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ARTICLE INFO ABSTRACT
Keywords: In this paper, the authors propose a new approach to solving the groundwater flow equation in the Toth basin of arbitrary top
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and bottom topographies using deep learning. Instead of using traditional numerical solvers, they use a DeepONet to produce
the boundary-to-solution mapping. This mapping takes the geometry of the physical domain along with the boundary
conditions as inputs to output the steady state solution of the groundwater flow equation. To implement the DeepONet, the
authors approximate the top and bottom boundaries using truncated Fourier series or piecewise linear representations. They
present two different implementations of the DeepONet: one where the Toth basin is embedded in a rectangular
computational domain, and another where the Toth basin with arbitrary top and bottom boundaries is mapped into a
rectangular computational domain via a nonlinear transformation. They implement the DeepONet with respect to the Dirichlet
and Robin boundary condition at the top and the Neumann boundary condition at the impervious bottom boundary,
respectively. Using this deep-learning enabled tool, the authors investigate the impact of surface topography on the flow
pattern by both the top surface and the bottom impervious boundary with arbitrary geometries. They discover that the
average slope of the top surface promotes long-distance transport, while the local curvature controls localized circulations.
Additionally, they find that the slope of the bottom impervious boundary can seriously impact the long-distance transport of
groundwater flows. Overall, this paper presents a new and innovative approach to solving the groundwater flow equation
using deep learning, which allows for the investigation of the impact of surface topography on groundwater flow patterns.

the solution of groundwater flow equations only produces one solution for any

1. Introduction

given boundary conditions. When one studies another Toth

The Toth groundwater flow analysis was a seminal theoretical attempt to
relate surface topography of the water table and the associated hydrological
boundary conditions with the steady state groundwater flow field driven by
gravity in a small drainage basin, known as the Toth basin (Toth, 1962, 1963).
It involved solving an elliptic boundary value problem for a given surface
topography of the water table not far from a horizontally flat surface with the
associated Dirichlet boundary condition on a rectangular domain
approximately. For a general nonrectangular drainage basin with a surface
topography far from a flat surface, the elliptic boundary value problem would
have to be solved numerically. The Toth water table analysis demonstrated the
impact of surface topography and the associated water potential at the

boundary on the ground water flow in the basin domain approximately.
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Traditionally, a numerical solver (such as MODFLOW, COMSOL, etc.) for basin
with a different surface topography, the solution have to be recalculated
completely. Given the flow equation and the boundary condition, the mapping
from the boundary condition to the solution is essentially provided by the
numerical solver. One thus wonders if the numerical solver can be replaced by
a concrete function or “mapping” that is fully capable of producing the
solution from any prescribed surface topography without being recalculated.
In the past, the Toth theory was refined through adjusting the coefficient
of permeability or the viscosity of the fluid in porus media, extended to
examine the influence of temperature (An et al., 2014), and used to investigate
the influence of depth and systemic heterogeneity in porus media (Cardenas
and Jiang, 2010; Jiang et al., 2011). Several studies focused on generalizing the
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Toth theory to other settings, like the more realistic three-dimensional space
(Wang et al., 2017), unsteady situations (Niu et al., 2015), etc. However, none
of the studies paid attention to the impact of the top surface topography of
the water table on the solution in the Toth basin holistically when it is of an
arbitrary shape.

In this paper, we extend the Toth water table study to a domain with an
arbitrary piecewise smooth top and bottom boundaries and two physically
relevant boundary conditions, and propose a novel approach to establish a
mapping from surface topographies (top alone or top+ bottom) to the solution
of the groundwater flow equation in the Toth basin directly using a deep
learning approach. To some extent, this is an analogue of a solution formula
for an initial-boundary value problem for partial differential equations (PDEs)
in the context of deep learning, where the solution of the initial-boundary
value problem is expressed as a neural network function of the domain, the
boundary conditions and the nonhomogeneous forcing term. This approach
produces a solution mapping that maps the prescribed initial and boundary
conditions as well as the forcing term to the solution directly. It can be readily
applied to any geophysical basins that share the same hydrological property
such as the mobility/conductivity coefficient in the flow equation. As a
demonstration of the approach, we present the mapping while neglecting the
forcing effect due to the source or sink and assuming the porus media is
spatially homogeneous. We remark that the method applies to any
inhomogeneous porus media and groundwater flow equations with a source
or sink term. The advantage of this approach is that once the solution mapping
is obtained in one Toth basin, it can be readily applied to all other Toth basins
where the hydrological property of the porus media is the same, but the
boundary and boundary conditions can be different.

The recent advancement in deep learning with neural networks makes the
development of such a desired mapping plausible (Karniadakis et al., 2021; Lu
et al., 2019; Cao, 2021; Guibas et al., 2022; Kissas et al., 2022; Li et al., 20213;
Pang et al., 2019). Given that a neural network is a mapping composed of
compound functions with specific layered structures, the mapping can be
established should we propose the proper architecture of the deep neural
network in principle in the context of physics-informed machine learning
(PIML) (Leshno et al., 1993; Chen and Chen, 1995). We note that the steady
state groundwater flow equation in porus media is an elliptic (or Poisson)
equation. Given the boundary and physically consistent boundary conditions,
a solution can be represented by an integral containing the Green'’s function
(Haberman, 2013). The integral with the Green’s function yields the mapping
from the boundary, boundary conditions and the source term to the solution
theoretically. Motivated by this connection between the domain, boundary
conditions and the source term of the equation, we represent the mapping
using a new form of neural network, known as the DeepONet. The DeepONet
has been shown to have the capacity to establish the mapping between the
model parameters, its boundaries (including boundary conditions) to the
solution in the domain (Lu et al., 2021). It is therefore an appropriate and
powerful tool for us to build the desired boundary-to-solution mapping.

Specifically, we will answer the following questions in this study using
machine learning with DeepONet.

e What is the influence of the surface topography and the geometry of
the Toth basin to the steady flow field through the water potential in
Toth basin /2?

e What is the specific effect of both the top and bottom boundary
conditions to the solution of the groundwater flow equation in the Toth
basin through the boundary-to-solution mapping? We will
focus on two types of top boundary conditions: (i) the Dirichlet
boundary condition in which the water potential is prescribed at the top
boundary related to the altitude of the location: /= g#(x), where / is
the water potential, g is gravity, and ¥ = & defines the top boundary;

and (ii) the Robin boundary condition:
oh
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—(x) + yA(X) = yg@(+), where yis a rate parameter whose
n
reciprocal represents the penetration length. The latter simply states a
balance law between the cross boundary flux and the difference
between the water potential and a saturated water potential at the top
surface. As - oo, i.e. the penetration length shrinks to zero, the
Dirichlet boundary condition is recovered. Thus, the Robin boundary
condition is an approximation to the Dirichlet boundary condition at
large y > 1.

