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We use Majorana operators to study entanglement dynamics under random free fermion unitary evolution
and projective measurements in one dimension. For certain choices of unitary evolution, namely, those which
swap neighboring Majorana operators, and measurements of neighboring Majorana bilinears, one can map the
evolution to the statistical model of completely packed loops with crossings (CPLC) and study the corresponding
phase diagram. We generalize this model using the language of fermionic Gaussian states to a general free
fermion unitary evolution acting on neighboring Majorana operators and numerically compute its phase diagram.
We find that both the Goldstone and area-law phases persist in this new phase diagram, but with a shifted phase
boundary. One important qualitative aspect of the new phase boundary is that even for the case of commuting
measurements, the Goldstone phase persists up to a finite nonzero measurement rate. This is in contrast with
the CPLC, in which noncommuting measurements are necessary for realizing the Goldstone phase. We also
numerically compute the correlation length critical exponent at the transition, which we find to be near to that
of the CPLC, and give a tentative symmetry-based explanation for some differences in the phase transition line

between the CPLC and generalized models.
DOI: 10.1103/PhysRevB.107.064303

I. INTRODUCTION

Recently, the study of “hybrid” quantum circuits, involv-
ing both unitary dynamics and projective measurements, has
received a great deal of attention [1-3]. By focusing on the
ensemble of quantum trajectories of pure states defined by the
various measurement outcomes, one can study new types of
nonequilibrium phase transitions, with the canonical example
being the “entanglement transition.” In the entanglement tran-
sition, the ensemble-averaged entanglement entropy changes
from scaling as an area law to scaling as a volume law as
the measurement rate is decreased. A closely related concept
is that of a “purification” transition, where instead of pure
quantum state trajectories one studies the purifying behavior
of an initial maximally mixed state.

In the special case of free fermion dynamics [4]—i.e.,
unitaries which are exponentials of bilinears of the creation
and annihilation operators, and measurements only of Fock
space mode occupation numbers—the mixed (or “volume
law”) phase is known to be unstable to any nonzero measure-
ment rate [5]. However, such free fermion dynamics can still
accommodate an interesting phase transition from a purifying
phase to a so-called “Goldstone” phase [6]. The latter still
exhibits purifying behavior, but on time scales parametrically
longer in system size. More precisely, in the Goldstone phase
the entropy for a system of length L after a time of order L
scales as log L (whereas in the purifying phase this entropy
would be close to 0, i.e., the state would have approximately
purified long before this time scale was reached). This phase
transition can be realized in a specific free fermion model, one
that can be solved [7] by exact mapping to a known statistical
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mechanical model, the completely packed loop model with
crossings (CPLC) [6].

A natural question one may ask is, how generic is the
CPLC phase diagram in the context of free fermion hybrid
dynamics? In other words, do the area-law and Goldstone
phases persist when the dynamics is deformed slightly away
from the specific point dual to the CPLC model? Is the phase
transition still continuous, and is it in the same universality
class as that of the CPLC model?

In this paper, we investigate these questions by extending
the CPLC-dual free fermion model to a more general family
of free fermion models. Specifically, following Ref. [7], the
CPLC-dual model has a convenient description in terms of a
one-dimensional chain of Majorana fermions, as follows: The
unitary gates swap a neighboring pair of Majoranas (y; —
¥2, Y2 = —Y1), and the measurements measure the occupa-
tion number of a free fermion mode defined by a neighboring
pair of Majoranas. These gates are implemented with respect
to one pairing of Majoranas and its complementary pairing
in an alternating fashion, as described in detail below. The
phase diagram is a function of two parameters, p and ¢, which
control the rate of measurements and the asymmetry between
the two complementary pairings of Majoranas, respectively.
Our generalized model replaces the SWAP gate, which may
be thought of as a % rotation in the SO(2) that rotates y,
into y,, by a rotation by a random angle inside this SO(2).
The measurement gates are as in the CPLC model, and the
phase diagram is once again a function of the two parameters
pand gq.

Our generalized model no longer admits an easily solvable
statistical mechanical dual, although in principle some sta-
tistical mechanical dual should exist, as discussed below. To
study it, we therefore instead leverage the free fermion nature
of the dynamics to perform efficient Monte Carlo simulations
using the Gaussian state formalism. The essential feature of
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both the CPLC and our generalized models which makes this
possible is the fact that, for a particular quantum trajectory,
the many-body quantum state of 2N Majoranas remains Gaus-
sian, meaning that it can be efficiently encoded in a correlation
matrix with O(N?) entries. This allows us to avoid having to
simulate dynamics in a Hilbert space exponentially large in
N. Ultimately, this is just a consequence of the free fermion
nature of the dynamics.

