




performance can be improved, these models achieve them

at the expense of limiting the capacity of a self-attention

layer due to the locality constraints. Also, sophisticated

designs might be needed such as the shifted window and

the masked attention method in the SWin-Transformer [32].

The quad-tree based aggregating method proposed in the

NesT [62] shows another promising direction. In a simi-

lar spirit, the Evo-ViT [55] presents a method of selecting

top-k informative tokens for applying the self-attention to

reduce the cost. The A-ViT [57] presents a method of halt-

ing tokens via reformulating the adaptive computation time

(ACT) method. Both Evo-ViT and A-ViT can achieve linear

complexity, but they mainly focus on image classification

tasks, and it is not clear how to extend them for downstream

tasks such as object detection and semantic segmentation.

Like the PVT models [47, 48], our goal is to develop a ver-

satile variant of ViT that can tackle not only image classi-

fication, but also many downstream vision tasks which use

high-resolution images as inputs and need to retain suffi-

cient high-resolution information throughout.

Another family of approaches exploits low-rank pro-

jections to form a coarser-grained representation of the

input sequence, which have shown successful applica-

tions for certain NLP tasks such as the LinFormer [46],

Nyströmformer [54] and Synthesizer [40]. Even though

these methods retain the capability of enabling each token to

attend to the entire input sequence, they suffer from the loss

of high-fidelity token-wise information, and on tasks that

require fine-grained local information, their performance

can fall short of full attention or the aforementioned sparse

attention. Similarly, the Performer [7] presents a method

for Softmax attention kernel approximation via positive Or-

thogonal Random features for the Query and the Key. The

proposed PaCa-ViT is motivated by addressing the redun-

dancy of information within patches in patch-to-patch at-

tention in computer vision applications, and shares the spirit

of low-rank projection based efficient Transformer models.

Our PaCa is most similar to Linformers [46], but with two

main differences: Our PaCa applies clustering (i.e. CN,M )

before computing the Key and the Value (Fig. 2 (b)), unlike

Linformers which apply direct projection after the Key and

the Value are computed (i.e., E · K and F · V , see Eqn.7

in the Linformer paper). Our PaCa reduces the sequence

length via a learnable and data-adaptive cluster assignment

CN,M , rather than treating the projection(s), E and F , as

sequence length specific model parameters.

In addition to achieve the efficiency, driven by XAI [18]

and the natural curiosity of humanity, it is always desirable

to understand what is going on inside different ViTs. Most

XAI efforts have been focused on convolutional neural net-

works. More recently, some attention has been attracted

to explaining the vanilla isotropic ViT models based on

the attention scores themselves. As pointed out in the Im-

proved LRP [4], reducing the explanation to only the atten-

tions scores may be myopic since many other components

are ignored. The proposed PaCa provides a direct forward

explainer by visualizing the learned cluster assignments as

heatmaps, which is complementary to existing approaches.

Our Contributions. This paper makes two main con-

tributions for developing efficient and interpretable variants

of Transformers in computer vision applications: (i) It pro-

poses a Patch-to-Cluster Attention (PaCa) module that fa-

cilitates learning more expressive and meaningful “visual

tokens” beyond patches in ViTs. It addresses the quadratic

complexity of vanilla patch-to-patch attention, while ac-

counting for the spatial redundancy of patches in the patch-

to-patch attention. It also enables a forward explainer for

interpreting the trained models based on the learned seman-

tically meaningful clusters. (ii) It proposes a PaCa seman-

tic segmentation head network that is lightweight and more

expressive than the widely used UperNet [53] and the se-

mantic FPN [27]. With the two main contributions, the pro-

posed PaCa ViTs show superior performance consistently

in image classification, object detection and instance seg-

mentation and image semantic segmentation than the prior

art including SWin-Transformers [32] and PVTs [47, 48].

3. Approach
In this section, we present details of the proposed PaCa

module and the resulting PaCa-ViT models.

