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Abstract. We establish new conditions for obtaining uniform bounds on the
moments of discrete-time stochastic processes. Our results require a weak
negative drift criterion along with a state-dependent restriction on the centered
conditional moments of the process. They, in particular, generalize the main
result of [22] which requires a constant bound on the averaged one-step jumps of
the process. The state-dependent feature of our results make them suitable for
a large class of multiplicative-noise processes. Under the additional assumption
of the Markovian property, we prove new results on ergodicity that do not
rely on a minorization condition typically needed in ergodic theorems. Several
applications to iterative systems, control systems, and other dynamical systems
with state-dependent multiplicative noise are included, and these illustrative
examples demonstrate the wide applicability of our results.

1. Introduction. We study stability properties of a general class of discrete-time
stochastic systems. Assessment of stability of dynamical systems is an important
research area which has been studied extensively over the years. For example, in
control theory a primary objective is to design suitable control policies which will
ensure appropriate stability properties (e.g., bounded variance) of the underlying
controlled system. There are various notions of stability of a system. In mathemat-
ics, stability often refers to equilibrium stability, which, for deterministic dynam-
ical systems, is mainly concerned with qualitative behaviors of the trajectories of
the system that start near the equilibrium point. For the stochastic counterpart,
in Markovian setting it usually involves study of existence of invariant distribu-
tions and associated convergence and ergodic properties. A comprehensive source
of results on di↵erent ergodicity properties for discrete-time Markov chains using
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Foster-Lyapunov functions is [18] (also see the references therein). Several exten-
sions of such results have since then been explored quite extensively in the literature
(for example, see [16, 17]). Another important book in this area is [9], which uses
expected occupation measures of the chain for identifying conditions for stability.

The primary objective of the paper is to study moment stability, which concerns
itself with uniform bounds on moments of a general stochastic process Xn or, more
generally, on expectations of the form E(V (Xn)) for a given function V . This is
slightly di↵erent from the usual notions of stability in the Markovian setting as
mentioned in the previous paragraph, but they are not unrelated. Indeed, if the
process {Xn} has certain underlying Lyapunov structure a strong form of Markovian
stability holds which in particular implies moment stability. The result, which is
based on Foster-Lyapunov criterion, can be described as follows. Given a Markov
chain {Xn}n2N taking values in a Polish space S with a transition probability kernel
P, suppose there exists a non-negative measurable function u : S ! [0,1), called
a Foster-Lyapunov function, such that the process {u(Xn)}n2N possesses has the
following negative drift condition: for some constant b > 0, ✓ > 0, a set A ⇢ S, and
a function V : S ! [0,1)

E [u(Xn+1)� u(Xn)|Xn = x] ⌘
Z

S
P(x, dy)u(y)� u(x) 6 �✓V (x) + b1{x2A}. (1)

If the set A is petite, (which, roughly speaking, are the sets that have the property
that any set B is ‘equally accessible’ from any point inside the petite set - for
definition and more details, see [15, 18]), the process {Xn} has a unique invariant
distribution ⇡ and also ⇡(V ) =

R
S ⇡(dx)V (x) < 1. Moreover, under aperiodicity,

it can be concluded that the chain is Harris ergodic, that is,

kPn(x, ·)� ⇡kV ! 0, as n ! 1,

where k · kV is the V -norm (see, the definition at the end of introduction) [18,
Chapter 14]. In particular, one has E[V (Xn)] ! ⇡(V ) as n ! 1 (which of course
implies boundedness of E[V (Xn)]). Thus for a Markov process {Xn}, one way to
get a uniform bound on V (Xn) is to find a Foster-Lyapunov function u such that
(1) holds.

The objective of the first part of the paper is to explore scenarios where a strong
negative drift condition like (1) does not hold or at least such a Lyapunov function
is not easy to find for a specific V . We do note that the required conditions in our
results are formulated in terms of the target function V itself. One pleasing aspect
of this feature is that search for a suitable Lyapunov function u is not required for
applying these results.

Our main result, Theorem 2.2, deals with the general regime where the state pro-
cess {Xn} is a general stochastic process and not necessarily Markovian. While past
studies on stability mostly concern homogeneous Markov processes, the literature
in the case of more general processes including non-homogeneous Markov processes
and processes with long-range dependence, is rather sparse. One important work in
this direction, which partially influenced our work and which we describe in more
detail later in the Introduction and in Section 2, is [22].

The starting point in Theorem 2.2 is a weak negative drift like condition:

E (V (Xn+1)� V (Xn)|Fn) 6 �A, Xn /2 D, (2)
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which, if {Xn} is a homogeneous Markov chain, is of course equivalent to PV (x)�
V (x) 6 �A for x outside D. As is well known (and may be observed by comparing
(2) with (1)), even in the Markovian setting, the results of [18, Chapter 14] do not
imply supn E(V (Xn)) < 1. In fact, the condition (2) is not enough to guarantee
such an assertion even in a deterministic setting. For example, consider the sequence
{xn} on N defined by

xn+1 =

(
xn � 1 if xn > 1,

n+ 1 if xn = 1.

Clearly, supn>1 xn = 1 even though the negative drift condition is satisfied for
D = {1}. But we show in Theorem 2.2 that under a state-dependent restriction
on the conditional moments of V (Xn+1) given Fn (see Assumption 2.1 for details),
the desired uniform moment bound can be achieved. Note that the above sequence
{xn+1} fails (2.1-c) of Assumption 2.1 but satisfies the other two conditions.

In the (homogeneous) Markovian framework, Theorem 2.2 leads to new results
(c.f., Theorem 3.2 and its variant, Theorem 3.4) on Harris ergodicity of Markov
chains which will be useful in situations where the Foster-Lyapunov drift criterion
in the form of (1) cannot be verified. It is important to note that Theorem 3.2
does not require D to be petite or any minorization conditions or prior checking of
aperiodicity of the chain.

As mentioned, Theorem 2.2 is influenced in part by a result of Pemantle and
Rosenthal [22] which established a uniform bound on E(V r(Xn)) under (2) and the
additional assumption of a constant bound on conditional p-th moment of one-step
jumps of the process given Fn, that is, E [|V (Xn+1)� V (Xn)|p|Fn]. However, for
a large class of stochastic systems the latter requirement of a uniform bound on
conditional moments of jump sizes cannot be fulfilled and weaker conditions are
needed. In particular, our work is motivated by some problems on stability of a
class of stochastic systems with multiplicative noise where such conditions on one-
step jumps are typically state-dependent and consequently fail to be bounded by
a constant. This includes the general model considered in Section 4.1 where the
result of [22] cannot be applied.

Our results generalize those of [22] in two important directions:

� we employ a di↵erent “metric” to control the one step jumps, and
� we permit such jumps to be bounded by a suitable state dependent function.

