


Bundle Adjustment (BA) is necessary to jointly optimize

the camera poses and 3D points in a top-down manner. The

success of BA indicates that a global perspective is vital

for accurate 3D reconstruction, however, their input feature

tracks are the bottom-up cues without enough holistic con-

straints for the 3D scenes. To this end, we study to integrate

the top-down information into the SfM system by propos-

ing a novel Level-S2fM. Fig. 1 illustrates a representative

case for the classic SfM systems that generate more flying

3D scene points, which can be addressed by our method.

Our Level-S2fM is inspired by the recently-emerged

neural implicit surface that could manage all 3D scene

points as the zero-level set of the signed distance function

(SDF). Because the neural implicit surfaces can be param-

eterized by Multi-Layer Perceptrons (MLPs), it could be

viewed as a kind of top-down information of 3D scenes and

is of great potential for accurate 3D reconstruction. How-

ever, because both the 3D scene and camera poses are to be

determined, it poses a challenging problem:

How can we optimize a neural SDF (or other neu-

ral fields such as NeRF) from only a set of uncal-

ibrated images without any 3D information?

Most recently, the above problem was partially answered

in BARF [18] and NeRF- - [42] that relaxed the requirement

of optimizing Neural Radiance Fields [24] without know-

ing accurate camera poses, but they can only handle the un-

known pose configurations in small-scale face-forwarding

scenes. Moreover, when we confine the problem in the in-

cremental SfM pipelines, it would be more challenging as

we need to optimize the neural fields with only two over-

lapped images at the initialization stage. To this end, we

found that the optimization of neural SDF can be accom-

plished by the 2D matches at the initialization stage, and

facilitate the management of feature tracks by querying the

3D points and tracing the 2D keypoints in a holistic way.

As shown in Fig. 1, we define a neural network that pa-

rameterizes an SDF as the unified representation for the

underdetermined 3D scene and accomplishes the computa-

tions of PnP for camera pose intersection, the 3D points tri-

angulation as well as the geometry refinement on the param-

eterized SDF. In the initialization stage with a pair of over-

lapped images, Level-S2fM uses the differentiable sphere

tracing algorithm [19] to attain the corresponding 3d points

of the keypoints and calculate the reprojection error to drive

the joint optimization. For the traced 3d points with small

SDF values and 2D reprojection errors for its feature track,

they are added into a dynamic point set and take the point

set with feature tracks as the Lagrangian representation for

the level sets. Because the pose estimation and the scene

points reconstruction are sequentially estimated, the estima-

tion errors will be accumulated. To this end, we present an

NBA (i.e., Neural Bundle Adjustment) that plays a similar

role as in Bundle Adjustment, but it optimizes the implicit

surface and camera poses from the explicit flow of points

by the energy function of the reprojection errors, which can

be viewed as an evolutionary step between Lagrangian and

Eulerian representations as discussed in [23].

In the experiments, we evaluate our Level-S2fM on a va-

riety of scenes from the BlendedMVS [45], DTU [14], and

ETH3D [34] datasets. On the BlendedMVS dataset, our

proposed Level-S2fM clearly outperforms the state-of-the-

art COLMAP [32] by significant margins. On the DTU and

ETH3D datasets [14, 34], our method also obtains on-par

performance with COLMAP for both camera pose estima-

tion and dense surface reconstruction, which are all com-

puted in one stage.

The contributions of this paper are in two folds:

• We present a novel neural SfM approach Level-S2fM,

which formulates to optimize the coordinate MLP net-

works for implicit surface and radiance field and esti-

mate the camera poses and scene geometry. To the best

of our knowledge, our Level-S2fM is the first implicit

neural SfM solution on the zero-level set of surfaces.

• From the perspective of neural implicit fields learning,

we show that the challenging problems of two-view

and few-view optimization of neural implicit fields can

be addressed by exploiting the inductive biases con-

veyed in the 2D correspondences. Besides, our method

presents a promising way for neural implicit rendering

without knowing camera extrinsics beforehand.