3.1. From Patch­to­Patch Attention to Patch­to­
Cluster Attention

Denote by XN,C an input sequence consisting of N “to-

kens” which are embedded in a C-dimensional space. In

computer vision, the N tokens are formed via patch em-

bedding. We have N = H × W where H and W are the

height and width of the patch grid respectively 1. Positional

encoding can also be added to counter the permutation in-

sensitivity of the self-attention computation [13, 45].

The core of the Transformer model is to compute the

scaled dot-product attention in transforming the input XN,C

to the output YN,C ,

AN,M = Softmax(
QN,C ·KT

M,C√
C

)dim=1,

YN,C = AN,M · VM,C , (1)

where QN,C ,KM,C and VM,C are the Query/Key/Value

computed from the input XN,C , e.g., via linear transforma-

tions in the patch-to-patch attention where M = N , which

leads to the quadratic complexity of computing AN,N . The

Softmax is applied for each row as indicated by the sub-

script dim = 1. In practice, the multi-head self-attention

(MHSA) is used to capture the attention in different sub-

spaces and fused by a linear projection [45]. To address the

1We will use the three notations XN,C , XH,W,C and X(HW )C inter-

changeably in this paper.









Method #Params (M)↓ FLOPs (G) ↓ Top-1 Acc. (%)↑
DeiT-T/16 [43] 5.7M 1.3 72.2

PVT-T [48] 13.2 1.9 75.1

PVTv2-B1 [47] 14.0 2.1 78.7

PaCa-Tiny (ours) 12.2 3.2 80.9 ↑2.2

DeiT-S/16 [43] 22.1 4.6 79.9

T2T-ViTt-14 [58] 22.0 6.1 80.7

PVT-S [48] 24.5 3.8 79.8

TNT-S [20] 23.8 5.2 81.3

SWin-T [32] 29.0 4.5 81.3

CvT-13 [51] 20.0 4.5 81.6

Twins-SVT-S [9] 24.0 2.8 81.3

FocalAtt-Tiny [56] 28.9 4.9 82.2

PVTv2-B2 [47] 25.4 3.9 82.0

PVTv2-B2-li [47] 22.6 4.0 82.1

PaCa-Small (ours) 22.0 5.5 83.08 ↑0.98

PaCamlp-Small (ours) 22.6 5.9 83.13 ↑1.03

PaCaec-Small (ours) 21.1 5.4 83.17 ↑1.07

T2T-ViTt-19 [58] 39.0 9.8 81.4

T2T-ViTt-24 [58] 64.0 15.0 82.2

PVT-M [48] 44.2 6.7 81.2

PVT-L [48] 61.4 9.8 81.7

CvT-21 [51] 32.0 7.1 82.5

TNT-B [20] 66.0 14.1 82.8

SWin-S [32] 50.0 8.7 83.0

SWin-B [32] 88.0 15.4 83.3

Twins-SVT-B [9] 56.0 8.3 83.2

Twins-SVT-L [9] 99.2 14.8 83.7

FocalAtt-Small [56] 51.1 9.4 83.5

FocalAtt-Base [56] 89.8 16.4 83.8

PVTv2-B3 [47] 45.2 6.9 83.2

PVTv2-B4 [47] 62.6 10.1 83.6

PVTv2-B5 [47] 82.0 11.8 83.8

PaCa-Base (ours) 46.9 9.5 83.96 ↑0.76

PaCaec-Base (ours) 46.7 9.7 84.22 ↑1.02

Table 1. Top-1 accuracy comparison in IN1K validation set using

the single center crop (224×224) evaluation protocol. The relative

improvement of our PaCa models are computed with respect to the

PVTv2 models (underlined) with similar parameters.

posed PaCa ViT obtains consistently better performance

than many variants of ViTs including the baseline PVTv2,

which justifies the effectiveness of the proposed patch-to-

cluster attention. With the onsite stage-wise clustering set-

ting, clustering-via-MLP (Eqn. 6) is slightly better than

clustering-via-convolution (Eqns. 4 and 5). The external

clustering (Fig. 4) outperforms the onsite clustering (Fig. 3)

slightly. Fig. 6 shows some examples of the learned clus-

ters. Efficiency. In terms of efficiency based on FLOPs, the

proposed PaCa models are slightly worse at the resolution

of 224 × 224 in IN1K. As aforementioned, the efficiency

will significantly improve and outperform other variants in

downstream tasks with higher resolution images.

