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ABSTRACT. An epidemic disease caused by coronavirus has spread all over the world with a strong contagion
rate. We implement an SIR model to study the evolution of the infected population and the number of infected
recovered and dead because of this epidemic in South Carolina consistent with available data. We perform an
analysis of the results of the model by varying the parameters and initial conditions, in particular transmission
and recovery rates.

We use data covering the period December 1, 2020, to June 1, 2021. The models and results are consistent with
the observations. The models developed using data help us understand the recovery rates. The infection and
recovery increasing in South Carolina do not show improvement. The number of dead people tends to increase
although by small amount.

Models were developed based on the available data. Initially neural networks and machine learning
methodology were used to come up with transmission rates. Later, direct calculation and optimal control
methodology were used to deduce transmission parameters. For the period December to June there were no
available data on recovered populations and we have to determine them as well as transmission and recovery
rates based on data of infected populations and dead population using neural networks and optimal control
methodologies where transmission, recovery, relapsation immunity and death rates from infection are
considered as decision variables.

From the data from CDC we see that the number of infected population is increasing. We have also data for the
number of dead population due to the virus. Our models are consistent with the data we have available for the
infected and dead population. However, there were no data for recovered population in South Carolina for the
entire period December 1 to June 1. We have to use our model to come up with recovered population number.
One thing we observe is that the number of infected population was increasing. One of the control measures that
are believed to be reliable methods of curbing the spread of the virus is quarantine. We include a model that
includes quarantine in our work. In our quarantine we see that if 100,000 susceptible people in the whole state
were quarantined there would have been a considerable decrease in the number of infected population.

AMS (MOS) Subject Classification. 34H05, 34D20, 68T07, 92B20 Key Words

and Phrases. Optimal control, Reproduction number.

1. Introduction

The rapid spread of a disease in regions (epidemic) or the global outbreak of a disease
(pandemic), can have a detrimental effect on health systems and economical activities locally
and globally. Measures to reduce the pandemic spread include curtailing close interactions
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between using social distancing and face masks and vaccinations. Social distancing has
negative economic effects. It is useful to understand the significance of these interventions,

([2], [16], [11],[18]).

Mathematical models have been used in epidemiology for many years, going back to the
eighteenth century. Most of the models are compartmental models, with the population
divided into classes and with assumptions being made about the rate of transfer from one class
to another. Here we consider a Susceptible-Infectious-Recovered (SIR) model to describe the
spread of the virus and compute the number of infected and dead individuals. There are
models that include exposed and migration. The goal is to compute the number of infected,
recovered, and dead individuals on the basis of the number of contacts, probability of disease
transmission, incubation period, recovery rate, and fatality rate. The epidemic disease model
predicts a peak of infected and dead individuals as a function of time and assumes that births
and natural deaths are balanced, since we are dealing with a very short period of time. The
population members solely decrease due to the disease as dictated by the fatality rate of the
disease. The differential equations are solved with a forward Euler scheme, ([8]).

2. MATHEMATICAL MODELS

Mathematical and statistical methods provide essential input for governmental decision
making that aims at controlling the outbreak. Statistical methods frequently aim at early
detection of disease outbreaks ([16]). Another approach is to develop models that indicate the
outbreak dynamics using compartmental models ([16]). In compartmental models we
consider a fraction of the population to be susceptible, a fraction to be infected, a fraction that
has recovered. In some models exposed group is part of the model. Compartmental models
have been used to model HIV epidemic, malaria, and corona virus outbreak, ([7],[12], [9],[16],
[18]). In this paper we consider SIR model. SIR model can be modified in several ways, for
example, by including demographics, deceased populations, hidden population, i.e., exposed
populations (SEIR). In an accelerating epidemic outbreak contact tracing , the SEIR model
needs to be modified to account for it. In the current paper we have two main objectives: (i) to
report some new analytical results about SIR model and (ii) to introduce an
optimization/neural network approach for the estimation of the parameters of the SIR model
from real time series data. The SIR model is formulated in terms of three populations of
individuals. The susceptible population, z1, consists of all individuals susceptible to the
infection of concern. The infected population population, z2, comprises the infected
individuals. These persons have the disease and can transmit it to the susceptible individuals.
The recovered population, z3, represents the immune individuals, who cannot become infected
and cannot transmit the disease to others.
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Another approach we use is neural network approach ([4], [17]).
In this paper we consider an SIR epidemic disease model. The total (initial) population, N,
is categorized into four classes, namely, susceptible, S(t), infected-infectious, I(t), and

recovered, R(t), where tis the time variable. We consider discrete and continuous models.

