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Abstract

Vision Transformers (ViTs) are built on the assumption
of treating image patches as “visual tokens” and learn
patch-to-patch attention. The patch embedding based to-
kenizer has a semantic gap with respect to its counterpart,
the textual tokenizer. The patch-to-patch attention suffers
from the quadratic complexity issue, and also makes it non-
trivial to explain learned ViTs. To address these issues in
ViT, this paper proposes to learn Patch-to-Cluster atten-
tion (PaCa) in VIT. Queries in our PaCa-ViT starts with
patches, while keys and values are directly based on clus-
tering (with a predefined small number of clusters). The
clusters are learned end-to-end, leading to better tokenizers
and inducing joint clustering-for-attention and attention-
for-clustering for better and interpretable models. The
quadratic complexity is relaxed to linear complexity. The
proposed PaCa module is used in designing efficient and in-
terpretable ViT backbones and semantic segmentation head
networks. In experiments, the proposed methods are tested
on ImageNet-1k image classification, MS-COCO object de-
tection and instance segmentation and MIT-ADE20k se-
mantic segmentation. Compared with the prior art, it ob-
tains better performance in all the three benchmarks than
the SWin [32] and the PVTs [47, 48] by significant mar-
gins in ImageNet-1k and MIT-ADE20k. It is also signifi-
cantly more efficient than PVT models in MS-COCO and
MIT-ADE20k due to the linear complexity. The learned
clusters are semantically meaningful. Code and model
checkpoints are available at https://github.com/
1VMCL/PaCaViT.

1. Introduction

A picture is worth a thousand words. Seeking solu-
tions that can bridge the semantic gap between those words
and raw image data has long been, and remains, a grand
challenge in computer vision, machine learning and Al
Deep learning has revolutionized the field of computer vi-
sion in the past decade. More recently, Vision Transform-
ers (ViTs) [13,45] have witnessed remarkable progress in
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Figure 1. 1) The vanilla patch-to-patch self-attention [ 13, 45] di-
rectly leverages image patch embeddings as visual tokens and suf-
fers from its quadratic complexity. Every Query (e.g., the patches
in the blue grid) needs to interact with every Key. ii) To address
the quadratic complexity, one popular method is to leverage spa-
tial reduction (e.g., implemented via a convolution with a stride
r > 1) in computing the Key and the Value [47,48]. It still per-
forms patch-to-patch attention, but enjoys a reduced complexity.
iii) We propose Patch-to-Cluster attention (PaCa) in this paper.
A predefined number of M cluster assignments is first learned and
then used in computing the Key and Value, resulting in not only
linear complexity, but also more meaningful visual tokens.
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computer vision. ViTs are built on the basis of treating
image patches as “visual tokens” using patch embedding
and learning patch-to-patch attention throughout. Unlike
the textual tokens that are provided as inputs in natural lan-
guage processing, visual tokens need to be learned first and
continuously refined for more effective learning of ViTs.
The patch embedding based tokenizer is a workaround in
practice and has a semantic gap with respect to its counter-
part, the textual tokenizer. On one hand, the well-known
issue of the quadratic complexity of vanilla Transformer
models and the 2D spatial nature of images create a non-
trivial task of developing ViTs that are applicable for many
vision problems including image classification, object de-
tection and semantic segmentation. On the other hand,
explaining trained ViTs requires non-trivial and sophisti-
cated methods [4] following the trend of eXplainable Al
(XAI) [18] that has been extensively studied with convolu-
tional neural networks.

To address the quadratic complexity, there have been



Output ¥(aw)c Output Y(aw)c
Attention Attention
VA () (s Virw)o Amwym Vume
Q Q
& Y Zuc
N ey (e
&
Input X(mw)c Input X(mw)c ‘

(a) Spatial-Reduction based Self-Attention (b) The Proposed Patch-to-Cluster based Self-Attention

Figure 2. Illustration of (a) the spatial reduction based self-
attention and (b) the proposed PaCa module in vision applications,
where (HW ) represents the number of patches in the input with
H and W the height and width respectively, and M a predefined

small number of clusters (e.g., M = 100). See text for details.

two main variants developed with great success: One is
to exploit the vanilla Transformer model locally using a
predefined window size (e.g., 7 X 7) such as the SWin-
Transformer [32] and the nested variant of ViT [62]. The
other is to exploit another patch embedding at a coarser
level (i.e., nested patch embedding) to reduce the sequence
length (i.e., spatial reduction) before computing the keys
and values (while keeping the query length unchanged) [47,

,52], as illustrated in Fig. 1 (left-bottom) and Fig. 2 (a).
Most of these variants follow the patch-to-patch attention
setup used in the vanilla isotropic ViT models [13]. Al-
though existing ViT variants have shown great results, patch
embedding based approaches may not be the best way of
learning visual tokens due to the underlying predefined sub-
sampling of the image lattice. Additionally, patch-to-patch
attention does not account for the spatial redundancy found
in images due to their compositional nature and reusable
parts [15]. Thus, it is worth exploring alternative meth-
ods towards learning more semantically meaningful visual
tokens. A question arises naturally: Can we rethink the
patch-to-patch attention mechanism in vision tasks to hit
three “birds” (reducing complexity, facilitating better vi-
sual tokenizer and enabling simple forward explainability)
with one stone?

As shown in Fig. 1 (right) and Fig. 2 (b), this pa-
per proposes to learn Patch-to-Cluster attention (PaCa),
which provides a straightforward way to address the afore-
mentioned question: Given an input sequence Xy ¢ (e.g.,
N = H - W), alight-weight clustering module finds mean-
ingful clusters by first computing the cluster assignment,
Cn,m (Eqn. 4 and Eqn. 5) with a predefined small number
of clusters M (e.g., M = 100). Then, M latent “visual
tokens”, Zys ¢ are formed via simple matrix multiplication
between C%; ,, (transposed) and X v ¢. Ininference, we can
directly visualize the clusters C ~,M as heatmaps to reveal
what has been captured by the trained models (Fig. 1, right-
bottom). The proposed PaCa module induces jointly learn-
ing clustering-for-attention and attention-for-clustering in

ViT models. We study four aspects of the PaCa module:

» Where to compute the cluster assignments? Consider
the stage-wise pyramidical architecture (Fig. 3) of assem-
bling ViT blocks [47, 48], a stage consists of a number
of blocks. We test two settings: block-wise by comput-
ing the cluster assignment for each block, or stage-wise
by computing it only in the first block in a stage and then
sharing it with the remaining blocks. Both give compa-
rable performance. The latter is more efficient when the
model becomes deeper.