2. Related Works

2.1. Structure from Motion

There has been a vast body of literature on Structure

from Motion. Since an SfM system consists of many com-

ponents, tremendous efforts have been devoted to improv-

ing the core components of SfM. In particular, the learning

techniques were introduced in a variety of subproblems in-

cluding image matching [7, 31], feature track mining and

management [39], two-view 3D reconstruction [38,44], rel-

ative and absolute camera pose estimation [13] and Bundle

Adjustment [3, 37]. Those studies indicated that the learn-

ing paradigms are promising to improve the quality of 3D

reconstruction. However, to the best of our knowledge, the

learning paradigms are not fully equipped in SfM systems.

One possible reason for such a fact is that the many learn-

ing approaches are designed in a supervised learning fash-

ion, which remains some risks on the out-of-distribution

samples. The self-supervised learning approaches [9, 22]

in 3D vision alleviated the requirement of data annotations,

however, they have not been fully exploited in the whole

pipeline of SfM. In contrast to the aforementioned studies,

in this paper, we are interested in integrating the learning
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ability into the SfM system without incurring any external

data annotations. From the perspective of system design in

SfM, we verified that the strong inductive biases conveying

in the 2D correspondences are promising and meaningful to

drive the learning and optimization of SfM.

2.2. Neural Implicit Representation for 3D Scene

Recently, the advent of neural implicit fields [24, 28, 29,

40,41,46] have greatly advanced many 3D vision problems

such as novel-view synthesis [1,24] and surface reconstruc-

tion [28, 29, 40, 46] by learning to optimize the coordinate

MLPs from a set of posed RGB images of which the key to

success is that the inductive biases of 3D are exploited by

the neural networks. However, when the camera poses are

invalid, it is hard to optimize the coordinate MLPs for neu-

ral implicit fields. To remedy this, the state-of-the-art SfM

system, COLMAP [32], is extensively used to compute the

camera poses as a preprocessing step.

To train the neural field from unknown poses directly,

recently, BARF [18] and NeRF [42] explored to jointly op-

timize the camera poses and neural fields by the volumetric

rendering with promising results obtained in forward-facing

scenes. BARF can also work in some scenes of highly

overlapped and dense image collections with the initialized

poses as inputs. This problem was also studied in the RGB-

D SLAM systems [2, 36, 47], however, their works mainly

rely on the known depth information and focus on the cam-

era pose tracking by the neural implicit fields. Therefore,

how to optimize implicit neural fields from only a set of un-

calibrated images without any 3D information input is still

a challenging and open problem.

In this paper, we study the unknown-pose neural fields

optimization and SfM together and present a unified so-

lution that simultaneously learns the implicit surfaces and

radiance fields alongside the camera pose estimation and

scene reconstruction from a set of images.

3. Preliminaries

In this section, we introduce the preliminaries on neural

implicit surface rendering and the notations in SfM, which

are all extensively used in our method.

3.1. Neural Implicit Surface Rendering

The volumetric rendering of neural implicit surface [46]

aims at learning a signed distance function dΩ : R3 → R

by the volumetric rendering from a set of posed images and

then extracting the zero-level set of ϕ as the reconstructed

surface model of the image set. The state-of-the-art ap-

proach, VolSDF [46], integrates SDF representations with

neural volume rendering via Laplacian distribution by

Ã(x) =
1

´
Ψβ(−dΩ(x)), (1)

where ´ is a learnable parameter in VolSDF [46]. Based on

Eq. (1), the volume rendering equation renders a ray x(t)
emanating from a camera position o ∈ R

3 in unit direction

v, defined by x(t) = o+ tv by

I(o,v) =

∫
∞

0

L(x(t),n(t),v)Ã(x(t))T (t)dt, (2)

where L(x,n,v) is the radiance field and n(t) is the normal

direction of the point x(t) defined by n(t) = ∇xdΩ(x(t)).
In the learning of volume rendering, two coordinate MLP

(Multi-Layer Perceptron) networks parameterize the SDF

by ϕ(x) = (d(x), z(x)) ∈ R
1+256 and the radiance

field by Lψ(x,n,v, z) ∈ R
3, and train them by the

color loss LRGB(ϕ, È, ´) and the Eikonal loss Leik(ϕ) =
Ez(|∇d(z)∥ − 1).

