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Abstract

Summary: Target identification by enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhi-
bition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds.
This is a NP-hard problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this article, we de-
velop the first quantum optimization solution, called QuTIE (quantum optimization for target identification by enzymes), to this NP-hard problem.
We do that by developing an equivalent formulation of the TIE problem in quadratic unconstrained binary optimization form. We then map it to a
logical graph, and embed the logical graph on a quantum hardware graph. Our experimental results on 27 metabolic networks from Escherichia
coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions that are optimal or almost optimal. Our experiments also demonstrate
that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes.

Availability and implementation: Code and sample data are available at: https://github.com/ngominhhoang/Quantum-Target-Identification-by-
Enzymes.

1 Introduction

Enzymes catalyze reactions that operate on and transform a
set of compounds. The compounds that are input to a reac-
tion are called substrates, and those that are produced once
that reaction completes are called products. Reactions take
place in a complex network topology, where the products of a
set of reactions can be substrates for another set of reactions.
This organization of reactions is also called the metabolic net-
work. Over- or underproduction of certain compounds in me-
tabolism can lead to serious disorders. For instance, the
abundance of dopamine is linked with the development and
severity of the Alzheimer’s disease (Pritchard et al. 2009,
Martorana et al. 2014). Similarly, Hunter syndrome is caused
by the metabolism’s inability to breakdown sugar molecules
(D’Avanzo et al. 2020), and the malfunction of enzyme phos-
phatidic acid phosphatase leads to the overexpression of lipin,
causing obesity (Carman and Han 2009).
One way to address such compound-based disorders is to

alter and regulate the production of such compounds by tar-
geting a small subset of enzymes with drugs (Robertson,
2007, Li et al. 2020, Berillo et al. 2021), as enzymes are po-
tential drug targets when other drug targets, such as cell sur-
face receptors, DNA, and transporters are not possible to
target, or they do not yield the desired impact on the com-
pound regulation (Robertson 2005). Drugs that target a spe-
cific enzyme inhibit that enzyme and slow down or stop the
reactions catalyzed by that enzyme, and thus regulate the
abundance of a subset of compounds by stopping/slowing

down their production produced downstream of those reac-
tions (Terentis et al. 2010, Cooney, 2017).
Although it is possible to regulate the metabolic network by

targeting enzymes, unintended consequences can happen as a
result of this process for various reasons. For instance, the
enzymes inhibited by the underlying drug may be responsible
from the catalysis of multiple reactions. Some of these reac-
tions can produce compounds that lead to the underlying dis-
order (i.e. intended targets), while others consume/produce
different compounds that are unrelated to the disorder (i.e.
unintended targets). While reducing the abundance of com-
pounds in the first category is desirable, doing that for the sec-
ond category may lead to other problems, called side-effects
(Sridhar et al. 2008, Mizutani et al. 2012).
One of the fundamental goals in drug development is to ob-

tain a balance between the two potentially conflicting out-
comes, namely efficacy and toxicity of the drug (Shankarappa
et al. 2014). Efficacy measures how well the desired outcome
(such as lowering the blood pressure if that is the goal of the
drug) is achieved, while toxicity measures the damage
inflicted on the organism (Cohen et al. 2010, Riley and
Kohut, 2010). In order to formulate these concepts mathe-
matically, we call the compounds that are intended to be
inhibited (i.e. the compounds whose overproduction causes
the underlying disorder) target compounds, and the remaining
ones nontarget compounds. A given enzyme-binding drug
limits the production of a set of compounds, some of which
are target, while others are not (Copeland et al. 2007). One
way to formulate the toxicity of a drug is in terms of the
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number of nontarget compounds that are inhibited (this num-
ber is also called damage) (Choi, 2008, Sridhar et al. 2008).
Following from the definitions above, given a metabolic

network, including a set of enzymes, reactions, compounds, and
relations amongst them, the target identification by enzymes
(TIE) problem aims to identify the set of enzymes, such that
their inhibition eliminates a given set of target compounds,
while incurring minimum damage. This is an NP-hard problem
(Song et al. 2011) and there are several approaches that address
the TIE problem. However, these solutions do not scale well
due to exponential complexity of the TIE problem (see
Supplementary Material S1—SM 1 for details).
Recently, quantum computing has shown its supremacy

