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We use Majorana operators to study entanglement dynamics under random free fermion unitary evolution

and projective measurements in one dimension. For certain choices of unitary evolution, namely, those which

swap neighboring Majorana operators, and measurements of neighboring Majorana bilinears, one can map the

evolution to the statistical model of completely packed loops with crossings (CPLC) and study the corresponding

phase diagram. We generalize this model using the language of fermionic Gaussian states to a general free

fermion unitary evolution acting on neighboring Majorana operators and numerically compute its phase diagram.

We find that both the Goldstone and area-law phases persist in this new phase diagram, but with a shifted phase

boundary. One important qualitative aspect of the new phase boundary is that even for the case of commuting

measurements, the Goldstone phase persists up to a finite nonzero measurement rate. This is in contrast with

the CPLC, in which noncommuting measurements are necessary for realizing the Goldstone phase. We also

numerically compute the correlation length critical exponent at the transition, which we find to be near to that

of the CPLC, and give a tentative symmetry-based explanation for some differences in the phase transition line

between the CPLC and generalized models.
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I. INTRODUCTION

Recently, the study of “hybrid” quantum circuits, involv-

ing both unitary dynamics and projective measurements, has

received a great deal of attention [1–3]. By focusing on the

ensemble of quantum trajectories of pure states defined by the

various measurement outcomes, one can study new types of

nonequilibrium phase transitions, with the canonical example

being the “entanglement transition.” In the entanglement tran-

sition, the ensemble-averaged entanglement entropy changes

from scaling as an area law to scaling as a volume law as

the measurement rate is decreased. A closely related concept

is that of a “purification” transition, where instead of pure

quantum state trajectories one studies the purifying behavior

of an initial maximally mixed state.

In the special case of free fermion dynamics [4]—i.e.,

unitaries which are exponentials of bilinears of the creation

and annihilation operators, and measurements only of Fock

space mode occupation numbers—the mixed (or “volume

law”) phase is known to be unstable to any nonzero measure-

ment rate [5]. However, such free fermion dynamics can still

accommodate an interesting phase transition from a purifying

phase to a so-called “Goldstone” phase [6]. The latter still

exhibits purifying behavior, but on time scales parametrically

longer in system size. More precisely, in the Goldstone phase

the entropy for a system of length L after a time of order L

scales as log L (whereas in the purifying phase this entropy

would be close to 0, i.e., the state would have approximately

purified long before this time scale was reached). This phase

transition can be realized in a specific free fermion model, one

that can be solved [7] by exact mapping to a known statistical
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mechanical model, the completely packed loop model with

crossings (CPLC) [6].

A natural question one may ask is, how generic is the

CPLC phase diagram in the context of free fermion hybrid

dynamics? In other words, do the area-law and Goldstone

phases persist when the dynamics is deformed slightly away

from the specific point dual to the CPLC model? Is the phase

transition still continuous, and is it in the same universality

class as that of the CPLC model?

In this paper, we investigate these questions by extending

the CPLC-dual free fermion model to a more general family

of free fermion models. Specifically, following Ref. [7], the

CPLC-dual model has a convenient description in terms of a

one-dimensional chain of Majorana fermions, as follows: The

unitary gates swap a neighboring pair of Majoranas (γ1 →
γ2, γ2 → −γ1), and the measurements measure the occupa-

tion number of a free fermion mode defined by a neighboring

pair of Majoranas. These gates are implemented with respect

to one pairing of Majoranas and its complementary pairing

in an alternating fashion, as described in detail below. The

phase diagram is a function of two parameters, p and q, which

control the rate of measurements and the asymmetry between

the two complementary pairings of Majoranas, respectively.

Our generalized model replaces the SWAP gate, which may

be thought of as a π
2

rotation in the SO(2) that rotates γ1

into γ2, by a rotation by a random angle inside this SO(2).

The measurement gates are as in the CPLC model, and the

phase diagram is once again a function of the two parameters

p and q.

Our generalized model no longer admits an easily solvable

statistical mechanical dual, although in principle some sta-

tistical mechanical dual should exist, as discussed below. To

study it, we therefore instead leverage the free fermion nature

of the dynamics to perform efficient Monte Carlo simulations

using the Gaussian state formalism. The essential feature of
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both the CPLC and our generalized models which makes this

possible is the fact that, for a particular quantum trajectory,

the many-body quantum state of 2N Majoranas remains Gaus-

sian, meaning that it can be efficiently encoded in a correlation

matrix with O(N2) entries. This allows us to avoid having to

simulate dynamics in a Hilbert space exponentially large in

N . Ultimately, this is just a consequence of the free fermion

nature of the dynamics.