In this paper, we use the equations (1) and (2) as the ba-

sic tools for Level-S2fM. To make the optimization of SDF

and radiance networks easier, we set ´ as a small constant

number and use the multi-resolution grid representations to

avoid the potential of slow convergence and catastrophic

forgetting since the scene scale is unknown and the origi-

nal VolSDF [46] requires to normalize the known camera

poses in a certain scale.

3.2. Ray Sampling and Sphere Tracing

Iterative Ray Sampling. In the implementation, the con-

tinuous form of Eq. (2) is approximated in

I(o,v) ≈

m−1∑
i=1

Ä̂iL(x(ti),n(ti),v), (3)

where {ti}
m
i=1 is the discrete samples, 0 = t1 < t2 < . . . <

tm = M , M is some large constant. Ä̂i ≈ Ä(si)∆s is

the approximated PDF multiplied by the interval length. In

VolSDF [46], {ti}
m
i=1 is adaptively computed according to

the opacity approximation error. Please move to [46] for

its detail. In our method, we keep using this iterative sam-

pling strategy when the rendering loss and the Eikonal loss

is used. However, because the sampling set {ti} would be

large, we do not use this strategy to compute the 3D points

from 2D keypoints in our Level-S2fM and in turn to use the

sphere tracing [10] as a faster way since our initial develop-

ment of this work.

Sphere Tracing. Sphere tracing is a geometric method to

render the depth from a signed distance function. Different

from iterative ray sampling, sphere tracing is designed to hit

the surface point along the ray x(t) with queries as few as

possible. To make it clear, we use si to denote the ray stamp

of the queried point x(si). With the queried point x(si),
the next ray stamp si+1 is computed by si+1 = ϕ(x(si)).
In our study, we sample at most Ns = 20 points with the

stop criterion |ϕ(si)| < ε, where ε is set to 0.002 in our

experiment.
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Remarks. Although both the iterative ray sampling [46]

and sphere tracing [10] share the same target of computing

the surface point along a ray, they have different behaviors

in the neural implicit surface optimization. In detail, be-

cause VolSDF [46] aims at approximating the opacity by

SDF, it updates the SDF network ϕ(x) by the rendering loss

Lcolor. As for sphere tracing, it is a geometric approach that

only takes the SDF values into account for the computa-

tion. Such a difference is trivial to some extent, however,

we found that their different focuses induce a loss function

in our Level-S2fM to constraint the rendered depth values

(or 3D points) for two-view initialization and 3D point tri-

angulation.

3.3. Notations in SfM

Correspondence Search. Given the image set I =
{Ii|i = 1 . . . NI} for reconstruction, the keypoint fea-

tures of the image Ii computed by SIFT [21] is denoted

in Fi = {(xj , fj)}, where xj ∈ R
2 is the 2D coor-

dinate and fj ∈ R
128 is the feature descriptor of xj .

Based on the SIFT features, we follow the schema in

COLMAP [32] to establish the feature correspondences

across views, in which we first do the exhaustive match-

ing for all possible image pairs and then use the geomet-

ric verification to filter out the non-overlapped image pairs.