4.2. Object Detection and Instance Segmentation

The challenging MS-COCO 2017 benchmark [31] is

used, which consists of a subset of train2017 (118k images)

and a subset of val2017 (5k images). Following the com-

mon settings, we use the IN1K pretrained PaCa ViT models

as the feature backbone, and test them using the Mask R-

CNN framework [21] under the 1x schedule.

Accuracy. Table 2 shows the comparisons. The pro-

posed PaCa models obtain consistently better performance

than other ViT variants. The clustering-via-MLP obtains

slightly better performance than both the clustering-via-

Backbone #Params (M) FLOPs (G) APb APb
50

APb
75

APm APm
50

APm
75

PVT-T [48] 32.9 - 39.8 62.2 43.0 37.4 59.3 39.9

PVTv2-B1 [47] 33.7 259∗ 41.8 64.3 45.9 38.8 61.2 41.6

PaCa-Tiny (ours) 32.0 252∗ 43.3 66.0 47.5 39.6 62.9 42.4

ResNet-50 [22] 44.2 260 41.0 61.7 44.9 37.1 58.4 40.1

SWin-T [32] 47.8 264 43.7 66.6 47.7 39.8 63.3 42.7

Twins-SVT-S [9] 44.0 228 43.4 66.0 47.3 40.3 63.2 43.4

FocalAtt-T [56] 48.8 291 44.8 67.7 49.2 41.0 64.7 44.2

PVT-S [48] 44.1 245 43.0 65.3 46.9 39.9 62.5 42.8

PVTv2-B2 [47] 45.0 325∗ 45.3 67.1 49.6 41.2 64.2 44.4

PaCa-Small (ours) 41.8 296∗ 46.4 68.7 50.9 41.8 65.5 45.0

PaCamlp-Small (ours) 42.4 303∗ 46.6 69.0 51.3 41.9 65.7 45.0

PaCaec-Small (ours) 40.9 292∗ 45.8 68.0 50.3 41.4 64.9 44.5

SWin-S [32] 69.1 354 46.5 68.7 51.3 42.1 65.8 45.2

SWin-B [32] 107.1 497 46.9 69.2 51.6 42.3 66.0 45.5

FocalAtt-S [56] 71.2 401 47.4 69.8 51.9 42.8 66.6 46.1

FocalAtt-B [56] 110.0 533 47.8 70.2 52.5 43.2 67.3 46.5

Twins-SVT-B [9] 76.3 340 45.2 67.6 49.3 41.5 64.5 44.8

PVT-M [48] 63.9 302 42.0 64.4 45.6 39.0 61.6 42.1

PVT-L [48] 81.0 364 42.9 65.0 46.6 39.5 61.9 42.5

PVTv2-B3 [47] 64.9 413∗ 47.0 68.1 51.7 42.5 65.7 45.7

PVTv2-B4 [47] 82.2 516∗ 47.5 68.7 52.0 42.7 66.1 46.1

PVTv2-B5 [47] 101.6 573∗ 47.4 68.6 51.9 42.5 65.7 46.0

PaCa-Base (ours) 66.6 373∗ 48.0 69.7 52.1 42.9 66.6 45.6

PaCaec-Base (ours) 61.4 372∗ 48.3 70.5 52.6 43.3 67.2 46.6

Table 2. Object detection and instance segmentation on MS-

COCO val2017 [31] using the IN1K pretrained backbones and

the Mask R-CNN [21] with the 1x (12-epoch) training sched-

ule in training. FLOPs are computed at the input resolution of

1280× 800. ∗computed using the torchprofile package.