* How to compute the cluster assignment? We also test two
settings: using 2D convolution or Multi-Layer Perceptron
(MLP) based implementation. Both have similar perfor-
mance. The latter is more generic and sheds light on ex-
ploiting PaCa for more general Token-to-Cluster attention
(ToCa) in a domain agnostic way.

* How to leverage an external clustering teacher? We in-
vestigate a method of exploiting a lightweight convolu-
tion neural network (Fig. 4) in learning the cluster assign-
ments that are shared by all blocks in a stage. It gives
some interesting observations, and potentially pave a way
for distilling large foundation models [3].

» What if the number of clusters is known? We further ex-
tend the PaCa module in designing an effective head sub-
network for dense prediction tasks such as image seman-
tic segmentation (Fig. 5) where the number of clusters M
is available based on the ground-truth number of classes
and the learned cluster assignment Cn s has direct su-
pervision. The PaCa segmentation head significantly im-
proves the performance with reduced model complexity.

In experiments, the proposed PaCa-ViT model is tested
on the ImageNet-1k [12] image classification, the MS-
COCO object detection and instance segmentation [31]
and the MIT-ADE20k semantic segmentation [64]. It ob-
tains consistently better performance across the three tasks
than some strong baseline models including the Swin-
Transformers [32] and the PVTv2 models [47].

2. Related Work and Our Contributions

Since the pioneering work of ViT [13], there has been
a vast body of work leveraging and developing variants of
the Transformer model [45] that dominates the NLP field in
computer vision (see a recent survey [19]). We briefly re-
view some of the related efforts on addressing the quadratic
complexity of ViT models. There has been rapid progress
in developing efficient Transformer models. [41] provides
an excellent survey of different efforts in the literature.

One family of approaches is to leverage inductive bias
back in the Transformer, including the local window par-
tition based methods [1, 2, 6, 32, 36], random sparse pat-
terns [59] and the locality-sensitive hashing (LSH) based
Reformer [28]. Although both computational and model



performance can be improved, these models achieve them
at the expense of limiting the capacity of a self-attention
layer due to the locality constraints. Also, sophisticated
designs might be needed such as the shifted window and
the masked attention method in the SWin-Transformer [32].
The quad-tree based aggregating method proposed in the
NesT [62] shows another promising direction. In a simi-
lar spirit, the Evo-ViT [55] presents a method of selecting
top-k informative tokens for applying the self-attention to
reduce the cost. The A-ViT [57] presents a method of halt-
ing tokens via reformulating the adaptive computation time
(ACT) method. Both Evo-ViT and A-ViT can achieve linear
complexity, but they mainly focus on image classification
tasks, and it is not clear how to extend them for downstream
tasks such as object detection and semantic segmentation.
Like the PVT models [47,48], our goal is to develop a ver-
satile variant of ViT that can tackle not only image classi-
fication, but also many downstream vision tasks which use
high-resolution images as inputs and need to retain suffi-
cient high-resolution information throughout.

Another family of approaches exploits low-rank pro-
jections to form a coarser-grained representation of the
input sequence, which have shown successful applica-
tions for certain NLP tasks such as the LinFormer [460],
Nystromformer [54] and Synthesizer [40]. Even though
these methods retain the capability of enabling each token to
attend to the entire input sequence, they suffer from the loss
of high-fidelity token-wise information, and on tasks that
require fine-grained local information, their performance
can fall short of full attention or the aforementioned sparse
attention. Similarly, the Performer [7] presents a method
for Softmax attention kernel approximation via positive Or-
thogonal Random features for the Query and the Key. The
proposed PaCa-ViT is motivated by addressing the redun-
dancy of information within patches in patch-to-patch at-
tention in computer vision applications, and shares the spirit
of low-rank projection based efficient Transformer models.
Our PaCa is most similar to Linformers [46], but with two
main differences: Our PaCa applies clustering (i.e. Cy, ar)
before computing the Key and the Value (Fig. 2 (b)), unlike
Linformers which apply direct projection after the Key and
the Value are computed (i.e., £ - K and F' - V, see Eqn.7
in the Linformer paper). Our PaCa reduces the sequence
length via a learnable and data-adaptive cluster assignment
Cn,n, rather than treating the projection(s), £ and F, as
sequence length specific model parameters.

In addition to achieve the efficiency, driven by XAI [18]
and the natural curiosity of humanity, it is always desirable
to understand what is going on inside different ViTs. Most
XALI efforts have been focused on convolutional neural net-
works. More recently, some attention has been attracted
to explaining the vanilla isotropic ViT models based on
the attention scores themselves. As pointed out in the Im-

proved LRP [4], reducing the explanation to only the atten-
tions scores may be myopic since many other components
are ignored. The proposed PaCa provides a direct forward
explainer by visualizing the learned cluster assignments as
heatmaps, which is complementary to existing approaches.
Our Contributions. This paper makes two main con-
tributions for developing efficient and interpretable variants
of Transformers in computer vision applications: (i) It pro-
poses a Patch-to-Cluster Attention (PaCa) module that fa-
cilitates learning more expressive and meaningful “visual
tokens” beyond patches in ViTs. It addresses the quadratic
complexity of vanilla patch-to-patch attention, while ac-
counting for the spatial redundancy of patches in the patch-
to-patch attention. It also enables a forward explainer for
interpreting the trained models based on the learned seman-
tically meaningful clusters. (ii) It proposes a PaCa seman-
tic segmentation head network that is lightweight and more
expressive than the widely used UperNet [53] and the se-
mantic FPN [27]. With the two main contributions, the pro-
posed PaCa ViTs show superior performance consistently
in image classification, object detection and instance seg-
mentation and image semantic segmentation than the prior
art including SWin-Transformers [32] and PVTs [47,48].