¢ What is the surface topography and basin geometry to the steady state
Darcy velocity field in the basin? We note that the topography here
refers to the water table topography or water head profile not the
topography of the ground surface.

We will address these issues holistically by solving the PDE boundary value
problem with respect to two distinct boundary conditions using DeepONet
(Pang et al., 2019; Lu et al., 2019). The presentation is given for steady states
without a source term. However, we emphasize again that the method extends
readily to flow phenomena with a source and transient situations with a
minimum modification to the DeepONet architecture. We note that for a
completely new Toth basin, an analogous boundary-to-solution mapping to
describe ground water flows in the porous medium can be obtained through
the transfer learning, which could accelerate the training process and be
efficiently done.

Numerically, we present three implementations of the DeepONet in which
the boundaries of arbitrary shapes are represented using a piecewise linear
interpolant, a truncated Fourier series, or mapped to a flat surface via a
nonlinear transformation. All three implementations yield comparable
numerical results. Without loss of generality, we will detail the latter two
implementations in this paper.

2. Mathematical formulation

We first present the model derivation and give a brief discussion on
consistency of boundary conditions with the governing equation. Then, we
discuss how the solution of the boundary value problem of the steady state
groundwater flow equation depends on prescribed boundary conditions and
source to set up the stage to apply physicalinformed-machine-learning (PIML)
with neural networks to solve the boundary value problem.

2.1. Model formulation

We formulate the groundwater flow model in a general timedependent
setting. We consider flow of ground water in a given domain /2 with piecewise
smooth boundary d/, in which some parts are impervious. We denote the
water potential by /(X, £) at location x and time £ It is related to the hydrostatic
pressure through

_[ V4
1
Ax,4=gqy +_ap, (2.1)
wp

where gis the gravity acceleration, yis the height of the water basin measured
from the bottom impervious layer, p(2) is the density of water, a function of
pressure g, zois the atmospheric pressure at the top surface of the water table
and 2(X, 7) is the hydrostatic pressure at X. Since the water potential is a gauge
variable, we choose the origin of the coordinate system at the lower
impervious layer so that the water potential at the surface is determined by
the altitude of the top surface relative to the impervious layer. We remark that
the origin for yis chosen as the lowest point along the bottom surface when
it is not flat. The flow equation of /(x,2) is given by the following continuity
equation:
oh
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S —=V-v+(Q (2.2)
at
where S'is the storage rate, ¢ is the source term, v is the effective velocity or
the Darcy velocity. It follows from (2.1) that
1

Vi=V(gn+ _Vp (2.3)
Y
The constitutive equation between water potential /and Darcy velocity v
is given by the Darcy’s law (Nield and Bejan, 2006):

vV=K-V/ (2.4)

where A"is the mobility or conductivity coefficient tensor. We note that (2.4)
can be viewed as a force balance equation, where the inverse, A7, serves as
the friction coefficient. It follows from (2.2) and (2.4) that
17
S —=V-(A-VA+ (2.5)
at
This is the governing equation for water potential /% from which the Darcy
velocity is inferred.

2.2. Dirichlet boundary-value problem
In a water basin /2, this partial differential equation is accompanied by a set

of boundary conditions over domain boundary /"= Jd/2. We consider the
following 2D domain with boundary conditions given below (see Fig. 2.1),

n- A-Varr=0, AxHD)|rv= g#r), (2.6) where n is the unit

. external normal to the boundary,

= (=¢,. 1

/rcare the boundaries at the bottom, left, right and top side of domain /2,
respectively, and equation y= #(.1) defines the top boundary (/7). The lateral
boundaries are assumed vertical line segments in domain /Zwhile the top and
bottom ones can be arbitrary. We name this domain the Toth basin for its
origin in the Toth’s seminal paper on the Toth water table. Notice that the
lateral boundaries and the bottom one are assumed impervious in the Toth
basin while the top one is not (Toth, 1963). When the bottom boundary is flat
and top boundary inclined with a small slope, Toth calculated his well-known
Toth water table solution in Toth (1970) using an approximate analytical
method based on an asymptotic analysis on a rectangular domain.

Given any boundary conditions along J/2, we need to check their
consistence with the governing equation in /7 (Li et al., 2021b). We integrate
Eq. (2.5) over /2to obtain

I o on
S (VA VA+QI&=[[S ——Ol&-[n-(K VA ds=0.
Vi ot 27 ot an

(2.7)

It imposes a consistent condition between the boundary conditions on /4 and
the solution in the interior. If boundary conditions are given in (2.6), the
consistent condition reduces to

I on
S —_-Qa&-[n- (4 VAds=0. (2.8)
2 ot It

In steady states and without the source term, in particular, the consistent
condition further reduces to

n- (A VAds=0. (2.9)
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’t
The consistent condition is a crucial constraint for the equation to have a
steady state solution. Physically, this condition indicates that the netflux across
the top boundary in steady state must be zero. For the given top boundary y
= @), the unit external normal m couples & to solution /(xX) obtained in /2
through (2.9).

We summarize the mixed boundary value problem with the Dirichlet
boundary condition on the top as follows

{
V-K-Vi=0,X€1

(2.10)

N KVA =0, Ayl =g,

Assuming the boundary-value problem is well-posed, / is a solution of (2.10),
and /Zis another function of the same regularity as /4, / satisfies the following
estimate:

I12= Ales GIV- AV |2+ GlIn- A -Va|rr+ Gll2- gdllre, (2.11) where the
norms are some proper norms defined in their respective spaces and (7=
1,2,3 are positive constants (Evans, 2010). Then, /2= a7g min||/Z - /|2

V4

=argmin[G|V - A Vi|o+ GlIn - K- Va2 mre+ Glli- gdl|re).
Y]
(2.12) Thus, we use the righthand side to define the loss function in this case.

Loss= G|V - K- Vi|o+ GIn- K- Vi|rre+ G| - gP| 7e. (2.13)

In this case, finding the solution of (2.10) is turned into a minimization problem
of the residues in (2.13). This is the foundation of PIML formulation
(Karniadakis et al., 2021). The crucially important part in this formulation is the
choice of the norms in the loss function so that it is consistent with the well-
posedness proof of the initial-boundary value problem (Raissi et al., 2019). In
practice, we augment the loss function defined in (2.13) by a penalization of
the consistent condition given in (2.9) as follows

Loss=CV - A Vi|e+ Gln- £ Vi|r .