Backbone Head #Params (M) FLOPs (G) mIOU

PVT-T [48]

Semantic

FPN [27]

17.0 33.2 35.7

PVT-S 28.2 44.5 39.8

PVT-M 48.0 61.0 41.6

PVT-L 65.1 79.6 42.1

PVTv2-B1 [47] 17.8 34.2 42.5

PVTv2-B2 29.1 45.8 45.2

PVTv2-B3 49.0 62.4 47.3

PVTv2-B4 66.3 81.3 47.9

PVTv2-B5 85.7 91.1 48.7

SWin-T [32]

UperNet [53]

60 941 44.5

SWin-S 81 1038 47.6

SWin-B 121 1188 48.1

FocalAtt-T [56]

UperNet [53]

62 998 45.8

FocalAtt-S 85 1130 48.0

FocalAtt-B 126 1354 49.0

PaCa-Tiny (ours)

UperNet [53]

41.6 229.9∗ 44.49

PaCa-Small (ours) 51.4 242.7∗ 47.6

PaCa-Base (ours) 77.2 264.1∗ 49.67

PaCa-Tiny (ours)

PaCa (ours)

13.3 34.4∗ 45.65

PaCa-Small (ours) 23.2 47.2∗ 48.3

PaCamlp-Small (ours) 24.0 50.0∗ 48.2

PaCaec-Small (ours) 22.2 46.4∗ 46.2

PaCa-Base (ours) 48.0 68.5∗ 50.39

PaCaec-Base (ours) 48.8 68.7∗ 48.4

Table 3. Semantic segmentation on MIT-ADE20k [64] with the

crop size 512×512 using the IN1K pretrained backbones. FLOPs

are computed at the input resolution of 512 × 512. ∗computed

using the torchprofile package.

convolution and the external clustering with the small

model configuration. With the base model configuration,

the external clustering is slightly better than the clustering-

via-convolution. Efficiency. Overall, our PaCa models are

significantly more efficient as shown by the FLOPs compar-

ing with the baseline PVTv2.

4.3. Semantic Segmentation

The MIT-ADE20k [64] benchmark is used, which is a

challenging dense prediction task consisting of L = 150
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A. Model Specifications

We provide details of the model specifications shown in

Fig. 7 (elaborated on the Fig. 3 in the paper) and Fig. 8

(elaborated on the Fig. 4 in the paper).

B. Implementation Details

B.1. Experimental Details of Image Classification

For image classification in the IN1K [12], all models in

Sec. 4.1 are trained on the training set for fair com-

parisons with the top-1 accuracy (%) on the validation

set. The training receipt is adopted from DeiT [43],

which has been widely used in training ViT variants. Ta-

ble 5 shows the exact configurations used in our exper-

iments. Data Augmentation in Training: we apply

random cropping, random horizontal flipping [38], label-

smoothing regularization [39], mixup [61], and random

erasing [63] as data augmentations. During training, we em-

ploy AdamW [34] with a momentum of 0.9, a mini-batch

size of 128, and a weight decay of 0.05 to optimize models.

The initial base learning rate is set to 5 × 10−4 and de-

creases following the cosine schedule [33]. The drop-path

regularization is also used [23]. All of our PaCa ViT models

are trained for 300 epochs from scratch on 10 A100 GPUs

with a learning rate auto-scaling heuristic method applied

(see Table 5). Evaluation: We apply a single center crop

(224 × 224) on the validation set in evaluating the classifi-

cation accuracy. We us the latest timm package [49].

B.2. Experimental Details of Object Detection and
Instance Segmentation

We use the proposed PaCa ViT models (Tiny, Small and

Base) as the feature backbones in the Mask R-CNN [21]

and test them on the MS-COCO [31] dataset. All models in

Sec. 4.2 are trained on MS-COCO train2017 (118k im-

ages) and evaluated on val2017 (5k images). We use the

MMDetection [5] package (version 2.25.2) in experiments.