After this, the potentially overlapped image pairs are de-

noted in C = {(Ia, Ib)|Ia, Ib ∈ I}, and the keypoint

correspondences in the pair (Ia, Ib) are denoted in the set

Mab = {{(xk, fk), (x
′

l, f
′

l )} |(xk, fk ∈ Fa, (x
′

l, f
′

l ) ∈ Fb}.
Finally, all the prepared correspondences are organized as

the scene graph [32, 35], which stores images as the graph

nodes and the overlapped image pairs as the graph edges. In

our Level-S2fM, we use the established correspondences to

drive the learning of MLPs, estimate the camera poses, and

reconstruct a sparse point set of correspondences.

3D Scene Points and Feature Tracks. Because SfM is

designated to simultaneously estimate the scene geometry

from 2D correspondences, every successfully reconstructed

3D scene point is sourced from multiple 2D keypoint ob-

servations. To facilitate the representation, we denote the

expected 3D point set in X = {Xk ∈ R
3|k = 1, . . . , N3d}.

For each point Xk ∈ X , if it is reconstructed from the 2D

keypoint xj ∈ Fi, we denote such a relationship in a tuple

(k, i, j). T = {(k, i, j)} is the set of feature tracks.

4. The Proposed Level S2fM

In this section, we present the details of our Level-S2fM.

As shown in Fig. 2, our method consists of three classical

components including 1) the two-view geometry initializa-

tion, 2) the new frame registration, and 3) the new frame

pose refinement, an implicit surface and a radiance field that

are parameterized by neural networks. In what follows, we

will show how to solve the SfM problem by learning the

implicit fields with 2D correspondences. We assume the

intrinsic matrix K is known and fixed.

4.1. Two­view Initialization

We first select two good views {Ia, Ib} for initialization

from the scene graph and get their 2D matches Mab =
{{(xk, fk), (x

′

l, f
′

l )}|(xk, fk) ∈ Fa, (x
′

l, f
′

l ) ∈ Fb}. Based

on the 2D matches Mab, we leverage the 5-point algo-

rithm [27] and RANSAC to obtain the poses Pa, Pb ∈
SE(3).

With the estimated camera poses Pa, Pb, it is straightfor-

ward to optimize the SDF network ϕ(x) and the radiance

field network Lψ(x,n,v, z) defined in Sec. 3 by minimiz-

ing the loss items LRGB and Leik as done in VolSDF [46].

However, it should be noted that the learning of volumet-

ric surface rendering in such a way for the two-view in-

puts would trap into the local minimal by overfitting. To

this end, we propose to use the differentiable sphere track-

ing [10, 19] for the corresponding rays in image Ia and Ib,

which provides strong inductive biases for the optimization

of networks.

Specifically, denoted by a pair of feature match (xk, x
′

l)
in the image pair (Ia, Ib), the sphere tracing obtains the

surface point Xk
a = oa + t̂ada from the SDF and X

l
b =

ob+t̂bdb, where (oa,da) is the ray of xk, (ob,db) is the ray

of x′l. For the computation of t̂a and t̂b, please move to our

supplementary materials. Ideally, the X
k
a and X

l
b should be

as close as possible, therefore, we introduce a reprojection

loss

Lreproj =
1

2V

∑
(∥x̂k − x

′

l∥2 + ∥x̂
′

l − xk∥2), (4)

where V is the number of correspondences, x̂k =
Π(Xk

a,K, Pb) and x̂′l = Π(Xl
b,K, Pa) are the projected

2D coordinates of the traced 3D points by the projection Π.

Considering the fact that the correspondences are sparse

when the SDF network is not well optimized at some rays,

the sparse sample points by sphere tracing on the SDF net-

work may be either inaccurate or erroneous as shown in

Fig. 3. Therefore, we use a depth consistency loss Ldc to

minimize the depth estimated by the sphere tracing and the

volumetric rendering by

Ldc =
1

B

∑
∥t̂i −

∫
∞

0

T (t)Ã(x(t))dt∥, (5)

where the rays x(t) are randomly sampled from the im-

ages, and those rays are also used to compute the color loss

LRGB. For the computation of Eikonal loss Leik, all the 3D

points visited by sphere tracing and dense ray marching are

used.

