


A careful examination of the above normal vector based

attacks reveals the following limitations. The estimation

of the normal vector may be inaccurate due to the limited

query budget and the non-linearity of the boundary. Thus,

the expected reduction in perturbation may not occur when

searching along the direction of the estimated normal vec-

tor. Moreover, if the adversarial region is narrow enough,

the search process does not converge towards perturbation

reduction due to the inability to find the adversarial region

in the search direction. Fundamentally, these limitations are

related to the one-dimensional (1-D) search nature dictated

by the estimated normal vector. The state-of-the-art (SOTA)

non-targeted attack SurFree, on the other hand, queries an

adversarial point along a semicircular path but does not use

the critical normal vector information to estimate the attack

direction. Motivated by the above observation, we propose

a new curvature-aware geometric black-box attack (CGBA)

in this work to further improve the attack efficiency. Par-

ticularly, rather than conducting a boundary point search

towards the estimated normal direction or along a semicir-

cular path in some random direction, CGBA conducts the

boundary point search along a semicircular path (BSSP) in

a restricted 2-D plane spanned by two vectors: the direction

towards a boundary point from the source (i.e., v̂t in Fig-

ure 1) and the estimated normal direction on that boundary

point (i.e., η̂t in Figure 1). As further illustrated in Sec-

tion 4 and Appendix D, the proposed CGBA overcomes the

limitations of 1D boundary search and is a query-efficient

approach for low curvature boundaries. However, it grad-

ually loses query efficiency as the curvature of the bound-

ary increases. Thus, we modify CGBA to CGBA-H which

follows the same restricted 2D semicircular path but more

swiftly adapts to the high curvature of the decision bound-

ary. Our main contributions are summarized as follows:

• We propose CGBA, a novel iterative decision-based

black-box attack that conducts boundary search along

a semicircular path on a restricted 2-D plane and ef-

fectively overcomes the limitations of existing 1-D

search based on estimated normal vectors at the de-

cision boundary.

• The proposed CGBA attack can effectively exploit the

decision boundary’s low curvature for non-targeted at-

tacks. When the decision boundary assumes a high

curvature, we develop a new variant, CGBA-H, which

achieves better performance for targeted attacks.

• Moreover, we introduce an algorithm to choose a bet-

ter initial boundary point and demonstrate that this ini-

tialization method leads to significant performance im-

provement for the targeted attack.

• Experimental results on ImageNet and CIFAR10 re-

veal the efficacy of CGBA and CGBA-H for non-

targeted and targeted attacks, respectively.

2. Related work

Decision-based black-box attack is the most challeng-

ing setting to obtain adversarial examples as the only in-

formation available to perform this type of attack is the

target classifier’s top-1 classification label. Some decision-

based black-box attacks use a random search, while others

are based on finding the gradient on the decision bound-

ary. Boundary Attack [1] algorithm performs a random

walk along the decision boundary to reduce the perturbation

with query though it still incurs a large number of queries.

To speed up the performance of [1], Biased Boundary At-

tack [2] proposes three priors to reduce the search space,

and it is shown that the Perlin bias introduces the most fa-

vorable effect. OPT [7] and Rays [4] are decision-based

attacks that randomly search for optimal directions to re-

duce the perturbation. However, Rays is only applicable

for non-targeted attacks [20], and its performance is shown

for ℓ∞-norm. Sign-OPT [8] improves the query efficiency

of OPT [7] by computing the sign of the directional deriva-

tives to estimate the gradient. In [10], an evolutionary attack

method is proposed in which random samples are drawn

from a normal distribution with customized co-variance in

reduced search space. AHA [18], on the other hand, utilizes

the mean of the historical queries to generate random sam-

ples from a normal distribution. Triangle Attack (TriA) [28]

is based on the geometric relationship between benign sam-

ples, current and future adversarial examples, forming a

triangle in a subspace at each iteration. SurFree [22], a

surrogate-free algorithm, claims that bypassing the query

cost of normal vector estimation would improve query ef-

ficiency. However, we refute this claim by conducting the

boundary search in a restricted 2D plane guided by the nor-

mal vector and achieving better performance. Moreover,

SurFree only supports non-targeted attacks [20] as opposed

to our methods addressing both non-targeted and targeted

attacks.