over classical computers in some tasks that are intractable us-
ing classical computers, such as finding prime factors of large
integer (Shor 1999). While quantum computing is at a very
early stage of development (Preskill 2018), quantum-inspired
methods have already been developed in a wide range of
fields, such as machine learning (Jerbi et al. 2021) and optimi-
zation (Guillaume et al. 2022). The fundamental limitation of
quantum computing currently is that their capacity in qubits
(i.e. quantum bit that is the quantum analog of the bit classi-
cal computers) is limited. One of the most outstanding para-
digms that overcomes this limitation for quantum computing
is quantum annealing (QA). This paradigm focuses on solving
optimization problems by utilizing quantum fluctuation. QA
scales to significantly larger number of qubits than other types
of quantum computing. This characteristic enables QA to
solve large optimization tasks in bioinformatics, such as de-
signing peptides (Mulligan et al. 2019), RNA folding (Fox
et al. 2022), and DNA sequence assembly (NałeRcz-
Charkiewicz and Nowak 2022).
QA has three major steps. The first step formulates the opti-

mization problem in quadratic unconstrained binary optimi-
zation (QUBO) form. It maps the resulting QUBO on a
graph, called logical graph, and then maps the logical graph
into quantum processing unit (QPU) whose topology is repre-
sented by another graph, called hardware graph. The final
step assigns appropriate parameters to the hardware graph,
and runs QA to find candidate solutions for the optimization
problem (see Supplementary Material S1—SM 2 for details).

1.1 Contributions

In this article, we consider the TIE problem, and develop the
first quantum optimization solution, called QuTIE (quantum
optimization for target identification by enzymes), to this NP-
hard problem. We formulate the TIE problem in the QUBO
form, and map the enzymes and metabolic reactions to nodes
and edges in the logical graph. We utilize QA to find optimal
solutions for the TIE problem by mapping the logical graph
on the hardware graph. We implement and test our solution
on the quantum hybrid framework, the largest quantum
annealing system available. We compare our method against
four methods operating on classic computers: the exact
method (OPMET), the IP method, the heuristic method (dou-
ble iterative), and the simulated annealing (SA) method. Our
results on 27 datasets from Escherichia coli, Homo sapiens,
and Mus musculus metabolic network collected from KEGG
database show that QuTIE yields solutions that are optimal,
or close to optimal. Our method outperforms the existing
methods for large datasets in which the exact method cannot
run. Our experiments on the biosynthesis of amino acids net-
work of H.sapiens demonstrate that QuTIE can successfully

identify enzyme targets already verified in wet-lab experi-
ments for 14 major disease classes. In addition to solving the
NP-hard drug target identification, using quantum optimiza-
tion, this article lays the background and opens the door for
formulating and solving high-complexity problems studying
biological networks using quantum computing.

2 Methods

Here, we first define the TIE problem. We then describe the
objective function for the TIE problem in the QUBO form.
There are four parts in the objective function, namely, damage
scoring function, target penalty function, reaction inference
penalty function, and compound inference penalty function.

2.1 Formal definition

Consider a set of enzymes E, a set of reactions R, and a set of
compounds C. Metabolic network shows the relationship be-
tween the entities in these three sets. Specifically, enzymes cata-
lyze reactions. Each reaction consumes a set of compounds, and
produces another set of compounds. We represent these relation-
ships in a metabolic network as a directed graphG ¼ ðVG;EGÞ.
In this tuple representation, the first term is the union of three
mutually exclusive sets of nodes VG ¼ E [ R [ C. Each node in
VG corresponds to either an enzyme, reaction, or compound.
The second term, EG denotes the set of directed edges among
those nodes. Consider two nodes u, v 2 VG. Each directed edge
(u, v) from node u to v represents one of the three possible types
of relations among the nodes as follows:

1) The enzyme corresponding to node u 2 E catalyzes the
reaction corresponding to node v 2 R.

2) The compound corresponding to node u 2 C is a sub-
strate, consumed by the reaction denoted with v 2 R.

3) The reaction corresponding to node u 2 R produces the
compound denoted with v 2 C.

Notice that, the above mathematical model expresses a
metabolic network as a closed system, before the introduction
of enzyme binding drug molecules. Following from these
observations, we list the inhibition conditions for each node
in u 2 G depending on what that node represents as follows:

• Condition 1: An enzyme is inhibited when an enzyme
binding drug molecule binds to it.

• Condition 2: A reaction denoted by node r 2 R is inhibited
if at least one of the two conditions is satisfied: (i) If there is
an input compound, denoted by c 2 C, consumed by that
reaction is inhibited, or (ii) if at least one of the enzymes,
denoted by e 2 E, which catalyzes that reaction is inhibited.

• Condition 3: A compound denoted by c 2 C is inhibited if
all the reactions denoted by r 2 R which produce that
compound are inhibited.