3. Approach
In this section, we present details of the proposed PaCa
module and the resulting PaCa-ViT models.

3.1. From Patch-to-Patch Attention to Patch-to-
Cluster Attention

Denote by X ¢ an input sequence consisting of N “to-
kens” which are embedded in a C'-dimensional space. In
computer vision, the IV tokens are formed via patch em-
bedding. We have N = H x W where H and W are the
height and width of the patch grid respectively '. Positional
encoding can also be added to counter the permutation in-
sensitivity of the self-attention computation [13,45].

The core of the Transformer model is to compute the
scaled dot-product attention in transforming the input Xy ¢
to the output Yy ¢,

Qnc- K ﬂ,c)
\/5 dim=1,

Ync=Anwm - Vu,c, (D
where Qn.c, Ky, and Vi o are the Query/Key/Value
computed from the input X ¢, €.g., via linear transforma-
tions in the patch-to-patch attention where M = N, which
leads to the quadratic complexity of computing Ay n. The
Softmax is applied for each row as indicated by the sub-
script dim = 1. In practice, the multi-head self-attention
(MHSA) is used to capture the attention in different sub-
spaces and fused by a linear projection [45]. To address the

An v = Softmax(

I'We will use the three notations XnN,c: Xu,w,c and X gy c inter-
changeably in this paper.
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Figure 3. Illustration of the proposed PaCa-ViT using the stage-wise convolution-based clustering setting. It consists of four stages each
of which has a number, d; of the proposed PaCa Transformer block. The FEN refers to a feed-forward network. See text for details.

quadratic complexity, the key is to ensure M < N, prefer-
ably a predefined constant (e.g., M = 100) to induce the
linear complexity.

To that end, one popular method is to exploit spatial re-
duction via strided convolution (nested patch embedding) or
adaptive average pooling as done in the PVT models [47,48]
(Fig. 2 (a)). Note that i) the typically used strided convo-
lution method for spatial reduction does not truly prevent
quadratic complexity, but rather reduces it by a ratio cor-
responding to the patch size, and ii) the adaptive average
pooling may suffer from treating each element in a pool-
ing window with equal importance, thus lacking the nec-
essary adaptability and data-driven reweighing capability.
Meanwhile, the vanilla MLP in the Transformer block has
been substituted by the inverted bottleneck block proposed
in the MobileNets-v2 [37], termed MBlock (the left-bottom
of Fig. 3), which adds a depth-wise convolution in the hid-
den layer. And, the non-overlapping patch embedding has
been replaced by overlapping ones. With these modifica-
tions, positional encoding is not used, partially due to the
implicit positional encoding capability of the zero-padding
convolutions [25] used in the Stem, the Transition modules,
and the MBlock.

On top of the best practices used in PVTV2 [47], we pro-
pose the Patch-to-Cluster attention (PaCa), as illustrated in
Fig. 2 (b), which not only achieves the linear complexity
(with the overhead of the lightweight clustering module),
but also provides a simple cluster assignment visualization
method for explaining the attention module.

3.2. The Proposed Patch-to-Cluster Attention
As shown in Fig. 2 (b), given an input sequence Xy, c
and a predefined number M of clusters (e.g., M = 100), we
first compute the cluster assignment Cy, ps, whose goal is to
cluster the input sequence into M latent “visual tokens”,
Zyc = LayerNorm(CJ:C,’M - Xn.c)s ()
which then is used to compute the Key, Ky c and the
Value, Vs, ¢ via linear transformations in computing the at-
tention (Eqn. 1). We present two methods of computing the

cluster assignment C,p7: One is the onsite clustering as
illustrated in Fig. 3, and the other is the external clustering
via a lightweight teacher network as illustrated in Fig. 4.

3.2.1 Onsite Clustering
For the onsite clustering method (Fig. 3), we have,

Cn.y = Clustering(Xn 3 0), 3)
where 6 collects the parameters of the clustering module.
We investigate two simple designs in this paper:

i) Clustering via Convolution: It uses depth-wise con-
volution (DWConv) and point-wise convolution (PWConv),

DWConv+GELU PWConv+GELU

Xn,c Un,c, “4)
k=7,s=1 k=1,s=1
PWConv Softmax
Un.c . N, M ()
k=1,s=1 along N

where the first DWConv module uses a relatively large k =
7 kernel with stride s = 1 and zero padding 3, which is to
integrate local information with a larger receptive field.

ii) Clustering via MLP: To be more generic by eliminat-
ing the dependence on 2D convolution in Eqn. 4, it utilizes

a MLP implementation,

Linear+GELU Linear Softmax

X 6
NC T e 4C—M"  along N Cnas o (6)
where the expansion ratio of the hidden layer of the MLP is
set to 4 by default.

To encourage forming meaningful clusters (i.e., visual
tokens) that can capture underlying visual patterns that are
often spatially sparse, we apply Softmax along the spatial
dimension in Eqns. 5 and 6, which also enables directly vi-
sualizing Cn s as M heatmaps for diagnosing the inter-
pretability of a trained model at the instance level in a for-
ward computation.

Where to compute Cy )/ in the onsite clustering set-
ting? As aforementioned, Cn s can be computed in ei-
ther a block-wise or a stage-wise setting (the right-bottom
of Fig. 3). We observed that the latter is not only more com-
putationally efficient, but also more effective in terms of ac-
curacy in our ablation study. Intuitively, sharing the cluster
assignment in a stage facilitates consistency between differ-
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Figure 4. Illustration of computing the cluster assignment via an external clustering teacher network. See text for details.

ent Transformer blocks, and may induce meaningful latent
features at the front-end of a stage (Eqn. 4) based on the
collective feedback from all the blocks in a stage during
training.