+ G| |- gp|re+ LI n- (K- VAds), (2.14)
It

where Z1> 0 is a model parameter set by the user. In this paper, we set Z1= 1.
2.3. Robin boundary-value problem

A more physical boundary condition in steady states of the groundwater
flow equation at the top boundary perhaps should be

n-K-Vi=-Ulh- gh2), (2.15)

where p is the rate parameter. It indicates that the flux through the top
boundary is proportional to the difference of the water potential and the
saturated steady state water potential. If » = 0, (2.15) reduces to the
impervious Neumann boundary condition; whereas it reduces to the Dirichlet
one if y—> oo.

If we assume that the Robin boundary-value problem is well-posed, Zis a
solution, and /a function in Z(/2), it follows from the wellposedness that

=221l € GlIV- KV 2|2+ G- AV 2 || 72 ret G- AV /o A - g B D)1 7,

(2.16)
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where (;7=1,2,3 are positive constants. The loss function can then be devised
as follows

Loss= GIV-KV Ao+ GIn- KV 4| rret Gl K /v A fe - g A 0) || 7.

(2.17)

This loss function penalizes all the residues in the equation and the boundary
conditions.

The steady state governing equation without the source together with
boundary condition (2.15) yields the following consistency condition:

Ah- #)ds=0.
Va3

(2.18)

(2.9) and (2.18) are two constraints for the solution to satisfy the Dirichlet and
the Robin boundary condition, respectively, which must be ensured in any
solution solvers. In practice, the loss function used in machine-learning in this
study is given by

Loss=CV - K- Vot Gln- £ Vi|re

+ Gl £-Vi+ A= gh o)+ ([ Ae- P)ds).

It

(2.19)

y = ¢(x)

n-K-Vh=0
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e 0
A= ,
0 1 (2.23)
V4
€= is the aspect ratio of the basin. The flow equation in the
Lx
dimensionless form is given by
S— =V-A-Vi+Q (2.24)
ar
We choose
fo=gly, (2.25)
~ ok .~

and drop the™ from the dimensionless equations to obtain the dimensionless
equation and boundary conditions as follows:
{ S —V.K-Vh+

ot

— gx€
(2.26)

n-K-Vh=0

Fig. 2.1. Toth basin /2and the prescribed boundary conditions over d/22embedded in a rectangular domain [0,1] x [0,1]. The top and bottom boundaries are given by y= #(x)

and = ¢(X), respectively.

2.4. Nondimensionalizaton

In order to solve the equations together with the boundary conditions
numerically, we need to nondimensionalize them. We introduce length scale
in x: Zy, iny: Z;, and time scale: 7, respectively. The dimensionless variables
are defined as follows

¥=xF=y, 0=t = lp=¢,— - (2.20)
/2
Lx Ly 7 /o Ly

where /o is a characteristic water potential. The top Dirichlet boundary
condition is given by

Ly
fi=— @ (2.21) /o

We denote the characteristic storage rate by So. The dimensionless model
parameters are given by

5= 5,/.’: —/”—A . A"A,0=—Ta, (2.22)
K% L2y50 So/0
where

=P, XE/,n- K- Vi=0,X€EI?-/%

The consistent condition (2.9) retains.
Analogously, we obtain the dimensionless Robin boundary condition at the
top boundary as follows

n-AVi=-fi- @), (2.27)

where 7= y/.. We drop the tilde over p for brevity in the following. In this
paper, we consider A" = Diag( A1, A2) as a diagonal mobility< matrix in the
dimensionless equation, .+ € [0,1], and 0 < #(X) < #(x)

1 as bottom and top boundaries, where 3 = ¢ represents the bottom
boundary.

Next, we present three implementations of the DeepONet for the mapping
from specified boundaries and the boundary conditions (2.6) to the steady
state solution of the groundwater flow equation in /2 (Lu et al., 2021), from
which the Darcy’s velocity can be recovered.

3. DeepONet for the boundary-to-solution mapping

For the boundary value problem in the Toth basin, we would like to
establish a mapping from the boundary and the associated boundary condition
to the solution of the steady state groundwater flow equation in the domain.
We adopt the physics-informed machine learning approach and use the
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DeepONet as the neural network to represent the mapping (Lu et al., 2021).
For the Toth basin, we consider a domain with flat lateral, arbitrary top and
bottom boundaries. Firstly, we consider a domain of aspect ratio ¢ with flat
and impervious bottom and lateral boundaries and prescribed water potential
at the top boundary, ¥ = @(+). We construct the top surface to the solution
mapping in the Toth basin with (&, €) as the input. Owing to the fact that the
dimensionless boundary condition coincides with the boundary
representation, we only need to learn a mapping from top boundary y= #(1)
with aspect ration ¢ to the solution in /2. We present three different
approaches to accomplishing this goal using two distinct representations of
top boundary ¥ = &(.1), respectively. Secondly, we discuss an extension of the
approach to the domain where the bottom boundary and the top boundary
are both arbitrary.

3.1. Piecewise polynomial interpolation of the top boundary

We represent top boundary y= #(.) using 7 discrete points X,;= (; #(.v), 7

=1,.., zuniformly distributed in the x-coordinate, where .t;= (/~1)dx,dx= —
-11. We acknowledge a new development in treating the boundary condition
in a weak formulation of partial differential equations by introducing new
variable to satisfy the homogeneous boundary conditions in PIML (Sukumar
and Srivastava, 2022). However, our proposed approach suffices for the
current problem. We denote the approximate solution of this mixed boundary
value problem in the interior of /2by a DeepONet 4lh, £X) as follows

?_q n
6(ht,€,x)=2 Zcikg(zﬁ-/x,¢(xj)+‘f§;€+0f)5(wk‘x+gk)+b()’ (3.1)

=141 /1

where ¢/, &/, Wrare weights and &% ¢z /o are biases of the neural network,
h;= (#(11),..., #xn)) € R”denotes the uniformly distributed, y-coordinates of
the interpolating points at the top boundary, and 7,2, ¢ are positive integers.
The DeepONet represents the mapping from h,, £to the solution.