Based on the three conditions above, given a set of com-
pounds, called target set Ctarget � C, it is possible to find a
subset of enzymes in E whose inhibition eliminates the pro-
duction of all compounds in the target set. One can prove the
statement above by inhibiting all the enzymes (i.e. all nodes in
E), thus stopping the production of all the compounds, in-
cluding those in Ctarget. This, however, is more than what is
needed, as it also eliminates the compounds in C� Ctarget, as
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well. This is undesirable for the compounds in C� Ctarget are
needed for the healthy metabolism. We measure the number
of compounds in C� Ctarget whose production stops as a re-
sult of inhibition of a subset of enzymes as the damage of
inhibiting that subset of enzymes (see the example in
Supplementary Fig. S1). We desire to inhibit all the com-
pounds in the target set (i.e. maximum efficacy) with mini-
mum damage (i.e. minimum toxicity). Let us denote the set of
compounds whose production stops as a result of inhibiting a
set of enzymes E0 � E as CE0 � C, and the damage to the met-
abolic network G as the cardinality of the set CE0 � Ctarget.
We formally define the TIE problem as:

Definition 1 Consider a metabolic network consisting of a
set of enzymes, a set of reactions, and a set of
compounds. Let us denote the set of nodes
corresponding to these three sets with E, R, and C,
respectively. Let us denote this network with
G ¼ ðVG;EGÞ, where VG ¼ E [ R [ C. Given a target
set of compounds Ctarget � C. TIE problem seeks for a
set of enzymes E? such that:

E? ¼ argminfjCE0 j : E0 � E AND Ctarget � CE0g (1)

2.2 QUBO construction for TIE problem

Before constructing QUBO for the TIE problem, we develop a
Boolean model for the TIE problem. Given the metabolic net-
work G ¼ ðVG;EGÞ with VG ¼ E [ R [ C, we denote the
state of each node u 2 VG in the metabolic network with a bi-
nary variable xu such that:

xu ¼
0 if u isnotinhibited:
1 if u isinhibited:

�

(2)

To satisfy the constraints of the TIE problem, all com-
pounds in the target set Ctarget need to be inhibited. We ex-
press this constraint as:

Y

c2Ctarget

xc ¼ 1 (3)

Next, we present inhibition conditions as follows:

• Condition 1: The state of an enzyme e 2 E only depends
on xe.

• Condition 2: Consider a node in the metabolic network
corresponding to a reaction, r 2 R. Let us define the set of
nodes in its immediate upstream with the set NðrÞ. Recall
that a node v 2 NðrÞ if one of the two criteria is satisfied:
(i) v corresponds to an enzyme which catalyzes the reac-
tion corresponding to node r, and (ii) v corresponds to a
compound which is consumed by the reaction correspond-
ing to node r. Thus, we have v 2 ðE [ CÞ. If any of the
nodes in NðrÞ are inhibited, that implies r is also inhibited.
As a result, the state of the reaction r is valid if it satisfies:

xr ¼ 1�
Y

v2NðrÞ

ð1� xvÞ (4)

• Condition 3: Consider a node in the metabolic network
corresponding to a compound, c 2 C. Let us define the set

of nodes in its immediate upstream with set NðcÞ. Recall
that each node v 2 NðcÞ corresponds to a reaction that
produces the compound denoted by node c, thus v 2 R. If
all of the nodes in NðcÞ are inhibited, then c is also inhib-
ited. As a result, a state of a compound c is valid if it
satisfies:

xc ¼
Y

v2NðcÞ

xv (5)

We acknowledge the presence of a scenario where a group
of alternative enzymes catalyzes a reaction, and the inhibition
of the reaction occurs only when all enzymes in the group are
inhibited. In such cases, we can reformulate (4) in a similar
manner to (5).
We consider an assignment of values to the set of variables

fxuju 2 E [ R [ Cg is valid if all xu satisfy constraints (3), (4),
and (5).
The critical challenge we need to address to solve the TIE

problem by QA is to represent the TIE problem as a QUBO
function. Thus, our goal is to design an energy function H for
the TIE problem in form of QUBO. H takes a set of binary
variables as input (the input binary set also includes auxiliary
binary variables that we discuss later). As H is unconstrained,
we need to discriminate invalid and valid assignments of
values to the input variables of this function. Furthermore,
the function H must return values corresponding to the
damage of input assignment. To sum up, in order to
model the TIE problem, function H must follow two
principles:

• The value of H for a valid assignment must be lower than
that for every invalid assignment.

• The value of H for a valid assignment must be equal to the
damage produced by that assignment.