3.2.2 Understanding the PaCa Module

Intuitively, computing Zs,c via the matrix multiplication
(Fig. 1 (b) and Eqn. 2) can be understood as a depth-wise
global weighted pooling of the input X ¢ with learned
weights, Cn 7. It can also be seen as a dynamic MLP-
Mixer [42] with data-driven weight parameters Cy s for
the spatial transformation and integration component, rather
than using top-down model parameters, making it more
flexible by not restricting the trained models to a specific
input size. The learned clusters (latent visual tokens) Zus,c
share similar spirit to the class-token(s) or task prompts
used in the vanilla ViT models (single class token) and its
variants with multiple class-tokens. The former are data
driven, while the latter are treated as model parameters.

Furthermore, the learned clustering assignment Cy s
has the same form of the attention matrix Ay »s (Eqn. 1).
Computing Zys,c (Eqn. 2) can thus be understood as per-
forming cross-covariance attention (XCA) [14].

Learning Cy s itself can be understood as a way of
learning better visual tokens to bridge the gap between
patches and the textual tokens used in natural language
processing Transformer models. This type of visual tok-
enizer has also been observed to be useful in integrating
Transformer models on top of convolution neural networks
(CNNp5s) such as ResNets in Visual Transformer [50].

3.2.3 External Clustering

With the onsite clustering setting, the cluster assignments
Cn, s at the early stages are based on the low-to-middle
level information. To address this issue, we are inspired by
three lines of work: the feature pyramid network (FPN) [30]
that is widely used for integrating visual information at dif-
ferent levels, the slow-fast thinking paradigm [26] (i.e., Sys-
tem 1 v.s. System 2) recently prompted for inducing rea-

soning capabilities in neural networks [17], and the empir-
ical observations of Transformers focusing more on low-
frequency information and CNNs focusing more on high-
frequency information [35]. We introduce an external clus-
tering teacher CNN (Fig. 4) that is concurrently trained
with the PaCa ViT end-to-end. To be lightweight, we use
the ConvMixer layer [44] in the FPN-style CNN clustering
teacher network 2.

With the clustering teacher network, we first compute
all the stage-wise clustering assignments, and then learn
the PaCa ViT. We also integrate the stage outputs from the
teacher network into the PaCa ViT. The clustering teacher
network can be interpreted as a fast learner to provide infor-
mative guidance (the cluster assignment) to the relatively
slower PaCa learner. It can also be intuitively interpreted
as a type of working memory [8] that “manipulate” the in-
put data to facilitate the “post-processing” via the PaCa. In
addition, this integration may facilitate harnessing the joint
expressive power of learning high-frequency information by
the CNN teacher and of learning low-frequency information
by the Transformer based models [35].

3.2.4 Task-Specific Tuning of M

The number of clusters M can be changed accounting for
the task specific information. For example, when using
an ImageNet-1k pretrained PaCa model that uses a relative
small M (e.g., 100) as the backbone in a downstream task
(e.g., the 150-class MIT-ADE20k dataset), we observe that
we can change M to a large number (e.g., 200), which only
results in minor changes of the network (e.g., the PWConv
in Egn. 5) and has no training issue observed in our experi-
ments (see Sec. 4.3).

3.2.5 Complexity Analyses

Compared with PVTv2 [47], our PaCa (Eqn. 2) leads to
linear complexity in computing the self-attention matrix
(Eqn. 1) since the number of clusters M is predefined and

2Many other lightweight CNNs, such as the MobileNets [37], can be
straightforwardly applied.
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Figure 5. The proposed PaCa head network for semantic segmen-
tation. The feature pyramid from the backbone (Fig. 3) is pro-
jected to a D-dim feature space and resized to the resolution of the
first feature layer (via bilinear interpolation). L is the number of
classes (e.g., 150 in the MIT-ADE20k dataset). Both the losses are
cross-entropy, but with a smaller weight for the auxiliary loss.

fixed in our PaCa-ViT models. This advantage is achieved
at the expense of the overhead cost in Eqn. 4 or Eqn. 5
and the matrix multiplication in Eqn. 2. For relatively
small images (e.g., in image classification), the overhead
cost slightly outweighs the reduction in computing the self-
attention matrix (see Sec. 4.1). For large images (e.g., in
object detection and instance semantic segmentation), the
overhead cost is well paid off, leading to significant reduc-
tion of computing cost and memory footprint (see Sec. 4.2
and Sec. 4.3).

3.3. Network Interpretability via PaCa

To select the most important clusters in Cy s for an in-
put image [ in a vision task (e.g., image classification), we
adopt a straightforward approach. We use the clustering as-
signment maps Cy, s before the Softmax and then apply the
Sigmoid transformation. For each cluster m, we reshape the
slice Cn,, back to a 2D spatial heatmap , denoted by H}L’fw.
We first compute a binary mask by keeping locations whose
clustering scores are greater than the mean score,

My, = Hp', > mean(Hy',), 7
which is then upsampled to the resolution of input images
(e.g., 224 x 224) using the nearest interpolation, denoted by
M™. The upsampled mask is used to mask the input image
1 that can be correctly classified by the model, and we have,

I =1oM", (8)
where © represents element-wise product. I™ is then used
as the input to the model.

We divide the learned clusters into two groups: the pos-
itive group in which a masked image I™ can still predict
the ground-truth label, and the negative group in which a
masked image [ ™' has the wrong predicted label. The posi-
tive group means that the masked portion in an image based
on the clustering assignment retains sufficient information.