Several existing attacks rely on estimating the normal

vector on the boundary point. HSJA [5] proposes query-

efficient methods by estimating the normal vector on the

decision boundary to obtain a boundary point with reduced

perturbation. qFool [19] and GeoDA [26] are based on the

observation that the curvature of the decision boundary is

small around adversarial examples. To improve the perfor-

mance using the normal vector estimation, GeoDA [26],

which is applicable for non-targeted attacks, proposes a

method to distribute the query optimally to iterations given

a query budget. QEBA [17] is built on top of HSJA [5] with

a dimension-reduced subspace to generate queries for esti-

mating the normal vector direction. QEBA proposes spa-

tial, frequency, and intrinsic component subspaces to better

estimate the normal vector. TA [20] demonstrates a new

method for minimizing the ℓ2-norm of perturbation by ob-

taining the tangent of a virtual hemisphere.
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ever, this approach becomes less effective if the curvature

of the boundary is too high. From Figure 3a, it can be real-

ized that obtaining the boundary point xbt+1
using the BSSP

may result in a boundary point that is away from the optimal

solution. To avoid this situation, we propose a more effec-

tive approach to get a better boundary point in each iteration

for the boundary with high curvature. If ¹t = cos−1(η̂t · v̂t)
is the angle between η̂t and v̂t, then the multiplying factor

to estimate the direction to query can be calculated as:

mi = sin ¹t cot

{

¹t
2i

}

− cos ¹t; ∀i ∈ Z
+, (8)

where the value of i ensures cos−1(v̂t · ζ̂t(mi)) =
¹t/2

i; ∀i ∈ Z
+. So, with the increase of i, the an-

gular difference between v̂t and estimated ζ̂t(mi) can be

reduced. Thus, in each iteration, the proposed CGBA-

H finds a multiplication factor mi and the corresponding

xq = xs + dζ̂t(mi) on the semicircular trajectory such

that ϕ(xq) = 1, as shown in Figure 3b. Then, by conduct-

ing the binary search between xs and xq , a better boundary

point xbt+1
can be obtained than CGBA. The pseudocode

of CGBA-H for the targeted attack is given in Algorithm 2.

4.3. Initialization

The initial boundary point xb1 may have a significant im-

pact on the performance of an adversarial attack. In the ex-

isting normal vector-based targeted attack, a binary search

in the direction of a randomly chosen image of the target

class from the source image xs is conducted to obtain initial

boundary point xb1 . Rather than finding xb1 in the direction

of a randomly chosen target sample form xs, a set of K ran-

dom directions {Θk}
K
k=1

towards the adversarial region by

using K-number of samples of the target class can be used

to find the direction that provides a boundary point with re-

duced perturbation for the targeted attack. Experimental re-

sults reveal that just using a few samples of the target class

to obtain xb1 can significantly improve the performance of

a decision-based adversarial attack. The pseudocode of the

Initialization method to obtain the first boundary point is

given in Appendix A.

5. Experiments

In this section, we perform a comprehensive set of ex-

periments and compare the results with state-of-the-art al-

gorithms to demonstrate the effectiveness of our proposed

methods for non-targeted and targeted attacks. More-

over, we show how initialization affects the performance of

CGBA and CGBA-H.

5.1. Experimental setting

Datasets and target models. We evaluate the perfor-

mance of CGBA and CGBA-H using ImageNet [9] and

Algorithm 2: CGBA-H

1 Inputs: Source image xs, a random image xt of target

class lt, indicator function ϕ(.), queries to find initial

normal vector N0, iteration T .

2 Output: Adversarial example xadv .

3 xb1 ← BinarySearch(xs,xt, ϕ) /* to find

initial boundary point */

4 for t = 1 : T do

5 Generate Nt = N0

√
t samples, zi ∼ N (0, Ã2)

6 Estimate η̂t using zi at xbt by Nt queries.

7 v̂t =
xbt

−xs

∥xbt
−xs∥2

, ¹t = cos−1(η̂t · v̂t), i = 1

8 while True do

9 mi = sin ¹t cot
(

θt
2i

)

− cos ¹t

10 ζ̂t = (η̂t +miv̂t)/∥η̂t +miv̂t∥2
11 xq = xs + d(ζ̂t), i = i+ 1
12 if ϕ(xq) = 1 then

13 break

14 xbt+1
← BinarySearch(xs,xq, ϕ) /* to

find boundary point */

15 xadv = xbt+1

CIFAR-10 [16] datasets. The performance of the proposed

attacks on the ImageNet dataset is evaluated using pre-

trained ResNet50 [13], VGG16 [27], ResNet101 [13] and

ViT [11] classifiers. The first three pretrained classifiers

can be found in the PyTorch, and ViT is obtained from

the PyTorch Image Models1. For each target model, we

randomly select 1000 images for the non-targeted attack

and 1000 pairs of images for the targeted attack from the

ILSVRC2012’s validation set [9] that are correctly clas-

sified by the target model. The images are resized to 3

×224 × 224 as an input to the classifiers. For the CIFAR-

10 dataset, we consider PreActResNet-18 [14] and a wide

residual network with 40 layers (WRN40) [30] as target

classifiers. We train both classifiers for 200 epochs with

an image resolution of 3 × 32 × 32. The proposed attacks

on CIFAR10 are also evaluated using a randomly chosen

1000 correctly classified images for the non-targeted attack

and 1000 pairs of correctly classified images for the targeted

attack.