To apply the PIML method to learn the neural network, we choose
724 727, 724, 72, 72; POiNts at the left, right, bottom, and top boundary, and the
interior randomly. For convenience, we use odd number for 7,= 72 at the top
boundary. The loss function of the machine learning model is given by (2.14)
with the Z;norms in the interior and on the boundary. We evaluate the integral
norms using the Monte Carlo sampling. For the randomly chosen points along
the boundary and in the interior, {X/,7= /7,4X/}, and a well-defined uniform
division of [0,1], {x; /= 1,..., 724,X /= (x; P 1)), the specific expression of the loss
function is
given by

AGh'a = ):J;H((ﬁ(xi) - G(hngf))z +1 Y (V-K-VG

1 <n (i i (h,ex))*+
7 =1\ gy
2 1 n, 2 1 n,
Ghzexd) T Zi=lr( ooGlhsexn) Tw z:i=lb (o
Glhg gxm))2
2
+
[3 Ah,ex1)+4 i even€l2,... -1} Ah,ex/)
> )
+2 [0ddet3,.., -2} FINg 6Xi)+ Al 6Xne) 2,
(3.2)

where the boundary mass flux is given by

Abyex) =0 £ 52 Gh, €X), 5? (b, 6X)) = - K gdX) Gilh, 6X)+
K326/ €X).
(33)
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The Simpson’s quadrature formula is employed (Butcher, 2016) to ensure the
integral is accurate up to the fourth order in 4x. This is the PIML formulation
of the problem where the residues in the equation and boundary conditions
are penalized in the loss function in the Zanorm. This loss function is defined
for each given top boundary parameterized by h:and a set of randomly
selected points from other parts of the domain. We note that this loss also
includes a penalization term for constraint (2.9) to enforce consistency.

In the practical implementation, we modify the loss function by
rebalancing the weights. The loss function used in machine-learning is then
modified into

UEh, =2 T @) =G, oy

oo
o (VK- VG;zﬁ1(ht,¢_f,x,))z+
ey Z”/ (= 24 A E"’
n i=1\gr ¢ n ==l 50h,6X)) ( or—o Ghs 6X4))2
s Z”b 42 ir
+ n l=:z(10 x ay (3.4)
d Ah, X))
>
+46[ 3 Fhzexi)+4 7/ even€(2,..,n-1} s €X)

z )

+2 i 0dde3,..,n-2} Fhe €Xi) + A 6Xne) 2,
where the weights are re-balanced as follows in each iteration

1 n
losstop™ n Lini(@(x) = G(hz, £X4))2,

=Ly K-
losseqg” n ZJ:I(V K-VvG

;

(hs X)),

losslefr= 13 n=1/(GClhg €X4)2, lossright= n—1r3 ni=1r(Ghg €X17))2,

" S A,
s lossvottom==1(G Mg X7
Ar ( >
/05‘.5‘2[071: [ 3 f(ht, é;Xl) +4 l'evenE{Z,.“,n—l}ﬂh[, é;Xl'[)

+2 7 0dde(3,... -2y Flhg, €Xir)
)
+Ah,ex4) 1P

i-1
lossi-1= (losstop + losSieq-1+ l0SSiright-1+ [0SSileft-1+

i-1
lossivottom-1 + losscon )/ 6,
=y / loss'=1, / loss'=1,

An= /oss‘;:pl (o551~ AR = [0SSieq-1 AB=
losSirightiatt -
A'= loss loss™, A'= loss™ [/ loss™Y, A'=loss losst
45 bottom 6

(3.5)

For a given set of randomly chosen top boundary dataset in h~ h,, ..., h(/,

and the aspect ratio €4,/= 1,...,Z, we define the total loss function as follows

L m
_ 153 @ ), (3.6)
U =m LEhs e
£1 =1

We remark that the numbers of randomly selected interior and boundary
points at each given h.and £ are not the same so that Z(£h'4,£9) can have
different number of terms in the sums. We point it out that choices of
activation functions are important to the performance of machine learning

5
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model. In this model, we use tanh as the activation function. If one uses
DeepONet to solve non-linear equations, it is better off to use smooth
activation functions. Our experience with ReLU for this problem is not as good
as the one using the tanh function as the

activation function.

3.2. Spectral representation of the boundary
Alternatively, we represent continuous top boundary (1) using a

truncated Sine Fourier series together with a linear interpolation function as
follows (Haberman, 2013):

AL) - #(0) 3 Jr
AN=40)+ —  r+ bsin —x, (3.7)
VA VA
1

where 7z is the number of modes in the spectral expansion and 4;is the sth
Sine Fourier coefficient given by

VA
2 #2) - 40) Jr
b= _J [#2) - #0) - Asin( Dax (3.8)
L o VA VA

We represent the top boundary using 72+ 2 discrete values h, =

(#(0), #(2), &,..., bm) € R™?2, consisting of the Sine Fourier coefficients and the
two end point values. Given the boundary condition at top boundary #(x), we
want to learn a mapping from (h,é¢) to the solution of the steady state
governing equation in /2.

We denote the solution of the boundary value problem in the interior of /2
by DeepONet 4{h,X) as follows:

7 7 m+2
Ah,ex) 2 iy &/, Eoe T OO X+ L) + 4 (3.9)
A=1 =1 =

where ¢/, &#, Wy are weights and 8% ¢ 4 biases. We randomly sample
724 72, 12 points from the left, right and bottom boundary respectively, 7points
in the interior of /2. We divide [0,1] uniformly into 7-1 intervals, separated by
Xi= (Fl)dxdx - n—~2Aa,0 = 1,..,7. We use the DeepONet to learn the
mapping from (h; €) to solution /4(x, 4) in /2.

The cost function in the model for each given top boundary, the randomly
chosen points along the boundary and in the interior, {X/,7= 47,4}, a well-
defined uniformed division of [0,1], {x;/ = 1,..,724, that defines the top

boundary points X/= (.x; #(.;)), and aspect ratio €is then defined by

1 n;
U= 7 2 VK NVO L exp s mesmerdgixn) - Ahoexelz
2+ 1 En,_ —
lz”[ (hzexid) " a Hi=l_ (Ghg 6Xi))2 + mb3 in=14
Yo =21\ (Gfhsexa):
43, r
(>

+[3 Ax1,6) +4 7 evene(2,...,n-1} FXit, €)
+2%, odd€l3,...n-2) F(xj.e X). € )) + A ) I

(3.10)

In the practical implementation, we once again re-balance the “local
loss” as alluded to earlier.

For the bounded Toth basin with two vertical, lateral boundaries, we can
rescale or transform the bounded, arbitrary physical domain into a rectangular
domain and then solve the equation in the rectangular domain. We call this
the domain mapping approach.