We find that the general features of the CPLC phase di-

agram persist in the generalized model. The area-law and

Goldstone phases remain, but the phase transition between

them shifts slightly. An important qualitative difference is

that the Goldstone phase persists down to finite p < 1 for

q = 0, 1 in the generalized model, in contrast to the CPLC.

This implies that the unitaries in the generalized model are

more scrambling in some sense than those of the CPLC,

because they can support the Goldstone phase with commut-

ing projectors (i.e., at q = 0, 1). The CPLC, on the other

hand, requires noncommuting measurements [8–11] to sup-

port the Goldstone phase. Our result is consistent with the

fact that a volume entanglement law cannot be maintained

in free Fermi systems at finite measurement rates [5,12], and

it comports with the results found in Ref. [13] in the case

of continuous monitoring and bears resemblance to the re-

sults of Refs. [14,15] in the case of nonunitary free fermion

evolution (see also Ref. [16] for additional exploration of

free fermion phases and phase transitions with weak mea-

surements and Refs. [17,18] for further study of the phase

transition from an area-law phase to a logarithmic phase).

We would also like to note that the transitions found in the

CPLC have also been studied using entanglement negativity

and other measures in the context of monitored dynamics in

Ref. [19].

We also perform a finite-size scaling analysis that allows

us to extract a correlation length critical exponent ν ≈ 2.4 for

the generic transition between the two phases. The accuracy of

our analysis is not sufficient to definitively conclude that this

corresponds to a different universality class from the CPLC

model, which has νCPLC ≈ 2.75 [6].

The rest of this paper is structured as follows. In Sec. II we

review the CPLC model and construct the duality mapping

between this model and a free fermion hybrid dynamics. In

particular, we highlight the connection between the “spanning

number” in the CPLC model and the entropy in the quantum

model. In Sec. III we discuss more general free fermion mod-

els and introduce the Guassian state formalism that allows

us to efficiently simulate them. In Sec. IV we present the

results of our Monte Carlo numerical simulations of the more

general free fermion models. In Sec. V we summarize our

results and consider future directions. In particular, we dis-

cuss a qualitative change in the shape of the phase boundary

between the CPLC-dual and generalized models and propose

a symmetry-based explanation of this difference.

II. EXACTLY SOLVABLE MODEL OF FREE FERMION

HYBRID DYNAMICS

This section outlines a particular implementation of the

duality between the CPLC and a quantum model of Ma-

jorana world lines, first proposed in Ref. [7]. We consider

a one-dimensional chain of N spinless fermions and write

the operator algebra in terms of 2N Majorana fermions γk

(k = 1, . . . , 2N). These are related to the usual creation and

annihilation operators a j, a
†
j ( j = 1, . . . , N) by

γ2 j−1 = a j + a
†
j ,

γ2 j = i(a j − a
†
j ),

a j = 1
2
(γ2 j−1 − iγ2 j ),

a
†
j = 1

2
(γ2 j−1 + iγ2 j ).

We have iγ2 j−1γ2 j = (−1)n j = 1 − 2n j , where n j = a
†
j a j is

the occupation number operator at site j, taking eigenvalues 0

and 1.

A. Hybrid unitary-measurement circuit

We take periodic boundary conditions, so that a subscript

of N + 1 below is to be interpreted as 1. The time step is

labeled by a positive integer, and the protocol depends on the

parity of this time step. p and q are two real numbers between

0 and 1 which serve as control parameters. For convenience,

let us first define the two-Majorana unitary gate Ur,r+1 (r =
1, . . . , 2N) by

Ur,r+1 =
1

√
2

(1 − γrγr+1). (1)

This gate acts as follows:

Ur,r+1γrU
†
r,r+1 = γr+1,

Ur,r+1γr+1U
†
r,r+1 = −γr

while commuting with all γ j , j �= r, r + 1.

a. Odd time steps. We perform two-Majorana gates on

all pairs (2 j − 1, 2 j) ( j = 1, . . . , N ) of nearest-neighbor Ma-

joranas. For each such pair (2 j − 1, 2 j) the gate is chosen

randomly from three possibilities: (1) with probability p we

act with U2 j−1,2 j ; (2) with probability (1 − p)q we measure

iγ2 j−1γ2 j ; and (3) with probability (1 − p)(1 − q) we do noth-

ing, i.e., act with the identity gate.

b. Even time steps. We perform two-Majorana gates on

all pairs (2 j, 2 j + 1) ( j = 1, . . . , N ) of nearest-neighbor Ma-

joranas. For each such pair (2 j, 2 j + 1) the gate is chosen

randomly from three possibilities: (1) with probability p we

act with U2 j,2 j+1; (2) with probability (1 − p)(1 − q) we

measure iγ2 jγ2 j+1; and (3) with probability (1 − p)q we do

nothing, i.e., act with the identity gate.