We find that the general features of the CPLC phase di-
agram persist in the generalized model. The area-law and
Goldstone phases remain, but the phase transition between
them shifts slightly. An important qualitative difference is
that the Goldstone phase persists down to finite p < 1 for
g =0, 1 in the generalized model, in contrast to the CPLC.
This implies that the unitaries in the generalized model are
more scrambling in some sense than those of the CPLC,
because they can support the Goldstone phase with commut-
ing projectors (i.e., at ¢ =0, 1). The CPLC, on the other
hand, requires noncommuting measurements [8—11] to sup-
port the Goldstone phase. Our result is consistent with the
fact that a volume entanglement law cannot be maintained
in free Fermi systems at finite measurement rates [5,12], and
it comports with the results found in Ref. [13] in the case
of continuous monitoring and bears resemblance to the re-
sults of Refs. [14,15] in the case of nonunitary free fermion
evolution (see also Ref. [16] for additional exploration of
free fermion phases and phase transitions with weak mea-
surements and Refs. [17,18] for further study of the phase
transition from an area-law phase to a logarithmic phase).
We would also like to note that the transitions found in the
CPLC have also been studied using entanglement negativity
and other measures in the context of monitored dynamics in
Ref. [19].

We also perform a finite-size scaling analysis that allows
us to extract a correlation length critical exponent v ~ 2.4 for
the generic transition between the two phases. The accuracy of
our analysis is not sufficient to definitively conclude that this
corresponds to a different universality class from the CPLC
model, which has vepr c & 2.75 [6].

The rest of this paper is structured as follows. In Sec. I we
review the CPLC model and construct the duality mapping
between this model and a free fermion hybrid dynamics. In
particular, we highlight the connection between the “spanning
number” in the CPLC model and the entropy in the quantum
model. In Sec. III we discuss more general free fermion mod-
els and introduce the Guassian state formalism that allows
us to efficiently simulate them. In Sec. IV we present the
results of our Monte Carlo numerical simulations of the more
general free fermion models. In Sec. V we summarize our
results and consider future directions. In particular, we dis-
cuss a qualitative change in the shape of the phase boundary
between the CPLC-dual and generalized models and propose
a symmetry-based explanation of this difference.

II. EXACTLY SOLVABLE MODEL OF FREE FERMION
HYBRID DYNAMICS

This section outlines a particular implementation of the
duality between the CPLC and a quantum model of Ma-
jorana world lines, first proposed in Ref. [7]. We consider

a one-dimensional chain of N spinless fermions and write
the operator algebra in terms of 2N Majorana fermions y;

(k=1,...,2N). These are related to the usual creation and
annihilation operators a;, a} (j=1,...,N)by
V2j—-1 =a; + a;,

v =ila; — a;),

aj = %(sz'—l — iy2j),
a; = 1(nj1 +iva)).

We have iys;_1y2; = (—=1)" =1 —2n;, where n; = a;aj is
the occupation number operator at site j, taking eigenvalues 0
and 1.

A. Hybrid unitary-measurement circuit

We take periodic boundary conditions, so that a subscript
of N 4 1 below is to be interpreted as 1. The time step is
labeled by a positive integer, and the protocol depends on the
parity of this time step. p and g are two real numbers between
0 and 1 which serve as control parameters. For convenience,
let us first define the two-Majorana unitary gate U, 4| (r =
1,...,2N) by

1
Ur,r+1 = E(l - Vr)/r+l)~ (1)

This gate acts as follows:
Ur,r+l )/rU,T,H = Vr+1,

+
Ur,r+1 Vr+1 Ur,r+1 ==V

while commuting with all y;, j # r, 7 + 1.

a. 0dd time steps. We perform two-Majorana gates on
all pairs (2j — 1,2j) (j = 1, ..., N) of nearest-neighbor Ma-
joranas. For each such pair (2j — 1,2j) the gate is chosen
randomly from three possibilities: (1) with probability p we
act with U,;_1 2;; (2) with probability (1 — p)g we measure
iy2j—1y2j; and (3) with probability (1 — p)(1 — ¢g) we do noth-
ing, i.e., act with the identity gate.

b. Even time steps. We perform two-Majorana gates on
all pairs (2j,2j + 1) (j =1, ..., N) of nearest-neighbor Ma-
joranas. For each such pair (2j,2j 4 1) the gate is chosen
randomly from three possibilities: (1) with probability p we
act with Usjzj41; (2) with probability (1 — p)(1 —g) we
measure iy,;y2j+1; and (3) with probability (1 — p)g we do
nothing, i.e., act with the identity gate.