Advances in Water Resources 176 (2023) 104448

3.3. Domain mapping

We present yet another alternative approach to establish the mapping
from the top boundary to the solution in a Toth basin using a nonlinear domain
mapping. We assume the top boundary is given by = (1) >0 and the bottom
one by =0 for x € [0,£]. We introduce a change of variable from (., ) to (x,2)
as follows

e
x=x z= —, ye[o,@). (3.11)
A
The 2D gradient operator in the new coordinate is given by
o —, Jd d— d— —
=77 =T .78, (3.12)
dx oz ax &
ady Jdy Or equivalently,
V=(39,9)=(0xd)- @2 Proz9, $1 3z3) dx dy ,
_|¢_2
0 - & (313) =
A V.
We denote
( yo )| z )
1 -2 1 -g@r
7 —

D= 1 = 1 (3.14)

00

A A
The Laplace equation is rewritten into
(D-V)- K- (D-V)A=0. (3.15)
The boundary conditions of /is given by
(o & VA rs=n - KDYV r1r0=0,
[\ Ax1)|720= Ax)  (Dirichlet), (3.16)
| \n- 4 (0-V)Alrtp=-sl-#)  (Robin),  re(01].
In this study, we limit ourselves to
A= Diag( K, £2). (3.17)
Then,
N A (D V) Ak | rrsr==rK $22110407 5| | 75= 0= 0., (3.18)
n-K-(0-v

These imply
— — Jallll Al

=0, =0, (3.19)

dx rir 0z 75 where the bottom boundary is
assumed flat.

The steady state governing equation without a source is given by

(D-V)- K- (D-V)4

= K155 — & —tumon) —pen+ o ogeon i+ i ot on) =6 v or g
0z ¢ Oxdz ¢ Iz ¢ Oz ¢ Iz p Iz

(3.20)
The consistency condition becomes
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I mY &0 VA dr={ (Kol Kl frr— 7 h)dr=0,

z=1 z=1 ¢ ¢
(3.21)

where n= (-, 1). We represent the top boundary using 72+2 discrete values
h:=(ga), A D), b, ..., br) from the truncated Sine Fourier series approximation.
Given the boundary condition at the top boundary z= 1, we want to learn a
mapping from h.to the solution of the steady state governing equation in /2.
We denote the solution in the interior of /2 by DeepONet 4h;X) defined
in (3.9). The loss function for each given top boundary h,, aspect ratio ¢, the
randomly chosen points along the boundary and in the interior, {X/,/ =
47;,6X4}, and a well-defined uniform division of [0,1], {x;}, that defines the top

boundary points X/= (.x; 1), is then defined by

LUGh, 8 = iZ" 1 (D V) - K- (D- V) 6lh, 6X/))

>
+ Tl - & (he %))
v Ll
+1 z?l[n' AL V)G + Sni (hsexi))2+ Lerlﬁ:]lKl]
7= Gdhs exin))2 (3.22)
2 Ax pop
oex L5 Pl exir)r
23 >
4 7 even€{2,.., ne-1} /'ul[, SXI't) +2 7 0ddef3,..., nt-2} /'-(h[, SXit)
+/Ah, 6Xu))1%
where
Gz 733
l‘(X,éj =fAn —_ /rl1¢1(6}— —6}). (3.23)
& &

In the practical implementation, we adopt a re-balanced or modified loss
function, in which we add a weight to each term in the loss. The modified loss
function is given by

UENs e = ameS 1| fXe) - Ghe €X2)]2

+ a2 3 (D V) - K- (D- V) Ahg 6X)P

Ay oy 2, 4 "y
o Tl _mexn 0 Zihl%_n,exnp
/ r (3.24)

+ RS =110 xn - K- (D V) dh, 6x/7))?

A
+( ; (Fx\.e) +4 %, spene(a.n—1) F_(x,‘,ej

2

+2 poddel3, 2} P &)+ Ao, D),
where the weights are re-balanced as follows in each iteration

b3 =Lyn
loss oy = L4 (AX) — A, X)), n Sisl

s 22
lss o= 7~ 1L V) & (£ V) Al X)),

> — 1 "y

loss e =+ T (GAB KDY, s g (h, %)), Zizi (O

GAhsXib))2,

lﬂSfbatz‘am( @
4

[0SSeon [ :(F{X'}) +4% evenel2,...n,—1} F(x;)_
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2% cadels,...n-2) FO) + F(x, )1?

i-1
lossi-1= (lossiop + L0SSieq-1+ l0SSiright-1+ [0SSilefe-1+

i—1

lossibottom-1 + losscon )/ 6,
. i-1 / . . i-1 / - ) -
A= top lossloss™y, A= eq ! [pssit, lossA’ / loss'1,
= loss™t ) -
i~ -
123 left 7 right mn/
A'= loss loss™, A'= loss™  / loss™, A'= loss loss,
45 bottom 6
(3.25)

The total loss is defined in (3.6) for a given set of top boundaries. In the
rescaled domain, the variable coefficient Poisson equation is solved in a
rectangular domain using PIML.

3.4. Arbitrary bottom boundary

When the bottom boundary is varying in space as well, we denote it as
&2(1). We rescale the physical domain in the y direction as follows

V- ()
— . yElAN LA
A2 - P x)

This mapping transforms the Toth basin into a rectangular domain in a new
coordinate. The gradient operator is transformed as follows

(3.26)

Y z e 9 1 3 (3.27)
V=( 7 -( (P- P)at )™, —)=0-V

ax  P-h P-hdzp- $dz
where

z [2%% \

\1 -( (P g)rt)

=1\l & P12, (3.28)
0
s

The Laplace equation is rewritten into a variable coefficient one as follows

(D-V)- K- (D-V)/=0, (3.29) where

a7 =z Hr
(DY) - K- (D-V) o= K1l an=ar(( g2 (B - )+ p-g2) 52)

— —Z— —
(5 (2= &)
B\ Pz 2x 3z B\
) ot (S (2= B VA (2 B+ S 2]
1 P _
2 gy 92 = O s
(3.30)
The boundary conditions of /Zare given by
n-A-VEa|rps=n- K- (D V)| r;5s=0,
A1) reop= 1) (Dirichlet), (3.31)

n- K- (D VYA Liop= -1 lo- @) (Robin), € [0,1],

where n = (+1,0) are the unit external normal of the lateral surfaces,
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n=v'? (_¢2,;r,1) is the external unit normal of the bottom surface.
1+
2x
Namely,

ﬁ/l| leftright )42 bottom= 0. (3.32)=0,n- A (L-V
ox

The consistency condition for the boundary conditions is

i)