In summary, our two-view initialization of Level-S2fM

computes the total loss Linit
total by

Linit
total = ³1Lreproj + ³2Leik + ³3LRGB + ³4Ldc, (6)
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points. This loss function acts as the similar role of Ldc
in two-view initialization. Without it, similar phenomenon

like Fig. 3 will happen.

For the new 2D keypoints that are matched to the added

images but without 3D information, both the reprojection

loss similar to the two-view initialization and the tracing

loss is used to yield the triangulation loss Ltri by

Ltri = L
mask
reporj + Ltracing, (9)

where Lmask
reporj only considers the 2D correspondences of

which their distance between the 2D projections of the

traced 3D points traced in different views are smaller than a

loose threshold (45 pixels in our implementation).

4.4. Neural Bundle Adjustment on Surfaces

Because the camera pose estimation and the points tri-

angulation are separated, which will involve accumulative

errors for pose estimation and triangulation, as well as the

implicit networks. Motivated by the Bundle Adjustment

that is extensively used in classical approaches, we present a

Neural Bundle Adjustment (NBA) that jointly optimizes the

estimated camera points, the 3D point set, and the implicit

networks as a refinement step. To avoid costly computation,

our NBA step finds the closest surface points to dynamically

update those variables.

Denoted by the reconstructed 3D point set X and the

feature track T , the camera poses P = {P1, . . . , PK} and

the corresponding images {I1, . . . , IK}, as well as the net-

works ϕ(x) and Lψ , in each step of NBA, we update the 3D

point X ∈ X by

X← X− ϕ(X)∇ϕ(X), (10)

and then compute the reprojection loss according to the fea-

ture track T to jointly optimize the ϕ the SDF network, P
the estimated camera poses, and X the updated 3D point

set. For the radiance network Lψ , the rendering loss for

randomly sampled rays is computed.

In our implementation, we leverage our NBA by three

times, which we call the 1-frame NBA, local NBA, and

global NBA. Because the rendering loss involves more rays,

we only use it for the 1-frame NBA after the camera regis-

tration and point triangulation. In terms of local NBA, for

the newly added view, only the related views with corre-

spondences are considered. After running the 1-frame and

local NBA schemes, we globally update all reconstructed

views and the point set. By leveraging the backpropagation,

all the mentioned variables are updated as the refinement.

5. Experiments

5.1. Implementation Details, Datasets, and Metrics

Implementation Details. In our implementation, we pa-

rameterize the SDF ϕ(x) by a multi-resolution features grid

and a two-layers MLP. To accelerate the computation, we

follow InstantNGP [26] to use a hash table [25] for the fea-

ture grids. The radiance field Lψ is also implemented in

a multi-resolution feature grid and a three-layer MLP. Be-

cause our end task is the geometric 3D reconstruction, we

use a high-resolution multi-scale feature grid for the SDF

to ensure the accuracy of scene geometry but use a low-

resolution feature grid to avoid the unnecessary computa-

tion cost for the radiance field. The specifications of the net-

work architecture are given in supplementary material due

to the limited space. All of these above are implemented in

PyTorch [30], and we used the Adam [16] as the optimizer

for the geometric calculations. For the 2D image matching

and pose graph, we keep them the same with our baseline,

COLMAP [32] for fair comparisons.

Datasets. Three datasets are used for our evaluation.

Firstly, we use 5 representative scenes including the Ly-

ingStatue, Stone, Fountain, Horse, and Statues from the

BlendedMVS dataset [45] in our evaluation because it pro-

vides accurate ground truth of camera poses and contains a

number of challenging scenes for SfM. Secondly, the DTU

dataset for the MVS task is also used. The five representa-

tive scenes (scans of 24, 37, 65, 110 and 114) are used in our

experiments. Finally, we evaluate our proposed method on

the five scenes from the challenging ETH3D [34] dataset.