This protocol is illustrated in Fig. 1. We note here a symme-
try: With periodic boundary conditions, sending ¢ — (1 — q)
is equivalent to shifting each Majorana operator by 1, y —
Yx+1; since none of the operations depend explicitly on the
index k, this is a symmetry. Thus the phase diagrams will have
q < (1 — g) symmetry. We expect that with open boundary
conditions, the symmetry will still hold in the thermodynamic
limit.

B. Connection to completely packed loop model with crossings

Having defined our quantum model, we now describe how
to map it exactly to a known statistical mechanical model,
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FIG. 1. The protocol for the hybrid dynamics described in the
text. The vertical direction represents time. Odd and even time steps
correspond to the two complementary ways of pairing up neigh-
boring Majoranas; for each such pairing, nearest-neighbor gates are
applied which either perform a measurement (and record the out-
come), apply a certain unitary gate, or do nothing.

the completely packed loop model with crossings (CPLC).
To do this, it will be useful to introduce the notion of a
fermionic stabilizer of a state |¥) in our 2"-dimensional
many-body Fock space. We define a set of stabilizers as a
collection of N independent commuting bilinears iy;y;, such
that for each bilinear, iy y; |V) = & |W). This implies that
each y;, 1 < k < 2N, appears exactly once in the set of bi-
linears. A state is a stabilizer state if such a set of stabilizers
exist.

The notion of a fermionic stabilizer state is useful because
it is preserved by our dynamics: The quantum trajectory of
an initial stabilizer state consists only of stabilizer states. To
see this, let us assume that we have a stabilizer state |V), and
let us act with one time step of our dynamics, analyzing the
action of each of the gates in turn. If the gate is the iden-
tity, certainly the stabilizer nature of the state is unchanged,
since the state itself is unchanged. If the gate is U, ,+, then,
up to sign, this just exchanges the two Majoranas y, and
¥r+1; SO the state remains a stabilizer state, with the stabilizer
given by composing the permutation o by the exchange of
r and r 4 1. Finally, let us analyze what happens when we
measure iy,Y,+1. First, in the case when r and r 4+ 1 are
already paired by the stabilizer, the state is an eigenstate of
iYr¥r+1, SO @ measurement just reads off the eigenvalue but
does not change the state. Now suppose that r and r + 1 are
not paired up by the stabilizer, so that r is paired up with s
and r 4 1 is paired up with ¢. For the purpose of measuring
iYr¥r+1, We may then imagine the system to just consist of
Vrs Vr+1s Vs» Vi» 1.€., the system is the four-dimensional Fock
space defined by these four Majorana operators. This is be-
cause the remaining Majoranas are decoupled, with the state a
(graded) tensor product between this four-dimensional system
and that defined by the remaining Majoranas. Now, since
|W) is an eigenstate of y,y,+1¥sV:, measuring the commuting
operator iy,y,4 brings it to an eigenstate of both of these,
and hence also of iy,y; = — (¥, Vr+1)(VrVr+1VsV:)- Hence the
new state is stabilized by iy,y,+1 and iy,);, together with
all of the previous stabilizers. This can be seen as a type of
entanglement swapping [20] between the Majorana fermions
due to the joint measurement iy, y,+1. Note that this new set
of stabilizers is independent of the measurement outcome
[21].

FIG. 2. A trajectory of the circuit model with measurements,
shown here with open boundary conditions. Rotated by 45°, it be-
comes a configuration of the completely packed loop model with
crossings (CPLC). The solid thick lines are Majorana world lines.
The spanning number #, is given by the number of lines connecting
the bottom (initial state) and top (final state) of the configuration.
Here, n, = 2, given by the two yellow lines.

The pairing rules so described can be tracked by represent-
ing the trajectory by a configuration of loops, as in Fig. 2.
The loops can be viewed as inhabiting a checkerboard pattern
of squares, corresponding to an alternating sequence of even
and odd steps in time (vertical direction). Each square has one
of three different types of configurations in it: an exchange
(corresponding to a unitary gate), a configuration preserving
the position of the two Majoranas (corresponding to doing
nothing), and a “capped off” configuration (corresponding to
measuring that Majorana bilinear). Thus, by the discussion in
the previous paragraph, the stabilizers of the final state are
given by the pairing of the top endpoints in the diagram, as
illustrated in Fig. 3.

The probability of each configuration occurring is the prod-
uct of the various probabilities p, (1 — p)gq, and (1 — p)(1 —
q) over all the squares of the checkerboard pattern. This is just
the Boltzmann weight of the completely packed loop model
with crossings (CPLC) [6].