Minimizing the value of function H which follows these
two principles is equivalent to finding a valid assignment with
minimum damage for the underlying TIE problem.
Based on two above principles, we construct the energy

function H as a combination of four quadratic functions,
namely, Damage Scoring, Target Penalty, Reaction Inference
Penalty, and Compound Inference Penalty. Damage Scoring
function measures the damage of the input assignment.
Target Penalty function ensures that all target compounds are
inhibited [see Constraint (3)]. Reaction Inference Penalty
function controls the inhibition condition of reactions [see
Constraint (4)]. Compound Inference Penalty function
ensures the inhibition condition of compounds [see
Constraint (5)]. Next, we elaborate on construction of these
functions, and explain how they fit to corresponding
constraints.

2.2.1 Damage scoring function

This function models the toxicity arising from the disturbance
of the production of those compounds that are not intended
to be inhibited, but are inhibited as a result of inhibiting a
subset of enzymes in the given network G. We compute the
damage scoring function in terms of the binary variables xc
(c 2 C) with a positive constant k1 as (see Lemma 1 in
Supplementary Material S1—SM 4):

QuTIE 3
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Hdamage ¼ k1
X

c2C�Ctarget

xc (6)

2.2.2 Target penalty function

This function models the loss in the efficacy of the drug by
representing the constraint that requires inhibition of all the
compounds in the target set [see Constraint (3)]. We write this
function in terms of the binary variables xc above with a posi-
tive constant k2 as follows:

Htarget ¼ k2
X

c2Ctarget

ð1� xcÞ (7)

The target penalty Htarget in (7) is minimized if and only if
the states of all compounds in the target set are 1 (i.e. when
all the targeted compounds are inhibited). In other words, the
function Htarget only returns minimum value for valid assign-
ment of x (see Lemma 2 in Supplementary Material S1—SM
4).

2.2.3 Reaction inference penalty

This function expresses the second constraint in the inhibition
conditions [see (4)]. Given a reaction r 2 R, we construct a
system of two linear inequalities from (4) as:

xr � xv8v 2 NðrÞ (8)

0 � xr �
X

v2NðrÞ

xv (9)

Since each variable xr above takes value either 0 or 1, in or-
der to satisfy inequality (8), 8v 2 NðrÞ, we must have
xr � xv ¼ 0, or xr � xv � 1 ¼ 0. Following from these two
observations, we construct a quadratic expression for inequal-
ity (8) as follows:

X

v2NðrÞ

½ðxr � xvÞ
2 þ ðxr � xv � 1Þ2� � jNðrÞj (10)

Expression (10) obtains the minimum value of 0 if and only
if xu, and xv with v 2 NðuÞ satisfy inequality (8).
Building a quadratic equation for modeling inequality (9) is

nontrivial. This is because the value of difference
(xr �

P

v2NðrÞ xv) depends on the number of nodes in NðrÞ. To
overcome this challenge, we define jNðrÞj þ 1 auxiliary binary
variables tr0, tr1, . . ., and write the following expression:

�

xr �
X

v2NðrÞ

xv þ
X

jNðrÞj

a¼0

ðatraÞ

�2

þ ð1�
X

jNðrÞj

a¼0

traÞ
2 (11)

In Expression (11), each of the jNðrÞj þ 1 auxiliary binary
variables tra models one of the jNðrÞj þ 1 possible valid values
the right-hand side of inequality (9) can take. Therefore,
Expression (11) reaches to value of 0 if and only if states xr
and xv, with v 2 NðrÞ satisfy inequality (9), and the variable
tra ¼ 1 only if xr �

P

v2NðrÞ xv þ a ¼ 0.
Using Expressions (10) and (11) for reaction r 2 R, we con-

struct the reaction inference penalty function which ensures
the second constraint from the inhibition conditions using a
tunable positive constant k3, and constant kR as:

Hreaction ¼ k3
X

r2R

�

X

v2NðrÞ

½ðxr � xvÞ
2 þ ðxr � xv � 1Þ2�

þ

�

xr �
X

v2NðrÞ

xv þ
X

jNðrÞj

a¼0

ðatraÞ

�2

þ ð1�
X

jNðrÞj

a¼0

traÞ
2

�

þ kR

(12)

The function Hreaction returns minimum value of 0 only for

valid assignment of x, and auxiliary variable t (see Lemma 3

in Supplementary Material S1—SM 4).