The initial value problem we consider is

dz 7
dZQ ) '

W = Uu- 3-122(1/f\f) — (-,; -+ ,u,v)z2 — (l"b‘(,,‘)zz +u- 222:5(1/“)
1z

(dt.i = V- 29— (!L-S(f)zg —u- 2223(1/]\:)’ |

where Asc = birth rate, usc= natural death rate, u=transmission rate, v=recovery rate, w= death
rate of infected, N=5149000, susceptible population in SC.

We solve the above system of differential Equations by using MATLAB Euler-scheme. The
results are shown below. To determine the necessary parameters, we used data obtained from
CDC and optimal control methodology as well as neural network and machine learning tools.

3. DISCRETE MODEL

We use data covering the period December 1, 2020, to June 1, 2021. In this period
vaccination has been available although not taken advantage of by a lot of people. In addition,
social distancing and face making have been less and less adhered to.

We consider the following discrete model covering the period December 1, 2020, to June 1,
2021. We have data for infected population and dead population for this model. We are going
to rely on our model to estimate the recovered populations day by day covering this period.
The recovered population for Dec. 1, 2020, is known to be 115152.

z1(i+1) = (1-vc)-Asc- N+ z1(i) - psc- z1(i)
=(1/(1 + exp(-u())))z1(D)z2(1) (1/N) + (1/(1 + exp(-s(i))))z3(1),
z2(i+1) = z2(i) + u(Dz1(i)z2(i)/N - (v(i) + 1/(1 + exp(-w(i))) + psc)z2(i)
+1/(1 + exp(-r(i))) - z3(D),
z3(i+1) = wvc-Asc- N+ z3(i) + (1/(1 + exp(-v(i)))) - z2(7) — (usc

+1/(1 + exp(-r(1))) + 1/(1 + exp(=s(1)))) - z3(1),

In this model, Asc=.058 birth rate; usc=.0095, natural
death rate vc =.40, vc - N represents proportion of
vaccinated people, N=the susceptible population, 5149000,
transmission rate=1/(1+exp(-u(i))), recovery
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rate=1/(1+exp(-v(i))), relapsation rate= 1/(1+exp(-r(i))),
immunity rate=1/(1+exp(-s(i))), death rate from
infection=1/(1+exp(-w(i))).

Thus, the number of recovered compartment, z3, increases by vc-N, whereas the susceptible
compartment z1 increases by (1-vc)-Asc-N. We see the recovery, relapsation, and death rates
are numbers between zero and 1. They are known. The optimization model determines what
are appropriate.The number of infections arising from an infected individual is then modelled
by the number Ro(i) given below. The average basic reproduction number is 1.6133. A sketch
of the reproduction number is shown below. We note it is slightly bigger than 1 consistent with
the infected-recovered graph shown below.

A = (u(i)z(i,1)/N)/(v(i) + w(i) + psc)
Ro(i) = (A1) + 1/2/A0)2 + 40()r(i)/((v(i) + w(i) + pse) (usc + (i) + (i)

We would like to minimize the cost

C(D)?+ D(1)*+ E(1)?
where

C) = (z2(1) - InflD),
D@ = ((1/(1+exp(-w(i)))) - z2(i) - Dead(i)),
E(D) = (z2(i) - z3(1)).