FIG. 3. This simplified graphical view of the fermionic stabilizer
state shows how the world lines connect parts of the state in Fig. 2.
The dotted ovals denote which Majoranas are paired up into physical
fermions. The bipartite entanglement between two regions is % log?2
times the number of Majorana world lines connecting them. Here, the
entanglement between the second and third physical fermion (region
indicated by red bracket) and the rest of the system is 2 - % log2 =
log2.
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C. Spanning number and entropy

In the previous section we outlined a correspondence be-
tween a model of free fermion hybrid dynamics and the
CPLC. In order for this correspondence to be useful, we have
to identify corresponding observables on the two sides. On the
CPLC side, the observable we will compute is the spanning
number 7, on a cylinder, with periodic boundary conditions in
space, open boundary conditions in time, and both space and
time having length L. The spanning number is defined as the
number of Majorana world lines that connect the two bound-
aries of the cylinder (i.e., “span” the cylinder). Its average is
computed by weighing the various CPLC configurations with
the Boltzmann weights defined above.

The spanning number has an appealing physical interpre-
tation in our free fermion model in terms of entropy. For
specificity we will work with the second Rényi entropy, but
we note that for fermionic stabilizer states the Rényi and
von Neumann entropies all coincide. The clearest way to
formulate this is by bringing in another “ancilla” copy of
the many-body Hilbert space, spanned by ancilla Majorana
fermions yjf (1 < j < 2N), and taking an initial state |W)
which is stabilized by iyjyjf (1 < j < 2N). The portion of
this state on the original Hilbert space is then maximally
mixed, and the free fermion dynamics may purify it to some
extent, since it includes measurements. At the final time L, the
entanglement entropy between the system and the ancilla is
given by %logZ times the number of stabilizers of the final
state that link the system and ancilla. The number of such
stabilizers is simply the number of world lines that link the
bottom (initial) and top (final) edge of the spacetime, i.e., just
the spanning number n,. Thus the final state entropy, averaged
over quantum trajectories, is precisely the average spanning
number, up to the factor of % log 2.

Reference [6] shows that the spanning number is an order
parameter for the phases that appear in the CPLC. Specifically,
there are two phases, as shown in Fig. 4: the short-loops phase
and the Goldstone phase, with the spanning number scaling as
0 and log L, respectively, in the thermodynamic limit defined
above. Hence, in the hybrid dynamics, the short-loops phase
corresponds to the area-law phase. Reference [6] explores
several features of this phase diagram. In particular, it is noted
that at p = 0 (i.e., the case of measurements only) the CPLC
reduces to a model of the bond percolation transition tuned by
q. Furthermore, at both ¢ = 0 and ¢ = 1, it is shown that the
field theory describing the CPLC model possesses an extra
U(1) symmetry which guarantees that the short-loops phase
extends all the way to p = 1. At values of ¢ different from
0, % 1, there is a transition from the short-loops phase to the
Goldstone phase at some p with 0 < p < 1. Reference [6]
studies this phase transition at p = %, g = 0.82 and extracts
a correlation length scaling exponent v = 2.745(19).

Furthermore, there is a distinction between the two short-
loops phases, which is identified as being a topological
distinction. At g > % with open boundary conditions, the
configurations will tend to have a long macroscopic loop
circling the configuration, which is absent when g < % This is
reminiscent of an edge mode in a topological insulator; thus
in the Anderson localization language, these two short-loops
phases correspond to trivial and topological insulating phases.

Phase diagram for CPLC model

, 08 Goldstone

< Phase

B 0.6 - -

o

L

2041 .

2

n Short Short
02F Loops | Loops Il A

0 1 1 1 1

0 0.2 0.4 0.6 0.8 1
"Turn" fraction, q

FIG. 4. Phase diagram for the CPLC model [6]. The difference
in Goldstone and short-loops phases is determined by the behavior
of the spanning number #;. In the short-loops phases, (n,) decreases
with increasing system size. In the Goldstone phase, (n,) increases
logarithmically with system size. The spanning number generalizes
to the second Rényi entropy in our more general fermion model.
The difference in the short-loops-I and short-loops-1I phases is de-
termined by the existence or absence of a macroscopic loop or edge
mode around the configuration; see Fig. 3 of Ref. [6].

The goal for the remainder of this paper is to examine the
extent to which the CPLC phase diagram, viewed in terms of
the hybrid dynamics, is robust to more general free fermion
dynamics. In order to pursue this, we now introduce the for-
malism of Gaussian states.

III. MORE GENERAL FREE FERMION MODELS:
GAUSSIAN STATE FORMALISM

To generalize beyond the specific case of the CPLC dual,
we will replace the unitary gate U, ,;1, which, up to sign, just
swaps y, and y,y|, with a more general local free fermion
unitary gate. Namely, we will consider unitary operators of the
form U = exp(!—tA,' ;vivj) with A being a real antisymmetric
2n x 2n matrix. The action of U by conjugation is an orthog-
onal rotation of the 2n Majoranas:

UyiU™" = exp(—A;))y;.