This protocol is illustrated in Fig. 1. We note here a symme-

try: With periodic boundary conditions, sending q → (1 − q)

is equivalent to shifting each Majorana operator by 1, γk →
γk+1; since none of the operations depend explicitly on the

index k, this is a symmetry. Thus the phase diagrams will have

q ↔ (1 − q) symmetry. We expect that with open boundary

conditions, the symmetry will still hold in the thermodynamic

limit.

B. Connection to completely packed loop model with crossings

Having defined our quantum model, we now describe how

to map it exactly to a known statistical mechanical model,
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FIG. 1. The protocol for the hybrid dynamics described in the

text. The vertical direction represents time. Odd and even time steps

correspond to the two complementary ways of pairing up neigh-

boring Majoranas; for each such pairing, nearest-neighbor gates are

applied which either perform a measurement (and record the out-

come), apply a certain unitary gate, or do nothing.

the completely packed loop model with crossings (CPLC).

To do this, it will be useful to introduce the notion of a

fermionic stabilizer of a state |�〉 in our 2N -dimensional

many-body Fock space. We define a set of stabilizers as a

collection of N independent commuting bilinears iγkγl , such

that for each bilinear, iγkγl |�〉 = ± |�〉. This implies that

each γk , 1 � k � 2N , appears exactly once in the set of bi-

linears. A state is a stabilizer state if such a set of stabilizers

exist.

The notion of a fermionic stabilizer state is useful because

it is preserved by our dynamics: The quantum trajectory of

an initial stabilizer state consists only of stabilizer states. To

see this, let us assume that we have a stabilizer state |�〉, and

let us act with one time step of our dynamics, analyzing the

action of each of the gates in turn. If the gate is the iden-

tity, certainly the stabilizer nature of the state is unchanged,

since the state itself is unchanged. If the gate is Ur,r+1, then,

up to sign, this just exchanges the two Majoranas γr and

γr+1; so the state remains a stabilizer state, with the stabilizer

given by composing the permutation σ by the exchange of

r and r + 1. Finally, let us analyze what happens when we

measure iγrγr+1. First, in the case when r and r + 1 are

already paired by the stabilizer, the state is an eigenstate of

iγrγr+1, so a measurement just reads off the eigenvalue but

does not change the state. Now suppose that r and r + 1 are

not paired up by the stabilizer, so that r is paired up with s

and r + 1 is paired up with t . For the purpose of measuring

iγrγr+1, we may then imagine the system to just consist of

γr, γr+1, γs, γt , i.e., the system is the four-dimensional Fock

space defined by these four Majorana operators. This is be-

cause the remaining Majoranas are decoupled, with the state a

(graded) tensor product between this four-dimensional system

and that defined by the remaining Majoranas. Now, since

|�〉 is an eigenstate of γrγr+1γsγt , measuring the commuting

operator iγrγr+1 brings it to an eigenstate of both of these,

and hence also of iγsγt = −(iγrγr+1)(γrγr+1γsγt ). Hence the

new state is stabilized by iγrγr+1 and iγsγt , together with

all of the previous stabilizers. This can be seen as a type of

entanglement swapping [20] between the Majorana fermions

due to the joint measurement iγrγr+1. Note that this new set

of stabilizers is independent of the measurement outcome

[21].

FIG. 2. A trajectory of the circuit model with measurements,

shown here with open boundary conditions. Rotated by 45◦, it be-

comes a configuration of the completely packed loop model with

crossings (CPLC). The solid thick lines are Majorana world lines.

The spanning number ns is given by the number of lines connecting

the bottom (initial state) and top (final state) of the configuration.

Here, ns = 2, given by the two yellow lines.

The pairing rules so described can be tracked by represent-

ing the trajectory by a configuration of loops, as in Fig. 2.

The loops can be viewed as inhabiting a checkerboard pattern

of squares, corresponding to an alternating sequence of even

and odd steps in time (vertical direction). Each square has one

of three different types of configurations in it: an exchange

(corresponding to a unitary gate), a configuration preserving

the position of the two Majoranas (corresponding to doing

nothing), and a “capped off” configuration (corresponding to

measuring that Majorana bilinear). Thus, by the discussion in

the previous paragraph, the stabilizers of the final state are

given by the pairing of the top endpoints in the diagram, as

illustrated in Fig. 3.