0z2/0u(i) = (z1(1)z2(1)/N)(-exp(u(i))/(1 + exp(-u(i)))%
0z2/0v(i) = -z2(i)(-1)exp(-v(1))/(1 + exp(-v()))?
0z2/0w(i) = -z2(i)(-1)exp(-w(i))/(1 + exp(-w(i)))%
0z2/0r(i) = 2z3(i)(-1)exp(-r(i))/(1 + exp(-r(i)))?
0z3/0r(i) = -z3(i)(-Dexp(-r(1)/(1 + exp(-r(i)))?3
0z3/0s(i) = -z3(0)(-1)exp(-s(i))/(1 + exp(-s(1)))2

To update decision variables set

au(i) = 2C(1)0zz2/0u(i) + 2D(i)(1/(1 + exp(-w(i))))0z2/du(i) + 2D(i)0z2/0u(i),
+2E(1)0z2/0u(i) - 2E(i)0z3/0u(i),
av(i) = 2C()dzz/0v(i) + 2D(i)(1/(1 + exp(-w(i))))0z2/dv(i) + 2D(i)0z2/dv(i),

+2E()822/0v(i) - 2E(1)dz3/v(i),
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aw(i)

2C()0z2/dw(i) + 2D(1)(1/(1 + exp(-w(i))))dz2/dw(i) + 2D(i)dz2/dw(i),

+2E(i)0z2/0w(i) - 2E(1)0z3/0w(i)

ar(i)

2C(1)822/0r(i) + 2D())(1/(1 + exp(-w(i))))dz2/r(i) + 2D(i)dz2/dr (i)

+2E()822/0r(i) - 2E(1)823/0r(i),

as(i) -2E(i)0z3/0s(i).
u(i)
v(i)
w(i)
r(i)
s(1)

u(i) - del - au(i),
v(i) - del - av(i),
w(i) - del - aw(i),
r(i) - del - ar(i),
s(i) - del - as(i).

279

Inf{i) is the number of infected people at or on the i - th date after December 1,2020. The
numbers are gotten from CDC. Likewise Dead(i) represents the number of dead people. The
quantity E(i) represents the difference between the number of infected people according to
our model z2(i), and infected people, Inf{i), gotten from CDC data. We represent the recovered

people by z3(i).

The following 3 figures represent the number of infected and recovered populations,
recovery and contact figures, and reproduction rates that were obtained using the discrete

model approach(Figure 1).

Figure 1. Infected and Recovered, Death rate.
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Figure 2. Recovery Rates and Contact Rates
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Figure 3. Reproduction Number.

4. Continuous Model-Optimal Control Approach

Mathematical models are important in analyzing the spread and control of infectious diseases.
The model formulation requires carefully designed models with appropriate assumptions, and
variables parameters. Mathematical models have been critical in the study of infectious diseases
([8], [16], [17]). They have been used in studying tuberculosis([15], HIV ([9]), and dengue fever
([1]) models, etc. The aim here is to start with appropriate model and relevant parameters to be
determined. Among the parameters of importance to be determined are contact rates u, recovery
rates v, relapse rates r, infection reproduction rates Ro, death rates w, immunity rates s. We also
include the role of vaccination. Although vaccinated people are unlikely to be infected contributing
to immunity, there is still a possibility of relapse. We would like to minimize the cost function
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L {(w(t)z1(t) — Dead(t))* + (v(t)za(t) — 23(t))* + (u(t)z1(t) — z2(t)* }dt

Subject to the constraint

dz .
dfl = (1=we) - Asc - N — pscz —uz122(1/N) + s - 23
dz:
—d; = unz(l/N) — (v+w)z — pgoze + rzs,
dzy \ N+ i
(4.1) a . Uerase Uy — [l§CZ3 — T'Zg — SZ3.