N K (DOVVrdr=[ | — K2 fo—Ku@d /- & ) dxr=0.
1 - ¢- 2

(3.33)
We define
A2 ¢1
Ax e =] fr2= K@ /o~ 7)) (3.34)
P- & p- &

Analogous to the treatment of the top boundary, we expand ¢:in its truncated
Fourier Sine series

m
&) - ol a) > x
&= dla)+ (r-a)+ cisin(Zr —). (3.35)
Z VA
1
We denote
he= (@), J0), b, ..., bn, $o\ @), $ol D), ..., ). (3.36)
The DeepONet is defined by the following:
r g n+mh
k
h,€x) =Z Z ¢ ot Z $f R+ Gof e+ OA A WX+ () + . (3.37)
=11 1
The loss function is given by
Uoh,6) = n i3 (D V) - £+ (D- V) Glh, 6X/)]
+13ne[Pxe) - G, €X/e))2
7 /=1
> >
+ 1 (G, X)P + = 77 [Gdh,g X1
! s 4 (3.38)
1 < [l G
ny =1t gm e

>
+[4§,(/;(Xir €)+4 [ even€{2...,m—1} /;(le’ €)

(h,ex/))?
X s X 2
+2 10dd€(3,..,n=2} FU 1, 6) + F1 e, €))%

where X,are the interior points and X/ are boundary points at the top, left,
right, and bottom boundary, respectively. The total loss is given by (3.6) when
a set of top and bottom boundaries are given. In practice, the modified loss
function is adopted analogous to what we alluded to earlier.

4. Results and discussion

We present the numerical results in two scenarios. In the first scenario, we
learn the mapping from an arbitrary surface topography to the solution in the
basin while the bottom boundary is assumed flat.

In the second, we allow the bottom boundary to be an arbitrary shape as well.
We have implemented all the methods using PyTorch. For simplicity, we
present the results obtained using the spectral representation and the domain
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mapping method only in the following. We remark that different surface
representations produce the same numerical result.

4.1. Results with an arbitrary top boundary

We first present the results obtained using the spectral representation
method.

4.1.1. Sampling of the top boundary representation
The top boundary is defined by (3.7) with coefficients or parameters in h..
The sampling of h.= (#(a), #4), 4, ..., bx) is carried out as follows

¢ We sample &(a) uniformly from [0.7,0.8] and () uniformly from [#(a)
- 0.2,#(a) + 0.2] to ensure that fluctuations of the boundary function
are reasonable geographically.

ho(x) = X, b, sinjmx)

from [-1,1], respectively.

e For with 72= 8, we sample 4,..., Lsuniformly

o We calculate /mar= maxxe(o,1] @(.1), /min= minze(0,1] @(.1), and /z= fimax

- /imin. We sample 4 € [0,0.2] and then update coefficients 4,:= 44/ /14/
=1,.,8.

¢ Then, the top boundary surface is well-represented by vector h,=

(Pa), #0), b, ..., £5).

o For illustration purposes, we set £= 0.01 throughout the paper.

This sampling method makes sure the top boundary fluctuates in< 0.5 < &(1)
1. The larger fluctuation can be done, but it may not be necessary for the

realistic geography.

4.1.2. The dataset

The Loss function is defined by summing up all the squared residues of the
equation and the boundary conditions as well as a consistency condition that
depends on h.. We denote the input of the neural network in the loss function
as follows:

z = (h;x), (4.1)

where X is a long vector containing randomly chosen points from the
boundaries and the interior of the basin underneath the top boundary
represented by h,which are chosen after the top boundary is specified. We

sample | number of representing vectors of top boundariesins < h?%, 7=

1,..,/ Foreach 1 I4
¥= @Ax). For the zth top boundary, we randomly choose Z,data points X%, /=

/, we have well-defined top boundary

1,..,Z;0n the left boundary, Z;points X/ /= 1,..., Z;0n the right boundary, 5;
points X44/ = 1,..,5; on the bottom, and /; points in the interior x/ €
[0,1]x[0, #(x)],/ = 1,..../, M uniform points x;,/=1,.., #in [0,1].

We divide the dataset into the training and test sets by randomly dividing
{1,..,/} into two subsets /iain and Zres. \We generate 140 top boundary
topographies using the spectral representation. For 100 boundary
topographies, we sample 14000 points randomly, including 10000 interior
points and 4000 boundary points. For the rest 40 boundary topographies, we
put them in the test set. Finally, we choose #/= 101 points uniformly in [0,1]
to calculate the consistency condition included in the loss function.

In the DeepONet, the width of branch and trunk net is 200, the depth of
the branch net is 4, and the depth of the trunk net is 3. We use the Adam
algorithm for the first 1000 epoch optimization step with learning rate 10~*and
weight decay 107. For the remaining epoch, we use the LBFGS algorithm with

8
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learning rate 0.1. The stopping criterion of the LBFGS is for both training and
testing processes. The typical loss in each weighted component in the modified
loss function at the end of the machine learning process is summarized in Table
4.1 . For the parameters in the model, we use characteristic length scales

£,=1000 m and [,1,:10000 m, which lead to ku=0.01 and k22=1

Advances in Water Resources 176 (2023) 104448

4.1.3. Benchmark with the Toth water table solution and the numerical
solution obtained using COMSOL

We compare the solution obtained from the DeepONet mapping and the
Toth’s water table solution and the numerical solution obtained from COMSOL
for a given top surface. The results are summarized in Fig. 4.1. The relative

0 0.2 0.4
X

0.02

0.01

0.6 0.8 1

(a) The relative error between the solution obtained from the DeepONet and the Toth’s solution.

RMSE = 6.2 x 1073,

X

0.08
0.06
0.04
0.02

(b) The relative error between the solution obtained from the DeepONet and the numerical one from

COMSOL. Here RMSE = 2.05 x 1072,

Fig. 4.1. The top boundary is given by y,= 3+ c.x+ @sint x, which tana = ¢,a/cosa= a,/cosa= b, y,=0.5,c= 0.02,a= 0.025.

Table 4.1
Typical loss values at the end of training and testing, respectively.
Loss terms Training loss Test loss
Loss,, 4.82x10* 2.35x 107
Loss, 4.81x107 7.57x10°®
Loss, 5.6 x 1077 1.71x10°
Lossy 5.07 x 107° 2.18x 107
Loss, 4,58 x 10 7.77 x 1072
LOSS o, 1.69% 107 3.38x 107
Table 4.2
Model, neural network and optimization algorithm parameters.

Parameter Value

Width of trunk and branch net 200

Depth of branch net 4

Depth of trunk net 3

Weight decay 10-7

Learning rate for the first 1000 epoch 10-4

Learning rate for the remaining epoch 0.1

Z, 1000 m

L, 10000 m

Y/st% 0.01

Y27} 1

(i.e., aspect ratio €= 0.01). All model parameters are summarized in Table 4.2.

mean square errors (RMSEs) are in the order of 1072, Given the loss in machine-
learning is in the order of 1073, the Toth’s solution is asymptotic, and the
numerical solution is approximate, the RMSEs are consistent with the errors
one expects from the PIML approach.