The probability of each configuration occurring is the prod-

uct of the various probabilities p, (1 − p)q, and (1 − p)(1 −
q) over all the squares of the checkerboard pattern. This is just

the Boltzmann weight of the completely packed loop model

with crossings (CPLC) [6].

FIG. 3. This simplified graphical view of the fermionic stabilizer

state shows how the world lines connect parts of the state in Fig. 2.

The dotted ovals denote which Majoranas are paired up into physical

fermions. The bipartite entanglement between two regions is 1

2
log 2

times the number of Majorana world lines connecting them. Here, the

entanglement between the second and third physical fermion (region

indicated by red bracket) and the rest of the system is 2 · 1

2
log 2 =

log 2.
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C. Spanning number and entropy

In the previous section we outlined a correspondence be-

tween a model of free fermion hybrid dynamics and the

CPLC. In order for this correspondence to be useful, we have

to identify corresponding observables on the two sides. On the

CPLC side, the observable we will compute is the spanning

number ns on a cylinder, with periodic boundary conditions in

space, open boundary conditions in time, and both space and

time having length L. The spanning number is defined as the

number of Majorana world lines that connect the two bound-

aries of the cylinder (i.e., “span” the cylinder). Its average is

computed by weighing the various CPLC configurations with

the Boltzmann weights defined above.

The spanning number has an appealing physical interpre-

tation in our free fermion model in terms of entropy. For

specificity we will work with the second Rényi entropy, but

we note that for fermionic stabilizer states the Rényi and

von Neumann entropies all coincide. The clearest way to

formulate this is by bringing in another “ancilla” copy of

the many-body Hilbert space, spanned by ancilla Majorana

fermions γ ′
j (1 � j � 2N ), and taking an initial state |�0〉

which is stabilized by iγ jγ
′
j (1 � j � 2N ). The portion of

this state on the original Hilbert space is then maximally

mixed, and the free fermion dynamics may purify it to some

extent, since it includes measurements. At the final time L, the

entanglement entropy between the system and the ancilla is

given by 1
2

log 2 times the number of stabilizers of the final

state that link the system and ancilla. The number of such

stabilizers is simply the number of world lines that link the

bottom (initial) and top (final) edge of the spacetime, i.e., just

the spanning number ns. Thus the final state entropy, averaged

over quantum trajectories, is precisely the average spanning

number, up to the factor of 1
2

log 2.

Reference [6] shows that the spanning number is an order

parameter for the phases that appear in the CPLC. Specifically,

there are two phases, as shown in Fig. 4: the short-loops phase

and the Goldstone phase, with the spanning number scaling as

0 and log L, respectively, in the thermodynamic limit defined

above. Hence, in the hybrid dynamics, the short-loops phase

corresponds to the area-law phase. Reference [6] explores

several features of this phase diagram. In particular, it is noted

that at p = 0 (i.e., the case of measurements only) the CPLC

reduces to a model of the bond percolation transition tuned by

q. Furthermore, at both q = 0 and q = 1, it is shown that the

field theory describing the CPLC model possesses an extra

U(1) symmetry which guarantees that the short-loops phase

extends all the way to p = 1. At values of q different from

0, 1
2
, 1, there is a transition from the short-loops phase to the

Goldstone phase at some p with 0 < p < 1. Reference [6]

studies this phase transition at p = 1
2
, q = 0.82 and extracts

a correlation length scaling exponent ν = 2.745(19).

Furthermore, there is a distinction between the two short-

loops phases, which is identified as being a topological

distinction. At q > 1
2

with open boundary conditions, the

configurations will tend to have a long macroscopic loop

circling the configuration, which is absent when q < 1
2
. This is

reminiscent of an edge mode in a topological insulator; thus

in the Anderson localization language, these two short-loops

phases correspond to trivial and topological insulating phases.

FIG. 4. Phase diagram for the CPLC model [6]. The difference

in Goldstone and short-loops phases is determined by the behavior

of the spanning number ns. In the short-loops phases, 〈ns〉 decreases

with increasing system size. In the Goldstone phase, 〈ns〉 increases

logarithmically with system size. The spanning number generalizes

to the second Rényi entropy in our more general fermion model.

The difference in the short-loops-I and short-loops-II phases is de-

termined by the existence or absence of a macroscopic loop or edge

mode around the configuration; see Fig. 3 of Ref. [6].

The goal for the remainder of this paper is to examine the

extent to which the CPLC phase diagram, viewed in terms of

the hybrid dynamics, is robust to more general free fermion

dynamics. In order to pursue this, we now introduce the for-

malism of Gaussian states.

