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ABSTRACT. An epidemic disease caused by coronavirus has spread all over the world with a strong contagion 

rate. We implement an SIR model to study the evolution of the infected population and the number of infected 

recovered and dead because of this epidemic in South Carolina consistent with available data. We perform an 
analysis of the results of the model by varying the parameters and initial conditions, in particular transmission 

and recovery rates. 
We use data covering the period December 1, 2020, to June 1, 2021. The models and results are consistent with 

the observations. The models developed using data help us understand the recovery rates. The infection and 

recovery increasing in South Carolina do not show improvement. The number of dead people tends to increase 
although by small amount. 

Models were developed based on the available data. Initially neural networks and machine learning 

methodology were used to come up with transmission rates. Later, direct calculation and optimal control 

methodology were used to deduce transmission parameters. For the period December to June there were no 

available data on recovered populations and we have to determine them as well as transmission and recovery 
rates based on data of infected populations and dead population using neural networks and optimal control 

methodologies where transmission, recovery, relapsation immunity and death rates from infection are 

considered as decision variables. 
From the data from CDC we see that the number of infected population is increasing. We have also data for the 

number of dead population due to the virus. Our models are consistent with the data we have available for the 
infected and dead population. However, there were no data for recovered population in South Carolina for the 

entire period December 1 to June 1. We have to use our model to come up with recovered population number. 

One thing we observe is that the number of infected population was increasing. One of the control measures that 

are believed to be reliable methods of curbing the spread of the virus is quarantine. We include a model that 

includes quarantine in our work. In our quarantine we see that if 100,000 susceptible people in the whole state 
were quarantined there would have been a considerable decrease in the number of infected population. 
AMS (MOS) Subject Classification. 34H05, 34D20, 68T07, 92B20 Key Words 

and Phrases. Optimal control, Reproduction number. 

1. Introduction 

The rapid spread of a disease in regions (epidemic) or the global outbreak of a disease 
(pandemic), can have a detrimental effect on health systems and economical activities locally 
and globally. Measures to reduce the pandemic spread include curtailing close interactions 
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between using social distancing and face masks and vaccinations. Social distancing has 
negative economic effects. It is useful to understand the significance of these interventions, 
([2], [16], [11],[18]). 

Mathematical models have been used in epidemiology for many years, going back to the 
eighteenth century. Most of the models are compartmental models, with the population 
divided into classes and with assumptions being made about the rate of transfer from one class 
to another. Here we consider a Susceptible-Infectious-Recovered (SIR) model to describe the 
spread of the virus and compute the number of infected and dead individuals. There are 
models that include exposed and migration. The goal is to compute the number of infected, 
recovered, and dead individuals on the basis of the number of contacts, probability of disease 
transmission, incubation period, recovery rate, and fatality rate. The epidemic disease model 
predicts a peak of infected and dead individuals as a function of time and assumes that births 
and natural deaths are balanced, since we are dealing with a very short period of time. The 
population members solely decrease due to the disease as dictated by the fatality rate of the 
disease. The differential equations are solved with a forward Euler scheme, ([8]). 

2. MATHEMATICAL MODELS 

Mathematical and statistical methods provide essential input for governmental decision 
making that aims at controlling the outbreak. Statistical methods frequently aim at early 
detection of disease outbreaks ([16]). Another approach is to develop models that indicate the 
outbreak dynamics using compartmental models ([16]). In compartmental models we 
consider a fraction of the population to be susceptible, a fraction to be infected, a fraction that 
has recovered. In some models exposed group is part of the model. Compartmental models 
have been used to model HIV epidemic, malaria, and corona virus outbreak, ([7],[12], [9] ,[16], 
[18]). In this paper we consider SIR model. SIR model can be modified in several ways, for 
example, by including demographics, deceased populations, hidden population, i.e., exposed 
populations (SEIR). In an accelerating epidemic outbreak contact tracing , the SEIR model 
needs to be modified to account for it. In the current paper we have two main objectives: (i) to 
report some new analytical results about SIR model and (ii) to introduce an 
optimization/neural network approach for the estimation of the parameters of the SIR model 
from real time series data. The SIR model is formulated in terms of three populations of 
individuals. The susceptible population, z1, consists of all individuals susceptible to the 
infection of concern. The infected population population, z2, comprises the infected 
individuals. These persons have the disease and can transmit it to the susceptible individuals. 
The recovered population, z3, represents the immune individuals, who cannot become infected 
and cannot transmit the disease to others. 
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Another approach we use is neural network approach ([4], [17]). 