Evaluation Metrics. In our evaluation, we use the Ro-

tation error and ATE to quantitatively benchmark the pose

accuracy, which simply depicts the difference between the

ground truth and the aligned pose. During our evalua-

tion, we used the provided API of Reconstruction Align in

COLMAP [32] to do that. In terms of the reconstructed

scene geometry, we use accuracy (Acc) and the precision

(Prec) rate to evaluate the accuracy of our recovered 3D

points and Chamfer-l1 distance to depict the accuracy of the

reconstructed surface. Detailed definitions of these evalua-

tion metrics are given in the supplementary material.

5.2. Results on the BlendedMVS Dataset

Tab. 1 reports the quantitative evaluation results for the

two versions of Level-S2fM and COLMAP [32]. The full

version of Level-S2fM used all the mentioned components

while the wo/render version removed the rendering loss for

optimization. As it is reported, our Level-S2fM (full) con-

sistently outperforms COLMAP [32] for camera pose es-

timation and sparse 3D point cloud reconstruction. It also

reveals that rendering losses are required.

In detail, our Level-S2fM (full) averagely reduced the

estimation error from 1.54◦ by COLMAP [32] to 0.86◦, ob-

taining a relative improvement of 55.84%. For the trans-

lation error, our Level-S2fM (full) decreases the error from

3.54 cm to 3.36 cm. For the sparse 3D point cloud recon-

struction, the ACC metric is reduced from 3.16 to 2.25 for

the full model and 2.63 for the wo/render version.
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Scenes

Camera Pose Evaluation Points Cloud Results Evaluation

Rotation (◦) ³ Translation (cm) ³ Acc(cm)³, Prec(f3.5cm)↑

COLMAP [32]
Level-S2fM

(full)

Level-S2fM

(wo/render)
COLMAP [32]

Level-S2fM

(full)

Level-S2fM

(wo/render)
COLMAP [32]

Level-S2fM

(full)

Level-S2fM

(wo/render)

LyingStatue 1.20 1.12 1.31 0.89 2.18 2.67 Acc:0.83 Prec:0.99 Acc:1.35 Prec:0.99 Acc:1.76 Prec:0.98

Stone 0.63 0.31 0.54 6.28 5.51 9.17 Acc:5.44 Prec:0.66 Acc:3.61 Prec:0.68 Acc:5.04 Prec:0.64

Fountain 4.34 1.65 2.32 7.41 2.87 4.11 Acc:1.91 Prec:0.91 Acc:1.13 Prec:0.98 Acc:1.14 Prec:0.96

Horse 0.33 0.94 0.92 1.18 5.71 7.58 Acc:3.99 Prec:0.86 Acc:4.18 Prec:0.71 Acc:4.18 Prec:0.70

Statues 1.21 0.36 0.44 1.98 0.56 0.62 Acc:1.31 Prec:0.98 Acc:0.95 Prec:0.99 Acc:1.02 Prec:0.99

Mean 1.54 0.86 1.11 3.54 3.36 4.83 Acc:3.16 Prec:0.85 Acc:2.25 Prec: 0.87 Acc:2.63 Prec:0.85

Table 1. Quantitative results on the BlendedMVS dataset. For our Level-S2fM, we report the results by full version and an wo/render

version that removes the rendering loss during optimization.

Figure 4. The reconstructed meshes, point clouds and camera

poses for the Fountain and Horse scenes on the BlendedMVS

dataset by our Level-S2fM (full). In the first column, the recon-

structed scene geometry and the camera poses are shown together.

For the 3D models, we show the different views of the sparse 3D

points during the training and the textured meshes refused from

the zero-level set surface.

