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1. Introduction 

A B S T R A C T 

 

In this paper, the authors propose a new approach to solving the groundwater flow equation in the Toth basin of arbitrary top 

and bottom topographies using deep learning. Instead of using traditional numerical solvers, they use a DeepONet to produce 

the boundary-to-solution mapping. This mapping takes the geometry of the physical domain along with the boundary 

conditions as inputs to output the steady state solution of the groundwater flow equation. To implement the DeepONet, the 

authors approximate the top and bottom boundaries using truncated Fourier series or piecewise linear representations. They 

present two different implementations of the DeepONet: one where the Toth basin is embedded in a rectangular 

computational domain, and another where the Toth basin with arbitrary top and bottom boundaries is mapped into a 

rectangular computational domain via a nonlinear transformation. They implement the DeepONet with respect to the Dirichlet 

and Robin boundary condition at the top and the Neumann boundary condition at the impervious bottom boundary, 

respectively. Using this deep-learning enabled tool, the authors investigate the impact of surface topography on the flow 

pattern by both the top surface and the bottom impervious boundary with arbitrary geometries. They discover that the 

average slope of the top surface promotes long-distance transport, while the local curvature controls localized circulations. 

Additionally, they find that the slope of the bottom impervious boundary can seriously impact the long-distance transport of 

groundwater flows. Overall, this paper presents a new and innovative approach to solving the groundwater flow equation 

using deep learning, which allows for the investigation of the impact of surface topography on groundwater flow patterns. 

the solution of groundwater flow equations only produces one solution for any 

given boundary conditions. When one studies another Toth 

The Toth groundwater flow analysis was a seminal theoretical attempt to 

relate surface topography of the water table and the associated hydrological 

boundary conditions with the steady state groundwater flow field driven by 

gravity in a small drainage basin, known as the Toth basin (Tóth, 1962, 1963). 

It involved solving an elliptic boundary value problem for a given surface 

topography of the water table not far from a horizontally flat surface with the 

associated Dirichlet boundary condition on a rectangular domain 

approximately. For a general nonrectangular drainage basin with a surface 

topography far from a flat surface, the elliptic boundary value problem would 

have to be solved numerically. The Toth water table analysis demonstrated the 

impact of surface topography and the associated water potential at the 

boundary on the ground water flow in the basin domain approximately. 

Traditionally, a numerical solver (such as MODFLOW, COMSOL, etc.) for basin 

with a different surface topography, the solution have to be recalculated 

completely. Given the flow equation and the boundary condition, the mapping 

from the boundary condition to the solution is essentially provided by the 

numerical solver. One thus wonders if the numerical solver can be replaced by 

a concrete function or ‘‘mapping’’ that is fully capable of producing the 

solution from any prescribed surface topography without being recalculated. 

In the past, the Toth theory was refined through adjusting the coefficient 

of permeability or the viscosity of the fluid in porus media, extended to 

examine the influence of temperature (An et al., 2014), and used to investigate 

the influence of depth and systemic heterogeneity in porus media (Cardenas 

and Jiang, 2010; Jiang et al., 2011). Several studies focused on generalizing the 
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Toth theory to other settings, like the more realistic three-dimensional space 

(Wang et al., 2017), unsteady situations (Niu et al., 2015), etc. However, none 

of the studies paid attention to the impact of the top surface topography of 

the water table on the solution in the Toth basin holistically when it is of an 

arbitrary shape. 

In this paper, we extend the Toth water table study to a domain with an 

arbitrary piecewise smooth top and bottom boundaries and two physically 

relevant boundary conditions, and propose a novel approach to establish a 

mapping from surface topographies (top alone or top+ bottom) to the solution 

of the groundwater flow equation in the Toth basin directly using a deep 

learning approach. To some extent, this is an analogue of a solution formula 

for an initial–boundary value problem for partial differential equations (PDEs) 

in the context of deep learning, where the solution of the initial–boundary 

value problem is expressed as a neural network function of the domain, the 

boundary conditions and the nonhomogeneous forcing term. This approach 

produces a solution mapping that maps the prescribed initial and boundary 

conditions as well as the forcing term to the solution directly. It can be readily 

applied to any geophysical basins that share the same hydrological property 

such as the mobility/conductivity coefficient in the flow equation. As a 

demonstration of the approach, we present the mapping while neglecting the 

forcing effect due to the source or sink and assuming the porus media is 

spatially homogeneous. We remark that the method applies to any 

inhomogeneous porus media and groundwater flow equations with a source 

or sink term. The advantage of this approach is that once the solution mapping 

is obtained in one Toth basin, it can be readily applied to all other Toth basins 

where the hydrological property of the porus media is the same, but the 

boundary and boundary conditions can be different. 

The recent advancement in deep learning with neural networks makes the 

development of such a desired mapping plausible (Karniadakis et al., 2021; Lu 

et al., 2019; Cao, 2021; Guibas et al., 2022; Kissas et al., 2022; Li et al., 2021a; 

Pang et al., 2019). Given that a neural network is a mapping composed of 

compound functions with specific layered structures, the mapping can be 

established should we propose the proper architecture of the deep neural 

network in principle in the context of physics-informed machine learning 

(PIML) (Leshno et al., 1993; Chen and Chen, 1995). We note that the steady 

state groundwater flow equation in porus media is an elliptic (or Poisson) 

equation. Given the boundary and physically consistent boundary conditions, 

a solution can be represented by an integral containing the Green’s function 

(Haberman, 2013). The integral with the Green’s function yields the mapping 

from the boundary, boundary conditions and the source term to the solution 

theoretically. Motivated by this connection between the domain, boundary 

conditions and the source term of the equation, we represent the mapping 

using a new form of neural network, known as the DeepONet. The DeepONet 

has been shown to have the capacity to establish the mapping between the 

model parameters, its boundaries (including boundary conditions) to the 

solution in the domain (Lu et al., 2021). It is therefore an appropriate and 

powerful tool for us to build the desired boundary-to-solution mapping. 

Specifically, we will answer the following questions in this study using 

machine learning with DeepONet. 

• What is the influence of the surface topography and the geometry of 

the Toth basin to the steady flow field through the water potential in 

Toth basin 𝛺? 

• What is the specific effect of both the top and bottom boundary 

conditions to the solution of the groundwater flow equation in the Toth 

basin through the boundary-to-solution mapping? We will 

focus on two types of top boundary conditions: (i) the Dirichlet 

boundary condition in which the water potential is prescribed at the top 

boundary related to the altitude of the location: ℎ = 𝑔𝜙(𝐱), where ℎ is 

the water potential, 𝑔 is gravity, and 𝑦 = 𝜙 defines the top boundary; 

and (ii) the Robin boundary condition: 
𝜕ℎ 

(𝐱) + 𝛾ℎ(𝐱) = 𝛾𝑔𝜙(𝑥), where 𝛾 is a rate parameter whose 
𝜕𝐧 
reciprocal represents the penetration length. The latter simply states a 

balance law between the cross boundary flux and the difference 

between the water potential and a saturated water potential at the top 

surface. As 𝛾 → ∞, i.e. the penetration length shrinks to zero, the 

Dirichlet boundary condition is recovered. Thus, the Robin boundary 

condition is an approximation to the Dirichlet boundary condition at 

large 𝛾 ≫ 1. 

• What is the surface topography and basin geometry to the steady state 

Darcy velocity field in the basin? We note that the topography here 

refers to the water table topography or water head profile not the 

topography of the ground surface. 

We will address these issues holistically by solving the PDE boundary value 

problem with respect to two distinct boundary conditions using DeepONet 

(Pang et al., 2019; Lu et al., 2019). The presentation is given for steady states 

without a source term. However, we emphasize again that the method extends 

readily to flow phenomena with a source and transient situations with a 

minimum modification to the DeepONet architecture. We note that for a 

completely new Toth basin, an analogous boundary-to-solution mapping to 

describe ground water flows in the porous medium can be obtained through 

the transfer learning, which could accelerate the training process and be 

efficiently done. 

Numerically, we present three implementations of the DeepONet in which 

the boundaries of arbitrary shapes are represented using a piecewise linear 

interpolant, a truncated Fourier series, or mapped to a flat surface via a 

nonlinear transformation. All three implementations yield comparable 

numerical results. Without loss of generality, we will detail the latter two 

implementations in this paper. 

2. Mathematical formulation 

We first present the model derivation and give a brief discussion on 

consistency of boundary conditions with the governing equation. Then, we 

discuss how the solution of the boundary value problem of the steady state 

groundwater flow equation depends on prescribed boundary conditions and 

source to set up the stage to apply physicalinformed-machine-learning (PIML) 

with neural networks to solve the boundary value problem. 