As far as measurements, the most general measurements we
might want to consider are of the fermion linear optics (FLO)
type [22], which can always be thought of as projecting onto
eigenstates of some iy,y;, operator, after appropriate basis
transformation. However, for this work we will simply retain
the exact same measurements as in the CPLC-dual model
introduced above.

The generalization we will investigate involves taking the
same protocol as above, but for the unitary gates, instead of
applying the fixed unitary U,.,;; defined above, we draw one
randomly from the class of all two-Majorana unitaries. All
such unitaries have the action

y1 — cos(a)y; — sin(a)ys,

y2 — sin(a)y; + cos(a)yz )
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for some «; the case of the U,.,;; defined above corresponds
to @ = —7. In our general model we will draw & randomly
from between 0 and 2.

Because acting with a generic unitary gate of the above
form now maps a Majorana operator to a superposition of
Majorana operators, we can no longer apply the stabilizer
formalism of Sec. II to relate entanglement entropy to span-
ning number. Instead, we will perform numerical Monte Carlo
studies of the hybrid dynamics. The numerics will start with a

maximally mixed state py and apply
po — CpC'/Tr CpoC', 3)

where C is a (nonunitary) circuit made up of a product of
randomly chosen unitaries and projectors corresponding to
a particular quantum trajectory. Specifically, the probability
density associated with a particular circuit C is equal to
the CPLC Boltzmann weight [a product of powers of p, g,
(1 = p), and (1 — g)], multiplied by the uniform probability
density associated with the choice of each unitary, multiplied
by the Born probability Tr CpyC' associated with the mea-
surement outcomes in C. Even though the states appearing in
the quantum trajectories are no longer stabilizer states, they
still have the property of being “Gaussian,” and this allows for
efficient numerical simulation. We now review the formalism
of these Gaussian states.

Gaussian state formalism

This exposition follows Ref. [22] closely. First, let us de-
fine a Gaussian state. A mixed state p can be viewed as an
operator and, as such, has some expansion in polynomials
in the y;. Given such an expansion, with each y; appearing
to a power 0 or 1 in each term, we can form an associated
element of a Grassmann algebra by replacing each y; with
a Grassmann number 6;. p is then called Gaussian if the
corresponding Grassmann algebra element is of the form

L LoT o

2N xp 2 '
where M is a 2N x 2N real antisymmetric matrix, called
the covariance matrix of the state. Each such M can be
transformed, by an orthogonal rotation, to block-diagonal
form with N 2 x 2 blocks on the diagonal. Each block is
antisymmetric, and so determined by a number X; on the
off-diagonal, where —1 < A; < 1 for all i. The |A;| are called
the Williamson eigenvalues of M, and a pure state corresponds
toall x| = 1.

Let us see how a Gaussian state evolves under our hybrid
evolution. First, evolving p under free fermion unitary trans-
formations is easy: We just conjugate M by the rotation in
Eq. (2) (rotating on the appropriate 2d subspace of the 2N
Majoranas and acting as the identity on the complement).
The result is the covariance matrix of the new state, which
remains Gaussian. Now let us consider evolving p under a
measurement of iy;y;;1 (with postselection, i.e., projecting
onto an eigenspace of iy;y;;; and normalizing). Reference
[22] shows that in this case the normalized, postselected post-
measurement state remains Gaussian. Its covariance matrix
M’, for the measurement outcome s = +1, is determined as
follows. Let K be the antisymmetric matrix whose entries

(p, q) (i.e., row p column q) are (8, 8, j+1 — 8p, j+104,;). Let
L=(—sMK)'M. Then the M, , =L,  if p,q ¢ {j, j +
1}, and M), , = 5K}, ; otherwise. This turns out to have all
Williamson eigenvalues equal to +1 if M does as well, so
pure states indeed evolve into pure states. The probability of
the outcome s is %Pf(M) Pf (sK — M™!), where Pf denotes
the Pfaffian.

We can try to simplify the equation for L using the
Taylor expansion. Since K is only nonzero in the j, j + 1
block, we find that KMK = —M; ;K. Thus (MK)" =
(—Mj’Hl)”_lMK, and a Taylor expansion of the form (1 —
x)~! gives

sMK

l1—sMK) '=14+ ——.
( ) 1+SMj’j+1

)
There are limits on when such a Taylor expansion is justified;

however, it can be shown by direct substitution that (4) is
indeed the inverse of (1 — sMK). Thus

SMKM

L=M+ ———.
1+SMJ',J‘+1

Note that performing the evolution takes resources which are
polynomial in N, since we just have to follow the covariance
matrix rather than the full quantum many-body state. This is
the advantage of the Gaussian state formalism.