Baselines and hyper-parameter setting. We compare

the performance of CGBA and CGBA-H with the exist-

ing state-of-the-art non-targeted and targeted attacks. We

choose HSJA [5], GeoDA [26], generalized TA [20],

TriA [28], SurFree [22] and AHA [18] as baselines to com-

pare. Among the baselines, HSJA and TA are available for

both non-targeted and targeted attacks. However, GeoDA,

TriA and SurFree are only given for the non-targeted at-

1https://github.com/rwightman/

pytorch-image-models
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Attack Non-targeted Targeted

Queries 1000 2500 5000 7500 10000 15000 20000 1000 2500 5000 7500 10000 15000 20000

R
es

N
et

5
0

HSJA [5] 13.42 6.46 3.76 2.93 2.49 2.04 1.79 64.27 51.54 34.58 24.51 17.68 11.15 7.99

GeoDA [26] 8.41 4.72 3.54 2.93 2.71 2.39 2.20 - - - - - - -

TA [20] 13.98 6.36 3.77 2.97 2.46 1.97 1.70 63.09 46.55 31.94 23.05 16.95 10.91 7.87

TriA [28] 6.26 5.58 5.39 5.15 5.03 4.84 4.73 - - - - - - -

SurFree [22] 8.44 4.42 2.65 1.96 1.58 1.17 0.97 - - - - - - -

AHA [18] - - - - - - - 56.55 37.91 23.04 15.48 11.46 8.76 8.23

CGBA 6.03 2.55 1.44 1.05 0.86 0.68 0.59 78.99 63.60 41.71 26.04 17.26 8.72 5.38

CGBA-H 5.78 2.67 1.51 1.11 0.91 0.73 0.62 56.01 36.86 21.83 13.71 9.47 5.63 4.03

V
G

G
1
6

HSJA[5] 8.58 4.11 2.54 2.06 1.75 1.44 1.29 65.10 47.31 30.61 21.72 15.58 9.72 7.13

GeoDA [26] 5.74 3.41 2.49 2.11 1.98 1.67 1.63 - - - - - - -

TA [20] 8.44 4.09 2.57 2.07 1.77 1.45 1.30 61.97 44.42 28.62 19.41 15.03 9.70 7.13

TriA [28] 7.42 5.54 4.95 4.63 4.41 4.30 4.20 - - - - - - -

SurFree [22] 6.01 3.18 1.96 1.52 1.24 0.97 0.82 - - - - - - -

AHA [18] - - - - - - - 55.40 36.46 21.37 14.26 10.91 8.73 8.34

CGBA 3.99 1.86 1.08 0.82 0.69 0.57 0.50 80.13 67.09 44.93 27.67 16.33 7.69 4.91

CGBA-H 3.93 1.94 1.17 0.89 0.75 0.61 0.54 52.82 33.29 18.09 11.22 7.79 4.92 3.67

R
es

N
et

1
0
1

HSJA [5] 16.12 7.59 4.17 3.26 2.66 2.07 1.77 68.80 55.78 38.48 28.24 20.68 12.99 9.45

GeoDA [26] 8.85 4.99 3.83 3.04 2.79 2.38 2.22 - - - - - - -

TA [20] 16.75 7.95 4.34 3.13 2.64 2.01 1.80 62.59 46.97 33.06 23.62 18.31 12.11 8.96

TriA [28] 7.83 6.35 5.89 5.56 5.23 5.03 4.87 - - - - - - -

SurFree [22] 10.47 5.62 3.12 2.16 1.79 1.35 1.11 - - - - - - -

AHA [18] - - - - - - - 56.47 39.67 23.78 16.02 12.61 9.52 8.94

CGBA 7.89 3.38 1.84 1.25 1.02 0.77 0.66 73.17 60.38 39.85 25.47 17.48 9.26 6.13

CGBA-H 7.19 3.32 1.79 1.26 1.03 0.78 0.67 55.69 37.28 21.59 14.32 10.77 6.55 4.52

V
iT

HSJA[5] 26.41 10.33 5.87 4.61 3.86 3.16 2.74 61.84 42.54 27.07 19.39 15.05 10.71 8.34

GeoDA [26] 15.39 8.05 5.84 4.73 4.25 3.66 3.38 - - - - - - -

TA [20] 28.14 10.85 6.30 4.69 4.00 3.25 2.82 49.82 34.77 23.04 17.48 14.01 10.60 8.55

TriA [28] 8.86 7.06 6.24 6.04 6.04 5.85 5.65 - - - - - - -

SurFree [22] 14.96 6.90 4.11 3.10 2.53 1.95 1.61 - - - - - - -

AHA [18] - - - - - - - 43.06 28.29 17.54 12.59 9.58 6.77 5.74

CGBA 10.62 3.53 1.83 1.32 1.10 0.89 0.78 60.03 42.35 24.46 14.90 10.06 6.36 5.48

CGBA-H 8.35 3.41 1.86 1.38 1.15 0.92 0.83 42.52 27.26 16.15 11.42 8.84 6.14 4.83

Table 1: Median ℓ2-norm of perturbation for different query budgets against ResNet50, VGG16, ResNet101 and ViT on ImageNet dataset.

tack [20], while AHA is available for the targeted attack.

We consider GeoDA, SurFree and AHA for dimension-

reduced subspace as these algorithms are given for this set-

ting. For an image with a dimension of 3× 224× 224, the

reduced dimension by a factor f is given as 3× 224

f
× 224

f
.

GeoDA and SurFree use dimension-reduced frequency sub-

space by reducing the dimension with a factor f = 5.17
and f = 2 to obtain coefficients of DCT transform, respec-

tively, as their default setting. In contrast, AHA reduces the

dimension in the spatial subspace by a factor f = 4 as their

best setting. For our proposed attacks, we reduce the dimen-