2.1. Model formulation 

We formulate the groundwater flow model in a general timedependent 

setting. We consider flow of ground water in a given domain 𝛺 with piecewise 

smooth boundary 𝜕𝛺, in which some parts are impervious. We denote the 

water potential by ℎ(𝐱,𝑡) at location 𝐱 and time 𝑡. It is related to the hydrostatic 

pressure through 
𝑝 
1 

+ 𝑑𝑝, (2.1) ℎ(𝐱,𝑡) = 𝑔𝑦 

𝑝0 𝜌 

where 𝑔 is the gravity acceleration, 𝑦 is the height of the water basin measured 

from the bottom impervious layer, 𝜌(𝑝) is the density of water, a function of 

pressure 𝑝, 𝑝0 is the atmospheric pressure at the top surface of the water table 

and 𝑝(𝐱,𝑡) is the hydrostatic pressure at 𝐱. Since the water potential is a gauge 

variable, we choose the origin of the coordinate system at the lower 

impervious layer so that the water potential at the surface is determined by 

the altitude of the top surface relative to the impervious layer. We remark that 

the origin for 𝑦 is chosen as the lowest point along the bottom surface when 

it is not flat. The flow equation of ℎ(𝐱,𝑡) is given by the following continuity 

equation: 

𝜕ℎ 
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𝑆  = ∇ ⋅ 𝐯 + 𝑄, (2.2) 

𝜕𝑡 

where 𝑆 is the storage rate, 𝑄 is the source term, 𝐯 is the effective velocity or 

the Darcy velocity. It follows from (2.1) that 

1 

∇ℎ = ∇(𝑔𝑦) + ∇𝑝. (2.3) 

𝜌 

The constitutive equation between water potential ℎ and Darcy velocity 𝐯 

is given by the Darcy’s law (Nield and Bejan, 2006): 

𝐯 = 𝐾 ⋅ ∇ℎ, (2.4) 

where 𝐾 is the mobility or conductivity coefficient tensor. We note that (2.4) 

can be viewed as a force balance equation, where the inverse, 𝐾−1, serves as 

the friction coefficient. It follows from (2.2) and (2.4) that 

𝜕ℎ 

𝑆  = ∇ ⋅ (𝐾 ⋅ ∇ℎ) + 𝑄. (2.5) 

𝜕𝑡 

This is the governing equation for water potential ℎ from which the Darcy 

velocity is inferred. 

2.2. Dirichlet boundary-value problem 

In a water basin 𝛺, this partial differential equation is accompanied by a set 

of boundary conditions over domain boundary 𝛤 = 𝜕𝛺. We consider the 

following 2D domain with boundary conditions given below (see Fig. 2.1), 

𝐧 ⋅ 𝐾 ⋅ ∇ℎ|𝛤𝑏,𝑙,𝑟 = 0, ℎ(𝑥,𝜙(𝑥))|𝛤𝑢 = 𝑔𝜙(𝑥), (2.6) where 𝐧   is the unit 

external normal to the boundary, 

𝑥 

𝛤𝑏,𝑙,𝑟,𝑡 are the boundaries at the bottom, left, right and top side of domain 𝛺, 

respectively, and equation 𝑦 = 𝜙(𝑥) defines the top boundary (𝛤𝑡). The lateral 

boundaries are assumed vertical line segments in domain 𝛺 while the top and 

bottom ones can be arbitrary. We name this domain the Toth basin for its 

origin in the Toth’s seminal paper on the Toth water table. Notice that the 

lateral boundaries and the bottom one are assumed impervious in the Toth 

basin while the top one is not (Tóth, 1963). When the bottom boundary is flat 

and top boundary inclined with a small slope, Toth calculated his well-known 

Toth water table solution in Toth (1970) using an approximate analytical 

method based on an asymptotic analysis on a rectangular domain. 

Given any boundary conditions along 𝜕𝛺, we need to check their 

consistence with the governing equation in 𝛺 (Li et al., 2021b). We integrate 

Eq. (2.5) over 𝛺 to obtain 

 𝜕ℎ 𝜕ℎ 

[𝑆  −(∇⋅(𝐾 ⋅∇ℎ)+𝑄)]𝑑𝐱 = ∫ [𝑆  −𝑄]𝑑𝐱−∫ 𝐧⋅(𝐾 ⋅∇ℎ)𝑑𝑠 = 0. 

𝛺 𝜕𝑡 𝛺 𝜕𝑡 𝜕𝛺 

(2.7) 

It imposes a consistent condition between the boundary conditions on ℎ and 

the solution in the interior. If boundary conditions are given in (2.6), the 

consistent condition reduces to 

𝜕ℎ 

[𝑆  − 𝑄]𝑑𝐱 − ∫ 𝐧 ⋅ (𝐾 ⋅ ∇ℎ)𝑑𝑠 = 0. (2.8) 

𝛺 𝜕𝑡 𝛤𝑡 

In steady states and without the source term, in particular, the consistent 

condition further reduces to 

 𝐧 ⋅ (𝐾 ⋅ ∇ℎ)𝑑𝑠 = 0. (2.9) 

𝛤𝑡 

The consistent condition is a crucial constraint for the equation to have a 

steady state solution. Physically, this condition indicates that the netflux across 

the top boundary in steady state must be zero. For the given top boundary 𝑦 

= 𝜙(𝑥), the unit external normal 𝐧 couples 𝜙 to solution ℎ(𝐱) obtained in 𝛺 

through (2.9). 

We summarize the mixed boundary value problem with the Dirichlet 

boundary condition on the top as follows 

{ 

∇ ⋅ 𝐾 ⋅ ∇ℎ = 0, 𝐱 ∈ 𝛺, 

 𝐧 ⋅ 𝐾 ⋅ ∇ℎ|𝛤𝑏,𝑙,𝑟 = 0, ℎ(𝑥,𝜙(𝑥))|𝛤𝑡 = 𝑔𝜙(𝑥). 
(2.10)

 

Assuming the boundary-value problem is well-posed, ℎ is a solution of (2.10), 

and ℎ̂ is another function of the same regularity as ℎ, ℎ̂ satisfies the following 

estimate: 

‖ℎ̂ − ℎ‖𝛺 ≤ 𝐶1‖∇⋅ 𝐾 ⋅∇ℎ̂ ‖𝛺 + 𝐶2‖𝐧⋅ 𝐾 ⋅∇ℎ̂ ‖𝛤−𝛤𝑡 + 𝐶3‖ℎ̂ − 𝑔𝜙‖𝛤𝑡 , (2.11) where the 

norms are some proper norms defined in their respective spaces and 𝐶𝑖,𝑖 = 

1,2,3 are positive constants (Evans, 2010). Then, ℎ = 𝑎𝑟𝑔 min‖ℎ̂ − ℎ‖𝛺 

ℎ̂ 

= 𝑎𝑟𝑔 min[𝐶1‖∇ ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛺 + 𝐶2‖𝐧 ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛤−𝛤𝑡 + 𝐶3‖ℎ̂ − 𝑔𝜙‖𝛤𝑡 ]. 

ℎ ̂ 

(2.12) Thus, we use the righthand side to define the loss function in this case. 

𝐿𝑜𝑠𝑠 = 𝐶1‖∇ ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛺 + 𝐶2‖𝐧 ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛤−𝛤𝑡 + 𝐶3||ℎ̂ − 𝑔𝜙|𝛤𝑡 . (2.13) 

In this case, finding the solution of (2.10) is turned into a minimization problem 

of the residues in (2.13). This is the foundation of PIML formulation 

(Karniadakis et al., 2021). The crucially important part in this formulation is the 

choice of the norms in the loss function so that it is consistent with the well-

posedness proof of the initial–boundary value problem (Raissi et al., 2019). In 

practice, we augment the loss function defined in (2.13) by a penalization of 

the consistent condition given in (2.9) as follows 

𝐿𝑜𝑠𝑠 = 𝐶1‖∇ ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛺 + 𝐶2‖𝐧 ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛤−𝛤𝑡 

 + 𝐶3||ℎ̂ − 𝑔𝜙|𝛤𝑡 + 𝐿1(∫ 𝐧 ⋅ (𝐾 ⋅ ∇ℎ)𝑑𝑠)2, (2.14) 

𝛤𝑡 

where 𝐿1 > 0 is a model parameter set by the user. In this paper, we set 𝐿1 = 1. 

2.3. Robin boundary-value problem 

A more physical boundary condition in steady states of the groundwater 

flow equation at the top boundary perhaps should be 

𝐧 ⋅ 𝐾 ⋅ ∇ℎ = −𝛾(ℎ − 𝑔𝜙(𝑥)), (2.15) 

where 𝛾 is the rate parameter. It indicates that the flux through the top 

boundary is proportional to the difference of the water potential and the 

saturated steady state water potential. If 𝛾 = 0, (2.15) reduces to the 

impervious Neumann boundary condition; whereas it reduces to the Dirichlet 

one if 𝛾 → ∞. 

If we assume that the Robin boundary-value problem is well-posed, ℎ is a 

solution, and ℎ̂ a function in 𝐻1(𝛺), it follows from the wellposedness that 

‖ℎ−ℎ̂ ‖ ≤ 𝐶1‖∇⋅𝐾⋅∇ℎ̂ ‖𝛺+𝐶2‖𝐧⋅𝐾⋅∇ℎ̂ ‖𝛤−𝛤𝑡 +𝐶3‖𝐧⋅𝐾⋅∇ℎ+𝛾(ℎ̂ −𝑔𝜙(𝑥))‖𝛤𝑡 , 

(2.16) 
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where 𝐶𝑖,𝑖 = 1,2,3 are positive constants. The loss function can then be devised 

as follows 

𝐿𝑜𝑠𝑠 = 𝐶1‖∇⋅𝐾⋅∇ℎ̂ ‖𝛺 +𝐶2‖𝐧⋅𝐾⋅∇ℎ̂ ‖𝛤−𝛤𝑡 +𝐶3‖𝐧⋅𝐾⋅∇ℎ+𝛾(ℎ̂ −𝑔𝜙(𝑥))‖𝛤𝑡 . 