The adjoint equation is

dP1/dt = 2(uz1- z2)u + (usc+ uzz/N)P1 - (uzz/N)P2, dP2/dt =
2(wzz2- Dead(t))w + 2(vzz2 - z3)v - 2(uz1 - z2) + (uz1/N)P1
—(uz1/N - v —w - usc)P2 - vP3,

(4.2) dPs/dt =-2(vz2-2z3) = SP1—-rP2+ (usc+ r + s)Ps.
Next we construct the Hamiltonian.
Set
fo(t) = (w(t)z1 - Dead(t))? + (v(t)zz — z3)% + (u(t)z1 - z2)%,
Next,
dfo/ou = 2(uzi-z2)z,
dfo/ov = 2(v)z2-2z3)z2,
dfo/ow = 2(wzz- Dead(t))z2
ofi/ou = -z1z2/N,
dfi/ov =0,
dfi/ow =0.

df2/0u = ziz2/N,

df2/0v = -7,
of2/0w =-72.
df3/ou =0,

0f3/0v = z2, 0f3/0w =
0. 0H/du(t) =

281
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fo(t)u(t) - P10f1/0u -
P20f2/0u - P30f3/0u,
d0H/0dv(t) = fo(t)v(t) - P10f1/0v - P20f2/0v — P30f3/0v,
dH/dw(t) = fo(t)w(t) - P1)0f1/0w - P20f2/0w - P30f3/0w.

Finally we update our control variables.

u(t) = u(t)-randn-del-0H/du(t),
w(t) = w(t)-randn-del-dH/0w(t),
v(t) = v(t)-randn-del-0H/dv(t).

Again, we use the CDC data of infected population and dead people day by day from
December 1, 2020, to June 1, 2021. We use our model to estimate the number of recovered
people. The following figure represents the recovered (green) and infected (blue) populations.

We see from both discrete and continuous models is that the number of infected populations
increases until mid-April and begins to decrease. The number of recovered populations
follows the pattern of recovered populations. The number of recovered people becomes closer
to the number of infected populations.

Figure 4. Infected and Recovered States, Susceptible State.
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Adjoint trajectory 2

Adjoint trajectory P2

Figure 7. Adjoint Trajectories 1,2.

From the state equation ( 3.1) we consider

(4.3)

de

dt
d23

dt

{Adjoint 3)/10°

Uzle(l/N) — (v +w)zg — pscza + 123

vz — (fisc )23 — T2y — 823.

Adjoint trajectory 3

Adjoint trajectory P3

Figure 8. Adjoint Trajectory 3.
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We rewrite this equations as

dz
= (F+V)z
(44) dr ( + ) where
o uzi /N r
(4.5) U : |
and
v —U — W — Usc 0
(4.6) 0 —psc —T — S
Now,
RVl = uz /(v +w+pse) r/(pse +1r+s)
(4.7) v/(v+w+ psc) 0

A@) = (u(i)2(i,1)/N)/(v(i) + w(i) + psc)

(4.8) Ro(i) = (A() +1/2y/A@0)* + 40()r(i)/((v(i) + w(i) + psc) (nsc + (i) + (7))

The dominant eigenvalue of —=FV -1is Roand the average of Ro(i) is 1.0314. A sketch of the
reproduction number is shown below. We note it is slightly bigger than 1 consistent with the
infected-recovered graph shown below.

4.1. Effect of Quarantine. In Figure 4 above we see that the number of infected people is
increasing. The figure of infected people shown is in complete agreement to the data gotten
from CDC. It is not acceptable to see the number is increasing. It is known that the disease of
COVID-19 is transmitted through different mechanisms, such as hand contamination followed
by mucosal inoculation, and droplets or aerosols disseminated by coughing and sneezing.
Some measures that control the transmission of COVID-19 involve simple habits such as
washing one’s hands continuously, sneezing into one’s hand or elbow, use of face mask low
mobility, quarantine. Quarantine includes all of these measures. What we want to show is what
could be the outcome if quarantine had been implemented from the very beginning. We will
see a model where an initial quarantine of 50,000 susceptible people, which decreases very
fast, leads to a significant decrease in the infected population and corresponding increase in
the recovered population. We modify (4.1) to include quarantine of a small fraction of the
susceptible population. That is our quarantine model assumes that it had been employed since
Dec. 1, 2020.
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GE; = (1—we) - Asc N —psczy —uz122(1/N) + s+ 23 — Az124(1/N) + 0,24
(i: = uznz(1/N) — (v 4 w)z — pscze + 123,
(iiz; = wvc-Ago - N +vze — jisczz — rze — S23,

(4.9) ”:Hl — Mzza(1/N) — 0124 — psoz

In our quarantine model we use the same contact, recovery, relapse and immunity rates that
were obtained in the optimal control method. Thus, we proceed to solve the differential
equation (4.9). The graphs of the infected and recovered populations, and the quarantined
population are shown in Figure 9.