Specifically, instead of E [|V (Xn+1)� V (Xn)|p|Fn], we control the centered condi-

tional p-th moment of V (Xn+1), that is, E
h
|V (Xn+1)� E(V (Xn+1)|Fn)|p

���Fn

i
, in

a state-dependent fashion. The latter quantity can be viewed as a distance between
the actual position V (Xn+1) at time n+ 1, and the expected position at that time
given the past information, E(V (Xn+1)|Fn); in contrast, [22] uses the distance be-
tween actual positions at times n + 1 and n. These extensions require a di↵erent
approach involving di↵erent auxiliary estimates. The advantages of this new ‘jump
metric’ and the state dependency feature have been discussed in detail after the
the proof of Theorem 2.2. Together, they significantly expand the scope of stability
results by encompassing a larger class of stochastic systems than hitherto possible.
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This improvement in scope is amply demonstrated in Section 4, where a broad
class of systems with multiplicative noise is studied and new stability results (see
Proposition 4.2 and Corollary 4.4) are obtained. In particular, these results include
stochastic switching systems and Markov processes of the form Xn+1 = H(Xn) +
G(Xn)⇠n+1. The last part of this section is devoted to the important problem of
stabilization of stochastic linear systems with bounded control inputs. The problem
of interest here consists of finding conditions which guarantee L2-boundedness of a
stochastic linear system of the formXn+1 = AXn+Bun+⇠n+1 with bounded control
actions. The particular problem has been studied in a previous work of the second
author (see [25] and the references therein for more background on the problem),
and it was demonstrated that when (A,B) is stabilizable, there exists a k-history
dependent control policy that assures bounded variance of such a system provided
the norm of the control is su�ciently large. This upper bound on the norm of the
control appeared to be an artificial obstacle on its design, and it was conjectured in
[25] that it is not required although a proof couldn’t be provided. Here we show that
this conjecture is indeed true (c.f. Proposition 4.7), and the artificial restriction on
the control norm can be lifted largely owing to the new “metric” in Theorem 2.2. In
fact, as Proposition 4.2 and Corollary 4.4 clearly indicate, this stabilization result
can be easily extended to cover more general classes of stochastic control systems
including ones with multiplicative noise.

The article is organized as follows. The main result on uniform moment bounds
and related results are described in Section 2. Section 3 concerns itself with ergod-
icity of Markov chains. Section 4 discusses potential applications of our results for a
large class of stochastic systems including switching systems, multiplicative Markov
models, which are especially relevant to control theory.

Notation and terminology: For a probability kernel P on S ⇥ S, and a function
f : S ! [0,1), the function Pf : S ! [0,1) will be defined by Pf(x) =R
S f(y)P (x, dy). In similar spirit, for a measure µ on S, µ(f) will be defined by
µ(f) =

R
S f(x)µ(dx). For a signed measure, µ, on S. the corresponding total vari-

ation measure is denoted by |µ| = µ+ + µ�, where µ = µ+ � µ� as per the Jordan
decomposition. If µ = ⌫1 � ⌫2, where ⌫1 and ⌫2 are probability measures, the total
variation distance k⌫1 � ⌫2kTV is given by

k⌫1 � ⌫2kTV = |µ|(S) = 2 sup
A2B(S)

|⌫1(A)� ⌫2(A)|.

B(S) denotes the Borel sigma-algebra on S. More generally, if g : S ! [0,1) is a
measurable function, the g-norm of µ = ⌫1 � ⌫2 is defined by kµkg = sup{|µ(f)| :
f measurable and 0 6 f 6 g}.

Throughout, we will work on an abstract probability space (⌦,F ,P). E will
denote the expectation operator under P. In context of the process {Xn}, Ex will
denote the conditional expectation given X0 = x.

2. Uniform bounds for moments of stochastic processes. The section presents
our result on uniform bounds on functions of a general stochastic processes {Xn}
taking values in a topological space S. The primary assumption involves a negative
drift condition outside a set D, together with a state-dependent control on the size
of one-step jumps of {Xn}.
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Assumption 2.1. There exist measurable functions V : S ! [0,1), ' : S !
[0,1), and a measurable set D ⇢ S such that

(2.1-a) for all n 2 N ,

Ex0 [V (Xn+1)� V (Xn) | Fn] 6 �A on {Xn /2 D};
(2.1-b) for each n 2 N and some p > 2, ⌅n, the centered conditional p-th moment

of V (Xn+1) given Fn, satisfies

⌅n
.
= Ex0

h
|V (Xn+1)� E(V (Xn+1)|Fn)|p

���Fn

i
6 '(Xn),

where '(x) 6 C'(1 + V s(x)) for some 0 6 s < p/2 � 1 and some constant

C' > 0.
(2.1-c) supx2D V (x) < 1, and for some constant B̄p

D (which could also depend on

the starting point x0),

Ex0

⇥
(E[V (Xn+1)|Fn])

p
1{Xn2D}

⇤
< B̄p

D.

Theorem 2.2. Suppose that Assumption 2.1 holds for the process {Xn}n�0 with

X0 = x0. Then

BV,r(x0)
.
= sup

n2N
Ex0

⇥
V (Xn)

r
⇤
< 1

for any 0 6 r < &(s, p), where

&(s, p) =

8
><

>:

p
⇣
1 � s

p�2

⌘
� 1 for s 2 [0, (p � 2)2/2p) [ [1 � 2/p, p/2 � 1), when 2 < p < 4;

for all s 2 [0, p/2 � 1), when p > 4;

p � 2 for (p � 2)2/2p 6 s < 1 � 2/p, when 2 < p < 4.

Remark 2.3. Note that (2.1-c) is implied by the simpler condition:Ex0 [V (Xn+1)|Fn] 6
B̄D on {Xn 2 D} for some constant B̄D.

Remark 2.4 (Comparative analysis). At this stage it is instructive to compare
Theorem 2.2 with [22, Theorem 1] and precisely note some of the improvements the
former o↵ers.

� The first significant extension is that Theorem 2.2 allows the jump sizes in (2.1-b)
to be state dependent; observe that [22, Theorem 1] requires

Ex0 [|V (Xn+1)� V (Xn)|p|Fn] 6 B, (†)
for some constant B > 0. The resulting benefits are obvious since the dependence
on the states allows the result in particular to be applicable to large class of
multiplicative systems of the form

Xn+1 = H(Xn) +G(Xn)⇠n+1,

which [22, Theorem 1] cannot cover in general.
� The second notable distinction is in the ‘metric’ used in (2.1-b) in controlling
jump sizes: while [22, Theorem 1] involves Ex0 [|V (Xn+1)� V (Xn)|p|Fn], our
result only requires the centered conditional p-th moments of V (Xn+1) given

Fn, namely, Ex0

h��V (Xn+1)� E[V (Xn+1)|Fn]
��p
���Fn

i
, to be controlled (in a state-

dependent fashion). Of course, the latter leads to weaker hypothesis since

Ex0

h��V (Xn+1)� E[V (Xn+1)|Fn]
��p
���Fn

i
6 2pEx0 [|V (Xn+1)� V (Xn)|p|Fn] .

It is important to emphasize the advantage of our weaker hypothesis because the
condition in (†) precludes it from being applicable to some additive models. To
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illustrate this with a simple example, consider a [0,1)-valued process {Xn} given
by

Xn+1 = Xn/2 + ⇠n+1, X0 > 0,

where ⇠n are [0,1)-valued random variables with µp = supn E(⇠
p
n) < 1 for p > 2.

Since Xn+1�Xn = �Xn/2+⇠n+1, clearly the negative drift condition (c.f (2.1-a))
holds with V (x) = |x|. But for the jump sizes we can only have

Ex0 [|Xn+1 �Xn|p|Fn] = O(Xp
n).

This means that [22, Theorem 1] cannot be used to get supn Ex(Xn) < 1 for this
simple additive system — a fact which easily follows from an elementary iteration
argument (note, Ex(Xn) ����!

n!1
2µ1). On the other hand, Theorem 2.2 clearly

covers such cases as

Ex0

h
|Xn+1 � E (Xn+1|Fn) |p

���Fn

i
6 µ̄p, µ̄p = sup

n
E|⇠n � E(⇠n)|p.

� It should actually be noted that had Theorem 2.2 simply controlled the jump
sizes by imposing the more restrictive condition E [|Xn+1 �Xn|p|Fn] 6 '(Xn),
the state-dependency feature would not be enough to salvage the moment bound
of the above additive system (because of the requirement '(x) = O(V s(x)) for
s < p/2 � 1). It is interesting to note that the results of [18] based on Foster-
Lyapunov drift conditions also cannot directly be used in this simple example
since {Xn} is not necessarily Markov because the ⇠n are not assumed to be i.i.d.
To summarize, the weaker jump metric coupled with the state dependency feature
makes Theorem 2.2 a rather powerful tool in understanding stability for a broad
class of stochastic systems. Some important results in this direction for switching
systems have been discussed in the application section.