In this paper we consider an SIR epidemic disease model. The total (initial) population, N, 
is categorized into four classes, namely, susceptible, S(t), infected-infectious, I(t), and 
recovered, R(t), where tis the time variable. We consider discrete and continuous models. 

The initial value problem we consider is 

, 

where λSC = birth rate, µSC = natural death rate, u=transmission rate, v=recovery rate, w= death 
rate of infected, N=5149000, susceptible population in SC. 

We solve the above system of differential Equations by using MATLAB Euler-scheme. The 
results are shown below. To determine the necessary parameters, we used data obtained from 
CDC and optimal control methodology as well as neural network and machine learning tools. 

3. DISCRETE MODEL 

We use data covering the period December 1, 2020, to June 1, 2021. In this period 
vaccination has been available although not taken advantage of by a lot of people. In addition, 
social distancing and face making have been less and less adhered to. 

We consider the following discrete model covering the period December 1, 2020, to June 1, 
2021. We have data for infected population and dead population for this model. We are going 
to rely on our model to estimate the recovered populations day by day covering this period. 
The recovered population for Dec. 1, 2020, is known to be 115152. 

z1(i + 1) = (1 − vc) · λSC · N + z1(i) − µSC · z1(i) 

−(1/(1 + exp(−u(i))))z1(i)z2(i)(1/N) + (1/(1 + exp(−s(i))))z3(i), 

z2(i + 1) = z2(i) + u(i)z1(i)z2(i)/N − (v(i) + 1/(1 + exp(−w(i))) + µSC)z2(i) 

+1/(1 + exp(−r(i))) · z3(i), 

z3(i + 1) = vc · λSC · N + z3(i) + (1/(1 + exp(−v(i)))) · z2(i) − (µSC 

+1/(1 + exp(−r(i))) + 1/(1 + exp(−s(i)))) · z3(i), 

In this model, λSC = .058 birth rate; µSC = .0095, natural 
death rate vc =.40, vc · N represents proportion of 
vaccinated people, N=the susceptible population, 5149000, 
transmission rate=1/(1+exp(-u(i))), recovery 
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rate=1/(1+exp(-v(i))), relapsation rate= 1/(1+exp(-r(i))), 
immunity rate=1/(1+exp(-s(i))), death rate from 
infection=1/(1+exp(-w(i))). 

Thus, the number of recovered compartment, z3, increases by vc·N, whereas the susceptible 
compartment z1 increases by (1−vc)·λSC·N. We see the recovery, relapsation, and death rates 
are numbers between zero and 1. They are known. The optimization model determines what 
are appropriate.The number of infections arising from an infected individual is then modelled 
by the number R0(i) given below. The average basic reproduction number is 1.6133. A sketch 
of the reproduction number is shown below. We note it is slightly bigger than 1 consistent with 
the infected-recovered graph shown below. 

 

We would like to minimize the cost 

C(i)2 + D(i)2 + E(i)2 

where   

C(i) = (z2(i) − Inf(i)), 

D(i) = ((1/(1 + exp(−w(i)))) · z2(i) − Dead(i)), 

E(i) = (z2(i) − z3(i)). 

∂z2/∂u(i) = (z1(i)z2(i)/N)(−exp(u(i))/(1 + exp(−u(i)))2, 

∂z2/∂v(i) = −z2(i)(−1)exp(−v(i))/(1 + exp(−v(i)))2, 

∂z2/∂w(i) = −z2(i)(−1)exp(−w(i))/(1 + exp(−w(i)))2, 

∂z2/∂r(i) = z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2, 

∂z3/∂r(i) = −z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2, 

∂z3/∂s(i) = −z3(i)(−1)exp(−s(i))/(1 + exp(−s(i)))2. 