4.1.4. Results obtained using the spectral representation

After learning the mapping represented by the DeepONet, we present
several representative results obtained using the mapping to show the
solution of the steady state groundwater flow equation in the Toth basin. Fig.
4.2 depicts the flow field and the water potential distribution in a Toth basin
with sloped top surface topographies of localized variations. There are two
factors in the top boundary that impact on flow patterns in the Toth basin: one
is the average slope and the other is the localized variation of the surface. A
large average slope tends to promote long distance transport of the flow at the
bottom of the basin in addition to the compartmentalized or localized
circulatory flow patterns near the top surface. When localized variations in the
top surface are large, the long distance transport near the bottom tends to be
blocked by intruding localized circulations penetrated down from the top. Fig.
4.2 shows a typical steady state flow pattern due to the surface topography
with a fixed average slope and varying localized surface variations in space. The
two topographical features identified and their influence to steady state flow
patterns are shown visibly. To render a better graphical resolution for some
long streamlines, we use an image reconstruction method to reconstruct some
of the continuous long streamlines that are not well-shown in Fig. 4.2. The
results are depicted in Fig. 4.3.
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Consistent with Toth’s results (Toth, 1963), our solutions also show that a
1.0

0.8 1

0.6 -

0.4 4

0.2 4

0.0
0.0

(b) hy = (0.75,0.95,0,0,0,0,0,0,0,0.045).
small average slope in the topography and small fluctuation in spatial
variations promotes compartmentalized circulations. Fig. 4.4

Fig. 4.2. Steady flow patterns in streamlines and potential distributions in the Toth basin with a sloped and localized spatial variations at the top boundary represented by a spectral representation.
(a). The slow varying surface topography promotes long distance transport at the bottom of the basin due to the slope. (b). When the localized spatial variations in the top are enhanced, the number
of compartmentalized circulations increases and flows are blocked to compartmentalized circulations, cutting off the long distance transport.

(b) hy = (0.75,0.95,0,0,0,0,0,0,0,0.045).

Fig. 4.3. Replot of the steady solutions in Fig. 4.2 with continuous streamlines and potential distributions. These plots reconstruct some continuous long streamlines partially shown in Fig. 4.2.
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1.0

(a) h, = (0.75,0.85,0,0,0,0,0,0,0,0.015).

(b) h, = (0.75,0.75,0,0,0,0.0,0,0,0.015).
Fig. 4.4. Steady flow patterns with top surface of small slopes. Small slopes in the surface topography with small surface fluctuations lead to compartmentalized circulations. A top boundary with a
zero average slope separates all flows into compartmentalized circulations of nearly equal width.

(b)

Fig. 4.5. (a). The curvature is smaller on the left than that on the right. Parameter values are h,= [0.75,0.95,3.619x1073,-1.561x107¢,-4.418x1073,4.224x107%%,5.858x1073,1.472x 107'¢,-1.526 x 107%,2.25
x 1072]. (b). The curvature enhances on the left in this plot. Parameter values are h,=[0.5,0.7,-1.276 x 10°,2.679 x 10°%,-4.382 x 107°,6.69 x 10°,-1.028 x 107°,1.717 x 107°,-3.732 x 107,0.025].
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1.0

(a) h, = (0.75,0.95,0,0,0,0,0,0,0,0.015).

1.0

(b) h, = (0.75,0.75,0,0,0,0,0,0,0,0.015).
Fig. 4.6. Steady state solutions obtained using the domain mapping method. (a). This is identical to the one with the same parameters in Fig. 4.2a. (b). This is identical to the one with the same
parameters in Figure 4.4b. Thus, the two methods produce the same results.

1.0

0.8 1

0.6 -

0.4 +

1.0

0.8

0.6

0.4

0.2

0.0 T T T T

(b) h, = (0.24,0.24,0,0,0,0,0,0,0,0).

Fig. 4.7. The steady state solution in the Toth basin with given top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The flow pattern
is altered compared to Fig. 4.2. When the bottom is lifted, i.e., the basin is shallower, the flows are compressed. (b). When the bottom is lifted further, the flows are compressed further and localization
is more prominent. However, the flow pattern does not seem to differ much from (a) qualitatively.
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1.0

%%)

0.0 T T
0.0 0.2 0.4

0.6 0.8 1.0

0.0 T T
0.0 0.2 0.4

0.6 0.8 1.0

(c) hy = (0.38,0.24,0,0,0,0,0,0,0,0).

(d) h, = (0.28,0.14,0,0,0,0,0,0,0,0).

Fig. 4.8. The steady state solution in the Toth basin with given top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The flow has a
tendency to flow to the left in long distance due to the increasing slope over there. (b). The flow tends to travel long distance down the bottom boundary to the left analogous to (a). There is no
qualitative difference between (a) and (b) where the depth of the basin is different. (c). Flows are more compartmentalized due to the shallow basin. (d). As the depth increases in the basin, the longer

range flow is observed near the bottom.

shows two cases of flow fields with small average slopes of the top surface. A
top surface with a zero average slope and some spatial variations creates
several fully compartmentalized flow patterns correlated with the wave form
of the top boundary.

We observe that local curvatures in the top surface affect flow patterns in
the Toth basin as well. A larger local curvature tends to create more localized
flow patterns while the smaller one promotes more global flow patterns in the
bottom of the basin. Fig. 4.5 depicts an example where the magnitude of the
curvature of the top surface at the left is smaller than that on the right. As the
result, the flow patten is more localized at the right than that on the left. We

note that it is the overall slope of the surface topography that dominates the
overall flow pattern, while the local curvature makes the flow pattern more
localized (or circulatory). There apparently exists a competition between the
local curvature effect and the overall slope of the top boundary. The flow
pattern in the classical Toth water table resembles the flat topographical
surface shown in Fig. 4.5b since the Toth’s solution is an asymptotic one over
a near flat top boundary. The current study indeed extends the asymptotic
analyses in Toth (1963) to a truly nonlinear topography of potentially large
spatial variations. With the
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0.0 0.2 0.4

0.6 0.8 1.0

(b) he = (0.24,0.38,0,0,0,0,0,0,0,0.015).

Fig. 4.9. The steady solution in the Toth basin with wavy top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The streamline of
the flow is perturbed by the bottom boundary. (b). A slight decrease in depth does not make much qualitative difference in the flow pattern.

boundary-to-solution mapping given by the DeepONet, we can literally
calculate any solution pattern as we need as long as the top surface
topography is given.