2.2.4 Compound inference penalty

This function models the third, and the final constraint in the

inhibition conditions [see (5)]. Given a compound c 2 C, we

construct a system of two linear inequalities from (5) as:

xc � xv8v 2 NðcÞ (13)

�jNðcÞj � xc �
X

v2NðcÞ

xv � 1 (14)

In order to satisfy inequality (13), 8v 2 NðcÞ, we must have

xc � xv ¼ 0, or xc � xv þ 1 ¼ 0. These two observations lead

to the following quadratic expression:

X

v2NðcÞ

½ðxc � xvÞ
2 þ ðxc � xv þ 1Þ2� � jNðcÞj (15)

Expression (15) yields minimum value of 0 if and only if xc
and 8v 2 NðcÞ, xv satisfy inequality (13). The proof of this
statement is the same as that for (10).
To build a quadratic expression for inequality (14), similar

to Expression (11), we define jNðcÞj þ 1 auxiliary binary vari-

ables wc0, wc1, . . .. We have the quadratic expression for in-

equality (14) as follows:

xc �
X

v2NðcÞ

xv � 1þ
X

jNðcÞj

b¼0

ðbwcbÞ

�2

þ ð1�
X

jNðcÞj

b¼0

wcbÞ
2

2

4 (16)

We observe from Expression (16) that jNðcÞj þ 1 auxiliary

binary variables wcb correspond to jNðcÞj þ 1 possible valid
values the right-hand side of inequality (14) can take.

Therefore, Expression (16) takes minimum value of 0 if and

only if states xc and xv satisfy inequality (14), and the variable

wcb ¼ 1 only if xc �
P

v2NðcÞ xv � 1þ b ¼ 0.
Using Expressions (15) and (16) for compound c 2 C, we

construct the compound inference penalty with the help of a

tunable positive constant k4, and constant kC as:

Hcompound ¼ k4
P

c2C

�

X

v2NðcÞ

½ðxc � xvÞ
2 þ ðxc � xv þ 1Þ2�

þ

�

xc �
X

v2NðcÞ

xv � 1þ
X

jNðcÞj

b¼0

ðbwcbÞ

�2

þ ð1�
X

jNðcÞj

b¼0

wcbÞ
2

�

þ kC

(17)

The function Hcompound returns minimum value of 0 only

for valid assignment of x, and auxiliary variable w (see

Lemma 4 in Supplementary Material S1—SM 4).
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Combining functions (6), (7), (12), and (17), we represent

the TIE problem in the QUBO form by an energy function as

follows:

H ¼ Hdamage þHtarget þHreaction þHcompound (18)

We observe that the function H is a combination of linear

and quadratic forms. Because binary variable x satisfies

x ¼ x2, we rewrite the linear term x as x2 making the entire of

equation quadratic. As a result, the function H is in the

QUBO form, which can be processed by QA. The final result

that we expect to obtain after QA process is a set of variables
Y? ¼ X [ ftrajr 2 R; a 2 NðrÞg [ fwcbjc 2 C;b 2 NðcÞg such

that:

Y? ¼ argminfHg (19)

The function H models the TIE problem because it satisfies
the two principles we mentioned before in this section.

Penalty functions Htarget, Hreaction, and Hcompound return the

minimum value of 0 for only valid assignments. As a result, if

we choose positive constants k2; k3; k4 that are large enough,

the outputs of the function H for valid assignments are always

lower than those for invalid assignments. In addition, the

function Hdamage returns the damage corresponding to the in-
put assignment if we set k1 ¼ 1. Thus, for valid assignments

whose penalty scores are always equal to 0, the function H

returns corresponding damage of those valid assignments (see

Theorem 1 in Supplementary Material S1—SM 4).

3 Discussion

In this section, we evaluate our method on a small dataset and

a large dataset. We describe datasets in detail in

Supplementary Material S1—SM 3. We compare our method

to four methods:

• Exact method (OPMET): This method uses branch-and-

bound to examine all possible combinations of inhibited

enzymes, and thus it is optimal (Sridhar et al. 2008).
• Integer programming (IP): We use the IP formulation for

the BN-ReactionCut problem (Tamura et al. 2010) with a

modification in its objective function to solve TIE prob-
lem. BN-ReactionCut problem makes a simplifying, but

incorrect assumption that each reaction is controlled by

one enzyme. As a result, it ignores the set of enzymes oper-

ating on the metabolic network. In order to make fair

comparisons with our method, we post-process the solu-

tion returned by IP, and randomly select one enzyme cor-
responding to each inhibited reaction from the resulting

solution for inhibition. We then calculate actual damage

caused by inhibiting selected enzymes. For each test case,

we perform process for a constant number of times, and

report the average damage.
• Heuristic (double iterative): This is a heuristic variant of

OPMET working in two phases (Song et al. 2009).
• Simulated annealing (SA): This method is inspired by the

annealing process, similar to QA. However, unlike QA,
SA works on a classical computer. We run SA with the

same objective function H that we use in QA.

3.1 Evaluation using synthetically selected targets

Our first set of experiments answer the question: How does
QuTIE perform under different network characteristics and
number of target compounds compared to existing solutions?