(2.17) 

This loss function penalizes all the residues in the equation and the boundary 

conditions. 

The steady state governing equation without the source together with 

boundary condition (2.15) yields the following consistency condition: 

 𝛾(ℎ − 𝜙)𝑑𝑠 = 0. (2.18) 
𝛤𝑡 

(2.9) and (2.18) are two constraints for the solution to satisfy the Dirichlet and 

the Robin boundary condition, respectively, which must be ensured in any 

solution solvers. In practice, the loss function used in machine-learning in this 

study is given by 

𝐿𝑜𝑠𝑠 = 𝐶1‖∇ ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛺 + 𝐶2‖𝐧 ⋅ 𝐾 ⋅ ∇ℎ̂ ‖𝛤−𝛤𝑡 

 + 𝐶3‖𝐧 ⋅ 𝐾 ⋅ ∇ℎ + 𝛾(ℎ̂ − 𝑔𝜙(𝑥))‖𝛤𝑡 + (∫ 𝛾(ℎ − 𝜙)𝑑𝑠)2. (2.19) 

𝛤𝑡 

and 𝑦 = 𝜙2(𝐱), respectively. 

2.4. Nondimensionalizaton 

In order to solve the equations together with the boundary conditions 

numerically, we need to nondimensionalize them. We introduce length scale 

in x: 𝐿𝑥, in y: 𝐿𝑦, and time scale: 𝑇, respectively. The dimensionless variables 

are defined as follows 

𝑥̃ = 𝑥 ,𝑦̃ = 𝑦 ,𝑡̃ = 𝑡 , ̃ = ℎ ,𝜙 ̃ = 𝜙 , (2.20) 

ℎ 

 𝐿𝑥 𝐿𝑦 𝑇 ℎ0 𝐿𝑦 

where ℎ0 is a characteristic water potential. The top Dirichlet boundary 

condition is given by 

𝑔𝐿𝑦 

ℎ
̃ 
= 𝜙.

̃ 
(2.21) ℎ0 

We denote the characteristic storage rate by 𝑆0. The dimensionless model 

parameters are given by 

𝑆̃ = 
𝑆 

,𝐾 ̃ = 
𝑇 
𝐀 ⋅ 𝐾 ⋅ 𝐀,𝑄̃ = 

𝑇𝑄 
, 

 𝑆0 𝐿2𝑦𝑆0 𝑆0ℎ0 

where 

(2.22) 

 ( ) 

 𝜖 0 

𝐀 = , 

 0 1 (2.23) 

𝐿𝑦 

𝜖 = is the aspect ratio of the basin. The flow equation in the 

𝐿𝑥 
dimensionless form is given by 

̃ 𝜕ℎ
̃ 

̃ ̃ ̃
 

and drop the ̃ from the dimensionless equations to obtain the dimensionless 

equation and boundary conditions as follows: 

  𝑄, 𝐱 ∈ 𝛺, 

(2.26) 

ℎ = 𝜙(𝑥),𝐱 ∈ 𝛤𝑡, 𝐧 ⋅ 𝐾 ⋅ ∇ℎ = 0, 𝐱 ∈ 𝜕𝛺 − 𝛤𝑡. 

The consistent condition (2.9) retains. 

Analogously, we obtain the dimensionless Robin boundary condition at the 

top boundary as follows 

𝐧 ⋅ 𝐾∇ℎ = −𝛾̃(ℎ − 𝜙), (2.27) 

where 𝛾̃ = 𝛾𝐿𝑥. We drop the tilde over 𝛾 for brevity in the following. In this 

paper, we consider 𝐾 = 𝐷𝑖𝑎𝑔(𝐾11,𝐾22) as a diagonal mobility≤ matrix in the 

dimensionless equation, 𝑥 ∈ [0,1], and 0 < 𝜙2(𝐱) < 𝜙(𝐱) 

1 as bottom and top boundaries, where 𝑦 = 𝜙2 represents the bottom 

boundary. 

Next, we present three implementations of the DeepONet for the mapping 

from specified boundaries and the boundary conditions (2.6) to the steady 

state solution of the groundwater flow equation in 𝛺 (Lu et al., 2021), from 

which the Darcy’s velocity can be recovered. 

3. DeepONet for the boundary-to-solution mapping 

For the boundary value problem in the Toth basin, we would like to 

establish a mapping from the boundary and the associated boundary condition 

to the solution of the steady state groundwater flow equation in the domain. 

We adopt the physics-informed machine learning approach and use the 

 

Fig. 2.1. Toth basin 𝛺 and the prescribed boundary conditions over 𝜕𝛺 embedded in a rectangular domain [0,1] × [0,1]. The top and bottom boundaries are given by 𝑦 = 𝜙(𝐱) 

𝑆 = ∇ ⋅ 𝐾 ⋅ ∇ℎ + 𝑄. 

𝜕𝑡̃ 

We choose 

(2.24) 

ℎ0 = 𝑔𝐿𝑦, (2.25) 
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𝜕𝑥 

  

  
  

DeepONet as the neural network to represent the mapping (Lu et al., 2021). 

For the Toth basin, we consider a domain with flat lateral, arbitrary top and 

bottom boundaries. Firstly, we consider a domain of aspect ratio 𝜖 with flat 

and impervious bottom and lateral boundaries and prescribed water potential 

at the top boundary, 𝑦 = 𝜙(𝑥). We construct the top surface to the solution 

mapping in the Toth basin with (𝜙,𝜖) as the input. Owing to the fact that the 

dimensionless boundary condition coincides with the boundary 

representation, we only need to learn a mapping from top boundary 𝑦 = 𝜙(𝑥) 

with aspect ration 𝜖 to the solution in 𝛺. We present three different 

approaches to accomplishing this goal using two distinct representations of 

top boundary 𝑦 = 𝜙(𝑥), respectively. Secondly, we discuss an extension of the 

approach to the domain where the bottom boundary and the top boundary 

are both arbitrary. 

3.1. Piecewise polynomial interpolation of the top boundary 

We represent top boundary 𝑦 = 𝜙(𝑥) using 𝑛 discrete points 𝐱𝑖 = (𝑥𝑖,𝜙(𝑥𝑖)),𝑖 

= 1,…,𝑛 uniformly distributed in the x-coordinate, where 𝑥𝑖 = (𝑖−1)𝛥𝑥,𝛥𝑥 = 𝑛

−1
1 . We acknowledge a new development in treating the boundary condition 

in a weak formulation of partial differential equations by introducing new 

variable to satisfy the homogeneous boundary conditions in PIML (Sukumar 

and Srivastava, 2022). However, our proposed approach suffices for the 

current problem. We denote the approximate solution of this mixed boundary 

value problem in the interior of 𝛺 by a DeepONet 𝐺(𝐡𝑡,𝜖,𝐱) as follows 

 𝑝 𝑞 𝑛 

𝐺(𝐡𝑡,𝜖,𝐱) = 𝜉𝑖𝑗𝑘 𝜙  
 𝑘=1 𝑖=1 𝑗=1 

where 𝑐𝑖𝑘, 𝜉𝑖𝑗𝑘 ,𝑊𝑘 are weights and 𝜃𝑖𝑘,𝜁𝑘,𝑏0 are biases of the neural network, 

𝐡𝑡 = (𝜙(𝑥1),…,𝜙(𝑥𝑛)) ∈ R𝑛 denotes the uniformly distributed, y-coordinates of 

the interpolating points at the top boundary, and 𝑛,𝑝,𝑞 are positive integers. 

The DeepONet represents the mapping from 𝐡𝑡,𝜖 to the solution. 

To apply the PIML method to learn the neural network, we choose 

𝑛𝑙,𝑛𝑟,𝑛𝑏,𝑛𝑡,𝑛𝑖 points at the left, right, bottom, and top boundary, and the 

interior randomly. For convenience, we use odd number for 𝑛𝑡 = 𝑛 at the top 

boundary. The loss function of the machine learning model is given by (2.14) 

with the 𝐿2 norms in the interior and on the boundary. We evaluate the integral 

norms using the Monte Carlo sampling. For the randomly chosen points along 

the boundary and in the interior, {𝐱𝑗𝑖 ,𝑖 = 𝑙,𝑟,𝑏,𝐱𝑗}, and a well-defined uniform 

division of [0,1], {𝑥𝑗,𝑗 = 1,…,𝑛𝑡},𝐱𝑗𝑡 = (𝑥𝑗,𝜙(𝑥𝑗)), the specific expression of the loss 

function is 

given by 

𝐿(𝜃,𝐡 ,𝜖) = (𝐡𝑡,𝜖,𝐱𝑖𝑡))

 𝑛𝑖 (𝐡𝑡,𝜖,𝐱𝑗))2+ 

 𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑙)) 𝑟( 𝜕𝑥 𝜕 𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑟)) 𝑏 ( 𝜕𝑦 𝜕 

𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑏))2 

∑ 

+ 

[ 3 𝐹(𝐡𝑡,𝜖,𝐱1)+4 𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛−1} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) 

 ∑ ) 

+2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛−2} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡)+ 𝐹(𝐡𝑡,𝜖,𝐱𝑛𝑡 ) ]2, 

(3.2) 

where the boundary mass flux is given by 

𝐹(𝐡𝑡,𝜖,𝐱) = 𝐧(𝑡) ⋅ 𝐾 ⋅ ( 𝜕𝑥 𝜕 𝐺(𝐡𝑡,𝜖,𝐱), 𝜕𝑦 𝜕 𝐺(𝐡𝑡,𝜖,𝐱))𝑇 = −𝐾11𝜙𝑥(𝐱)𝐺𝑥(𝐡𝑡,𝜖,𝐱)+ 

𝐾22𝐺𝑦(𝐡𝑡,𝜖,𝐱). 