In terms of the Williamson eigenvalues A;,i = 1, ..., N, of
M, the 2" many-body Schmidt eigenvalues are

1 N
o [T+, (5)
i=1

where each eigenvalue corresponds to one of the 2V choices
of sign for the +;. The von Neumann entanglement entropy
of the many-body state is thus

1—A; 1—A;
o[ (5)

i

1+ A 1+ A
1 , 6

which can be extracted by diagonalizing the covariance ma-
trix. The second Rényi entropy is

1
Sy = —5 log Trp?

=Nlog2— > log(1+})

1
=Nlog2 — ETr log(1 — M?),

which can be extracted directly from the covariance matrix.

IV. RESULTS
A. Phase diagram

The model was numerically simulated on the Hyak super-
computer at the University of Washington. For each system
size, the evolution of 40 independent systems was run in
parallel using MATLAB’s Parallel Computing Toolbox.

064303-5



JOSEPH MERRITT AND LUKASZ FIDKOWSKI

PHYSICAL REVIEW B 107, 064303 (2023)

Numerical phase diagram
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FIG. 5. Phase diagram for more general free fermion model, with
CPLC phase diagram for reference. The large blue dots are locations
in the phase diagram which are studied in more depth in this paper.
Note that on the top line, p = 1, all points represent the same phase
point, namely, the volume-law phase consisting of purely unitary
evolution. Note the ¢ <> (1 — ¢) symmetry, mentioned in Sec. II.

Our main results are summarized in the phase diagram
given in Fig. 5. We find that the two distinct phases per-
sist in the more general free fermion model, though the
line separating them has changed. Figures 6-9 show detailed
results. Figure 7 shows the entropy scaling for the point
p=0.7,q = 0.7, inside the Goldstone phase, demonstrating
that the logarithmic-law scaling persists in the more general
model.

One of the distinct differences between the models is the
existence of a phase transition on the boundaries of the phase
diagram, when ¢ = 0, 1. In the CPLC model, these values of
q introduce an extra symmetry into the model, preventing a
phase transition [6]. However, we find a phase transition at
p =0.72(2), g = 0, 1, shown in Fig. 6. The entropy scaling
for the point p = 0.8, g = 0 is shown in Fig. 9, a point which
would be in the area-law phase of the CPLC model. We
instead see a logarithmic-law scaling, demonstrating that it is
instead in the Goldstone phase of our model.

It is also worth noting that these new phase transitions
occur at the most experimentally feasible parts of the phase
diagram. At ¢ = 0, all measurements in the evolution are of
on-site fermion parity, with no intersite projective measure-
ments. Furthermore, the measurements all mutually commute,
giving an entanglement transition that uses commuting projec-
tive measurements.

B. Extracting v at the generic transition

A finite-size data collapse helps to confirm that this model
shows properties of critical phenomena. The underlying idea
is that near a phase transition, thermodynamic properties
should scale as a universal function of L/&, where L is the
(linear) system size and & is the correlation length [23,24].
For large system size and small reduced temperature t = (T —
T.)/T. around the critical temperature T,, a thermodynamic
observable Q should go as

OL,T)=L"faL"")

Entropy vs. p, at ¢ = 1.00

137 [—F—N=1000 7
—F—N=750
1.2 |—F—N=500 1
N=2
R —F—N=250
At 1
=
a
o 1t 1
=
+2
=
 09r 1
>
Z o8t .
o
07+ |
0.6 f |
0.71 0715 0.72 0.725 0.73
Unitary parameter p
Entropy vs. x; v = 2.576, p. = 0.722
13+ | I N=1000 =
I N=750 T~
42b | I N=500 = 1
R 1 N=250 ’IIf
Ak 1
2=
S E
o -
g 1 F3 1
= -
o 091 g 1
>} -
= T
E 0.8 T .
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02 015 -01  -0.05 0 005 041

Collapse parameter, r = Nl/”(p — Pe)

FIG. 6. Graphs of S for ¢ = 1.00, p near 0.72 for the generalized
free fermion model. The data collapse values for p. and v were
calculated by fitting the data to a fifth-order polynomial for various
values of p., v and finding the values which minimized the residual
sum of squares (sum of squares error). The data collapse indicates
the presence of a continuous phase transition for g = 1.00 near
p = 0.72, a feature of the generalized free fermion model that is not
shared with the CPLC.

for some function f. The intuition for this one parameter
scaling form is that as we approach the scale-invariant crit-
ical point, a change in length scale can be compensated by
a change in temperature. Here, v is the correlation length
exponent.