III. MORE GENERAL FREE FERMION MODELS:

GAUSSIAN STATE FORMALISM

To generalize beyond the specific case of the CPLC dual,

we will replace the unitary gate Ur,r+1, which, up to sign, just

swaps γr and γr+1, with a more general local free fermion

unitary gate. Namely, we will consider unitary operators of the

form U = exp( 1
4
Ai jγiγ j ) with A being a real antisymmetric

2n × 2n matrix. The action of U by conjugation is an orthog-

onal rotation of the 2n Majoranas:

UγiU
−1 = exp(−Ai j )γ j .

As far as measurements, the most general measurements we

might want to consider are of the fermion linear optics (FLO)

type [22], which can always be thought of as projecting onto

eigenstates of some iγaγb operator, after appropriate basis

transformation. However, for this work we will simply retain

the exact same measurements as in the CPLC-dual model

introduced above.

The generalization we will investigate involves taking the

same protocol as above, but for the unitary gates, instead of

applying the fixed unitary Ur,r+1 defined above, we draw one

randomly from the class of all two-Majorana unitaries. All

such unitaries have the action

γ1 → cos(α)γ1 − sin(α)γ2,

γ2 → sin(α)γ1 + cos(α)γ2 (2)
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for some α; the case of the Ur,r+1 defined above corresponds

to α = −π
2

. In our general model we will draw α randomly

from between 0 and 2π .

Because acting with a generic unitary gate of the above

form now maps a Majorana operator to a superposition of

Majorana operators, we can no longer apply the stabilizer

formalism of Sec. II to relate entanglement entropy to span-

ning number. Instead, we will perform numerical Monte Carlo

studies of the hybrid dynamics. The numerics will start with a

maximally mixed state ρ0 and apply

ρ0 → CρC†/Tr Cρ0C†, (3)

where C is a (nonunitary) circuit made up of a product of

randomly chosen unitaries and projectors corresponding to

a particular quantum trajectory. Specifically, the probability

density associated with a particular circuit C is equal to

the CPLC Boltzmann weight [a product of powers of p, q,

(1 − p), and (1 − q)], multiplied by the uniform probability

density associated with the choice of each unitary, multiplied

by the Born probability Tr Cρ0C† associated with the mea-

surement outcomes in C. Even though the states appearing in

the quantum trajectories are no longer stabilizer states, they

still have the property of being “Gaussian,” and this allows for

efficient numerical simulation. We now review the formalism

of these Gaussian states.

Gaussian state formalism

This exposition follows Ref. [22] closely. First, let us de-

fine a Gaussian state. A mixed state ρ can be viewed as an

operator and, as such, has some expansion in polynomials

in the γi. Given such an expansion, with each γi appearing

to a power 0 or 1 in each term, we can form an associated

element of a Grassmann algebra by replacing each γi with

a Grassmann number θi. ρ is then called Gaussian if the

corresponding Grassmann algebra element is of the form

1

2N
exp

(

i

2
θT Mθ

)

,

where M is a 2N × 2N real antisymmetric matrix, called

the covariance matrix of the state. Each such M can be

transformed, by an orthogonal rotation, to block-diagonal

form with N 2 × 2 blocks on the diagonal. Each block is

antisymmetric, and so determined by a number λi on the

off-diagonal, where −1 � λi � 1 for all i. The |λi| are called

the Williamson eigenvalues of M, and a pure state corresponds

to all |λi| = 1.

Let us see how a Gaussian state evolves under our hybrid

evolution. First, evolving ρ under free fermion unitary trans-

formations is easy: We just conjugate M by the rotation in

Eq. (2) (rotating on the appropriate 2d subspace of the 2N

Majoranas and acting as the identity on the complement).

The result is the covariance matrix of the new state, which

remains Gaussian. Now let us consider evolving ρ under a

measurement of iγ jγ j+1 (with postselection, i.e., projecting

onto an eigenspace of iγ jγ j+1 and normalizing). Reference

[22] shows that in this case the normalized, postselected post-

measurement state remains Gaussian. Its covariance matrix

M ′, for the measurement outcome s = ±1, is determined as

follows. Let K be the antisymmetric matrix whose entries

(p, q) (i.e., row p column q) are (δp, jδq, j+1 − δp, j+1δq, j ). Let

L = (I − sMK )−1M. Then the M ′
p,q = Lp,q if p, q /∈ { j, j +

1}, and M ′
p,q = sKp,q otherwise. This turns out to have all

Williamson eigenvalues equal to +1 if M does as well, so

pure states indeed evolve into pure states. The probability of

the outcome s is 1
2
Pf(M) Pf (sK − M−1), where Pf denotes

the Pfaffian.