2.1. Proof of Theorem 2.2 and its preparation. The proof of Theorem 2.2,
which is presented at the end of this section, combines Proposition 2.6 and Proposi-
tion 2.8. Proposition 2.6 first establishes a weaker version of the above assertion by
showing that supn2N Ex0

⇥
V (Xn)r

⇤
< 1 for all r < p/2� 1. However, an extension

of the result from there to all r < &(s, p) (notice that &(s, p) > p/2 � 1) requires a
substantial amount of extra work and is achieved through Proposition 2.8.

The following lemma will be used in various necessary estimates.

Lemma 2.5. Let Mn be a martingale relative to the filtration {Fn},

�n
.
= E

⇥
|Mn+1 �Mn|p

��Fn

⇤
, n > 0 (3)

⇥ a non-negative random variable, and b > 0 a constant. Then for any p > 1,
0 6 r 6 p

E
⇥
(|Mn �Mk|+⇥)r1{|Mn�Mk|+⇥)>b}|Fk

⇤

6 2p�1

 
c̄p(n� k)

p
2�1

n�1X

m=k

E [�m|Fk] + E [|⇥|p|Fk]

!
br�p,

where c̄p is the upper Burkholder’s constant.
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Proof. Note that by the discrete version of Burkholder-Davis-Gundy inequality
(e.g., see [24]), there exists c̄p > 0 such that

E
⇥
|Mn �Mk|p

��Fk

⇤
6 c̄pE

"✓n�1X

m=k

⇥
|Mm+1 �Mm|2

⇤◆p/2 ����Fk

#
.

Hölder’s inequality and (3) yields

E
⇥
|Mn �Mk|p

��Fk

⇤
6 c̄p(n� k)

p
2�1

n�1X

m=k

E [|Mm+1 �Mm|p |Fk]

6 c̄p(n� k)
p
2�1

n�1X

m=k

E [�m|Fk] . (4)

Observe that for a random variable Yn, we have for 0 6 r 6 p,

E
⇥
|Yn|r1{|Yn|>b}|Fk

⇤
6 E

⇥
|Yn|p/|Yn|p�r1{|Yn|>b}|Fk

⇤
6 E [|Yn|p|Fk] /b

p�r.

Taking Yn = |Mn �Mk|+⇥ (with n > k) we get

E
⇥
|Mn �Mk|+⇥|r1{||Mn�Mk|+⇥|>b}|Fk

⇤

6 2p�1 (E [|Mn �Mk|p|Fk] + E [⇥p|Fk]) /b
p�r,

and the assertion follows from (4).

We now prove the two propositions which form the backbone of our main result,
Theorem 2.2.

Proposition 2.6. Suppose that Assumption 2.1 holds. Then for any 0 6 r <
p/2� 1,

BV,r(x0)
.
= sup

n2N
Ex0

⇥
V (Xn)

r
⇤
< 1,

Proof. Observe that it is enough to prove the result for r 2 (s, p/2�1), and we pick
such an r. Writing '(x) = '(x)1{|V (x)|6M} + ('(x)/V r(x))V r(x)1{|V (x)|>M}, in
view of the growth assumption on ' (c.f (2.1-b)), we conclude that for every " > 0,
there exists a constant C1(") such that '(x) 6 C1(") + "V r(x). It is not di�cult

to see from (2.1-b) that one can take C1(") = (2C'/")
r/s�1 (although it should be

noted that this is not the best possible value of C1(")).

Define M0 = 0 and

Mn =
n�1X

j=0

V (Xj+1)� Ex0 [V (Xj+1)|Fj ], n > 1.

Then Mn is a martingale. Fix N 2 N, and define the last time {Xk} is in D by

⌘ ⌘ max{k 6 N | Xk 2 D}.

Notice that {⌘ = k} = {Xk 2 D}\
TN

j>k{Xj /2 D}. On {⌘ = k}, for k < n 6 N we
ahve

Mn � Mk =V (Xn)� V (Xk)�
n�1X

j=k

(Ex0 [V (Xj+1)|Fj ]� V (Xj))

> V (Xn)� V (Xk)� (Ex0 [V (Xk+1)|Fk]� V (Xk)) +A(n� k � 1)
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⌘ V (Xn) +A(n� k � 1)� Ex0 [V (Xk+1)|Fk]. (5)

It follows that on {⌘ = k},
V (XN )r 6 (|MN � Mk|+ ⇠k)

r and A(N � k � 1) 6 |MN � Mk|+ ⇠k,

where ⇠k = Ex0 [V (Xk+1)|Fk]1{Xk2D}.

On {⌘ = �1}, which corresponds to the case that the process starting outside D
never enters D by time N , we have

V (XN )r 6 (|MN � M0|+ V (x0))
r and AN 6 |MN � M0|+ V (x0).

Thus for k 6 N � 2,

Ex0 [V (XN )r1{⌘=k}] 6 Ex0

⇥
(|MN � Mk|+ ⇠k)

r 1{⌘=k}
⇤

6 Ex0

⇥
(|MN � Mk|+ ⇠k)

r 1{|MN�Mk|+⇠k>A(N�k�1)}
⇤

6 2p�1

 
c̄p(N � k)

p
2�1

N�1X

m=k

Ex0 ['(Xm)] + Ex [⇠
p
k ]

!
/(N � k � 1)p�r

6 2p�1

 
c̄p(N � k)r�1�p/2

N�1X

m=k

Ex0 ['(Xm)] + B̄p
D(N � k)r�p

!
,

where we used (2.1-c) and Lemma 2.5 along with the observation that

Ex0 [|Mn+1 �Mn|p] = Ex0 [|V (Xn+1)� E[V (Xn+1)|Fn]|p] 6 Ex0 ['(Xn)].

Similarly, on {⌘ = �1},
Ex0 [V (XN )r1{⌘=�1}] 6 Ex0

⇥
(|MN |+ V (x0))

r 1{|MN |+V (x0)>AN}
⇤

6 2p�1

 
c̄pN

p
2�1

N�1X

m=0

Ex0 ['(Xm)] + V (x0)
p

!
/Np�r

6 2p�1

 
c̄pN

r�1� p
2

N�1X

m=0

Ex0 ['(Xm)] + V (x0)
pNr�p

!
.

Next, note that because of (2.1-b)

Ex0 [V
p(XN )|FN�1]1{XN�12D} 6 2p�1

✓
Ex0 [V (XN )|FN�1]

p1{XN�12D} + sup
x2D

'(x)

◆
,

which by (2.1-c) of course implies that for any q 6 p,

Ex0 [V (XN )q1{⌘=N�1}] 6 Ex0 [V
q(XN )1{XN�12D}] 6 C q,p

0 ⌘
✓
2p�1

✓
B̄p

D + sup
x2D

'(x)

◆◆q/p

.