In this paper, the tuning parameter 7 is not the temperature
but rather p or g, depending on context. Thus we define

x=N""(T -T,)

and make plots of the entropy S versus this parameter x. By
varying the values of v and T, we attempt to find the value
that gives the best collapse of the data points onto a single line
in the plot.
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Entropy versus System Size for p = 0.70,¢ = 0.70
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FIG. 7. Entropy law for a point inside the Goldstone phase in the
generalized free fermion model. The blue line is a fit to the logarithm
alog(bx) + c. The values obtained were a = 0.203, b = 0.281, ¢ =
1.091. The 95% confidence bounds on a are (0.1957, 0.2107).

We first study the case p = 0.50, with ¢ playing the role
of T. The results for this case are shown in Fig. 8. We get
the values for v and g, by minimizing the error in fitting the
collapsed data to a fifth-order polynomial. We obtain values

ge = 0.64(6), v~ 2.41(6). )

We note that the value for g, is smaller than for the p = 0.5
transition in the CPLC model, which is at g, cpLc ~ 0.82. The
value of v is also smaller, with vep ¢ =~ 2.745 at p = 0.5 [6].
Howeyver, the uncertainties in v from numerical errors and
possible irrelevant variables leave us unable to definitively
rule out the possibility that our model is in the same univer-
sality class as the CPLC transition.

Furthermore, we find a phase transition for the boundaries
of the phase diagram, g = 0, 1, where none exists in the CPLC
model. The data for this are shown in Fig. 6. Here, we obtain
values

pe=0.72(2), v~2.5@8).

This v is larger than the value found at p = 0.5, though still
less than what was found for the CPLC model. Again, this
is consistent with the points being in the same universality
class.

V. DISCUSSION

In this paper we have investigated the purification
transition in certain fermionic models of hybrid unitary-
measurement dynamics in one dimension. We used an exact
duality from the known CPLC statistical mechanical model
to understand one particular case and then numerically inves-
tigated a particular generalization away from this tractable

Entropy vs. ¢, at p = 0.50
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Entropy vs. x; v = 2.43, q. = 0.646
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FIG. 8. Graphs of S for p = 0.50, g near 0.64 in the general free
fermion model. The data collapse values for g. and v were calculated
by fitting the data to a fifth-order polynomial for various values of ¢,
v and finding the values which minimized the residual sum of squares
(sum of squares error).

point. We found that the generalized model retains all of
the phases present in the exactly solved model, albeit with
slightly shifted phase boundaries. Although we only inves-
tigated one specific generalization away from the exactly
solvable fixed point, we expect this robustness to persist in
general.

One outstanding question that remains is to find a statisti-
cal mechanical dual for a general free fermion model in the
above class. If one is interested specifically in, say, the second
Rényi entropy, one may relatively easily write an expression
for it as a certain replica limit of a ratio of quantities which
have the interpretation of matrix elements of imaginary time
evolution operators, following Sec. VI of Ref. [25]. Following
the strategy used in the usual entanglement transition [26],
one may then hope to interpret these quantities as partition
functions of statistical mechanical model. One way to do
this is to insert resolutions of the identity on replicated sites
which are roughly integrals over SO(2N) of SO(2N )-rotated
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Entropy versus System Size at p = 0.80,q = 0.00
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FIG. 9. Entropy law for a point on the edge of the phase diagram
(g = 0.00). This point is in the area-law phase (short-loops phase)
of the CPLC model, but inside the Goldstone phase for the general
model. The blue line is a fit to the logarithm alog(bx) + c. The
values obtained were a = 0.238, b = 0.646, ¢ = 1.228. The 95%
confidence bounds on a are (0.2282, 0.2473).

projectors. Although it will certainly be difficult to make rig-
orous statements about the replica limit, one may hope that
at least some symmetry-based arguments can be made. For
example, one may hope to explain the existence of a phase
transition at ¢ = 0, 1 in the generalized models, in contrast
to the lack of such a transition in the CPLC-dual model, by
showing that the CPLC dual has an enhanced symmetry at
g = 0, 1 (see also Ref. [6]).

In addition, the CPLC model distinguishes between the
two short-loops phases; see Fig. 4. The “short-loops-1I"” phase
at g > % is distinguished by the existence of a macroscopic
loop which circles the configuration when open boundary
conditions are used. This is tied to a topological phase in
Ref. [6]. The two area-law phases in the generalized model are
also tied to the same topological phases, which in the quantum
system can be distinguished, e.g., by measuring a string order
parameter. How to define and numerically measure such an
order parameter in an associated statistical mechanical model
is a question that we leave for future investigation.