(3.3) 

The Simpson’s quadrature formula is employed (Butcher, 2016) to ensure the 

integral is accurate up to the fourth order in 𝛥𝑥. This is the PIML formulation 

of the problem where the residues in the equation and boundary conditions 

are penalized in the loss function in the 𝐿2 norm. This loss function is defined 

for each given top boundary parameterized by 𝐡𝑡 and a set of randomly 

selected points from other parts of the domain. We note that this loss also 

includes a penalization term for constraint (2.9) to enforce consistency. 

In the practical implementation, we modify the loss function by 

rebalancing the weights. The loss function used in machine-learning is then 

modified into 

𝐿(𝜃,𝐡𝑡,𝜖) = (𝐡𝑡,𝜖,𝐱𝑖𝑡))2 

𝑛𝑗=1(𝐡𝑡,𝜖,𝐱𝑗))2+ 

𝑖 

𝜕 𝐺(𝐡 ,𝜖,𝐱𝑙)) ( 𝜕𝑥 𝜕 𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑟))2 

𝑖 𝑟 

(3.4) 

𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑏))2 

∑ 

+𝜆6[ 3 𝐹(𝐡𝑡,𝜖,𝐱1) + 4 𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛−1} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) 

 ∑ ) 

+2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛−2} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) + 𝐹(𝐡𝑡,𝜖,𝐱𝑛𝑡 ) ]2, 

where the weights are re-balanced as follows in each iteration 

𝑙𝑜𝑠𝑠𝑡𝑜𝑝 (𝐡𝑡,𝜖,𝐱𝑖𝑡))2, 

𝑙𝑜𝑠𝑠𝑒𝑞 (𝐡𝑡,𝜖,𝐱𝑗))2, 
𝑖 

𝑙𝑜𝑠𝑠𝑙𝑒𝑓𝑡 = 1 ∑𝑛𝑖=1𝑙 (𝐺𝑥(𝐡𝑡,𝜖,𝐱𝑖𝑙))2, 𝑙𝑜𝑠𝑠𝑟𝑖𝑔ℎ𝑡 = 𝑛 1𝑟 ∑𝑛𝑖=1𝑟 (𝐺𝑥(𝐡𝑡,𝜖,𝐱𝑖𝑟))2, 

 ∑𝑛𝑏 𝑏))2, 

𝑙𝑜𝑠𝑠𝑏𝑜𝑡𝑡𝑜𝑚 =𝑖=1(𝐺𝑦(𝐡𝑡,𝜖,𝐱𝑖 

 ( ∑ 

𝑙𝑜𝑠𝑠∑𝑐𝑜𝑛 = [ 3 𝐹(𝐡𝑡,𝜖,𝐱1) + 4 𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛−1} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) 

+2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛−2} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) 

) 

+𝐹(𝐡𝑡,𝜖,𝐱𝑛𝑡 ) ]2, 

𝑙𝑜𝑠𝑠𝑖−1 = (𝑙𝑜𝑠𝑠  𝑙𝑜𝑠𝑠𝑖𝑒𝑞−1 + 𝑙𝑜𝑠𝑠𝑖𝑟𝑖𝑔ℎ𝑡−1 + 𝑙𝑜𝑠𝑠𝑖𝑙𝑒𝑓𝑡−1 + 

𝑙𝑜𝑠𝑠𝑖𝑏𝑜𝑡𝑡𝑜𝑚−1 + 𝑙𝑜𝑠𝑠 , 

𝜆𝑖1 = 𝑙𝑜𝑠𝑠 𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖2 = 𝑙𝑜𝑠𝑠𝑖𝑒𝑞−1  𝜆𝑖3 = 

𝑙𝑜𝑠𝑠𝑖𝑟𝑖𝑔ℎ𝑡−1 

𝜆𝑖 = 𝑙𝑜𝑠𝑠 𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖 = 𝑙𝑜𝑠𝑠𝑖−1 ∕ 𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖 = 𝑙𝑜𝑠𝑠 𝑙𝑜𝑠𝑠𝑖−1 
45 𝑏𝑜𝑡𝑡𝑜𝑚 6 

(3.5) 

For a given set of randomly chosen top boundary dataset in 𝐡𝑡: 𝐡(1)
𝑡 ,…,𝐡(

𝑡
𝑚), 

and the aspect ratio 𝜖(𝑙),𝑙 = 1,…,𝐿, we define the total loss function as follows 

 𝐿 𝑚 

1 ∑∑ (𝑖) (𝑙)). (3.6) 

𝐿(𝜃) = 𝑚 𝐿(𝜃,𝐡𝑡 ,𝜖 

𝑙=1 𝑖=1 

We remark that the numbers of randomly selected interior and boundary 

points at each given 𝐡𝑡 and 𝜖(𝑙) are not the same so that 𝐿(𝜃,𝐡(
𝑡
𝑖),𝜖(𝑙)) can have 

different number of terms in the sums. We point it out that choices of 

activation functions are important to the performance of machine learning 
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model. In this model, we use tanh as the activation function. If one uses 

DeepONet to solve non-linear equations, it is better off to use smooth 

activation functions. Our experience with ReLU for this problem is not as good 

as the one using the tanh function as the 

activation function. 

3.2. Spectral representation of the boundary 

Alternatively, we represent continuous top boundary 𝜙(𝑥) using a 

truncated Sine Fourier series together with a linear interpolation function as 

follows (Haberman, 2013): 
𝑚 

 𝜙(𝐿) − 𝜙(0) ∑ 𝑗𝜋 

𝜙(𝑥) = 𝜙(0) + 𝑥 + 𝑏𝑗 sin 𝑥, (3.7) 

 𝐿 𝐿 
𝑗=1 

where 𝑚 is the number of modes in the spectral expansion and 𝑏𝑗 is the 𝑗th 

Sine Fourier coefficient given by 
𝐿 

 2 𝜙(𝐿) − 𝜙(0) 𝑗𝜋 

𝑏𝑗 = ∫ [𝜙(𝑥) − 𝜙(0) − 𝑥]sin( 𝑥)𝑑𝑥. (3.8) 

 𝐿 0 𝐿 𝐿 

We represent the top boundary using 𝑚 + 2 discrete values 𝐡𝑡 = 

(𝜙(0),𝜙(𝐿),𝑏1,…,𝑏𝑚) ∈ R𝑚+2, consisting of the Sine Fourier coefficients and the 

two end point values. Given the boundary condition at top boundary 𝜙(𝐱), we 

want to learn a mapping from (𝐡𝑡,𝜖) to the solution of the steady state 

governing equation in 𝛺. 

We denote the solution of the boundary value problem in the interior of 𝛺 

by DeepONet 𝐺(𝐡𝑡,𝐱) as follows: 

 𝑝 𝑞 𝑚+2 

𝐺(𝐡𝑡,𝜖,𝐱) =  𝜉𝑖𝑗𝑘 𝐡𝑡,𝑗  𝑏0, (3.9) 
 𝑘=1 𝑖=1 𝑗=1 

where 𝑐𝑖𝑘, 𝜉𝑖𝑗𝑘 ,𝑊𝑘 are weights and 𝜃𝑖𝑘,𝜁𝑘,𝑏0 biases. We randomly sample 

𝑛𝑙,𝑛𝑟,𝑛𝑏 points from the left, right and bottom boundary respectively, 𝑛𝑖 points 

in the interior of 𝛺. We divide [0,1] uniformly into 𝑛−1 intervals, separated by 

𝑥𝑖 = (𝑖−1)𝛥𝑥,𝛥𝑥 
= 

𝑛 �𝑡1−1,𝑖 = 1,…,𝑛𝑡. We use the DeepONet to learn the 

mapping from (𝐡𝑡,𝜖) to solution ℎ(𝐱,𝑡) in 𝛺. 

The cost function in the model for each given top boundary, the randomly 

chosen points along the boundary and in the interior, {𝐱𝑗𝑖 ,𝑖 = 𝑙,𝑟,𝑏,𝐱𝑗}, a well-

defined uniformed division of [0,1], {𝑥𝑗,𝑗 = 1,…,𝑛𝑡}, that defines the top 

boundary points 𝐱𝑗𝑡 = (𝑥𝑗,𝜙(𝑥𝑗)), and aspect ratio 𝜖 is then defined by 

𝐿(𝜃,𝐡𝑡,𝜖) = 𝑗=1 (𝐡𝑡,𝜖,𝐱𝑗))2 + 𝑛1𝑡 ∑𝑛𝑗=1𝑡 [𝜙(𝐱𝑗𝑡 ) − 𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 
𝑖 

(𝐡𝑡,𝜖,𝐱𝑖𝑙))  (𝐺𝑥(𝐡𝑡,𝜖,𝐱𝑖𝑟))2 + 𝑛1𝑏 ∑𝑖𝑛=1𝑏 

(𝐺𝑦(𝐡𝑡,𝜖,𝐱𝑖𝑏))2 
𝑟 
 ( ∑ 

+[ 3 𝐹(𝐱1,𝜖) + 4 𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛−1} 𝐹(𝐱𝑖𝑡,𝜖) 

) + 𝐹( ) ]2. 