Lastly,

Ex0 [V (XN )r1{⌘=N}] 6 Ex0 [V (XN )r1{XN2D}] 6 sup
z2D

V r(z),

Thus,

Ex0 [V (XN )r] 6
NX

k=0

Ex0 [V (XN )r1{⌘=k}] + Ex0 [V (XN )r1{⌘=�1}]

6
N�2X

k=0

Ex0 [V (XN )r1{⌘=k}] + C q,p
0 + sup

z2D
V

r(z) + Ex0 [V (XN )r1{⌘=�1}]

6 2p�1
c̄p

N�2X

k=0

(N � k)r�1�p/2
N�1X

m=k

Ex0 ['(Xm)] + 2p�1B̄p
D

N�2X

k=0

(N � k)r�p
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+ C q,p
0 + sup

z2D
V

r(z) + 2p�1
c̄pN

r�1�p/2
N�1X

m=0

Ex0 ['(Xm)]

+ 2p�1
V

p(x0)N
r�p

6 C q,p
0 + sup

z2D
V

r(z) + 2p�1�B̄p
D + V

p(x0)⇣(p� r)
�

+ 2pc̄p

N�2X

k=0

(N � k)r�1�p/2
N�1X

m=k

Ex0 ['(Xm)]

6 C q,p
0 + sup

z2D
V

r(z) + 2p�1�B̄p
D + V

p(x0)⇣(p� r)
�

+ 2pc̄p

N�2X

k=0

(N � k)r�1�p/2
N�1X

m=k

Ex0 [C1(") + "V
r(Xm)]

6 C2(", x0) + 2pc̄p"
N�1X

m=0

�
N
mEx0 [V

r(Xm)] ,

where, with ⇣ denoting the Riemann-zeta function,

C2(", x0) ⌘ C q,p
0 + sup

z2D
V

r(z) + 2p�1(B̄p
D + V

p(x0)⇣(p� r) + 2pc̄pC1(")⇣(p/2� r)

=

✓
2p�1

✓
B̄p

D + sup
x2D

'(x)

◆◆q/p

+ sup
z2D

V
r(z) + 2p�1�B̄p

D + V
p(x0)⇣(p� r)

�

+ 2pc̄p (2C'/")
r/s�1

⇣(p/2� r).
(6)

The choice of " appearing above will be specified shortly, and �N
m =

Pm
k=0(N �

k)r�1�p/2. Iterating the inequality leads to

Ex0

⇥
V (XN )r

⇤
6 C2(", x0)

✓
1 + 2pc̄p"

N�1X

l1=0

�N
l1 + (2pc̄p")

2
N�1X

l1=0

�N
l1

l1�1X

l2=0

�l1
l2
+ · · ·

· · ·+ (2pc̄p")
N�1�N

N�1�
N�1
N�2 . . .�

2
1�

1
0

◆
(V r(x0) _ 1) .

(7)

Notice that for any k > 0, since r < p/2� 1,

k�1X

l=0

�k
l =

k�1X

l=0

lX

j=0

(k � j)r�1�p/2 =
k�1X

j=0

(k � j)r�p/2 6 ⇣(p/2� r).

Choosing " so that 2pc̄p"⇣(p/2� r) < 1, (7) yields

Ex0

⇥
V (XN )r

⇤
6 C2(", x0) (V r(x0) _ 1)

1� 2pc̄p"⇣(p/2� r)
,

with C2(", x0) given by (6). This concludes our proof.

Remark 2.7. Note that the last display gives an explicit form of an upper bound
for BV,r(x0), which, in particular, shows how it depends on the various quantities
of Assumption 2.1. However, this bound may not be optimal (or near optimal) for
specific models.

The next proposition helps to extend the above result from any r < p/2 � 1 to
&(s, p) as stipulated in Theorem 2.2. However it is also a stand-alone result that is
applicable to certain models where Theorem 2.2 is not directly applicable. These
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are cases where one directly does not have any good estimate of the conditional
centered moment ⌅n as required in Theorem 2.8, but have suitable upper bounds
for its k ·k✓ norm. As a simple example, let Xn be a stochastic process taking values
in [�c0,1), whose temporal evolution is given by

Xn+1 = c1 +Xn/2 + Yn

where c0 and c1 are (real-valued) constants, and {Yn} is an Fn-adapted martingale
di↵erence process (that is, E(Yn+1|Fn) = 0) and supn E(|Yn|p) < 1 for p > 2.
Then Theorem 2.2 is not applicable, but the following proposition can be applied
with ✓ = 1 to V (x) = x+ c0.

Proposition 2.8. Let ⌅n ⌘ Ex0 [|V (Xn+1)� E(V (Xn+1)|Fn)|p|Fn] denote the cen-
tered conditional p-th moment of V (Xn+1) given Fn. Assume that (2.1-a) and (2.1-
c) of Assumption 2.1 hold, and for p > 2, some ✓ 2 [1,1], and some constant

0 < B̄✓(x0) < 1,

k⌅nk✓ = Ex0

⇥
⌅✓
n

⇤1/✓ 6 B̃✓(x0), for all n > 0.

Then BV,r(x0)
.
= sup

n2N
Ex0

⇥
V (Xn)

r
⇤
< 1 for 0 6 r < &̄(✓, p), where

&̄(✓, p) =

8
>><

>>:

p
�
1� 1

2✓

�
� 1 for ✓ 2

⇥
1, p

2

⇤
[
⇣

p
p�2 ,1

i
when 2 < p < 4,

for any ✓ > 1 when p > 4;

p� 2 for ✓ 2
⇣

p
2 ,

p
p�2

i
when 2 < p < 4.

Here ✓ = 1 corresponds to the case that ⌅n = Ex0 [|V (Xn+1)� E(V (Xn+1)|Fn)|p|Fn] 6
B̄ a.s., for some constant B̄ > 0.

Proof of Proposition 2.8. The constants appearing in various estimates below (be-
sides the ones that appeared before) will be denoted by Ĉi’s. They will not depend
on n but may depend on the parameters of the system and the initial position x0.

Define Mn, ⌘ and ⇠k as in the proof of Proposition 2.6. Fix N , 0 6 k 6 N , and
define ⌧ ⌘ ⌧(N, k) by

⌧ = inf{j > k : Mj � Mk + ⇠k > A(N � k � 1)/2}.

Clearly, ⌧ 6 N . For j > k, notice that on {⌧ = j},

Mj�1 � Mk + ⇠k 6 A(N � k � 1)/2,

and hence on {⌘ = k} \ {⌧ = j}

MN � Mj�1 > A(N � k � 1)/2 + V (XN ).

It follows that for j > k

Ex0 [V (XN )1{⌘=k}1{⌧=j}]

6 Ex0

⇥
|MN � Mj�1|r1{|MN�Mj�1|>A(N�k�1)/2}1{|Mj�1�Mk|+⇠k>A(j�k�2)_0}1{⌧=j}

⇤
.

Notice that Sj ⌘ Ex0

⇥
|MN � Mj�1|r1|MN�Mj�1|>A(N�k�1)/2|Fj

⇤
can be esti-

mated by Lemma 2.5 as

Sj 6 (2/A(N � k � 1))p�r
Ex0 [|MN � Mj�1|p|Fj ]

6 2p�1 [Ex0 [|MN � Mj |p|Fj ] + |Mj � Mj�1|p] /(N � k � 1)p�r
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6 2p�1

2

4c̄p(N � j)
p
2�1

Ex0

2

4
N�1X

l=j

⌅l|Fj

3

5+ |Mj � Mj�1|p
3

5 /(N � k � 1)p�r.

Also, for ⌧ = k by Lemma 2.5,

Ex0 [V (XN )1{⌘=k}1{⌧=k}] 6 Ex0

h
1{⌧=k}Ex0

h
(|MN � Mk| + ⇠k)

r
1||MN�Mk|+⇠k>A(N�k�1)|Fk

ii

6 Ĉ1Ex0

"
1{⌧=k}

 
(N � k � 1)r�p/2�1

N�1X

l=k

Ex0 [⌅l|Fk] + (N � k � 1)r�p|⇠k|p
!#

.