3.4. The PaCa Segmentation Head

The image semantic segmentation task can provide di-
rect supervision signals to the clustering assignment Cx s
(with M = L the number of the ground-truth classes).
We elaborate the design shown in Fig. 5 in this section
and present results in Sec. 4.3. With the feature pyra-
mid X(iHiWi)Ci’s (e.g., t = 1,2,3,4) from the backbone,

we first transform each pyramid layer into a D-dim fea-
ture space, F}; v, D via a vanilla convolution block (Con-
vBlock) consisting of 1 x 1 convolution, BatchNorm [24]
and ReLU [29], followed by a bilinear upsampling (for
layers other than the first one). Denote by Fi g, w,)ap as
the concatenated feature map as the multi-scale fused in-
put, from which the clustering assignment Cpn, 1, (N1 =
H, x W1)is computed,
ConvBlock . PWConv .
4D—D  k=1,s=1
Then, a single-head PaCa module is used with the Query,
Key and Value computed as follows,

Softmax CNI L (9)

Fn, 4D
b along Ny

ConvBlock
Query: F, 4p —% Qny.Ds (10)
Clusters: Zp ap = Cy, 1 * Fn, 4D, (11)
Key & Value: Zp, 4p —2BK, ¢ b Vip,  (12)

where a LinearBlock consisting of a linear projection layer,
a BatchNorm1D and the ReLU. The output of the PaCa

module is computed by,

Softmaxz (Qny,p - KF p) - Vi,p ~2P% Fy, p. (13)

The final segmentation result is regressed via,
SNl,L = PWCOHV(FNl,D). (14)

4. Experiment

In this section, we present experimental results of the
proposed method in ImageNet-1k (IN1K) [12] classifi-
cation, MS-COCO 2017 object detection and instance
segmentation [31] and MIT-ADE20k semantic segmen-
tation [64]. In implementation, we use the popular
timm PyTorch toolkit [49] for image classification, the
mmdetection and mmsegmentation toolkits [5] for
object detection and semantic segmentation respectively.

We mainly test three stage-wise onsite clustering-via-
convolution PaCa models (Fig. 3): PaCa-Tiny (12.2M),
PaCa-Small (22.0M) and PaCa-Base (46.9M). For compar-
isons, we one stage-wise onsite clustering-via-MLP PaCa
mode: PaCa™!-Small (22.6M). For onsite clustering, the
PaCa s used in the first three stages with the number of clus-
ters M = 100. We also test two stage-wise external cluster-
ing based PaCa models (Fig. 4): PaCa®“-small (21.1M) and
PaCa®“-base (47.65M), both with M = 100 for all the four
stages. Detailed architectural specifications are provided in
the supplementary. The training recipes are the same with
the prior art and provided in the supplementary too.

4.1. Image Classification

The IN1K classification dataset [12] consists of about
1.28 million images for training, and 50, 000 for validation,
from 1, 000 classes. All models are trained on the training
set for fair comparisons and report the Top-1 accuracy on
the validation set. We follow the training recipe used by the
PVTv2 which in turn is adopted from the DeiT [43].

Accuracy. Table 1 shows the comparisons. The pro-



Method | #Params (M)]. | FLOPs (G) | | Top-1 Acc. (%)t
DeiT-T/16 [43] 5M 1.3 72.2
PVT-T [48] 132 1.9 75.1
PVTV2-B1 [47] 14.0 2.1 8.7
PaCa-Tiny (ours) 12.2 32 80.9 12.2
DeiT-S/16 [43] 22.1 4.6 79.9
T2T-ViT;-14 [58] 22.0 6.1 80.7

PVT-S [48] 24.5 3.8 79.8
TNT-S [20] 23.8 52 81.3
SWin-T [32] 29.0 4.5 81.3
CvT-13[51] 20.0 45 81.6
Twins-SVT-S [9] 24.0 2.8 81.3
FocalAtt-Tiny [56] 28.9 49 82.2
PVTV2-B2 [47] 25.4 39 82.0
PVTV2-B2-1i [47] 22.6 4.0 82.1
PaCa-Small (ours) 22.0 5.5 83.08 10.98
PaCa™!?-Small (ours) 22.6 59 83.1311.03
PaCa““-Small (ours) 21.1 54 83.17 11.07
T2T-ViT;-19 [58] 39.0 9.8 81.4
T2T-ViT;-24 [58] 64.0 15.0 82.2
PVT-M [48] 442 6.7 81.2
PVT-L [48] 61.4 9.8 81.7
CvT-21 [51] 32.0 7.1 82.5
TNT-B [20] 66.0 14.1 82.8
SWin-S [32] 50.0 8.7 83.0
SWin-B [32] 88.0 154 83.3
Twins-SVT-B [9] 56.0 8.3 83.2
Twins-SVT-L [9] 99.2 14.8 83.7
FocalAtt-Small [56] 511 9.4 83.5
FocalAtt-Base [56] 89.8 16.4 83.8
PVTV2-B3 [47] 452 6.9 83.2
PVTV2-B4 [47] 62.6 10.1 83.6
PVTv2-B5 [47] 82.0 11.8 83.8
PaCa-Base (ours) 46.9 9.5 83.96 10.76
PaCa““-Base (ours) 46.7 9.7 84.22 11.02

Table 1. Top-1 accuracy comparison in IN1K validation set using
the single center crop (224 x 224) evaluation protocol. The relative
improvement of our PaCa models are computed with respect to the
PVTv2 models (underlined) with similar parameters.

posed PaCa ViT obtains consistently better performance
than many variants of ViTs including the baseline PVTv2,
which justifies the effectiveness of the proposed patch-to-
cluster attention. With the onsite stage-wise clustering set-
ting, clustering-via-MLP (Eqn. 6) is slightly better than
clustering-via-convolution (Eqns. 4 and 5). The external
clustering (Fig. 4) outperforms the onsite clustering (Fig. 3)
slightly. Fig. 6 shows some examples of the learned clus-
ters. Efficiency. In terms of efficiency based on FLOPs, the
proposed PaCa models are slightly worse at the resolution
of 224 x 224 in IN1K. As aforementioned, the efficiency
will significantly improve and outperform other variants in
downstream tasks with higher resolution images.

4.2. Object Detection and Instance Segmentation

The challenging MS-COCO 2017 benchmark [31] is
used, which consists of a subset of train2017 (118k images)
and a subset of val2017 (5k images). Following the com-
mon settings, we use the IN1K pretrained PaCa ViT models
as the feature backbone, and test them using the Mask R-
CNN framework [2 ] under the 1x schedule.