(3.10) 

In the practical implementation, we once again re-balance the ‘‘local 

loss’’ as alluded to earlier. 

For the bounded Toth basin with two vertical, lateral boundaries, we can 

rescale or transform the bounded, arbitrary physical domain into a rectangular 

domain and then solve the equation in the rectangular domain. We call this 

the domain mapping approach. 

3.3. Domain mapping 

We present yet another alternative approach to establish the mapping 

from the top boundary to the solution in a Toth basin using a nonlinear domain 

mapping. We assume the top boundary is given by 𝑦 = 𝜙(𝑥) > 0 and the bottom 

one by 𝑦 = 0 for 𝑥 ∈ [0,𝐿]. We introduce a change of variable from (𝑥,𝑦) to (𝑥,𝑧) 

as follows 

𝑦 

𝑥 = 𝑥, 𝑧 = , 𝑦 ∈ [0,𝜙(𝑥)]. (3.11) 

𝜙(𝑥) 

The 2D gradient operator in the new coordinate is given by 

∇∗ = ( 
𝜕 

, 
𝜕 

) = ( 
𝜕 

+ 
𝑦 
𝜙𝑥 
𝜕 

,𝜙 
𝜕 

). (3.12) 

𝜕𝑥 𝜕𝑧 𝜕𝑥 𝜙

 𝜕𝑦 𝜕𝑦 Or equivalently, 

∇ = ( 𝜕 , 𝜕 ) = ( 𝜕𝑥𝜕 )− 𝜙𝑦2 𝜙𝑥 𝜕𝑧𝜕 , 𝜙1 𝜕𝑧𝜕 ) 

𝜙𝑥 (3.13) =⋅ 
∇∗. 

 1 − 2 𝜙𝑥 1 − 𝜙 𝜙𝑥 
𝜙 

𝐷 = 1 = 1 . (3.14) 

00 
 𝜙(𝑥) 𝜙(𝑥) 

The Laplace equation is rewritten into 

(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ = 0. (3.15) 

The boundary conditions of ℎ is given by 

⎧ 𝐧 ⋅ 𝐾 ⋅ ∇ℎ|𝛤𝑙,𝑟,𝑏 = 𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ|𝛤𝑙,𝑟,𝑏 = 0, 

⎪⎨ ℎ(𝑥,1)|𝛤𝑡𝑜𝑝 = 𝜙(𝑥) (Dirichlet), (3.16) 

⎪⎩ 𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ|𝛤𝑡𝑜𝑝 = −𝛾(ℎ − 𝜙) (Robin), 𝑥 ∈ [0,1]. 

In this study, we limit ourselves to 

𝐾 = 𝐷𝑖𝑎𝑔(𝐾11,𝐾22). (3.17) 

Then, 

𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗∗))ℎℎ||𝛤𝛤𝑏𝑙,𝑟==𝐾𝐾𝜙2211𝜕ℎ𝜕𝑧𝜕ℎ𝜕𝑥|𝛤|𝛤𝑏𝑙,𝑟= 0= 0. , (3.18) 

𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇ 

These imply 

𝜕ℎ|||| 𝜕ℎ|||| 

 = 0, = 0, (3.19) 

𝜕𝑥 𝛤𝑙,𝑟 𝜕𝑧 𝛤𝑏 where the bottom boundary is 

assumed flat. 

The steady state governing equation without a source is given by 

(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ 

( 𝑧𝜙𝑥 𝜕ℎ ) − 𝑧𝜙𝑥 𝜕2ℎ + 𝑧𝜙𝑥 𝜕 ( 𝑧𝜙𝑥 𝜕ℎ )] + 𝐾22 𝜕 ( 1 𝜕ℎ ) = 0. 𝜕𝑥 𝜕𝑥 𝜙 

𝜕𝑧 𝜙 𝜕𝑥𝜕𝑧 𝜙 𝜕𝑧 𝜙 𝜕𝑧 𝜙 𝜕𝑧 𝜙 𝜕𝑧 

(3.20) 

The consistency condition becomes 

0 
𝜙(𝑥) 

We denote 

   

 ( 𝑦 ) ( 𝑧 ) 

 
 
  

   
     

 



J. Sun et al. Advances in Water Resources 176 (2023) 104448 

7 

  
  

[𝐧(𝑡) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ] 𝑑𝑥 = ∫ [𝐾22 ℎ𝑧 − 𝐾11𝜙𝑥(ℎ𝑥 − 𝜙 𝑥 ℎ𝑧)]𝑑𝑥 = 0, 

𝑧=1 𝑧=1 𝜙 𝜙 

(3.21) 

where 𝐧(𝑡) = (−𝜙𝑥,1). We represent the top boundary using 𝑚+2 discrete values 

𝐡𝑡 = (𝜙(𝑎),𝜙(𝑏),𝑏1,…,𝑏𝑚) from the truncated Sine Fourier series approximation. 

Given the boundary condition at the top boundary 𝑧 = 1, we want to learn a 

mapping from 𝐡𝑡 to the solution of the steady state governing equation in 𝛺. 

We denote the solution in the interior of 𝛺 by DeepONet 𝐺(𝐡𝑡,𝐱) defined 

in (3.9). The loss function for each given top boundary 𝐡𝑡, aspect ratio 𝜖, the 

randomly chosen points along the boundary and in the interior, {𝐱𝑗𝑖 ,𝑖 = 

𝑙,𝑟,𝑏,𝐱𝑘}, and a well-defined uniform division of [0,1], {𝑥𝑗,}, that defines the top 

boundary points 𝐱𝑗𝑡 = (𝑥𝑗,1), is then defined by 

𝐿(𝜃,𝐡𝑡,𝜖) = 𝑛 1𝑖 ∑𝑛
𝑗=1

𝑖 [(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 

(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 

+ ∑𝑛𝑖 (𝐡𝑡,𝜖,𝐱𝑖𝑙)]2 + 𝑛 1𝑟 ∑𝑖𝑛

𝐺𝑥(𝐡𝑡,𝜖,𝐱𝑖𝑟)]2 (3.22) 

(𝐡𝑡,𝜖,𝐱𝑖𝑏)] (𝐡𝑡,𝜖,𝐱1
𝑡 )+ 

𝑏 ∑ ∑ 

4 𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛𝑡−1} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) + 2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛𝑡−2} 𝐹(𝐡𝑡,𝜖,𝐱𝑖𝑡) 

+𝐹(𝐡𝑡,𝜖,𝐱𝑛𝑡 ))]2, 

where 

 𝐺𝑧 𝜙𝑥 

𝐹(𝐱,𝜖) = 𝐾22  − 𝐾11𝜙𝑥(𝐺𝑥 − 𝐺𝑧). 

 𝜙 𝜙 

(3.23) 

In the practical implementation, we adopt a re-balanced or modified loss 

function, in which we add a weight to each term in the loss. The modified loss 

function is given by 

𝐿(𝜃,𝐡𝑡,𝜖) = 𝜆𝑛1𝑡 ∑𝑛𝑗=1𝑡 [𝜙(𝐱𝑗𝑡 ) − 𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 

+ 𝜆𝑛2
𝑖 ∑𝑛𝑗=1𝑖 [(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)𝐺(𝐡𝑡,𝜖,𝐱𝑗)]2 

(𝐡𝑡,𝜖,𝐱𝑖𝑙)] (𝐡𝑡,𝜖,𝐱𝑖𝑟)]2 

 𝑙 𝑟 (3.24) 

+ 𝜆𝑛𝑏5 ∑𝑛𝑖=1𝑏 [10 × 𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)𝐺(𝐡𝑡,𝜖,𝐱𝑖𝑏)]2 

(𝐱𝑖𝑡,𝜖) 

∑ 

+2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛𝑡−2} 𝐹(
𝐱
𝑖
𝑡,𝜖) + 𝐹(

𝐱
𝑛𝑡 ,𝜖))]2, 

where the weights are re-balanced as follows in each iteration 

𝐾22 

𝐺𝑧(𝐡𝑡,𝐱𝑖𝑏))2, 

𝑙𝑜𝑠𝑠𝑏𝑜𝑡𝑡𝑜𝑚( 𝜙 
𝑏 

𝑙𝑜𝑠𝑠𝑐𝑜𝑛  

 

𝑙𝑜𝑠𝑠𝑖−1 = (𝑙𝑜𝑠𝑠  𝑙𝑜𝑠𝑠𝑖𝑒𝑞−1 + 𝑙𝑜𝑠𝑠𝑖𝑟𝑖𝑔ℎ𝑡−1 + 𝑙𝑜𝑠𝑠𝑖𝑙𝑒𝑓𝑡−1 + 

𝑙𝑜𝑠𝑠𝑖𝑏𝑜𝑡𝑡𝑜𝑚−1 + 𝑙𝑜𝑠𝑠 , 

𝜆𝑖 = 𝑙𝑜𝑠𝑠𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖 = 𝑙𝑜𝑠𝑠𝜆𝑖 

= 𝑙𝑜𝑠𝑠𝑖−1 
123 𝑟𝑖𝑔ℎ𝑡 

𝜆𝑖 = 𝑙𝑜𝑠𝑠 𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖 = 𝑙𝑜𝑠𝑠𝑖−1 ∕ 𝑙𝑜𝑠𝑠𝑖−1, 𝜆𝑖 = 𝑙𝑜𝑠𝑠 𝑙𝑜𝑠𝑠𝑖−1. 
45 𝑏𝑜𝑡𝑡𝑜𝑚 6 

(3.25) 

The total loss is defined in (3.6) for a given set of top boundaries. In the 

rescaled domain, the variable coefficient Poisson equation is solved in a 

rectangular domain using PIML. 