Hence,

Ex0 [V (XN )1{⌘=k}] =
NX

j=k

Ex0 [V (XN )1{⌘=k}1{⌧=j}]

6 Ĉ1(N � k � 1)r�p/2�1Ex0

"
1{⌧=k}

N�1X

l=k

Ex0 [⌅l|Fk]

#

+ Ĉ1(N � k � 1)r�pB̄D +
NX

j=k+1

Ex0

h
1{⌧=j}1{|Mj�1�Mk|+⇠k>A(j�k�2)}Sj

i

6 Ĉ2

h
(N � k � 1)r�

p
2
�1

NX

j=k

N�1X

l=j

Ex0

⇥
⌅l1{⌧=j}

⇤
+ (N � k � 1)p�r

+ (N � k � 1)r�p
NX

j=k+1

|Mj � Mj�1|p1{|Mj�1�Mk|+⇠k>A(j�k�2)_0}

i
. (8)

We next estimate the above two terms separately, and for that we need the following
bound:

Px0

✓
max

k6j6l
|Mj � Mk| + ⇠k > ⌥

◆
6 Ex0


max

k6j6l
|Mj � Mk| + ⇠k

�p
/⌥p

6 2p�1
✓✓

p

p � 1

◆p

Ex0

⇥
|Ml � Mk|p

⇤
+ Ex0 |⇠k|

p
◆

/⌥p

6 2p�1

0

@
✓

p

p � 1

◆p

c̄p(l � k)p/2�1
lX

j=k

Ex0 [⌅j ] + B̄p
D

1

A /⌥p

6Ĉ3

⇣
(l � k)p/2 + 1

⌘
/⌥p, (9)

where the second step used Doob’s maximal inequality, the third employed the
Burkholder-Davis-Gundy inequality and Hölder’s inequalities (c.f. proof of Lemma
2.5), and the final step used the fact that E[⇠l] 6 k⇠lk✓ 6 B̃✓(x0). Now notice that

N�1X

j=k

N�1X

l=j

Ex0

⇥
⌅l1{⌧=j}

⇤
=

N�1X

l=k

lX

j=k

Ex0

⇥
⌅l1{⌧=j}

⇤

=
N�1X

l=k

Ex0

⇥
⌅l1{⌧6l}

⇤

6
N�1X

l=k

k⌅lk✓Px0 (⌧ 6 l)1/✓
⇤

6 B̃✓(x0)
N�1X

l=k

Px0

✓
max

k6j6l
(|Mj � Mk| + ⇠k) > A(N � k � 1)/2

◆1/✓⇤

6
✓

2

A

◆p/✓⇤

B̃✓(x0)
N�1X

l=k

0

@
Ĉ3

⇣
(l � k)p/2 + 1

⌘

(N � k � 1)p

1

A
1/✓⇤

6 Ĉ4(N � k � 1)�
p

2✓⇤ +1 = Ĉ4(N � k � 1)
� p

2

⇣
1� 1

✓

⌘
+1

, (10)

where the third inequality employed (9), and ✓⇤ is the Hölder conjugate of ✓ (i.e.,
1
✓ + 1

✓⇤ = 1).
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Next notice that the term

A ⌘
NX

j=k+1

Ex0

⇥
|Mj � Mj�1|p1{|Mj�1�Mk|+⇠k>A(j�k�2)}

⇤

can be estimated as

A 6 k⌅k+1k✓ + k⌅k+2k✓ +
NX

j=k+3

Ex0

⇥
⌅j�11{|Mj�1�Mk|+⇠k>A(j�k�2)}

⇤

6 2B̃✓(x0) +
NX

j=k+3

k⌅j�1k✓Px0 (|Mj�1 � Mk|+ ⇠k > A(j � k � 2))1/✓
⇤

6 B̃✓(x0)

2

42 +A�p/✓⇤
NX

j=k+3

⇣
Ĉ3

⇣
(j � k � 1)p/2 + 1

⌘
/(j � k � 2)p

⌘1/✓⇤
3

5 ,

6 Ĉ5

2

41 +
NX

j=k+3

1/(j � k � 2)p/2✓
⇤

3

5

6
(
Ĉ6 ⌘ Ĉ5 (1 + ⇣(p/2✓⇤)) if p/2✓⇤ = p(1� 1/✓)/2 > 1,

Ĉ7(N � k � 1) otherwise,
(11)

where the third inequality is by (9) (recall that ⇣ denotes the Riemann zeta func-
tion). We now consider some cases.

Case 1: ✓ 6 p/2: Suppose that r < p
�
1� 1

2✓

�
� 1. Notice that this range of r

implies that p � r � 1 > p
2✓ > 1. It follows from (8), (10), and the second case of

(11) that

Ex0 [V
r(XN )] =

NX

k=0

Ex0 [V
r(XN )1{⌘=k}]

6
N�2X

k=0

Ex0 [V
r(XN )1{⌘=k}] + Ex0 [V

r(XN )1{XN�12D}] + sup
x2D

V
r(x)

6 Ĉ8

hN�2X

k=0

(N � k � 1)r�
p
2�1� p

2 (1�
1
✓ )+1 +

N�2X

k=0

(N � k � 1)r�p

+
N�2X

k=0

(N � k � 1)r�p+1
i
+ C3 + sup

x2D
V

r(x)

= Ĉ8

✓
⇣

✓
p

✓
1� 1

2✓

◆
� r

◆
+ ⇣(p� r) + ⇣(p� r � 1)

◆
+ C3 + sup

x2D
V

r(x).

Case 2: ✓ > p/2 and p > 4: Suppose that r < p
�
1� 1

2✓

�
� 1. Notice that ✓ > p/2

and p > 4 imply that p/2✓⇤ = p(1 � 1/✓)/2 > 1. Arguing along the lines of the
previous case, it follows from (8), (10), and the first case of (11) that

Ex0 [V
r(XN )] 6

N�2X

k=0

Ex0 [V
r(XN )1{⌘=k}] + Ex0 [V

r(XN )1{XN�12D}] + sup
x2D

V
r(x)

6 Ĉ9

 
N�2X

k=0

(N � k)r�p(1� 1
2✓ ) +

N�1X

k=0

(N � k � 1)r�p

!
+ C3 + sup

x2D
V

r(x)
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6 Ĉ10.

The other cases in the assertion follow similarly once we observe that ✓ > p/(p�2) ,
p/2✓⇤ > 1 and for 2 < p < 4, p/2 < p/(p� 2).

Proof of Theorem 2.2. From Proposition 2.6 and the growth assumption on ', it
follows that for any 1 6 ✓ < (p� 2)/2s,

sup
n

k⌅nk✓ 6 sup
n

�
Ex0('

✓(Xn))
�1/✓

< 1,

where k · k✓ is the L✓(⌦,P)-norm (c.f. Proposition 2.8). The assertion now follows
from Proposition 2.8 by letting ✓ " (p� 2)/2s. If s = 0, that is, ⌅n 6 C , for some
constant C a.s., we take ✓ = 1 in Proposition 2.8.

3. Ergodicity of Markov processes. In this section we present new results on
Harris ergodicity of Markov processes which employ Theorem 2.2 at their core. It is
important to point out that no minorization condition is assumed here; see [20] for
a recent brief overview of ergodicity of Markov chains. Moreover, unlike some other
results that stipulate locally compact state spaces, thus precluding them from being
applied to (infinite-dimensional) Banach space-valued processes, the state space E
here is simply assumed to be Polish. The results can, therefore, be potentially
applied to discretized stochastic PDE models.

The first result assumes the existence of a transition density q(·, ·) of {Xn} (with
respect to some measure µ) with a generous growth condition on it. Note that if E is
countable, then q(x, y) = P(Xn+1 = y|Xn = x) 6 1 and thus automatically satisfies
(3.2-d). The second result is a variant of the first which replaces the assumption of
existence of density by a suitable continuity condition on the transition probability
measures.

Definition 3.1. A function V : E ! [0,1) is inf-compact if the level sets, Km =
{x : V (x) 6 m} are compact for all m > 0.

Note that an inf-compact function V is lower-semicontinuous.