4.2. Effect of Lockdown. It is known that the disease of COVID-19 is transmitted through
different mechanisms, such as hand contamination followed by mucosal inoculation, and
droplets or aerosols disseminated by coughing and sneezing. Some measures that control the
transmission of COVID-19 involve simple habits such as washing one’s hands continuously,
sneezing into one’s hand or elbow, use of face mask low mobility, quarantine or lockdown. We
consider the following model which includes lockdown. What we want to show is what could
be the outcome if these precautions had been implemented from the very beginning, Dec. 1,
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Figure 9. Infected Recovered after Quarantine and Quarantined Susceptible
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d;;l = (1—we) - Asc- N — psczr —u(l —ay - L)z122(1/N) — ag - zy,

% = u(l—ay-L)2120(1/N) — (v +w)zg — prscze + (1 — ag - L)z,

6;3 = (ve)Asc(1/N) + vz — psczs —r(1 —ag - L)zs — (1 —ay - L)szs
% (pso +w)ze + pso(z1 + 23).

(4.10)

We consider minimizing the cost

]0 {((t)22(t) — 2(5)? + (u(t) 22 (1) — za(t)?ydt

subject to the equation above. The decision variables or controls are u, v, w, r; s andL. These
variables represent transmission, recovery, death of infected, relapse, immunity, and
lockdown rates.

The adjoint system is given by

d P
d—tl = 2(uz; — z)u+ Pi(—psc —as —u(l —ay - L)23(1/N)) + Pou(l — ay - L)2(1/N) + psc Py
% — vz — )0 + Po(—u(l —al - L)z (1/N)),

+Py(u(l —al - L)z (1/N) — (v+w + psc))

+P3(vc « AscN + v) + Pa(usc+ w);
1P
(d—; = —2(wzy —z3) + Pyr(l —a2- L)+ Py(—(psc + (1 —ay - L)+ (1 —ay - L)s)) + psc Py
dPy

el 2(z4 — Dead).
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Figure 10. Infected Recovered after Lockdown and Susceptiblle After Lockdown

5. CONCLUSION

The worldwide spread of corona virus exerts enormous pressure on healthcare systems,
societies, and governments. Therefore, predicting the epidemic dynamics is an important
problem from a data science and mathematical modeling perspective. The motivation of the
current work was to explore the potential of sequential data assimilation to create a regional
epidemic model as a forecasting tool. The standard epidemic SIR-type models implement a
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Figure 11. Death from Infection after Lockdown and Total Death

compartmental description under the assumption of homogeneous mixing of individuals.

More realistic modeling approaches must account for spatial heterogeneity due to time
varying disease onset times, regionally different contact rates, and the time dependence of the
contact rates due to the implementation of containment strategies. However, extensive data
are not currently available. Thus, we must construct models where control theory,
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optimization, and neural network methodologies to approximate missing and necessary data.
In the work we did relating to data from December 1, 2020, to June 1, 2021, we rely only on
available data of infected and dead populations to have some ideas on the transmission,

recovery, and relapse rates.
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Figure 13. Basic Reproduction After Lockdown

What we see in the last three pictures from the discrete model are a decrease in death rate,
high recovery rate, and decreasing infection transmission rate. The basic reproduction rate is
consistent with this observation although it trending upward, but less than 1. What we see in
the very last picture is like the first picture of the recovered and infected populations. We
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notice they are similar. In the figure of infected and recovered in Figure 8 we see that the
infected population increases consistent with the CDC data. This increase in not acceptable.
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By considering quarantine in our model we see that quarantine could have made a significant
impact in decreasing the infected population and increasing the recovered population. Thus,
quarantine is an effective tool in curbing the spread of the virus.
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