3.4. Arbitrary bottom boundary 

When the bottom boundary is varying in space as well, we denote it as 

𝜙2(𝑥). We rescale the physical domain in the 𝑦 direction as follows 

𝑦 − 𝜙2(𝑥) 

𝑧 = , 𝑦 ∈ [𝜙2(𝑥),𝜙(𝑥)]. (3.26) 

𝜙(𝑥) − 𝜙2(𝑥) 

This mapping transforms the Toth basin into a rectangular domain in a new 

coordinate. The gradient operator is transformed as follows 

 1 −( (𝜙 − 𝜙2)𝑥 +) 

𝐷 = ⎜⎝⎜ 𝜙−𝜙2 𝜙−𝜙12 ⎠⎟⎟. (3.28) 

0 

𝜙−𝜙2 

The Laplace equation is rewritten into a variable coefficient one as follows 

(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ = 0, (3.29) where 

 𝜕2 𝜕 𝑧 𝜙2,𝑥 𝜕 

(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ = 𝐾11[ 𝜕𝑥2 − 𝜕𝑥 (( 𝜙−𝜙2 (𝜙 − 𝜙2)𝑥 + 𝜙−𝜙2 ) 𝜕𝑧 ) 

𝜙 

(3.30) 

The boundary conditions of ℎ are given by 

𝐧 ⋅ 𝐾 ⋅ ∇ℎ|𝛤𝑙,𝑟,𝑏 = 𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ|𝛤𝑙,𝑟,𝑏 = 0, 

ℎ(𝑥,1)𝛤𝑡𝑜𝑝 = 𝜙(𝑥) (Dirichlet), (3.31) 

𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)ℎ|𝛤𝑡𝑜𝑝 = −𝛾(ℎ − 𝜙) (Robin), 𝑥 ∈ [0,1], 

where 𝐧 = (±1,0) are the unit external normal of the lateral surfaces, 

 𝜕 𝑧 
𝜙

2,𝑥 𝜕 1 𝜕 

∇ = ( − ( (𝜙 − 𝜙2)𝑥 + ) , ) = 𝐷 ⋅ ∇∗, 

 𝜕𝑥 𝜙 − 𝜙2 𝜙 − 𝜙2 𝜕𝑧 𝜙 − 𝜙2 𝜕𝑧 

where 

 ⎛ 𝑧 𝜙2,𝑥 ⎞ 

(3.27) 
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𝐧 = √ 1 (−
𝜙

2,𝑥,1) is the external unit normal of the bottom surface. 

1+𝜙2 
2,𝑥 

Namely, 

𝜕ℎ
|𝑙𝑒𝑓𝑡,𝑟𝑖𝑔ℎ𝑡 ∗)ℎ|𝑏𝑜𝑡𝑡𝑜𝑚 = 0. (3.32) = 0, 𝐧 ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇ 

𝜕𝑥 

The consistency condition for the boundary conditions is 

 𝐧(𝑡)⋅𝐾⋅(𝐷⋅∇∗)ℎ𝑑𝑥 = ∫ [ 𝐾22 ℎ𝑧 −𝐾11𝜙𝑥(ℎ𝑥 − 𝜙𝑥 ℎ𝑧)]𝑑𝑥 = 0. 

𝑧=1 𝑧=1 𝜙 − 𝜙2 𝜙 − 𝜙2 

(3.33) 

We define 

 𝐾22 𝜙𝑥 

𝐹(𝐱,𝜖) = [ ℎ𝑧 − 𝐾11𝜙𝑥(ℎ𝑥 − ℎ𝑧)]. (3.34) 

 𝜙 − 𝜙2 𝜙 − 𝜙2 

Analogous to the treatment of the top boundary, we expand 𝜙2 in its truncated 

Fourier Sine series 
𝑚 

 𝜙2(𝑏) − 𝜙2(𝑎) ∑ 𝑥 

𝜙2 = 𝜙2(𝑎) + (𝑥 − 𝑎) + 𝑐𝑖 sin(𝑖𝜋 ). (3.35) 

 𝐿 𝐿 
𝑖=1 

We denote 

𝐡𝑡 = (𝜙(𝑎),𝜙(𝑏),𝑏1,…,𝑏𝑛,𝜙2(𝑎),𝜙2(𝑏),𝑐1,…,𝑐𝑚). (3.36) 

The DeepONet is defined by the following: 

 𝑝 𝑞 𝑛+𝑚+4 

𝐺(𝐡𝑡,𝜖,𝐱) =  𝜉𝑖𝑗𝑘 𝐡𝑡,𝑗 + 𝜉10
𝑘 𝜖 + 𝜃𝑖𝑘)𝜎(𝑊𝑘 ⋅𝐱 + 𝜁𝑘) + 𝑏0. (3.37) 

 𝑘=1 𝑖=1 𝑗=1 

The loss function is given by 

𝐿(𝜃,𝐡𝑡,𝜖) = 𝑛 1𝑖 ∑𝑛
𝑗=1

𝑖 [(𝐷 ⋅ ∇∗) ⋅ 𝐾 ⋅ (𝐷 ⋅ ∇∗)𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 

+ 1 ∑𝑛𝑡 [𝜙(𝐱𝑗𝑡 ) − 𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 )]2 

(𝐡𝑡,𝜖,𝐱𝑖𝑏)]2 

+2 𝑖 𝑜𝑑𝑑∈{3,…,𝑛𝑡−2} 𝐹(
𝐱
𝑖
𝑡,𝜖) + 𝐹(

𝐱
𝑛𝑡 ,𝜖))]2. 

where 𝐱𝑗 are the interior points and 𝐱𝑗𝑘 are boundary points at the top, left, 

right, and bottom boundary, respectively. The total loss is given by (3.6) when 

a set of top and bottom boundaries are given. In practice, the modified loss 

function is adopted analogous to what we alluded to earlier. 

4. Results and discussion 

We present the numerical results in two scenarios. In the first scenario, we 

learn the mapping from an arbitrary surface topography to the solution in the 

basin while the bottom boundary is assumed flat. 

In the second, we allow the bottom boundary to be an arbitrary shape as well. 

We have implemented all the methods using PyTorch. For simplicity, we 

present the results obtained using the spectral representation and the domain 

mapping method only in the following. We remark that different surface 

representations produce the same numerical result. 

4.1. Results with an arbitrary top boundary 

We first present the results obtained using the spectral representation 

method. 

4.1.1. Sampling of the top boundary representation 

The top boundary is defined by (3.7) with coefficients or parameters in 𝐡𝑡. 

The sampling of 𝐡𝑡 = (𝜙(𝑎),𝜙(𝑏),𝑏1,…,𝑏𝑚) is carried out as follows 

• We sample 𝜙(𝑎) uniformly from [0.7,0.8] and 𝜙(𝑏) uniformly from [𝜙(𝑎) 

− 0.2,𝜙(𝑎) + 0.2] to ensure that fluctuations of the boundary function 

are reasonable geographically. 

• For  with 𝑚 = 8, we sample 𝑏1,…,𝑏8 uniformly 

from [−1,1], respectively. 

• We calculate ℎ𝑚𝑎𝑥 = max𝑥∈[0,1] 𝜙(𝑥),ℎ𝑚𝑖𝑛 = min𝑥∈[0,1] 𝜙(𝑥), and ℎ𝑑 = ℎ𝑚𝑎𝑥 

− ℎ𝑚𝑖𝑛. We sample 𝜆 ∈ [0,0.2] and then update coefficients 𝑏𝑗 ∶= 𝜆𝑏𝑗∕ℎ𝑑,𝑗 

= 1,…,8. 

• Then, the top boundary surface is well-represented by vector 𝐡𝑡 = 

(𝜙(𝑎),𝜙(𝑏),𝑏1,…,𝑏8). 

• For illustration purposes, we set 𝜖 = 0.01 throughout the paper. 

This sampling method makes sure the top boundary fluctuates in≤ 0.5 < 𝜙(𝑥) 

1. The larger fluctuation can be done, but it may not be necessary for the 

realistic geography. 