Theorem 3.2. Let {Xn} be a Markov process taking values in a Polish space E
with transition kernel P. Suppose that for an inf-compact function V : E ! [0,1),
the following conditions hold:

(3.2-a) for all n 2 N ,

PV (x)� V (x) 6 �A, on {x /2 D};

(3.2-b) for some p > 2,

P|V (·)� PV (x)|p(x) =
Z

|V (y)� PV (x)|pP(x, dy) 6 '(x),

where ' : E ! [0,1] satisfies '(x) 6 C'(1 + V s(x)) for some s <
p/2 � 1 and some constant C' > 0. This is of course same as requiring

E

h��V (Xn+1)� PV (Xn)
��p
���Fn

i
6 '(Xn).

(3.2-c) supx2D V (x) < 1, and supx2D PV (x) < 1,

Also, suppose that
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(3.2-d) P is weak Feller,  -irreducible, and admits a density q with respect to some

Radon measure µ, that is, P(x, dy) = q(x, y)µ(dy), and that for every com-

pact set K, there exist a constant cK,0 and an exponent 0 < r̃ ⌘ r̃K < &(s, p)
such that

sup
y2K

q(x, y) 6 cK,0

�
1 + V r̃(x)

�
.

Then

(i) Under (3.2-a)–(3.2-c), supn Ex0(V
r(Xn)) ⌘ supn PnV r(x0) < 1 for any 0 6

r < &(s, p), where &(s, p) is as in Theorem 2.2.

(ii) Under the additional assumption of (3.2-d), {Xn} is positive Harris recurrent

(PHR) and aperiodic with a unique invariant distribution ⇡, and for any x0

and r̃ 2 (0, &(s, p))
Z
(V r + 1)d|Pn(x0, ·)� ⇡| ! 0 as n ! 1; (12)

or equivalently,

kPn(x0, ·)� ⇡kV r+1
.
= sup

f :|f |6V r+1
|Pnf(x0)� ⇡(f)| ! 0 as n ! 1. (13)

Proof. (i) follows from the Theorem 2.2. Since V is inf-compact, it follows from
(i) that for every x0, {Pn(x0, ·)} is tight, and let ⇡ be one of its limit points.
Since P is weak Feller, by the Krylov-Bogolyubov theorem [23, Theorem 7.1], ⇡ is
invariant for P, and uniqueness of ⇡ follows from the assumption of  -irreducibility
[9, Proposition 4.2.2]. Hence, for every x0, Pn(x0, ·) ) ⇡ (along the full sequence)
as n ! 1.

For (ii) we start by establishing the following claim.

Claim 1: Suppose that f 6 V r + 1 for some r 2 (0, &(s, p)). Then Pnf(x0) ! ⇡(f)
as n ! 1 for any x0 2 E .

Since V is lower semi-continuous we have by (generalized) Fatou’s lemma,

⇡(V r) 6 lim inf
n!1

PnV r(x0) 6 BV,r(x0)

for any r 2 (0, &(s, p)). Now let f 6 V r + 1 for some r 2 (0, &(s, p)) and fix " > 0.

Since {Pn(x0, ·)} is tight, for a given "̃ > 0, there exists a compact set K (which
depends on x0 and which we take of the form Km = {x : V (x) 6 m} for su�ciently
large m) such that

sup
n

Pn(x0,Kc) 6 "̃ and ⇡(Kc) 6 "̃.

Now by Hölder’s inequality

Pn
f1Kc(x0) =

Z
f(y)1Kc(y)Pn(x0, dy) 6

Z
(V r(y) + 1)1Kc(y)Pn(x0, dy)

6
✓Z

V
r0(y)Pn(x0, dy)

◆r/r0 ✓Z
1Kc(y)Pn(x0, dy)

◆1�r/r0

+ Pn(x0,Kc),

6 Br/r0

V,r0 (x0)"̃
1�r/r0 + "̃ (14)

for some r < r0 < &(s, p). Similarly, ⇡(f1Kc) 6 Br/r0

V,r0 (x)"̃
1�r/r0 + "̃.
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Since f1K 2 L1(µ), there exist {hm} ⇢ Cb(E ,R) such that hm ! f1K in L1(µ) as
m ! 1, and supx |hm(x)| 6 supx2K |f(x)| for m > 1. In fact, since supp(f1K) ⇢
K, we can choose {hm} such that supp(hm) ⇢ K0 � K for some compact set K0.

Observe that for x 2 E , y 2 K0 and n > 1,

qn(x, y) =

Z
qn�1(x, z)q(z, y)dµ(z) 6

Z
qn�1(x, z)cK0,0

�
1 + V r̃(z)

�
dµ(z)

6 cK0,0

�
1 + Ex(V

r̃(Xn�1))
�
6 cK0,0 (1 + BV,r̃(x)) ⌘ CK0(x).

Hence

sup
n

|Pnf1K(x0)� Pnhm| 6
Z

K0
|f(y)1K(y)� hm(y)|qn(x0, y)dµ(y)

6 CK0(x0)kf1K � hmk1. (15)

Next, notice that ⇡ is absolutely continuous with µ. Indeed, if µ(A) = 0, then
P(x,A) = 0, and hence ⇡(A) =

R
⇡(dx)P(x,A) = 0. Let g = d⇡/dµ. For any

M > 0,

|⇡(hm)� ⇡(f1K)| 6 M

Z
|hm � f1K|1{g6M}dµ+

Z
|hm � f1K|g1{g>M}dµ

6Mkhm � f1Kk1 + 2 sup
x2K

|f(x)|
Z

g1{g>M}dµ. (16)

Write

Pnf(x0)� ⇡(f) = (Pnf1K(x0)� Pnhm(x0)) + (Pnhm(x0)� ⇡(hm))

+ (⇡(hm)� ⇡(f1K(x0))) + Pnf1Kc(x0)� ⇡(f1Kc(x0)), (17)

and chooseK such that (14) holds for "̃ where "̃ is chosen such that Br/r0

V,r0 (x0)"̃1�r/r0+

"̃ 6 "/10. Since
R
gdµ = 1, choose su�ciently large M such that

R
g1{g>M}dµ 6

"/(20 supx2K |f(x)|), then a su�ciently large m such that

kf1K � hmk1 6 ("/5CK0(x0)) ^ ("/10M).

Finally, since Pn(x0, ·) ) ⇡, and hm 2 Cc(E ,R), we have (Pnhm(x0)� ⇡(hm)) ! 0
as n ! 1. Hence, we can choose a su�ciently large n such that |Pnhm(x0) �
⇡(hm)| 6 "/5, and thus from (14), (15), (16) and (17),

|Pnf(x0)� ⇡(f)| 6".

This proves Claim 1, which, in particular, asserts that for any x0 2 E and any Borel
set A, Pn(x,A) ����!

n!1
⇡(A).

Claim 2: For any x0 2 E , kPn(x0, ·)�⇡kTV = 2 supA2B(E) |Pn(x0,A)�⇡(A)| ����!
n!1

0.

To see this we first prove that for µ-a.a z 2 E , qn(x0, z) ! g(z) ⌘ (d⇡/dµ)(z).
Since g is the stationary density of {Xn}, for µ-a.a z 2 E , g(z) =

R
g(x)q(x, z)dµ(x).

For each z 2 E , define the function fz by fz(x) = q(x, z) and notice that because of
condition (3.2-d), the function fz satisfies the hypothesis of Claim 1. Consequently,
for µ-a.a z, as n ! 1

qn(x0, z) =

Z
q(x, z)Pn�1(x0, dx) = Pn�1fz(x0)
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����!
n!1

⇡(fz) =

Z
q(x, z)d⇡(x) =

Z
q(x, z)g(x)dµ(x) = g(z).

By Sche↵e’s lemma,
R
|qn(x0, z)� g(z)|dµ(z) ! 0, which is equivalent to the asser-

tion in the claim (since kPn(x0, ·)� ⇡kTV =
R
|qn(x0, z)� g(z)|dµ(z)).