We can try to simplify the equation for L using the

Taylor expansion. Since K is only nonzero in the j, j + 1

block, we find that KMK = −M j, j+1K . Thus (MK )n =
(−M j, j+1)n−1MK , and a Taylor expansion of the form (1 −
x)−1 gives

(1 − sMK )−1 = 1 +
sMK

1 + sM j, j+1

. (4)

There are limits on when such a Taylor expansion is justified;

however, it can be shown by direct substitution that (4) is

indeed the inverse of (1 − sMK ). Thus

L = M +
sMKM

1 + sM j, j+1

.

Note that performing the evolution takes resources which are

polynomial in N , since we just have to follow the covariance

matrix rather than the full quantum many-body state. This is

the advantage of the Gaussian state formalism.

In terms of the Williamson eigenvalues λi, i = 1, . . . , N , of

M, the 2N many-body Schmidt eigenvalues are

1

2N

N
∏

i=1

(1 ± λi ), (5)

where each eigenvalue corresponds to one of the 2N choices

of sign for the ±λi. The von Neumann entanglement entropy

of the many-body state is thus

S2 = −
∑

i

[

1 − λi

2
log

(

1 − λi

2

)

+
1 + λi

2
log

(

1 + λi

2

)]

, (6)

which can be extracted by diagonalizing the covariance ma-

trix. The second Rényi entropy is

S2 = −
1

2
log Trρ2

= N log 2 −
∑

i

log(1 + λ2
i )

= N log 2 −
1

2
Tr log(1 − M2),

which can be extracted directly from the covariance matrix.

IV. RESULTS

A. Phase diagram

The model was numerically simulated on the Hyak super-

computer at the University of Washington. For each system

size, the evolution of 40 independent systems was run in

parallel using MATLAB’s Parallel Computing Toolbox.
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FIG. 5. Phase diagram for more general free fermion model, with

CPLC phase diagram for reference. The large blue dots are locations

in the phase diagram which are studied in more depth in this paper.

Note that on the top line, p = 1, all points represent the same phase

point, namely, the volume-law phase consisting of purely unitary

evolution. Note the q ↔ (1 − q) symmetry, mentioned in Sec. II.

Our main results are summarized in the phase diagram

given in Fig. 5. We find that the two distinct phases per-

sist in the more general free fermion model, though the

line separating them has changed. Figures 6–9 show detailed

results. Figure 7 shows the entropy scaling for the point

p = 0.7, q = 0.7, inside the Goldstone phase, demonstrating

that the logarithmic-law scaling persists in the more general

model.

One of the distinct differences between the models is the

existence of a phase transition on the boundaries of the phase

diagram, when q = 0, 1. In the CPLC model, these values of

q introduce an extra symmetry into the model, preventing a

phase transition [6]. However, we find a phase transition at

p = 0.72(2), q = 0, 1, shown in Fig. 6. The entropy scaling

for the point p = 0.8, q = 0 is shown in Fig. 9, a point which

would be in the area-law phase of the CPLC model. We

instead see a logarithmic-law scaling, demonstrating that it is

instead in the Goldstone phase of our model.

It is also worth noting that these new phase transitions

occur at the most experimentally feasible parts of the phase

diagram. At q = 0, all measurements in the evolution are of

on-site fermion parity, with no intersite projective measure-

ments. Furthermore, the measurements all mutually commute,

giving an entanglement transition that uses commuting projec-

tive measurements.

B. Extracting ν at the generic transition

A finite-size data collapse helps to confirm that this model

shows properties of critical phenomena. The underlying idea

is that near a phase transition, thermodynamic properties

should scale as a universal function of L/ξ , where L is the

(linear) system size and ξ is the correlation length [23,24].

For large system size and small reduced temperature t = (T −
Tc)/Tc around the critical temperature Tc, a thermodynamic

observable Q should go as

Q(L, T ) = Lκ/ν f (tL1/ν )

FIG. 6. Graphs of S for q = 1.00, p near 0.72 for the generalized

free fermion model. The data collapse values for pc and ν were

calculated by fitting the data to a fifth-order polynomial for various

values of pc, ν and finding the values which minimized the residual

sum of squares (sum of squares error). The data collapse indicates

the presence of a continuous phase transition for q = 1.00 near

p = 0.72, a feature of the generalized free fermion model that is not

shared with the CPLC.

for some function f . The intuition for this one parameter

scaling form is that as we approach the scale-invariant crit-

ical point, a change in length scale can be compensated by

a change in temperature. Here, ν is the correlation length

exponent.