4.1.2. The dataset 

The Loss function is defined by summing up all the squared residues of the 

equation and the boundary conditions as well as a consistency condition that 

depends on 𝐡𝑡. We denote the input of the neural network in the loss function 

as follows: 

𝐳 = (𝐡𝑡,𝐱), (4.1) 

where 𝐱 is a long vector containing randomly chosen points from the 

boundaries and the interior of the basin underneath the top boundary 

represented by 𝐡𝑡 which are chosen after the top boundary is specified. We 

sample I number of representing vectors of top boundaries in≤ ≤ 𝐡𝑖
𝑡,𝑖 = 

1,…,𝐼. For each 1 𝑖 𝐼, we have well-defined top boundary 

𝑦 = 𝜙𝑖(𝑥). For the 𝑖th top boundary, we randomly choose 𝐿𝑖 data points 𝐱𝑗𝑙,𝑖,𝑗 = 

1,…,𝐿𝑖 on the left boundary, 𝑅𝑖 points 𝐱𝑗𝑟,𝑖,𝑗 = 1,…,𝑅𝑖 on the right boundary, 𝐵𝑖 

points 𝐱𝑗𝑏,𝑖,𝑗 = 1,…,𝐵𝑖 on the bottom, and 𝐽𝑖 points in the interior 𝐱𝑗𝑖 ∈ 

[0,1]×[0,𝜙(𝐱)],𝑗 = 1,…,𝐽𝑖, 𝑀 uniform points 𝑥𝑗,𝑗 = 1,…,𝑀 in [0,1]. 

We divide the dataset into the training and test sets by randomly dividing 

{1,…,𝐼} into two subsets 𝐼𝑡𝑟𝑎𝑖𝑛 and 𝐼𝑡𝑒𝑠𝑡. We generate 140 top boundary 

topographies using the spectral representation. For 100 boundary 

topographies, we sample 14000 points randomly, including 10000 interior 

points and 4000 boundary points. For the rest 40 boundary topographies, we 

put them in the test set. Finally, we choose 𝑀 = 101 points uniformly in [0,1] 

to calculate the consistency condition included in the loss function. 

In the DeepONet, the width of branch and trunk net is 200, the depth of 

the branch net is 4, and the depth of the trunk net is 3. We use the Adam 

algorithm for the first 1000 epoch optimization step with learning rate 10−4 and 

weight decay 10−7. For the remaining epoch, we use the LBFGS algorithm with 
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learning rate 0.1. The stopping criterion of the LBFGS is for both training and 

testing processes. The typical loss in each weighted component in the modified 

loss function at the end of the machine learning process is summarized in Table 

4.1 . For the parameters in the model, we use characteristic length scales 

𝐿𝑦=1000 m and 
𝐿
𝑥=10000 m, which lead to 

𝑘
11=0.01 and 

𝑘
22=1 

Table 4.1 
Typical loss values at the end of training and testing, respectively. 

Loss terms Training loss Test loss 

𝐿𝑜𝑠𝑠𝑒𝑞 4.82 × 10−4 2.35 × 10−3 

𝐿𝑜𝑠𝑠𝑙 4.81 × 10−7 7.57 × 10−6 
𝐿𝑜𝑠𝑠𝑟 5.6 × 10−7 1.71 × 10−5 
𝐿𝑜𝑠𝑠𝑏 5.07 × 10−5 2.18 × 10−5 
𝐿𝑜𝑠𝑠𝑡 4.58 × 10−4 7.77 × 10−3 
𝐿𝑜𝑠𝑠𝑐𝑜𝑛 1.69 × 10−5 3.38 × 10−3 

Table 4.2 
Model, neural network and optimization algorithm parameters. 

Parameter Value 

Width of trunk and branch net 200 

Depth of branch net 4 
Depth of trunk net 3 
Weight decay 10−7 
Learning rate for the first 1000 epoch 10−4 
Learning rate for the remaining epoch 0.1 
𝐿𝑦 1000 m 
𝐿𝑥 10000 m 
𝑘11 0.01 
𝑘22 1 

(i.e., aspect ratio 𝜖 = 0.01). All model parameters are summarized in Table 4.2. 

4.1.3. Benchmark with the Toth water table solution and the numerical 

solution obtained using COMSOL 

We compare the solution obtained from the DeepONet mapping and the 

Toth’s water table solution and the numerical solution obtained from COMSOL 

for a given top surface. The results are summarized in Fig. 4.1. The relative 

mean square errors (RMSEs) are in the order of 10−2. Given the loss in machine-

learning is in the order of 10−3, the Toth’s solution is asymptotic, and the 

numerical solution is approximate, the RMSEs are consistent with the errors 

one expects from the PIML approach. 

4.1.4. Results obtained using the spectral representation 

After learning the mapping represented by the DeepONet, we present 

several representative results obtained using the mapping to show the 

solution of the steady state groundwater flow equation in the Toth basin. Fig. 

4.2 depicts the flow field and the water potential distribution in a Toth basin 

with sloped top surface topographies of localized variations. There are two 

factors in the top boundary that impact on flow patterns in the Toth basin: one 

is the average slope and the other is the localized variation of the surface. A 

large average slope tends to promote long distance transport of the flow at the 

bottom of the basin in addition to the compartmentalized or localized 

circulatory flow patterns near the top surface. When localized variations in the 

top surface are large, the long distance transport near the bottom tends to be 

blocked by intruding localized circulations penetrated down from the top. Fig. 

4.2 shows a typical steady state flow pattern due to the surface topography 

with a fixed average slope and varying localized surface variations in space. The 

two topographical features identified and their influence to steady state flow 

patterns are shown visibly. To render a better graphical resolution for some 

long streamlines, we use an image reconstruction method to reconstruct some 

of the continuous long streamlines that are not well-shown in Fig. 4.2. The 

results are depicted in Fig. 4.3. 

 

Fig. 4.1. The top boundary is given by 𝑦𝑡 = 𝑦0 + 𝑐′𝑥 + 𝑎′𝑠𝑖𝑛𝑏′𝑥, which tan𝛼 = 𝑐′,𝑎∕cos𝛼 = 𝑎′,𝑏∕cos𝛼 = 𝑏′, 𝑦0 = 0.5,𝑐′ = 0.02,𝑎 = 0.025. 



J. Sun et al. Advances in Water Resources 176 (2023) 104448 

10 

Consistent with Toth’s results (Tóth, 1963), our solutions also show that a 

small average slope in the topography and small fluctuation in spatial 

variations promotes compartmentalized circulations. Fig. 4.4 
Fig. 4.2. Steady flow patterns in streamlines and potential distributions in the Toth basin with a sloped and localized spatial variations at the top boundary represented by a spectral representation. 

(a). The slow varying surface topography promotes long distance transport at the bottom of the basin due to the slope. (b). When the localized spatial variations in the top are enhanced, the number 

of compartmentalized circulations increases and flows are blocked to compartmentalized circulations, cutting off the long distance transport. 

 

Fig. 4.3. Replot of the steady solutions in Fig. 4.2 with continuous streamlines and potential distributions. These plots reconstruct some continuous long streamlines partially shown in Fig. 4.2. 
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Fig. 4.4. Steady flow patterns with top surface of small slopes. Small slopes in the surface topography with small surface fluctuations lead to compartmentalized circulations. A top boundary with a 

zero average slope separates all flows into compartmentalized circulations of nearly equal width. 

 

Fig. 4.5. (a). The curvature is smaller on the left than that on the right. Parameter values are 𝐡𝑡 = [0.75,0.95,3.619×10−3,−1.561×10−16,−4.418×10−3,4.224×10−16,5.858×10−3,1.472× 10−16,−1.526 × 10−2,2.25 

× 10−2]. (b). The curvature enhances on the left in this plot. Parameter values are 𝐡𝑡 = [0.5,0.7,−1.276 × 10−6,2.679 × 10−6,−4.382 × 10−6,6.69 × 10−6,−1.028 × 10−5,1.717 × 10−5,−3.732 × 10−5,0.025]. 
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Fig. 4.6. Steady state solutions obtained using the domain mapping method. (a). This is identical to the one with the same parameters in Fig. 4.2a. (b). This is identical to the one with the same 

parameters in Figure 4.4b. Thus, the two methods produce the same results. 

 

Fig. 4.7. The steady state solution in the Toth basin with given top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The flow pattern 

is altered compared to Fig. 4.2. When the bottom is lifted, i.e., the basin is shallower, the flows are compressed. (b). When the bottom is lifted further, the flows are compressed further and localization 

is more prominent. However, the flow pattern does not seem to differ much from (a) qualitatively. 
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Fig. 4.8. The steady state solution in the Toth basin with given top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The flow has a 

tendency to flow to the left in long distance due to the increasing slope over there. (b). The flow tends to travel long distance down the bottom boundary to the left analogous to (a). There is no 

qualitative difference between (a) and (b) where the depth of the basin is different. (c). Flows are more compartmentalized due to the shallow basin. (d). As the depth increases in the basin, the longer 

range flow is observed near the bottom. 

shows two cases of flow fields with small average slopes of the top surface. A 

top surface with a zero average slope and some spatial variations creates 

several fully compartmentalized flow patterns correlated with the wave form 

of the top boundary. 