3.1.1 Experimental settings
3.1.1.1 Experimental setup for Quantum Hybrid Solver

We use a Quantum Hybrid Solver provided by D-Wave to
solve our proposed QUBO. It is a hybrid framework combin-
ing classical and quantum computing techniques to find opti-
mal solutions for a given QUBO formulation. We explain this
framework in detail in Supplementary Material S1—SM 2.
We set the running time limit of the Quantum Hybrid Solver
to 10min for the small datasets, and 20min for the large
ones. In all experiments, solutions provided by Quantum
Hybrid Solver are valid (i.e. all target compounds are
eliminated).

3.1.1.2 Experimental setup for target selection

Let us denote the number of target compounds to be inhibited
with k. Given a metabolic network, we run experiments by
growing the number of target compounds to be inhibited in
that network from k ¼ 2 to 27, at increments of 5 (i.e. six dif-
ferent values of k) by randomly selecting k target compounds
from that network. We repeat this procedure up to five times
for each combination of metabolic network and target net-
work size, measure damage and running time, and report the
average.

3.1.1.3 Experimental setup for datasets

We use metabolic pathways for three species: Escherichia coli
(eco or E.coli), Homo sapiens (hsa or H.sapiens), and Mus
musculus (mmu or M.musculus) from the KEGG database
(Kanehisa and Goto 2000). We categorize these metabolic
networks into two groups based on the number of interac-
tions in each: small and large pathways. The number of nodes
in small pathways ranges from 35 to 93, while the number of
nodes in large pathways ranges from 146 to 305.
Supplementary Tables S1 and S2 list the characteristics of
pathways in more detail.

3.1.2 Comparison with the exact method

Here, we examine the performance of QuTIE on small data-
sets by comparing to the exact method, OPMET. In the small
datasets, we do not include the Pyruvate metabolic network
of E.coli, and the Glycine, serine, and threonine metabolic
networks of H.sapiens and M.musculus because their sizes are
too big for the exact method to run. Notice that the exact
method guarantees optimal solutions. Thus, the fundamental
purpose of this comparison is to observe (i) how well QuTIE
optimizes the damage function for the TIE problem under dif-
ferent metabolic networks in the small datasets, and various
target compound set sizes, with respect to the optimal solu-
tion, and (ii) how much running time QuTIE needs to arrive
at this solution as compared to the exact method. We use the
small networks listed in Supplementary Table S1 for the exact
method does not scale to larger networks. In total, we per-
form 900 experiments (i.e. 5 networks � 3 species � 6 values
of k� 5 random repetitions � 2 methods).
Recall that the TIE problem aims to minimize the damage,

while inhibiting all target compounds. We first compare the
two methods in terms of the damage their results inflict on the
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given metabolic network. We obtain the average damage of
solutions from QuTIE and the exact method for each combi-
nation of metabolic networks and target compound set size.
Figure 1a–c presents the results for three species including

E.coli, H.sapiens, and M.musculus respectively. Each point in
this figure corresponds to the average damage of one (net-
work, target compound set size) pair. Our results demonstrate
that QuTIE is able to obtain the optimal or near optimal

Figure 1. Analysis of QuTIE on small datasets. (a–c) Damage values provided by QuTIE and the exact method for the three species E.coli, H.sapiens, and
M.musculus, respectively. Each point corresponds to the average of a combination of one network and one k value across all test cases. The diagonal line
is the x¼ y line. (d) Average damage value of QuTIE across all parameters grouped by the number of target compounds. (e) Average damage value of
QuTIE across all parameters grouped by the network function. (f) Comparison between QuTIE and the exact method on small datasets in terms of
running time.
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solutions for all experimental settings. Figure 1 illustrates the
average damage of experimental settings for the same net-
work function. From the results, we observe that inhibiting
target compounds from galactose metabolic networks can
cause more damage than those from any other functions. In
addition, we examine the average damage for different num-
ber of target compounds, and show the results in Fig. 1. We
observe an upward trend in the average damage when the
number of target compounds is small. We infer that inhibiting
medium-sized sets of target compounds may cause the most
damage to the network.
One of the fundamental promises of quantum optimization

algorithms is that they can solve problems with high complex-
ity dramatically faster than the algorithms operating on tradi-
tional computers. Following from this, and our observation
above that QuTIE yields optimal damage values even for very
large values of k, the next important question we need to an-
swer is at what running time cost does our algorithm achieve
these results, for the TIE problem is NP-hard?
We compare the running time of the two methods. The run-