In this paper, the tuning parameter T is not the temperature

but rather p or q, depending on context. Thus we define

x = N1/ν (T − Tc)

and make plots of the entropy S versus this parameter x. By

varying the values of ν and Tc, we attempt to find the value

that gives the best collapse of the data points onto a single line

in the plot.
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FIG. 7. Entropy law for a point inside the Goldstone phase in the

generalized free fermion model. The blue line is a fit to the logarithm

a log(bx) + c. The values obtained were a = 0.203, b = 0.281, c =
1.091. The 95% confidence bounds on a are (0.1957, 0.2107).

We first study the case p = 0.50, with q playing the role

of T . The results for this case are shown in Fig. 8. We get

the values for ν and qc by minimizing the error in fitting the

collapsed data to a fifth-order polynomial. We obtain values

qc = 0.64(6), ν ≈ 2.41(6). (7)

We note that the value for qc is smaller than for the p = 0.5

transition in the CPLC model, which is at qc,CPLC ≈ 0.82. The

value of ν is also smaller, with νCPLC ≈ 2.745 at p = 0.5 [6].

However, the uncertainties in ν from numerical errors and

possible irrelevant variables leave us unable to definitively

rule out the possibility that our model is in the same univer-

sality class as the CPLC transition.

Furthermore, we find a phase transition for the boundaries

of the phase diagram, q = 0, 1, where none exists in the CPLC

model. The data for this are shown in Fig. 6. Here, we obtain

values

pc = 0.72(2), ν ≈ 2.5(8).

This ν is larger than the value found at p = 0.5, though still

less than what was found for the CPLC model. Again, this

is consistent with the points being in the same universality

class.

V. DISCUSSION

In this paper we have investigated the purification

transition in certain fermionic models of hybrid unitary-

measurement dynamics in one dimension. We used an exact

duality from the known CPLC statistical mechanical model

to understand one particular case and then numerically inves-

tigated a particular generalization away from this tractable

FIG. 8. Graphs of S for p = 0.50, q near 0.64 in the general free

fermion model. The data collapse values for qc and ν were calculated

by fitting the data to a fifth-order polynomial for various values of qc,

ν and finding the values which minimized the residual sum of squares

(sum of squares error).

point. We found that the generalized model retains all of

the phases present in the exactly solved model, albeit with

slightly shifted phase boundaries. Although we only inves-

tigated one specific generalization away from the exactly

solvable fixed point, we expect this robustness to persist in

general.

One outstanding question that remains is to find a statisti-

cal mechanical dual for a general free fermion model in the

above class. If one is interested specifically in, say, the second

Rényi entropy, one may relatively easily write an expression

for it as a certain replica limit of a ratio of quantities which

have the interpretation of matrix elements of imaginary time

evolution operators, following Sec. VI of Ref. [25]. Following

the strategy used in the usual entanglement transition [26],

one may then hope to interpret these quantities as partition

functions of statistical mechanical model. One way to do

this is to insert resolutions of the identity on replicated sites

which are roughly integrals over SO(2N ) of SO(2N )-rotated
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FIG. 9. Entropy law for a point on the edge of the phase diagram

(q = 0.00). This point is in the area-law phase (short-loops phase)

of the CPLC model, but inside the Goldstone phase for the general

model. The blue line is a fit to the logarithm a log(bx) + c. The

values obtained were a = 0.238, b = 0.646, c = 1.228. The 95%

confidence bounds on a are (0.2282, 0.2473).

projectors. Although it will certainly be difficult to make rig-

orous statements about the replica limit, one may hope that

at least some symmetry-based arguments can be made. For

example, one may hope to explain the existence of a phase

transition at q = 0, 1 in the generalized models, in contrast

to the lack of such a transition in the CPLC-dual model, by

showing that the CPLC dual has an enhanced symmetry at

q = 0, 1 (see also Ref. [6]).

In addition, the CPLC model distinguishes between the

two short-loops phases; see Fig. 4. The “short-loops-II” phase

at q > 1
2

is distinguished by the existence of a macroscopic

loop which circles the configuration when open boundary

conditions are used. This is tied to a topological phase in

Ref. [6]. The two area-law phases in the generalized model are

also tied to the same topological phases, which in the quantum

system can be distinguished, e.g., by measuring a string order

parameter. How to define and numerically measure such an

order parameter in an associated statistical mechanical model

is a question that we leave for future investigation.

ACKNOWLEDGMENTS

This work was facilitated through the use of advanced com-

putational, storage, and networking infrastructure provided by

the Hyak supercomputer system and funded by the Student

Technology Fee at the University of Washington. J.M. and

L.F. were also supported by NSF Grant No. DMR-1939864.