We apply the weights pre-trained on IN1K to initialize the

backbone and Xavier [16] in initializing the remaining lay-

ers in the Mask R-CNN (the default in the MMDetection).

We adopt the 1x schedule in training (i.e., 12 epochs used in

training). In both training and evaluation, the shorter side of

the input image is fixed to 800 pixels with the longer side re-

tained not exceeding 1, 333 pixels. We train Mask R-CNN

with our PaCa ViT backbones using batch size 16 on 8 A100

GPUs (i.e., 2 images per GPU) 3, following the recipes in

the MMDetection package which use the AdamW [34] opti-

3We follow the provided recipes and do not apply the auto-scaling

heuristic to take advantage of the 10 GPUs we have on the server (that

is done for IN1K training, see Table 5), since we observe the auto-scaling

heuristic has more significantly negative impacts on performance on the

downstream tasks and the training on the downstream tasks consumes

much less time than that in IN1K.

Config. Value

batch size 128

train interpolation ’bicubic’

epochs 300

opt ’adamw’

opt eps 1e-8

opt betas (0.9, 0.999)

momentum 0.9

weight decay 0.05

auto scale lr true

lr 5e-4

min lr 5e-6

sched ’cosine’

warmup epochs 5

warmup lr 5e-7

cooldown epochs 0

amp True

clip grad none (T, S) / 1.0 (B)

clip mode norm

drop path rate 0.1 (T, S) / 0.5 (B)

color jitter 0.4

smoothing 0.1

reprob 0.25

remode ’pixel’

recount 1

aa ’rand-m9-mstd0.5-inc1’

mixup 0.8

cutmix 1.0

mixup prob 1.0

mixup switch prob 0.5

mixup mode ’batch’

Table 5. Training configurations used in training the proposed

PaCa ViT models in IN1K following the timm package [49]. We

train three model specifications: Tiny (T), Small (S) and Base (B).

This training receipt is adapted from [43] and often applied and

tuned for training with 8 GPUs. We use 10 GPUs to take the

full advantage of the server we have and to speed up the exper-

iments. Accordingly, we apply a heuristic “auto scale lr” setting

which scales “lr”, “min lr” and “warmup lr” in this table with the

factor “batch size × nb gpus / 512” (i.e., 2.25 in our settings) to

account for the increased number of total images per batch with

10 GPUs used. We note that scaling these learning rate related hy-

perparamters often has slightly negative effects on performance.

mizer with an initial learning rate of 1×10−4, and a weight

decay 0.05. The parameters of the normalization layers are

excluded from the weight decay.

B.3. Experimental Details of Image Semantic Seg­
mentation

We use the proposed PaCa ViT models (Tiny, Small and

Base) as the feature backbones and two different segmen-

tation head sub-networks, the UpperNet [53] and our pro-

posed PaCa segmentation head (Sec. 3.4). We test them on

the MIT-ADE20k [64] dataset. In training, we randomly

resize and crop images to the resolution of 512 × 512. In

evaluation, images are resized to have a shorter side of 512





ing the head sub-network (the default in the MMSegmenta-

tion). We train our PaCa models with 160k iterations using

batch size 16 on 8 A100 GPUs (i.e., 2 images per GPU). We

adopt the default recipes provided in the MMSegmentation

package, using the AdamW [34] optimizer with an initial

learning rate of 6 × 10−5 for the backbone, and 6 × 10−4

for the head sub-network, and a weight decay 0.01. The pa-

rameters of the normalization layers are excluded from the

weight decay. As mentioned in Sec. 4.3, we increase the

number of clusters used in the backbone from 100 to 200 to

account for the increased number of ground-truth classes in

the MIT-ADE20k (150 classes). Due to this change, we set

the initial learning rate to 6 × 10−4, the same as the head

sub-network, for the clustering layer (Eqn. 5).

C. Examples of Learned Clusters

We show all the clusters elaborating Fig. 6 in the paper

in Figures 9 and 10.
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