Accuracy. Table 2 shows the comparisons. The pro-
posed PaCa models obtain consistently better performance
than other ViT variants. The clustering-via-MLP obtains
slightly better performance than both the clustering-via-

Backbone | #Params (M) | FLOPs (G) | AP* AP}, AP, | AP™ APZ  APZ
PVTT [48] 329 - 39.8 622 430 | 374 593 399
PVTv2-B1 [47] 337 259* 418 643 459 | 388 612 416
PaCa-Tiny (ours) 32.0 252* 433 660 475 | 39.6 629 424
ResNet-50 [22] 442 260 410 617 449 | 371 584  40.1
SWin-T [32] 47.8 264 437 66.6 477 | 39.8 633 427
Twins-SVT-S [9] 44.0 228 434 660 473 | 403 632 434
Focal Att-T [56] 48.8 291 448 677 492 | 410 647 442
PVTS [48] 4.1 245 430 653 469 | 399 625 428
PVTV2-B2 [47] 45.0 325* 453 67.1 496 | 412 642 444
PaCa-Small (ours) 41.8 296* 464 687 509 | 41.8 655 450
PaCa™/?-Small (ours) | 42.4 303* 46.6 69.0 513 | 419 657 450
PaCa‘“-Small (ours) 40.9 292* 458 680 503 | 414 649 445
SWin-S [32] 69.1 354 465 687 513 | 421 658 452
SWin-B [32] 107.1 497 469 69.2 516 | 423 660 455
Focal Att-S [56] 712 401 474 698 519 | 428 666 46.1
FocalAtt-B [56] 110.0 533 478 702 525 | 432 673 465
Twins-SVT-B [9] 76.3 340 452 67.6 493 | 415 645 448
PVT-M [48] 63.9 302 420 644 456 | 390 616 421
PVTL [48] 81.0 364 429 650 466 | 395 619 425
PVTV2-B3 [47] 64.9 413* 470 681 517 | 425 657 457
PVTv2-B4 [47] 82.2 516* 475 687 520 | 427 661 46.1
PVTv2-B5 [47] 101.6 573* 474 686 519 | 425 657 460
PaCa-Base (ours) 66.6 373 480 697 521 | 429 666 456
PaCac““-Base (ours) 61.4 372* 483 705 52,6 | 433 672 466

Table 2. Object detection and instance segmentation on MS-
COCO val2017 [31] using the IN1K pretrained backbones and
the Mask R-CNN [21] with the 1x (12-epoch) training sched-
ule in training. FLOPs are computed at the input resolution of
1280 x 800. *computed using the torchprofile package.

Backbone | Head | #Params (M) | FLOPs (G) | mIOU
PVT-T [48] 17.0 33.2 35.7
PVT-S 28.2 44.5 39.8
PVI-M 48.0 61.0 41.6
PVT-L S . 65.1 79.6 42.1
PVTv2-B1 [47] F;“;I"‘[‘mc] 7.8 342 ns
PVTv2-B2 29.1 45.8 452
PVTv2-B3 49.0 62.4 473
PVTv2-B4 66.3 81.3 479
PVTv2-B5 85.7 91.1 48.7
SWin-T [32] 60 941 44.5
SWin-S UperNet [53] 81 1038 47.6
SWin-B 121 1188 48.1
Focal Att-T [56] 62 998 45.8
FocalAtt-S UperNet [53] 85 1130 48.0
FocalAtt-B 126 1354 49.0
PaCa-Tiny (ours) 41.6 229.9* 44.49
PaCa-Small (ours) UperNet [53] 514 242.7* 47.6
PaCa-Base (ours) 77.2 264.1* 49.67
PaCa-Tiny (ours) 13.3 34.4* 45.65
PaCa-Small (ours) 23.2 47.2* 48.3
PaCa™/P-Small (ours) PaCa (ours) 24.0 50.0* 48.2
PaCa““-Small (ours) 222 46.4* 46.2
PaCa-Base (ours) 48.0 68.5* 50.39
PaCa““-Base (ours) 48.8 68.7* 48.4

Table 3. Semantic segmentation on MIT-ADE20k [64] with the
crop size 512 x 512 using the IN1K pretrained backbones. FLOPs
are computed at the input resolution of 512 x 512. *computed
using the torchprofile package.

convolution and the external clustering with the small
model configuration. With the base model configuration,
the external clustering is slightly better than the clustering-
via-convolution. Efficiency. Overall, our PaCa models are
significantly more efficient as shown by the FLOPs compar-
ing with the baseline PVTv2.

4.3. Semantic Segmentation
The MIT-ADE20k [64] benchmark is used, which is a
challenging dense prediction task consisting of L = 150



INIK

MS-COCO w/ Mask RCNN 1x | MIT-ADE20K w/ PaCa Head

#Clusters Where? l #Params| FLOPs | Top-1(%) l #Params| FLOPs | AP" | APy, | APY; | AP™ | AP, | APE | #Params| FLOPs | mlOU
(100, 100, 100, 100) 23 |56 83.05 420 | 294 | 464|688 | 510 | 418 | 656 | 446 | 234 | 473 | 483
(49, 64,81, 100) 22 |53 8298 420 289 | 461|687 |504 |415 | 653 |443 |234 | 473|478
(100,81,64,49) | stage-wise | 222 | 5.3 8287 | 420 | 291 46.1| 684 | 503 |417 | 654 |447 | 237 | 473 | 476
(49,49, 49,0) 20 |50 82.95 418 | 289 [ 462|686 |50.6 | 416 | 654 | 443 | 232 |472 | 481
2,2,2,0) 20 |47 8228 416|283 | 455|684 |499 |411 |649 |439 232 |472 | 477
(100, 100, 100, 0) 20 |55 8308  |418 |296 | 464|687 | 509 |41.8 | 655 |450 | 232 | 472 | 483
(100, 100, 100, 100) | block-wise | 24.2 | 6.1 8293 | 440 | 308 | 465|687 | 510 |48 | 656 |450 | 258 | 509 | 480

Table 4. Ablation study on the number M of clusters using the onsite clustering-via-convolution PaCa-Small model on IN1K (Top-1),
MS-COCO (with Mask-RCNN 1x) and MIT-ADE20k (with the proposed PaCa head). As mentioned in the submission (Sec. 4.3), on
MIT-ADE20k, the number of clusters in a stage of the ImageNet-pretrained backbone is reset to 200 if it is not zero. See details in text.

ground-truth classes. We use the IN1K pretrained PaCa ViT
models as the feature backbone, and the proposed PaCa seg-
mentation head network (Fig. 5). Since the pretrained PaCa
backbones are trained with A/ = 100 clusters that is smaller
than L, we change M = 200 in this task, and observe no
issues of training, and better performance than the counter-
part during our development.