ning time of QuTIE is the time limit set in the Quantum Hybrid
Solver (10min) in all experiments for the small dataset. For the
exact solution, we report the average running time for each size
of target compound set. We report the running time of two
methods in Fig. 1. Our results suggest that the number of target
compounds k has massive impact on the total running time of
the exact method on classical computers. This is expected as
the complexity of the TIE problem is exponential in the target
compound set size in the worst case. For small k, finding opti-
mal solutions is trivial. As the value of k increases though, the
running time to find exact solutions quickly becomes impracti-
cal. The second observation is that QuTIE, on the other hand,
is not affected by the value of k, and it yields optimal solutions
in the preset time limit. Although we cannot claim anything
about precise quantum speed-up over classical exact method
due to fixed time limit, quantum computing shows its potential
power for reaching optimal solutions in a fast manner. To be
clear, in the case with k ¼ 27, QuTIE can find optimal solu-
tions in a duration that is only equal to nearly 3% of the run-
ning time of the exact method. The gap between the running
time of our method and that of the exact solution grows with
increasing value of k.

3.1.3 Comparison with integer programming solution

Here, we examine the performance of QuTIE on small data-
sets by comparing it against the IP method that is one of the

most popular method for solving optimization problems like
TIE (Tamura et al. 2010).
We compare QuTIE and IP in terms of damage from result-

ing solutions. Figure 2a–c presents the results for three species
including E.coli, H.sapiens, and M.musculus, respectively.
Each point in this figure corresponds to the average damage
of one (network, target compound set size) pair. The results
demonstrate that QuTIE can provide solutions with less dam-
age than IP in most cases (99.3% of all test cases). Recall that
the IP formulation does not consider the relation of enzymes
and reactions at first glance, while in QuTIE we present the
dependency of enzymes and reactions in (12). Thus, the
results imply that taking the set of enzymes into account is
crucial in optimizing damage for the TIE problem.

3.1.4 Comparison with the double iterative method

Next, we study the performance of QuTIE on larger datasets.
Exact method does not scale to these networks, and so we com-
pare our method to the heuristic double iterative method. Our
goal in this experiment is to observe whether the damage in-
curred by the solutions of our method are better than existing
heuristic solutions, which also scale to large networks and large
values of k. We use the networks listed in Supplementary Table
S2 (see Supplementary Material S1—SM 3). In total, we per-
form 288 experiments (i.e. 4 networks � 3 species � 6 values
of k� 2 random repetitions � 2 methods).
Figure 3 plots the damage values resulting from the two

methods for each combination of network and target com-
pound set size. We observe that QuTIE method outperforms
the heuristic solution in almost all cases; QuTIE identifies a
solution with less than or equal damage than that found by
the heuristic method in 117 out of 144 cases (i.e. in 81.2% of
the experiments). In 12.6% of the experiments, the gap be-
tween our method and the heuristic solution is more than 4 in
favor of our method, while the heuristic method never yields
damage gap > 4 in any of the cases. These results suggest that
QuTIE has the potential to identify target enzymes for even
large networks when the exact methods do not work without
relying on heuristics. The points outside the zone bounded be-
tween two lines y ¼ xþ 4, and y ¼ x� 4 are from nucleotide
metabolism networks, and purine networks. This suggests
that the underlying network topology has great influence on
how much QuTIE outperforms the competing method.

3.1.5 Comparison with simulated annealing

Here, we compare the performance of QuTIE to its counter-
part, which is executed on a classical computer on small

Figure 2. Analysis of the IP method and QuTIE. (a–c) Damage values for the three species E.coli, H.sapiens, and M.musculus, respectively. Each point
corresponds to the average of a combination of one network and one k value across all test cases. The diagonal line is the x¼ y line.
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datasets. Our goal in this experiment is to observe that given
a same objective function, whether a quantum computer can
explore better solutions through annealing process than
would a classical computer. Recall that a solution is valid if it
inhibits all target compounds. We compare QuTIE and SA in
terms of the number of times a valid solution can be found
over the total number of test cases. We set the time limit for
both methods to 10min. Figure 4 shows the percentage of
valid solutions for the methods for different datasets and in-
creasing number of target compounds k. We observe that
QuTIE always finds valid solutions. Meanwhile, SA rarely
can find valid solutions in cases of k > 2 (<20%). Even in the
cases of small target size (k ¼ 2), SA fails to find valid solu-
tions in 50–60% of test cases. The results imply that quantum
computers can outperform classical computers in solving the
TIE problem by simulating annealing process.