Finally, by Hölder’s inequality for some r0 2 (r, &(s, p))

Z
(V r(y) + 1)d|Pn(x, ·)� ⇡|(y)

6
✓Z

V r0(y)(Pn(x, dy) + ⇡(dy))

◆r/r0

kPn(x, ·)� ⇡k1�r/r0

TV + kPn(x, ·)� ⇡kTV

6 2BV,r0(x)
r/r0kPn(x, ·)� ⇡k1�r/r0

TV + kPn(x, ·)� ⇡kTV ����!
n!1

0.

The equivalence of (12) and (13) follows from Lemma A.1.

Remark 3.3. Claim 2 also follows from [9, Theorem 4.3.4] (also see [8]), which
states that when {Xn} has a unique invariant distribution, ⇡, setwise convergence
of Pn(x0, ·) to ⇡ for every x0 is equivalent of the convergence of the former to the
latter in the total variation norm. This in turn is equivalent to {Xn} being aperiodic
and PHR. The equivalence of the setwise convergence of Pn(x, ·) and convergence in
total-variation norm is a unique feature of PHR chains. In the context of Theorem
3.2, a direct proof of this assertion appears to be more illuminating than invoking
[9, Theorem 4.3.4], whose proof uses di↵erent techniques. However, we employ [9,
Theorem 4.3.4] in the following variant of Theorem 3.2 which does not require the
existence of the transition density q(x, y).

Theorem 3.4. Let {Xn} be a Markov chain as in Theorem 3.2 satisfying (3.2-a)–
(3.2-c). Suppose further that {Xn} is weak Feller,  -irreducible, and that for each

A 2 B(E), there exists n0 ⌘ n0(A) such that the mapping x 2 E ! Pn0(x,A) is

continuous. Then the assertion of Theorem 3.2 holds.

Proof. We observe from the proof of Theorem 3.2 that {Xn} has a unique in-
variant distribution ⇡, and for every x0, Pn(x0, ·) ) ⇡ as n ! 1 and ⇡(V r) _
supn PnV r(x0) 6 BV,r(x0) < 1 for 0 < r < &(s, p).We now claim that Pn(x0,A) !
⇡(A) for any A 2 B(E). This simply follows from the weak convergence of Pn(x0, ·)
to ⇡ and the fact that the mapping y 7�! Pn0(y,A) is continuous (by our hypoth-
esis) and bounded. Indeed for n > n0,

Pn(x0,A) =

Z
Pn0(y,A)Pn�n0(x0, dy) ����!

n!1

Z
Pn0(y,A)⇡(dy) = ⇡(A).

where the last equality holds because ⇡ is the invariant distribution of {Xn}. Conse-
quently, by [9, Theorem 4.3.4] (see Remark 3.3 above), kPn(x0, ·)� ⇡kTV ����!

n!1
0.

The rest of the proof follows the same arguments as that of Theorem 3.2.

Remark 3.5. The continuity assumption in Theorem 3.4 is, of course, implied by
the stronger condition that for each A 2 B(E), the one-step transition probability
P(·,A) : E ! [0, 1] is continuous. The latter condition is equivalent to the strong
Feller property of {Xn}.



MOMENT STABILITY OF STOCHASTIC PROCESSES 17

4. Applications. This sections is devoted to establishing stability of a broad class
of multiplicative systems through various applications of the results established in
the prequel.

4.1. Discrete time switching systems. Let H be a Hilbert space and E a Polish
space. Suppose there exists a sequence of measurable maps Pn : H⇥ E ⇥ E ! [0, 1]
such that for each x 2 H, the function Pn(x, ·, ·) is a transition probability kernel.
Consider a discrete-time Fn-adapted process {Zn} ⌘ {(Xn, Yn)} taking values in
H⇥ E , whose dynamics is defined by the following rule: given the state (Xn, Yn) =
(xn, yn),

(SS-1) first, Yn+1 is selected randomly according to the (possibly) time-inhomogenous
transition probability distribution Pn(xn, yn, ·) ⌘ Pn,xn(yn, ·),

(SS-2) next given Yn+1 = yn+1,

Xn+1 = Hn(xn, yn+1, ⇠n+1),

where {⇠k : k = 1, . . .} is a sequence of independent random variables taking
values in a Banach space B, ⇠n+1 is independent of �{Fn, Yn+1} and Hn :
H⇥ E ⇥ B ! H.

In general {(Xn, Yn)} is a (possibly) time-inhomogeneous Markov process but clearly,
neither {Xn} nor {Yn} is Markovian on its own. The stochastic system {(Xn, Yn)} is
known as a discrete-time switching system or a stochastic hybrid system (and some-
times also known as iterated function system with place dependent probabilities [1]).
Stochastic hybrid systems are extensively used to model practical phenomena where
system parameters are subject to sudden changes. These systems have found wide-
spread applications in various disciplines including the synthesis of fractals and the
modeling of biological networks [12], target tracking [19], communication networks
[10], and control theory [3, 2, 4], to name a few. There is a considerable literature
addressing classical weak stability questions concerning the existence and unique-
ness of invariant measures of iterated function systems, see e.g., [21, 13, 26, 5, 11]
and the references therein. Comprehensive sources studying various properties of
these systems including results on stability in both continuous and discrete time
can be found in [14, 29] (and also the references therein). In most of these works,
{Yn} is often assumed to be a stand-alone finite or countable state-space Markov
chain.

We consider a broad class of coupled switching or hybrid systems whose dynamics
is described by (SS-1) and (SS-2) with Hn of the form

Hn(x, y, z) = Ln(x, y) + Fn(x, y) +Gn(x, y, z),

where Ln, Fn : H⇥ E ! H and Gn : H⇥ E ⇥B ! H. In other words, {Xn} satisfies

Xn+1 = Ln(Xn, Yn+1) + Fn(Xn, Yn+1) +Gn(Xn, Yn+1, ⇠n+1) (18)

where the ⇠n are B-valued random variables. Systems of the form (18), of course,
subsume multiplicative systems of the type

Xn+1 = Xn + Fn(Xn, Yn+1) +G0
n(Xn, Yn+1)⇠n+1.

We will make the following assumptions on the system (18):



18 ARNAB GANGULY AND DEBASISH CHATTERJEE

Assumption 4.1.

(SS-3) For kxk > B and any y 2 E,

Pn,xhFn(x, ·), Ln(x, ·)i(y) =
Z
hFn(x, y

0), Ln(x, y
0)iPn,x(y, dy

0) 6 �m0kxk�(1+�),

for some constants m0 and exponent � > 0.
(SS-4) The following growth conditions hold:

� kLn(x, y)k 6 mL,1(y)kxk + mL,2(y) and kL̄n(x, y)k 6 mL̄(y)(1 + kxk)l1 ,
where

L̄n(x, y) = Ln(x, y)� Pn,xLn(x, ·)(y).
� kFn(x, y)k 6 mF (y)(1 + kxk)f0 , F̄n(x, y) 6 mF̄ (y)(1 + kxk)f1 , and
kGn(x, y, z)k 6 mG(y)(1 + kxk)g0 (z), where  : B ! [0,1) and
F̄n(x, y) = Fn(x, y)� Pn,xFn(x, ·)(y).