To update decision variables set 

au(i) = 2C(i)∂z2/∂u(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂u(i) + 2D(i)∂z2/∂u(i), 

+2E(i)∂z2/∂u(i) − 2E(i)∂z3/∂u(i), 

av(i) = 2C(i)∂z2/∂v(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂v(i) + 2D(i)∂z2/∂v(i), 

+2E(i)∂z2/∂v(i) − 2E(i)∂z3/∂v(i), 
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aw(i) = 2C(i)∂z2/∂w(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂w(i) + 2D(i)∂z2/∂w(i), 

+2E(i)∂z2/∂w(i) − 2E(i)∂z3/∂w(i) 

ar(i) = 2C(i)∂z2/∂r(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂r(i) + 2D(i)∂z2/∂r(i) 

+2E(i)∂z2/∂r(i) − 2E(i)∂z3/∂r(i), 

as(i) = −2E(i)∂z3/∂s(i). 

u(i) = u(i) − del · au(i), 

v(i) = v(i) − del · av(i), 

w(i) = w(i) − del · aw(i), 

r(i) = r(i) − del · ar(i), 

s(i) = s(i) − del · as(i). 

Inf(i) is the number of infected people at or on the i − th date after December 1,2020. The 
numbers are gotten from CDC. Likewise Dead(i) represents the number of dead people. The 
quantity E(i) represents the difference between the number of infected people according to 
our model z2(i), and infected people, Inf(i), gotten from CDC data. We represent the recovered 
people by z3(i). 

The following 3 figures represent the number of infected and recovered populations, 
recovery and contact figures, and reproduction rates that were obtained using the discrete 
model approach(Figure 1). 
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Figure 2. Recovery Rates and Contact Rates 

Reproduction Rate 
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Figure 3. Reproduction Number. 

4. Continuous Model-Optimal Control Approach 

Mathematical models are important in analyzing the spread and control of infectious diseases. 
The model formulation requires carefully designed models with appropriate assumptions, and 
variables parameters. Mathematical models have been critical in the study of infectious diseases 
([8] , [16], [17]). They have been used in studying tuberculosis([15], HIV ([9]), and dengue fever 
([1]) models, etc. The aim here is to start with appropriate model and relevant parameters to be 
determined. Among the parameters of importance to be determined are contact rates u, recovery 
rates v, relapse rates r, infection reproduction rates R0, death rates w, immunity rates s. We also 
include the role of vaccination. Although vaccinated people are unlikely to be infected contributing 
to immunity, there is still a possibility of relapse. We would like to minimize the cost function 
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Subject to the constraint 

, 

(4.1) 

The adjoint equation is 

dP1/dt = 2(uz1 − z2)u + (µSC + uz2/N)P1 − (uz2/N)P2, dP2/dt =

 2(wz2 − Dead(t))w + 2(vz2 − z3)v − 2(uz1 − z2) + (uz1/N)P1 

−(uz1/N − v − w − µSC)P2 − vP3, 

(4.2) dP3/dt = −2(vz2 − z3) − sP1 − rP2 + (µSC + r + s)P3. 

Next we construct the Hamiltonian. 
Set 

 f0(t) = (w(t)z1 − Dead(t))2 + (v(t)z2 − z3)2 + (u(t)z1 − z2)2, 

Next,    

 ∂f0/∂u = 2(uz1 − z2)z1, 

 ∂f0/∂v = 2(v)z2 − z3)z2, 

 ∂f0/∂w = 2(wz2 − Dead(t))z2. 

 ∂f1/∂u = −z1z2/N, 

 ∂f1/∂v = 0, 

 ∂f1/∂w = 0. 

 ∂f2/∂u = z1z2/N, 

 ∂f2/∂v = −z2, 

 ∂f2/∂w = −z2. 

 ∂f3/∂u = 0, 

∂f3/∂v = z2, ∂f3/∂w = 

0. ∂H/∂u(t) = 
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f0(t)u(t) − P1∂f1/∂u − 

P2∂f2/∂u − P3∂f3/∂u, 

 ∂H/∂v(t) = f0(t)v(t) − P1∂f1/∂v − P2∂f2/∂v − P3∂f3/∂v, 

 ∂H/∂w(t) = f0(t)w(t) − P1)∂f1/∂w − P2∂f2/∂w − P3∂f3/∂w. 

Finally we update our control variables. 

 u(t) = u(t) − randn · del · ∂H/∂u(t), 

 w(t) = w(t) − randn · del · ∂H/∂w(t), 

 v(t) = v(t) − randn · del · ∂H/∂v(t). 

Again, we use the CDC data of infected population and dead people day by day from 
December 1, 2020, to June 1, 2021. We use our model to estimate the number of recovered 
people. The following figure represents the recovered (green) and infected (blue) populations. 