[1] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-

tanglement transition in hybrid quantum circuits, Phys. Rev. B

100, 134306 (2019).

[2] B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced

Phase Transitions in the Dynamics of Entanglement, Phys. Rev.

X 9, 031009 (2019).

[3] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random

quantum circuits, arXiv:2207.14280 [Annu. Rev. Condens.

Matter Phys. (to be published)].

[4] C.-M. Jian, B. Bauer, A. Keselman, and A. W. W. Ludwig,

Criticality and entanglement in nonunitary quantum circuits and

tensor networks of noninteracting fermions, Phys. Rev. B 106,

134206 (2022).

[5] L. Fidkowski, J. Haah, and M. B. Hastings, How dynamical

quantum memories forget, Quantum 5, 382 (2021).

[6] A. Nahum, P. Serna, A. M. Somoza, and M. Ortuño, Loop

models with crossings, Phys. Rev. B 87, 184204 (2013).

[7] A. Nahum and B. Skinner, Entanglement and dynamics of

diffusion-annihilation processes with Majorana defects, Phys.

Rev. Res. 2, 023288 (2020).

[8] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-

induced topological entanglement transitions in

symmetric random quantum circuits, Nat. Phys. 17, 342

(2021).

[9] S. Sang and T. H. Hsieh, Measurement-protected quantum

phases, Phys. Rev. Res. 3, 023200 (2021).

[10] N. Lang and H. P. Büchler, Entanglement transition in the pro-

jective transverse field Ising model, Phys. Rev. B 102, 094204

(2020).

[11] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and

V. Khemani, Entanglement Phase Transitions in Measurement-

Only Dynamics, Phys. Rev. X 11, 011030 (2021).

[12] X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion

chain under continuous monitoring, SciPost Phys. 7, 024

(2019).

[13] O. Alberton, M. Buchhold, and S. Diehl, Entanglement

Transition in a Monitored Free-Fermion Chain: From Ex-

tended Criticality to Area Law, Phys. Rev. Lett. 126, 170602

(2021).

[14] X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent confor-

mal symmetry in nonunitary random dynamics of free fermions,

Phys. Rev. Res. 2, 033017 (2020).

[15] Q. Tang, X. Chen, and W. Zhu, Quantum criticality in the

nonunitary dynamics of (2 + 1)-dimensional free fermions,

Phys. Rev. B 103, 174303 (2021).

[16] G. Kells, D. Meidan, and A. Romito, Topological transitions

with continuously monitored free fermions, arXiv:2112.09787

[quant-ph].

[17] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and M. Schiró,

Measurement-induced entanglement transitions in the quantum

Ising chain: From infinite to zero clicks, Phys. Rev. B 103,

224210 (2021).

[18] X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schirò, Entan-

glement transitions from stochastic resetting of non-Hermitian

quasiparticles, Phys. Rev. B 105, L241114 (2022).

[19] S. Sang, Y. Li, T. Zhou, X. Chen, T. H. Hsieh, and M. P. A.

Fisher, Entanglement negativity at measurement-induced criti-

cality, PRX Quantum 2, 030313 (2021).

064303-8



ENTANGLEMENT TRANSITIONS WITH FREE FERMIONS PHYSICAL REVIEW B 107, 064303 (2023)

[20] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert,

“Event-Ready-Detectors” Bell Experiment Via Entanglement

Swapping, Phys. Rev. Lett. 71, 4287 (1993).

[21] The Majorana content of the stabilizers, specifically. The mea-

surement outcome affects an overall factor of ±1 on the

stabilizers, which will be unimportant in our analysis.

[22] S. Bravyi, Lagrangian representation for fermionic linear optics,

Quantum Inf. Comput. 5, 216 (2005).

[23] K. S. D. Beach, L. Wang, and A. W. Sandvik, Data collapse

in the critical region using finite-size scaling with subleading

corrections, arXiv:cond-mat/0505194.

[24] M. E. Fisher and M. N. Barber, Scaling Theory for Finite-

Size Effects in the Critical Region, Phys. Rev. Lett. 28, 1516

(1972).

[25] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measurement

and entanglement phase transitions in all-to-all quantum cir-

cuits, on quantum trees, and in landau-ginsburg theory, PRX

Quantum 2, 010352 (2021).

[26] R. Vasseur, A. C. Potter, Y.-Z. You, and A. W. W.

Ludwig, Entanglement transitions from holographic

random tensor networks, Phys. Rev. B 100, 134203

(2019).

064303-9