Pose Source LyingStatue Stone Fountain Horse Statues Mean

COLMAP 29.1 28.4 25.4 23.5 29.2 27.12

Level-S2fM (Ours) 29.5 28.9 27.1 23.6 30.2 27.86

GT 29.5 29.4 27.4 24.1 31.1 28.3

Table 2. Novel View Synthesis Comparison. The PSNR is used

to compare the camera poses computed by COLMAP, Level-S2fM

and the GT poses on the BlendedMVS dataset.

Fig. 4 shows the reconstruction results by our method.

Apart from the direct evaluation of the SfM results on

the BlendedMVS dataset, we further compare the camera

poses estimation results for different methods by training

the NGP [26] (a fast version of NeRF [24]) to compare the

performance of novel view synthesis in Tab. 2. As it is re-

ported, the rendered images by our camera poses are con-

sistently better than the ones by COLMAP poses.

5.3. Results on the DTU Dataset

We conducted the evaluation on the DTU to illustrate

the promising future of our Level-S2fM to unify the pose

estimation, dense reconstruction, and novel view synthesis

problems in one stage. For the comparison to COLMAP,

we use their built-in PatchMatch MVS [33] functionality to

obtain the dense surface points and then leverage its default

surface reconstruction method (i.e., Poisson surface [15])

Scan
COLMAP [32] Level-S2fM (Ours)

Chamfer-ℓ1 Rot. Err. Trans. Err. Chamfer-ℓ1 Rot. Err. Trans. Err.

24 2.176 0.38 2.87 2.442 0.81 4.60

37 3.837 0.41 4.86 3.023 0.31 4.29

65 4.394 0.45 4.23 3.190 0.74 5.81

110 3.389 0.65 6.36 5.902 0.82 6.82

114 3.577 0.35 3.58 2.092 0.14 1.85

Mean 3.330 0.448 4.38 3.474 0.564 4.67

Table 3. Quantitative results on DTU dataset. The Chamfer-

ℓ1 distance of the dense reconstruction results and as the errors of

rotation and translation for camera pose estimation, are compared

for COLMAP and our Level-S2fM. The unit of Chamfer-ℓ1 and

Translation errors are in millimetres.
Scene Detector & Matcher courtyard relief door terrace2 facade

COLMAP [32]
SIFT [21]

0.10°/0.016m 0.10°/0.003m 0.16°/0.002m 0.14°/0.002m 0.06°/0.016m

Level-S2fM (Ours) 0.21°/0.047m 0.09°/0.003m 0.19°/0.006m 0.13°/0.003m 0.12°/0.059m

COLMAP [32]
SP [7]+SG [31]

– 0.36°/0.007m 0.37°/0.003m 0.16°/0.003m 0.04°/0.014m

Level-S2fM – 0.42°/0.003m 0.34°/0.007m 0.12°/0.002m 0.10°/0.051m

Table 4. Quantitive results of pose estimation on the five scenes

in ETH3D dataset for COLMAP [32] and our proposed Level-

S2fM by using different keypoint detector and matcher.

to obtain the mesh model. For our Level-S2fM, we use

the MarchingCubes [20] to extract the mesh models from

the zero-level set of the implicit surface. The quantitative

evaluation results are shown in Tab. 3. In this dataset, our

Level-S2fM obtains on-par performance with COLMAP.

5.4. Results on the ETH3D Dataset

We test our method on a more challenging dataset,

ETH3D [34], which includes both sparse view collections

for multi-scale outdoor and indoor scenes. To show the

influence of different keypoint detection and matching al-

gorithms for our method, we additionally make a compar-

ison with SuperPoint (SP) [7] for detection and SuperGlue

(SG) [31] for keypoint matching. As reported in Tab. 4, our

method achieves comparable results with COLMAP [32].

However, we observe that our method gets slightly inferior

results in some large-scale outdoor scenes, because of the

limited representative capability of a single network for a

large-scale scene.

5.5. Ablation Study

In this section, we elaborate on why and how the SDF-

based Triangulation (short in SDF-Tri) and NBA work in
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