We see from both discrete and continuous models is that the number of infected populations 
increases until mid-April and begins to decrease. The number of recovered populations 
follows the pattern of recovered populations. The number of recovered people becomes closer 
to the number of infected populations. 

 

Figure 4. Infected and Recovered States, Susceptible State. 



 MODELING COVID-20 EPIDEMIC 283 

 

Figure 5. Contact Rates, Recovery Rates. 

 

Figure 6. Reproduction Number. 
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Figure 7. Adjoint Trajectories 1,2. 

From the state equation ( 3.1) we consider 

, 

(4.3) 

 

Figure 8. Adjoint Trajectory 3. 
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We rewrite this equations as 

(4.4) where 

(4.5)  . 

and 

(4.6)  . 

Now, 

(4.7)  . 

 
The dominant eigenvalue of −FV −1 is R0 and the average of R0(i) is 1.0314. A sketch of the 

reproduction number is shown below. We note it is slightly bigger than 1 consistent with the 
infected-recovered graph shown below. 

4.1. Effect of Quarantine. In Figure 4 above we see that the number of infected people is 
increasing. The figure of infected people shown is in complete agreement to the data gotten 
from CDC. It is not acceptable to see the number is increasing. It is known that the disease of 
COVID-19 is transmitted through different mechanisms, such as hand contamination followed 
by mucosal inoculation, and droplets or aerosols disseminated by coughing and sneezing. 
Some measures that control the transmission of COVID-19 involve simple habits such as 
washing one’s hands continuously, sneezing into one’s hand or elbow, use of face mask low 
mobility, quarantine. Quarantine includes all of these measures. What we want to show is what 
could be the outcome if quarantine had been implemented from the very beginning. We will 
see a model where an initial quarantine of 50,000 susceptible people, which decreases very 
fast, leads to a significant decrease in the infected population and corresponding increase in 
the recovered population. We modify (4.1) to include quarantine of a small fraction of the 
susceptible population. That is our quarantine model assumes that it had been employed since 
Dec. 1, 2020. 
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, 

In our quarantine model we use the same contact, recovery, relapse and immunity rates that 
were obtained in the optimal control method. Thus, we proceed to solve the differential 
equation (4.9). The graphs of the infected and recovered populations, and the quarantined 
population are shown in Figure 9. 

4.2. Effect of Lockdown. It is known that the disease of COVID-19 is transmitted through 
different mechanisms, such as hand contamination followed by mucosal inoculation, and 
droplets or aerosols disseminated by coughing and sneezing. Some measures that control the 
transmission of COVID-19 involve simple habits such as washing one’s hands continuously, 
sneezing into one’s hand or elbow, use of face mask low mobility, quarantine or lockdown. We 
consider the following model which includes lockdown. What we want to show is what could 
be the outcome if these precautions had been implemented from the very beginning, Dec. 1, 
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Figure 9. Infected Recovered after Quarantine and Quarantined Susceptible 

2020. 
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, 

(4.10) 

We consider minimizing the cost 

 

subject to the equation above. The decision variables or controls are u, v, w, r, s andL. These 
variables represent transmission, recovery, death of infected, relapse, immunity, and 
lockdown rates. 

The adjoint system is given by 

, 

+P3(vc · λSCN + v) + P4(µSC + w); 

;  



 MODELING COVID-20 EPIDEMIC 289 

 

 

Figure 10. Infected Recovered after Lockdown and Susceptiblle After Lockdown 

5. CONCLUSION 

The worldwide spread of corona virus exerts enormous pressure on healthcare systems, 
societies, and governments. Therefore, predicting the epidemic dynamics is an important 
problem from a data science and mathematical modeling perspective. The motivation of the 
current work was to explore the potential of sequential data assimilation to create a regional 
epidemic model as a forecasting tool. The standard epidemic SIR-type models implement a 
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Figure 11. Death from Infection after Lockdown and Total Death 

compartmental description under the assumption of homogeneous mixing of individuals. 