Table 3 shows the comparisons. With the same Uper-
Net [53] head, the proposed PaCa-ViT backbones (stage-
wise onsite clustering-via-convolution) consistently outper-
form other methods. With the proposed PaCa head, the pro-
posed PaCa-ViT models further improve the performance,
while significantly reducing the complexity compared with
the UperNet head. This shows the effectiveness of the pro-
posed PaCa head for semantic segmentation, which has a
simple structure by design. It is also more effective than the
semantic FPN [27] head. With the PaCa segmentation head,
the stage-wise onsite clustering-via-convolution models ob-
tain better performance than the counterparts.

4.4. Ablation Study

In this section, we present an ablation study on the num-
ber M of clusters in each of the four stages (Fig. 3). The
results are shown in Table 4. Interestingly, in terms of im-
age classification performance, the number of clusters does
not have a significant impact based on the cases tested (even
with the number of clusters pushed to 2), which shows the
robustness of the proposed PaCa models, but also suggests
a potential improvement that may be worth exploring: Sim-
ilar in spirit to the auxiliary loss used in the PaCa segmen-
tation head (Fig. 5), some self-supervised loss functions
(e.g., the loss function proposed in the Barlow Twins [60])
could be leveraged to induce learning diverse and com-
plementary clusters for capturing underlying meaningful
patterns (reusable and composable parts) at scene-/object-
/part-levels. Based on the diversity of clusters, instance-
sensitive cluster masks can be learned to filter out redundant
clusters on the fly. Based on the visualization of learned
clusters (Fig. 6), we observe redundant clusters and clut-
tered clusters. We leave those for the future work.

5. Conclusion

This paper presents a patch-to-cluster attention (PaCa)
module for learning efficient and interpretable Vision Trans-

e ‘-ii' ..
|
|
'
'

Figure 6. Examples of visualizing the clusters using the PaCa-
Small model using the method presented in Sec. 3.3. Both images
are correctly classified by the model. The left three clusters are
the top-3 in the positive group, and the right three clusters are the
top-3 in the negative group. The top-k in either group is defined
based on the prediction probability of the ground-truth class. For
the first image, it is interesting to see the positive group leads to
higher prediction probabilities than the raw input image. The full
visualization is provided in the supplementary.

formers (ViTs). The proposed PaCa can address the
quadratic complexity issue and account for the spatial re-
dundancy of patches in the commonly used patch-to-patch
attention. It also provides a forward explainer for diagnos-
ing the explainability of ViTs. A simple learnable cluster-
ing module is introduced for easy integration in the ViT
models. The proposed PaCa is also used in designing a
lightweight yet effective semantic segmentation head net-
work. In experiments, the proposed PaCa is tested in IN1K,
MS-COCO and MIT-ADE20k benchmarks. It obtains con-
sistently better performance than the prior art including the
SWin-Transformers and PVTs. It also shows semantically
meaningful qualitative results of the learned clusters.
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A. Model Specifications

We provide details of the model specifications shown in
Fig. 7 (elaborated on the Fig. 3 in the paper) and Fig. 8
(elaborated on the Fig. 4 in the paper).

B. Implementation Details
B.1. Experimental Details of Image Classification

For image classification in the IN1K [12], all models in
Sec. 4.1 are trained on the training set for fair com-
parisons with the top-1 accuracy (%) on the validation
set. The training receipt is adopted from DeiT [43],
which has been widely used in training ViT variants. Ta-
ble 5 shows the exact configurations used in our exper-
iments. Data Augmentation in Training: we apply
random cropping, random horizontal flipping [38], label-
smoothing regularization [39], mixup [0]], and random
erasing [63] as data augmentations. During training, we em-
ploy AdamW [34] with a momentum of 0.9, a mini-batch
size of 128, and a weight decay of 0.05 to optimize models.
The initial base learning rate is set to 5 x 10~* and de-
creases following the cosine schedule [33]. The drop-path
regularization is also used [23]. All of our PaCa ViT models
are trained for 300 epochs from scratch on 10 A100 GPUs
with a learning rate auto-scaling heuristic method applied
(see Table 5). Evaluation: We apply a single center crop
(224 x 224) on the validation set in evaluating the classifi-
cation accuracy. We us the latest t imm package [49].

B.2. Experimental Details of Object Detection and
Instance Segmentation

We use the proposed PaCa ViT models (Tiny, Small and
Base) as the feature backbones in the Mask R-CNN [21]
and test them on the MS-COCO [31] dataset. All models in
Sec. 4.2 are trained on MS-COCO train2017 (118k im-
ages) and evaluated on va12017 (5k images). We use the
MMDetection [5] package (version 2.25.2) in experiments.
We apply the weights pre-trained on IN1K to initialize the
backbone and Xavier [16] in initializing the remaining lay-
ers in the Mask R-CNN (the default in the MMDetection).
We adopt the 1x schedule in training (i.e., 12 epochs used in
training). In both training and evaluation, the shorter side of
the input image is fixed to 800 pixels with the longer side re-
tained not exceeding 1, 333 pixels. We train Mask R-CNN
with our PaCa ViT backbones using batch size 16 on 8 A100
GPUs (i.e., 2 images per GPU) ?, following the recipes in
the MMDetection package which use the AdamW [34] opti-

3We follow the provided recipes and do not apply the auto-scaling
heuristic to take advantage of the 10 GPUs we have on the server (that
is done for IN1K training, see Table 5), since we observe the auto-scaling
heuristic has more significantly negative impacts on performance on the
downstream tasks and the training on the downstream tasks consumes
much less time than that in IN1K.