4.1.5. Results obtained by the domain mapping method

Here we report the results obtained using the domain mapping method on
the same two top boundaries as Figs. 4.2a and 4.4b and show that the results
are the same numerically. Fig. 4.6 shows two calculated flow fields using the
DeepONet obtained from the domain mapping method using the same top
surface representations as those used
in Figs. 4.2a and 4.4b. The results look identical. Thus, either method can be
employed to obtain the mapping represented by the DeepONet. The
computational cost for obtaining each mapping is comparable as well.

4.2. Results with arbitrary top and bottom boundaries

Next, we use the domain mapping method to obtain the mapping in which
the bottom boundary is arbitrary. The bottom boundary is sampled the same
as the top one as alluded to earlier, except that some coefficients/parameters
are different. Specifically, ¢(«) is sampled uni-

formly from [0.14,0.24], &,(4) uniformly from [#(a) - 0.14, #(a) + 0.14], 4 €
[0,0.1]. Compared to the case where the bottom boundary is flat, we are
interested in two issues here: 1. how does the depth between the top and the
bottom boundaries affects the flow pattern in the basin? 2. how does the
morphology of the bottom boundary affect the flow field in the basin in
addition to that of the top boundary?

When the bottom is flat, a decrease in the depth of the basin does not
seem to impact much to the overall flow pattern except that the
localized/compartmentalized circulation is enhanced at the top and the depth
of the circulation region becomes larger in the dimensionless domain as shown
in Fig. 4.7. When the flat bottom boundary is inclined in the same direction as
the top boundary does, the local circulatory flow seems to increase near the
top boundary as shown in Fig. 4.8. When the bottom is inclined opposite to
that of the top boundary, the increased depth in the far right end alleviates the
small scale circulatory motion to a slightly long distance flow pattern across a
scale much larger than the previously confined circulatory region (see Fig. 4.8).

When the bottom boundary is wavy, it does not seem to add any new features
to the already known flow patterns alluded to earlier. Fig. 4.9 depicts two
examples where the bottom boundaries are wavy with different amplitudes of
spatial variations.

4.3. Robin boundary-value problem

For the Robin boundary condition given in (2.15), we define the loss
function as follows:

LGN, & = 3" (V- K- Valh, X))

1 Hy
+, Lo [ =) - G_(h,,g,x/))+

2 1
|

> 2, 1 gm
1 (G VaAhexs) (hexA) t o Zit G

- (G Ar (h, ex/)+

m SnieXs))2+ [ ( AX1, €) + 85/ evenel2,.., n-1} FXit, €)+ ,6 ¢
V)

2% odd€(3,...n-2) F(x.e)+F x4, A2 )
7y 7

(4.2)
where X are the interior points and X/ are boundary points at the top, left,

right, and bottom boundary, respectively, n

_ 1

V1+g?

x

(= D)

,and

Ax,€) = Gth, €X) - Ax).

The model parameters are the same as those used above. y can be
identified as the reciprocal of the penetration length: the larger y is, the
smaller its impact to the flow in the bottom of the basin. Hence, it is expected
that the flow pattern should be similar to the case of the Dirichlet boundary
condition when yis large. yis treated as a hyperparameter, which we must set
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before training to construct the loss function. It could be treated as an input
variable for the DeepONet though. But, it would take much longer time to train
the neural network in this case. So, we decide not to pursue it in this study. For
the Robin boundary condition, we are interested in what changes it brings to
the steady flow patterns in comparison to the Dirichlet case. >

By examining the numerical results, we observe that when p 10, the flow
patterns in the three cases with different slopes and spatial variations are
pretty much independent of the increase in values of . Namely, the patterns

Advances in Water Resources 176 (2023) 104448

5. Remark on inhomogeneous equations and time dependent groundwater
flow equations

The method extends readily to the boundary value problem with a
source/sink term ¢ and the initial-boundary value problem of (2.2) in the
framework of PIML. For the inhomogeneous boundary value problem, we
modify the loss function by including source term @is the penalty terms in the
interior equation and the consistency condition, respectively. For the time-
dependent initial-boundary value problem, we add one more dimension in

1.0

0.8 l‘
- \
1 I\

0.6

(V4

1 \
Wy } AV
1 1

0.4 \ ,r' VA

0.2

0.0

0.0 0.2 0.4

A “ ‘\‘ﬂ,
5 M

LI

0.6 0.8 1.0

(a) hy = (0.75,0.95,0,0,0,0,0,0,0,0.015).

1.0

(¢) hy = (0.75,0.75,0,0,0,0,0,0,0,0.015).

Fig. 4.10. Steady flow patterns at three selected slopes of the top boundary with = 10. (a). The top boundary of a higher slope produces long-distance flow near the impervious bottom boundary.
(b). Compartmentalization becomes more prominent as the slope reduces and in the meantime the number of circulatory flow cell increases. (c) When the average slope of the top surface is zero,

long distance flows completely ceases and compartmentalized flow patterns dominate.

in Fig. 4.10 (7 = 10) are nearly the same as those in Fig. 4.11 when y = 107.
While p becomes smaller however, the flow patterns change quite
dramatically, the number of localized flow patterns decreases and long
distance flows become more prominent. This is because the penetration
length is enhanced in this case so that flow patterns near the bottom are
affected directly by the top boundary condition. We expect that the solution is
going to be approaching the solution of the Dirichlet problem as p - oo. The
steady states we have calculated do support the observation (see Fig. 4.12).

time and sample randomly in both space and time for the interior and
boundary points. The changes that need to be made are in the interior penalty
term and the consistency condition term in the loss function. The Z; norms
used in the loss function needs o be expanded to include the average in time.
Some additional techniques in training such as time-domain decomposition,
etc. need to be considered to accelerate the training process (Lu et al., 2021).
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6. Conclusion

We have introduced a new approach to obtaining a mapping between
surface topography and the solution of the steady state groundwater flow
equation in Toth basins with arbitrary surface topographies. This method
utilizes PIML with DeepONet and relies on inputting parameters, such as the
conductivity tensor and aspect ratio, into the groundwater flow equation. The
resulting boundary-to-solution mapping can be learned and repeatedly used
to map out the underground steady state flow field for any surface topography
and impervious boundary of any shape, providing an alternative means to

Advances in Water Resources 176 (2023) 104448

used as a well-trained ‘“knowledgeable’” boundary-to-solution predictor,
demonstrating a neural network representation of an inverse differential
operator in hydrological applications, which can be applied in numerous cases.
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