More realistic modeling approaches must account for spatial heterogeneity due to time 
varying disease onset times, regionally different contact rates, and the time dependence of the 
contact rates due to the implementation of containment strategies. However, extensive data 
are not currently available. Thus, we must construct models where control theory, 



 MODELING COVID-20 EPIDEMIC 291 

 

 

Figure 12. Recovery Rates After Lockdown Contact Rates After Lockdown 

optimization, and neural network methodologies to approximate missing and necessary data. 
In the work we did relating to data from December 1, 2020, to June 1, 2021, we rely only on 
available data of infected and dead populations to have some ideas on the transmission, 
recovery, and relapse rates. 
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Figure 13. Basic Reproduction After Lockdown 

What we see in the last three pictures from the discrete model are a decrease in death rate, 
high recovery rate, and decreasing infection transmission rate. The basic reproduction rate is 
consistent with this observation although it trending upward, but less than 1. What we see in 
the very last picture is like the first picture of the recovered and infected populations. We 
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notice they are similar. In the figure of infected and recovered in Figure 8 we see that the 
infected population increases consistent with the CDC data. This increase in not acceptable. 
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By considering quarantine in our model we see that quarantine could have made a significant 
impact in decreasing the infected population and increasing the recovered population. Thus, 
quarantine is an effective tool in curbing the spread of the virus. 

Acknowledgement: 

This research is supported by the National Science Foundation Grant No. 1954532. 

REFERENCES 

[1] D. Aldila, T. Gotz, E. Soewono, An optimal Control problem arising from a dengue disease transmission model, 

Math. Biosci. 242 (1)(2013), 9-16. 
[2] Anastassopoulou C, et.al, Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling 

and forecasting of the COVID-19 outbreak. PLoS ONE 15(3): e0230405. 

https://doi.org/10.1371/journal.pone.0230405 
[3] F. G. Ball, E. S. Knock, P.D. O’Neil Control of emerging infectious diseases using responsive imperfect 

vaccination and isolation , Math. Biosci. 216 (1) (2008), 100-113. 
[4] Marcus de Barros Braga, et al, Artificial neural networks for short-term forecasting of cases, deaths, and 

hospital beds occupancy in the COVID-19 pandemic at the the Brazilian Amazon, PLOS— 

https://doi.org/10.1371/journal.pone.0248161 March 2021. 
[5] C. Castilho , Optimal Control of an epidemic through educational campaigns , Electron. J. Differ. Equ. 2006 

(2006), 1-11. 
[6] H. Gaff, E.Schaefer, Optimal control applied to vaccination and treatment strategies for various 

epidemiological models, Math. Biosci. Eng. 6 (3) (2009), 469-492. 
[7] K. Hattaf, N. Yousfi, Optimal Control of a delayed HIV infection model with immune response using an efficient 

numerical method , Int. Sch. Res. Netw. (2012) (2012), 1-7. 
[8] Hethcote, The mathematics of infectious diseases. SIAM Rev. Vol. 42, 2006, 599-653. 
[9] Hail-Fung Huo et. al., Modeling and stability of HIV/AIDS epidemic model with treatment, Hail-Feng Huo, Rui 

Chen, Xun-Yang Wang, Applied Mathematical Modelling 40(2016) 6550-6559. 
[10] H. Laarabi, A. Abta, K. Hattaf , Optimal Control of a delayed SIRS epidemic model with vaccination and 

treatment , Acta Biotheor. 63 (15) (2015), 87-97 
[11] Lin Q, et.al, Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH, Cai Y, Wang W, Yang L, He D. A conceptual 

model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and 
governmental action. Int J Infect Dis. Vol. 93, 2020; pp. 211-216. 

[12] Macdonald, G. The epidemiology and control of malaria. Oxford University, 1957, Mandal, S. et al. 
[13] Mathematical Models of Malaria - A Review, Malaria Journal (2011). 
[14] P. Ogren, C. F. Martin, Vaccination strategies for epidemics in highly mobile populations. Appl. Math. Comput. 

127 (2002), 261-276. 
[15] C. J. Silva, D. F. Torres, Optimal Control strategies for tuberculosis treatment: a case study in angola , Numer. 

Algebra Control Optim. 2 (3) (2012), 601-617 
[16] Unkel S, et.al, Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R 

Stat Soc, Ser A, Stat Soc. 2012;175(1):49-82. 
[17] Valeri M. Mladenov, Nicholas G. Maratos, Neural Networks for Solving Constrained 

Optimization Problems, Proc. of CSCC’00, Athens, Greece. 
[18] Wu JT et.al, Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. 

Nature Medicine Vol. 26, 2020, pp. 506-510. 
[19] G. Zaman, Y.H. Kang, J.H. Jung, Optimal treatment of an SIR epidemic model with time delay , Biosystems 98 

(1) (2009), 43-50. 