Config. ‘ Value
batch_size | 128

train_interpolation | ’bicubic’
epochs | 300
opt | adamw’
opt_eps | le-8
opt_betas | (0.9, 0.999)

momentum | 0.9
weight_decay | 0.05
auto_scale_Ir | true
Ir | Se-4
minr | 5e-6
sched | ’cosine’
warmup_epochs | 5
warmup_Ir | Se-7
cooldown_epochs | 0
amp | True
clip_grad | none (T, S)/ 1.0 (B)
clip_-mode | norm
drop_path_rate | 0.1 (T, S)/ 0.5 (B)

color jitter | 0.4
smoothing | 0.1

reprob | 0.25
remode | 'pixel’
recount | 1
aa | 'rand-m9-mstd0.5-inc1’
mixup | 0.8

cutmix | 1.0
mixup_prob | 1.0
mixup_switch_prob | 0.5
mixup_mode | ’batch’
Table 5. Training configurations used in training the proposed
PaCa ViT models in IN1K following the t imm package [49]. We
train three model specifications: Tiny (T), Small (S) and Base (B).
This training receipt is adapted from [43] and often applied and
tuned for training with 8 GPUs. We use 10 GPUs to take the
full advantage of the server we have and to speed up the exper-
iments. Accordingly, we apply a heuristic “auto_scale_Ir” setting
which scales “Ir”, “min_lr”” and “warmup_lr” in this table with the
factor “batch_size x nb_gpus / 512" (i.e., 2.25 in our settings) to
account for the increased number of total images per batch with
10 GPUs used. We note that scaling these learning rate related hy-
perparamters often has slightly negative effects on performance.

mizer with an initial learning rate of 1 x 104, and a weight
decay 0.05. The parameters of the normalization layers are
excluded from the weight decay.

B.3. Experimental Details of Image Semantic Seg-
mentation

We use the proposed PaCa ViT models (Tiny, Small and
Base) as the feature backbones and two different segmen-
tation head sub-networks, the UpperNet [53] and our pro-
posed PaCa segmentation head (Sec. 3.4). We test them on
the MIT-ADE20k [64] dataset. In training, we randomly
resize and crop images to the resolution of 512 x 512. In
evaluation, images are resized to have a shorter side of 512
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Figure 7. Mode specifications in the main experiments (elaborated on the Fig. 3 in the paper). We test three configurations: Tiny (T), Small
(S) and Base (B). For the main results (see Tables 1, 2 and 3 in the paper), the number of clusters are M1 = M = M3 = 100 and My = 0
(i.e., degenerated back to the vanilla Transformer as done in the PVTV2 [47]), and the cluster assignment C(,w,) s, is shared between all
blocks in a stage as shown in the right-bottom. In the ablation studies, different configurations of the number of clusters at different stages
are tested. A different clustering module based on a plain MLP is also tested (see Eqn. 6 in the paper). The FFN implementation is adapted
from the Inverted Residual Block proposed in the MobileNetv2 [37], which is also used in PVTv2 [47]. We add the shortcut connection
over the depth-wise convolution to induce it to play the role of positional encoding more faithfully as proposed in [10].
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Figure 8. Mode specifications with external clustering teacher networks (elaborated on the Fig. 4 in the paper). We test two configurations:
Small (S) and Base (B). The ViT branch has the same specifications as shown in Fig. 7. In the experiments, the number of clusters are
My = M> = M3 = M, = 100, and the cluster assignment C( H,w;)Mm,; from the teacher network is shared between all blocks in a stage.
The “ConvLayer” module is adapted from the building block used in the ConvMixer [44].
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pixels. The longer side is fixed not to exceed 2,048 pix- 0.29.0) in experiments. We apply the weights pre-trained on
els. We use the MMSegmentation [I 1] package (version INIK to initialize the backbone and Xavier [16] in initializ-



ing the head sub-network (the default in the MMSegmenta-
tion). We train our PaCa models with 160k iterations using
batch size 16 on 8 A100 GPUs (i.e., 2 images per GPU). We
adopt the default recipes provided in the MMSegmentation
package, using the AdamW [34] optimizer with an initial
learning rate of 6 x 10~5 for the backbone, and 6 x 10~*
for the head sub-network, and a weight decay 0.01. The pa-
rameters of the normalization layers are excluded from the
weight decay. As mentioned in Sec. 4.3, we increase the
number of clusters used in the backbone from 100 to 200 to
account for the increased number of ground-truth classes in
the MIT-ADE20k (150 classes). Due to this change, we set
the initial learning rate to 6 x 10~%, the same as the head
sub-network, for the clustering layer (Eqn. 5).

C. Examples of Learned Clusters

We show all the clusters elaborating Fig. 6 in the paper
in Figures 9 and 10.
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Figure 9. Visualizing the learned clusters with an image (id: 10933) in the IN1K validation set. We use the PaCa-Small network (Table 1).
This image is correctly classified by the model. The 100 clusters learned at the third stage are used. The left-top image is the input image
with the original predicted probability for the ground-truth class shown in the left-top box. The first 4 rows show the masked images in the
positive group. It is interesting to see that many masked images can lead to higher predicted probabilities for the ground-truth class. The
remaining rows show the masked images in the negative group. Although the first several images in the negative group have the predicted
probabilities larger than some images in the positive group, the ground-truth class is not the top-1.



Figure 10. Visualizing the learned clusters with an image (id: 34561) in the IN1K validation set. We use the PaCa-Small network (Table 1).
This image is correctly classified by the model. The 100 clusters learned at the third stage are used. The left-top image is the input image
with the original predicted probability for the ground-truth class shown in the left-top box. The first 2 rows show the masked images in the
positive group. For this examples, all the masked images have smaller predicted probabilities than the original unmaimage. The remaining

rows show the masked images in the negative group. Although the first several images in the negative group have the predicted probabilities
larger than some images in the positive group, the ground-truth class is not the top-1.
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