sion by f = 4 in frequency subspace. We also set queries

to estimate the initial normal vector as N0 = 30 and the

standard deviation for generating random samples from the

Gaussian distribution as Ã = 0.0002 to estimate the normal

vector.

We use three metrics—median ℓ2-norm of perturba-

tion, attack success rate (ASR), and area under the curve

(AUC)—to evaluate the performance of CGBA and CGBA-

H with SOTA black-box attacks. The median of the ℓ2-norm

of perturbation for a given query budget using an attack de-

termines the effectiveness of the attack. An attack with bet-

ter capability to reduce the ℓ2-norm of perturbation on a set

of test images is deemed as a more effective attack. In ad-

dition, another popular metric, ASR, is used to determine

the success rate of an adversarial attack for a given query

budget and perturbation threshold. An attack is considered

successful if the obtained perturbation for a particular query

budget falls below the perturbation threshold. Moreover,

AUC—the area under the curve of the median ℓ2-norm of

perturbation versus queries—demonstrates the convergence

toward minimum perturbation of an attack with the num-

ber of queries. The lower the value of an attack’s AUC, the

faster the attack converges to the minimum perturbation.

5.2. Experimental results

Table 1 presents the median ℓ2-norm of perturbation for

different query budgets obtained by various baselines and

our proposed algorithms for both non-targeted and targeted

attacks, evaluated against ResNet50, VGG16, ResNet101

and ViT models using the ImageNet dataset. For further

information, the corresponding curves for all classifiers can

be found in Appendix B. Additionally, Appendix C contains

the experimental results on CIFAR10.
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fair comparison. In this part, we discuss the impact of ini-

tialization on the performance of proposed methods on tar-

geted attacks as mentioned in 4.3. Figure 8a depicts the

amount of perturbation and corresponding required queries

to find xb1 with different numbers of random directions by

using K samples of the target class. From this figure, a sig-

nificant reduction in perturbation is observed with the in-

crease of K. While with the random initialization, K = 1,

the obtained perturbation is around 85 by spending about

20 queries, a reduction in perturbation of more than 30 is

obtained with K = 50 by a small additional query cost of

around 110. Figure 8b compares the performance of CGBA

and CGBA-H with two different initialization: K = 1 and

K = 50. Because a better initial boundary point is obtained

by K = 50 (with additional query cost properly counted),

both CGBA and CGBA-H converge faster towards optimal

perturbation than initialization with K = 1. It’s worth not-

ing that the proposed initialization method can also be used

to boost the baselines’ performance.

6. Conclusion

In this work, we have proposed two novel decision-based

black-box attacks: CGBA and CGBA-H, which use a semi-

circular trajectory in a restricted 2D plane to ensure finding

a new boundary point with reduced perturbation regardless

of the boundary’s curvature. While CGBA outperforms the

SOTA non-targeted attacks by effectively utilizing the low

curvature of the decision boundary, CGBA-H is adapted to

the high curvature of the decision boundary, resulting in bet-

ter performance for targeted attacks. Furthermore, we have

introduced an initialization algorithm that can be used to

find a better initial boundary point to further boost the per-

formance for decision-based targeted attacks. We have con-

ducted extensive experiments to verify the effectiveness of

the proposed attacks.
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