3.2 The impact on actual disease-related
compounds

So far, we tested our method on real networks, but with ran-
domly selected target compound sets. Here, we evaluate how
our method performs when the target compound sets are veri-
fied to be associated with known disease classes. We use the
biosynthesis of amino acids metabolic network of H.sapiens
for every experiment in this part. We obtain mapping from
disease classes to compounds from the literature (Zielinski
et al. 2015), for 14 major disease classes. Figure 5 shows these
disease classes and the number of compounds associated for
each disease class in the given metabolic network. We observe
that the number of target compounds shows huge variation
among different disease classes (it varies from 1 to 10 with a
median of 4). This illustrates the need for new solutions that
work well for both small and large target sets.
We run QuTIE for each disease class using its correspond-

ing associated compounds as the target compound set. We re-
port the damage as well as the target enzymes identified by
our method. Figure 5 shows the damage QuTIE yields for

each disease class. Similar to Fig. 5, we observe a huge varia-
tion in the damage value (from 2 to 17, with a median of 10).
The values in these two figures, however, are not correlated.
That is, smaller target compound set size does not necessarily
yield smaller damage. This suggests that the topology of the
metabolic network and the distribution of the target com-
pounds over this topology play an important role in the effi-
cacy and the toxicity of the drugs designed for the underlying
disease. For example, Fig. 5a and b together suggests that dis-
ease classes bleeding, digestive, and immune deficiencies can
be treated with less damage, although they have more target
compounds than several other disease classes, such as pain,
urinary, and liver failures.
We also examine the number of inhibited enzymes by

QuTIE for each disease class. This number can be considered
as an indicator of the cost/difficulty of inhibiting the enzymes
needed to stop the production of those compounds: The
larger the number of enzymes, the more effort it takes to in-
hibit them. Figure 5 presents the results. Similar to Fig. 5a and
b, we observe a huge variation in the number of enzymes
(ranging from 14 to over 40). It is worth noting that QuTIE
aims to minimize the damage, and not the number of
enzymes. Therefore, it is not surprising that QuTIE can some-
times yield a very large number enzymes to obtain smaller
damage. We also observe no correlation between the target
compound set size and the number of enzymes resulting from
them. This also implies that the topology of the distribution
of target compounds on the metabolic network is the primary
factor in the size of the resulting enzyme set.

3.2.1 Evaluation of disease enzyme associations

Our final analysis explores whether the targeted enzymes indeed
have known associations for the disease classes, whose com-
pounds they inhibit. To do that, we list all the enzymes that
QuTIE identifies as target in order to inhibit the target com-
pounds associated for each disease class. For 14 disease classes,
and all the known compounds associated with each disease
class, QuTIE identifies 408 enzymes as targets in total with rep-
etition (i.e. an enzyme can be a target for multiple disease clas-
ses), leading to 53 unique enzymes for all disease classes
combined. We provide the list of disease classes, compounds,
and enzymes in Supplementary Material S2. Further studying
these enzymes reveals that QuTIE indeed identifies target genes
verified to be affecting the target disease in wet-lab experiments
on human as well as different animal models. Table 1 lists five
examples out of these due to page limitations.
The very first target enzyme that we identify for the pain

category is catechol O-methyltransferase. Studies on both rat
and mice models demonstrate that the inhibition of catechol
O-methyltransferase affects the perception of pain (Kambur

Figure 4. Comparison between QuTIE and the SA method on small
datasets in terms of their success in finding valid solutions.

Figure 3. Comparison between QuTIE and the heuristic double iterative
method in large datasets in terms of damage. The less damage is, the
better solution is. Data points outside the envelope formed by the green
dash line, and the blue dash line indicate cases in which QuTIE
significantly outperforms the heuristic method.
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and Mannisto 2010). Similarly, the first target enzyme that
we identify for the endocrine disease category is aspartate
aminotransferase, whose altered activity in children has a det-
rimental effect of early-life endocrine-disrupting chemical ex-
posure on liver function (Barse et al. 2007). QuTIE identified
arginase as one of the top target enzymes for urinary disor-
ders. Indeed, in clinical samples of obstructive nephropathy,
altered levels of arginase was observed using both Western
blot and MRM analyses (Naylor and Cederbaum 1981).
Hyperprolinemia is a bleeding disorder, caused by the build-
up of proline in the blood (Pandhare et al. 2009). QuTIE cor-
rectly identifies this enzyme too as a potential drug target.
Finally, the abundance of glutamine, one of the targets we
identify for immune-related disorders, is indeed linked to the
immune suppression in humans (Cruzat et al. 2018). In sum-
mary, there is substantial publication evidence supporting the
potential target enzymes that we identify, which suggest that
efficient and accurate solution to the TIE problem on large
and complex networks using quantum optimization has great
potential to assist drug target identification.

Supplementary data

Supplementary data are available at Bioinformatics Advances
online.
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Table 1. Five example target enzymes identified by QuTIE for five disease classes and publication evidences for those enzymes.
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Pain general Catechol O-methyltransferase Kambur and Mannisto (2010)
Endocrine Aspartate aminotransferase Barse et al. (2007)
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