ACKNOWLEDGMENTS

This work was facilitated through the use of advanced com-
putational, storage, and networking infrastructure provided by
the Hyak supercomputer system and funded by the Student
Technology Fee at the University of Washington. J.M. and
L.F. were also supported by NSF Grant No. DMR-1939864.

[1] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-
tanglement transition in hybrid quantum circuits, Phys. Rev. B
100, 134306 (2019).

[2] B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced
Phase Transitions in the Dynamics of Entanglement, Phys. Rev.
X'9,031009 (2019).

[3] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random
quantum circuits, arXiv:2207.14280 [Annu. Rev. Condens.
Matter Phys. (to be published)].

[4] C.-M. Jian, B. Bauer, A. Keselman, and A. W. W. Ludwig,
Criticality and entanglement in nonunitary quantum circuits and
tensor networks of noninteracting fermions, Phys. Rev. B 106,
134206 (2022).

[5] L. Fidkowski, J. Haah, and M. B. Hastings, How dynamical
quantum memories forget, Quantum 5, 382 (2021).

[6] A. Nahum, P. Serna, A. M. Somoza, and M. Ortuflo, Loop
models with crossings, Phys. Rev. B 87, 184204 (2013).

[7]1 A. Nahum and B. Skinner, Entanglement and dynamics of
diffusion-annihilation processes with Majorana defects, Phys.
Rev. Res. 2, 023288 (2020).

[8] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in
symmetric random quantum circuits, Nat. Phys. 17, 342
(2021).

[9] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Res. 3, 023200 (2021).

[10] N. Lang and H. P. Biichler, Entanglement transition in the pro-
jective transverse field Ising model, Phys. Rev. B 102, 094204
(2020).

[11] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and
V. Khemani, Entanglement Phase Transitions in Measurement-
Only Dynamics, Phys. Rev. X 11, 011030 (2021).

[12] X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion
chain under continuous monitoring, SciPost Phys. 7, 024
(2019).

[13] O. Alberton, M. Buchhold, and S. Diehl, Entanglement
Transition in a Monitored Free-Fermion Chain: From Ex-
tended Ceriticality to Area Law, Phys. Rev. Lett. 126, 170602
(2021).

[14] X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent confor-
mal symmetry in nonunitary random dynamics of free fermions,
Phys. Rev. Res. 2, 033017 (2020).

[15] Q. Tang, X. Chen, and W. Zhu, Quantum criticality in the
nonunitary dynamics of (2 + 1)-dimensional free fermions,
Phys. Rev. B 103, 174303 (2021).

[16] G. Kells, D. Meidan, and A. Romito, Topological transitions
with continuously monitored free fermions, arXiv:2112.09787
[quant-ph].

[17] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and M. Schird,
Measurement-induced entanglement transitions in the quantum
Ising chain: From infinite to zero clicks, Phys. Rev. B 103,
224210 (2021).

[18] X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schiro, Entan-
glement transitions from stochastic resetting of non-Hermitian
quasiparticles, Phys. Rev. B 105, L.241114 (2022).

[19] S. Sang, Y. Li, T. Zhou, X. Chen, T. H. Hsieh, and M. P. A.
Fisher, Entanglement negativity at measurement-induced criti-
cality, PRX Quantum 2, 030313 (2021).

064303-8



ENTANGLEMENT TRANSITIONS WITH FREE FERMIONS

PHYSICAL REVIEW B 107, 064303 (2023)

[20] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert,
“Event-Ready-Detectors” Bell Experiment Via Entanglement
Swapping, Phys. Rev. Lett. 71, 4287 (1993).

[21] The Majorana content of the stabilizers, specifically. The mea-
surement outcome affects an overall factor of 1 on the
stabilizers, which will be unimportant in our analysis.

[22] S. Bravyi, Lagrangian representation for fermionic linear optics,
Quantum Inf. Comput. 5, 216 (2005).

[23] K. S. D. Beach, L. Wang, and A. W. Sandvik, Data collapse
in the critical region using finite-size scaling with subleading
corrections, arXiv:cond-mat/0505194.

[24] M. E. Fisher and M. N. Barber, Scaling Theory for Finite-
Size Effects in the Critical Region, Phys. Rev. Lett. 28, 1516
(1972).

[25] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measurement
and entanglement phase transitions in all-to-all quantum cir-
cuits, on quantum trees, and in landau-ginsburg theory, PRX
Quantum 2, 010352 (2021).

[26] R. Vasseur, A. C. Potter, Y.-Z. You, and A. W. W.
Ludwig, Entanglement transitions from holographic
random tensor networks, Phys. Rev. B 100, 134203
(2019).

064303-9



