repeatability under the SSL evaluation protocol. We refer
to the model adapted from HAWPv1 as HAWPv3 . As
shown in Table 9, HAWPv3 achieves inferior performance
at all learning stages. In the synthetic stage, the repeatability
scores on the wireframe dataset decrease by 11 points and
7.2 points in terms of ds and dorth, respectively. During
the first round of learning with real-world images, further
performance degradation of HAWPv3 is observed com-
pared to HAWPv3, particularly in terms of localization
errors. These results indicate that achieving similar or better
performance than SOLD2 with the HAWPv1 architecture
would be challenging, further justifying our design rationale
for developing HAWPv2 to enable self-supervised learning.
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