We observe that local curvatures in the top surface affect flow patterns in 

the Toth basin as well. A larger local curvature tends to create more localized 

flow patterns while the smaller one promotes more global flow patterns in the 

bottom of the basin. Fig. 4.5 depicts an example where the magnitude of the 

curvature of the top surface at the left is smaller than that on the right. As the 

result, the flow patten is more localized at the right than that on the left. We 

note that it is the overall slope of the surface topography that dominates the 

overall flow pattern, while the local curvature makes the flow pattern more 

localized (or circulatory). There apparently exists a competition between the 

local curvature effect and the overall slope of the top boundary. The flow 

pattern in the classical Toth water table resembles the flat topographical 

surface shown in Fig. 4.5b since the Toth’s solution is an asymptotic one over 

a near flat top boundary. The current study indeed extends the asymptotic 

analyses in Tóth (1963) to a truly nonlinear topography of potentially large 

spatial variations. With the 
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boundary-to-solution mapping given by the DeepONet, we can literally 

calculate any solution pattern as we need as long as the top surface 

topography is given. 

4.1.5. Results obtained by the domain mapping method 

Here we report the results obtained using the domain mapping method on 

the same two top boundaries as Figs. 4.2a and 4.4b and show that the results 

are the same numerically. Fig. 4.6 shows two calculated flow fields using the 

DeepONet obtained from the domain mapping method using the same top 

surface representations as those used 

in Figs. 4.2a and 4.4b. The results look identical. Thus, either method can be 

employed to obtain the mapping represented by the DeepONet. The 

computational cost for obtaining each mapping is comparable as well. 

4.2. Results with arbitrary top and bottom boundaries 

Next, we use the domain mapping method to obtain the mapping in which 

the bottom boundary is arbitrary. The bottom boundary is sampled the same 

as the top one as alluded to earlier, except that some coefficients/parameters 

are different. Specifically, 𝜙2(𝑎) is sampled uni- 

formly from [0.14,0.24], 𝜙2(𝑏) uniformly from [𝜙(𝑎) − 0.14,𝜙(𝑎) + 0.14], 𝜆 ∈ 

[0,0.1]. Compared to the case where the bottom boundary is flat, we are 

interested in two issues here: 1. how does the depth between the top and the 

bottom boundaries affects the flow pattern in the basin? 2. how does the 

morphology of the bottom boundary affect the flow field in the basin in 

addition to that of the top boundary? 

When the bottom is flat, a decrease in the depth of the basin does not 

seem to impact much to the overall flow pattern except that the 

localized/compartmentalized circulation is enhanced at the top and the depth 

of the circulation region becomes larger in the dimensionless domain as shown 

in Fig. 4.7. When the flat bottom boundary is inclined in the same direction as 

the top boundary does, the local circulatory flow seems to increase near the 

top boundary as shown in Fig. 4.8. When the bottom is inclined opposite to 

that of the top boundary, the increased depth in the far right end alleviates the 

small scale circulatory motion to a slightly long distance flow pattern across a 

scale much larger than the previously confined circulatory region (see Fig. 4.8). 

When the bottom boundary is wavy, it does not seem to add any new features 

to the already known flow patterns alluded to earlier. Fig. 4.9 depicts two 

examples where the bottom boundaries are wavy with different amplitudes of 

spatial variations. 

4.3. Robin boundary-value problem 

For the Robin boundary condition given in (2.15), we define the loss 

function as follows: 

𝐿(𝜃,𝐡𝑡,𝜖) = 𝑛 1𝑖 ∑𝑛
𝑗=1

𝑖 (∇ ⋅ 𝐾 ⋅ ∇𝐺(𝐡𝑡,𝜖,𝐱𝑗))2 

(𝐡𝑡,𝜖,𝐱𝑗𝑡 ))+ 
𝑡 

∇𝐺(𝐡𝑡,𝜖,𝐱𝑗𝑡 ) (𝐡𝑡,𝜖,𝐱𝑖𝑙))𝐧 ⋅ 𝐾 ⋅ 

 (𝐡𝑡,𝜖,𝐱𝑖𝑟))2+ 
𝑟 

𝑛1 ∑𝑛𝑖(𝐡𝑡 𝐱𝑏))2 + [ ( 𝐹(𝐱1,𝜖) + 4∑𝑖 𝑒𝑣𝑒𝑛∈{2,…,𝑛−1} 𝐹(𝐱𝑖𝑡,𝜖)+ ,𝜖, 𝑖 
𝑏3 

) 

(𝐱𝑛𝑡 ,𝜖)]2, 

(4.2) 

where 𝐱𝑗 are the interior points and 𝐱𝑗𝑘 are boundary points at the top, left, 

right, and bottom boundary, respectively, 𝐧  

, and 

𝑥 

𝐹(𝐱,𝜖) = 𝐺(𝐡𝑡,𝜖,𝐱) − 𝜙(𝐱). 

The model parameters are the same as those used above. 𝛾 can be 

identified as the reciprocal of the penetration length: the larger 𝛾 is, the 

smaller its impact to the flow in the bottom of the basin. Hence, it is expected 

that the flow pattern should be similar to the case of the Dirichlet boundary 

condition when 𝛾 is large. 𝛾 is treated as a hyperparameter, which we must set 

 

Fig. 4.9. The steady solution in the Toth basin with wavy top and bottom boundaries represented by spectral representations obtained using the domain mapping approach. (a). The streamline of 

the flow is perturbed by the bottom boundary. (b). A slight decrease in depth does not make much qualitative difference in the flow pattern. 
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before training to construct the loss function. It could be treated as an input 

variable for the DeepONet though. But, it would take much longer time to train 

the neural network in this case. So, we decide not to pursue it in this study. For 

the Robin boundary condition, we are interested in what changes it brings to 

the steady flow patterns in comparison to the Dirichlet case. ≥ 

By examining the numerical results, we observe that when 𝛾 10, the flow 

patterns in the three cases with different slopes and spatial variations are 

pretty much independent of the increase in values of 𝛾. Namely, the patterns 

in Fig. 4.10 (𝛾 = 10) are nearly the same as those in Fig. 4.11 when 𝛾 = 107. 

While 𝛾 becomes smaller however, the flow patterns change quite 

dramatically, the number of localized flow patterns decreases and long 

distance flows become more prominent. This is because the penetration 

length is enhanced in this case so that flow patterns near the bottom are 

affected directly by the top boundary condition. We expect that the solution is 

going to be approaching the solution of the Dirichlet problem as 𝛾 → ∞. The 

steady states we have calculated do support the observation (see Fig. 4.12). 

5. Remark on inhomogeneous equations and time dependent groundwater 

flow equations 

The method extends readily to the boundary value problem with a 

source/sink term 𝑄 and the initial–boundary value problem of (2.2) in the 

framework of PIML. For the inhomogeneous boundary value problem, we 

modify the loss function by including source term 𝑄 is the penalty terms in the 

interior equation and the consistency condition, respectively. For the time-

dependent initial–boundary value problem, we add one more dimension in 

time and sample randomly in both space and time for the interior and 

boundary points. The changes that need to be made are in the interior penalty 

term and the consistency condition term in the loss function. The 𝐿2 norms 

used in the loss function needs o be expanded to include the average in time. 

Some additional techniques in training such as time-domain decomposition, 

etc. need to be considered to accelerate the training process (Lu et al., 2021). 

 

Fig. 4.10. Steady flow patterns at three selected slopes of the top boundary with 𝛾 = 10. (a). The top boundary of a higher slope produces long-distance flow near the impervious bottom boundary. 

(b). Compartmentalization becomes more prominent as the slope reduces and in the meantime the number of circulatory flow cell increases. (c) When the average slope of the top surface is zero, 

long distance flows completely ceases and compartmentalized flow patterns dominate. 



J. Sun et al. Advances in Water Resources 176 (2023) 104448 

16 

6. Conclusion 

We have introduced a new approach to obtaining a mapping between 

surface topography and the solution of the steady state groundwater flow 

equation in Toth basins with arbitrary surface topographies. This method 

utilizes PIML with DeepONet and relies on inputting parameters, such as the 

conductivity tensor and aspect ratio, into the groundwater flow equation. The 

resulting boundary-to-solution mapping can be learned and repeatedly used 

to map out the underground steady state flow field for any surface topography 

and impervious boundary of any shape, providing an alternative means to 

study groundwater flow phenomena in complex geophysical systems. This 

method can estimate groundwater flow patterns in new Toth basins with 

similar geophysical parameters, and new models can be efficiently machine-

learned through transfer learning with a predetermined architecture even in 

locations where geophysical parameters differ. With additional computational 

efforts, the model parameters can also be treated as an input to the 

DeepONet, expanding the mapping to a wider range of groundwater flow 

equations with varying parameter values. As a result, the DeepONet can be 

used as a well-trained ‘‘knowledgeable’’ boundary-to-solution predictor, 

demonstrating a neural network representation of an inverse differential 

operator in hydrological applications, which can be applied in numerous cases. 
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Fig. 4.11. Steady flow patterns at three selected slopes of the top boundary with 𝛾 = 107. (a). The top boundary of a higher slope produces long-distance flows near the impervious bottom boundary. 

(b). Compartmentalization becomes more prominent as the slope reduces and in the meantime the number of circulatory flow cell increases. (c) When the average slope of the top surface is zero, the 

long distance flow completely ceases and compartmentalized flow patterns dominate. The results are similar to those in Fig. 4.10. 
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