� For any p > 0, the constants m̄F,p, m̄F̄ ,p, m̄G,p, m̄L,1,p, m̄L,2,p and m̄L̄,p are

finite, and m̄L,1,2 6 1, where the preceding constants are defined by

m̄�,p
.
= sup

n,x,z

Z
mp

�(y)Pn,x(z, dy), � = F, F̄ ,G, {L, 1}, {L, 2}, L̄. (19)

(SS-5) The exponents satisfy:

� (a) f0 < (1 + �)/2 or (b) f0 = (1 + �)/2 and m̄F,2 6 2m0;

� g0 < � ^ 1/2, and l1 _ f1 < 1/2.
(SS-6) The ⇠n are independent B-valued random variables with distribution ⌫n; for

each n, ⇠n+1 is independent of �{Fn, Yn+1}, and for any p > 0, mp
⇤ =

supn E( (⇠n)
p) < 1

Proposition 4.2. Under Assumption 4.1 we have supn Ex0kXnkm < 1 for any

m > 0 and x0 2 H. If the functions Gn are centered with respect to the variable z

in the sense that Ĝn(x, y)
.
=

Z

B
Gn(x, y, z)⌫n+1(dz) = 0 for all n > 1, x 2 H and

y 2 E, then we only need g0 < 1/2 instead of g0 < � ^ 1/2 in (SS-5) for the above

assertion to be true.

Remark 4.3. Several comments are in order at this stage:

� Due to the growth assumption on Gn in (SS-4) and the condition (SS-6), for
each n, x and y, the function z ! Gn(x, y, z) is Bochner integrable, and hence
Ĝn(x, y)

.
=
R
B Gn(x, y, z)⌫n+1(dz) is well defined (the integral is defined in Bochner

sense).
� One scenario where the functions Gn are centered (with respect to the variable

z) occurs when considering multiplicative stochastic system driven by zero-mean
random variables. Specifically, in such models theGn are of the formGn(x, y, z) =
G0

n(x, y)z and the ⇠n are mean zero-random variables. Also notice for these
models,  (z) = kzkB.

� Suppose that the Gn are not centered in the variable z. If � < 1/2, (SS-5) requires
that the growth exponent of Gn, g0 < �. However, this could be extended to the
boundary case of g0 = � (when � < 1/2) provided the averaged growth constants
m̄�,p (c.f. (19)) meet certain conditions. If g0 = � and f0 < (1 + �)/2, then the

assertion of Proposition 4.2 is true provided
�
m̄G,2m2

⇤
�1/2

< m0. If g0 = � and

f0 = (1 + �)/2, then the same assertion holds provided
�
m̄G,2m2

⇤
�1/2

+ m̄F,2/2 <
m0.
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� Condition (SS-3) is implied by the simpler condition:

hFn(x, y), Ln(x, y)i 6 �m0kxk1+� for all kxk > B and for all y.

Similarly, for many models a stronger (but easier to check) form of the condition
(SS-4), where the ‘constants’ m� (for � = F, F̄ , G, {L, 1}, {L, 2}, L̄) do not depend
on y, su�ces. In that case the corresponding averaged constants (given by (19))
are of course given by m̄�,p = mp

�, and are therefore trivially finite.
� One common example of Ln is Ln(x, y) ⌘ Ln(x) = x or Unx for some unitary
operator Un. If Ln(x, y) ⌘ Ln(x), then centered Ln, that is, L̄n ⌘ 0, and the
condition on the corresponding growth exponent l1 is trivially satisfied.

� Clearly, f1 6 f0, where, recall that, f1 and f0 are the growth rates of F̄n(x, y) =
Fn(x, y) � PxFn(x, ·)(y) (centered Fn) and Fn, respectively. In some models,
without any other information or suitable estimates on F̄ , f1 may just have to be
taken the same as f0, in which case condition (SS-5) implies that the above result
on uniform bounds on moments applies to systems for which f0 < 1/2 (and not
(1 + �)/2). However, in some other models the optimal growth rate f1 of F̄n can
indeed be lower than that of Fn. For example, as we noted before for the function
Ln, if Fn(x, y) ⌘ Fn(x), then F̄n(x, y) ⌘ 0 (that is, in particular, f1 = 0), and
this along with Theorem 3.2 leads to Corollary 4.4 about Harris ergodicty of a
large class of multiplicative Markovian systems.

Proof of Proposition 4.2. Besides the di↵erent parameters in Assumption 4.1, other
constants appearing in various estimates below will be denoted by mi’s. They will
not depend on n but may depend on the parameters of the system.

For the proof we will only consider the case of (SS-5)-(a), where f0 < (1 + �)/2;
the proofs in the cases of (SS-5)-(b) and the second point in Remark 4.3 follow
from (22) and some minor modification of the arguments. For each n, define the
functions Ĝn : H⇥ E ! H and G̃, Ḡn : H⇥ E ⇥ B ! H by

Ĝn(x, y) =

Z

B
Gn(x, y, z)⌫n+1(dz), G̃n(x, y, z) = Gn(x, y, z)� Ĝn(x, y), and

Ḡn(x, y, z) = Gn(x, y, z)� Pn,xĜn(x, ·)(y)
= Gn(x, y, z)� E(G(Xn, Yn+1, ⇠n+1)|(Xn, Yn) = (x, y))

(recall that ⌫n is the distribution measure of ⇠n), and notice that by (SS-4) and
(SS-6) for any p > 0,

E

h
|Ĝn(Xn, Yn+1)|p|Fn

i
=

Z

E

✓Z

B
Gn(x, y, z)⌫n+1(dz)

◆p

Pn,Xn(Yn, dy)

6
Z

E

Z

B
mp

G(y)(1 + kXnk)pg0 (z)p⌫n+1(dz)Pn,Xn(Yn, dy)

6 m̄Ĝ,p(1 + kXnk)pg0 , (20)

where m̄Ĝ,p = m̄G,pm
p
⇤ (recall mp

⇤ = supk E [ (⇠k)p] < 1). It now easily follows

that Ḡn and G̃n satisfy the following growth conditions:

kG̃n(x, y, z)k 6 mG̃(y)(1 + kxk)g0 (z), and kḠn(x, y, z)k 6 mḠ(y)(1 + kxk)g0 (z)
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for some functions mḠ(y) and mG̃(y) (depending on y), where m̄�,p < 1 for � =
G̃, Ḡ (see (19) for definition of m̄�,p). Consequently, for any p > 0

E

h
kG̃n(Xn, Yn+1, ⇠n+1)kp

��Fn

i
6 m̄G̃,pm

p
⇤(1 + kXnk)pg0 ,

E
⇥
kḠn(Xn, Yn+1, ⇠n+1)kp

��Fn

⇤
6 m̄Ḡ,pm

p
⇤(1 + kXnk)pg0 .

Also,

E
⇥
kLn(Xn, Yn+1)k2

��Fn

⇤
6 kXnk2 + 2m̄1/2

L,2,2kXnk+ m̄L,2,2 =
⇣
m̄1/2

L,2,2 + kXnk
⌘2

E
⇥
kFn(Xn, Yn+1)k2

��Fn

⇤
6 m̄F,2(1 + kXnk)2f0 .

(21)

Now writing G(Xn, Yn+1, ⇠n+1) = Ĝn(Xn, Yn+1) + G̃(Xn, Yn+1, ⇠n+1), we have

kXn+1k2 = kLn(Xn, Yn+1)k2 + kFn(Xn, Yn+1)k2 + kĜn(Xn, Yn+1)k2

+ kG̃(Xn, Yn+1, ⇠n+1)k2

+ 2hLn(Xn, Yn+1), Fn(Xn, Yn+1)i

+ 2h(Ln + Fn + Ĝn)(Xn, Yn+1), G̃(Xn, Yn+1, ⇠n+1)i

+ 2h(Ln + Fn)(Xn, Yn+1), Ĝn(Xn, Yn+1)i.

Denoting the term h(Ln + Fn + Ĝn)(Xn, Yn+1), G̃(Xn, Yn+1, ⇠n+1)i by Jn+1 , we
have

E [Jn+1|Fn] =

Z

B

Z

E
h(Ln + Fn + Ĝn)(Xn, y), G̃(Xn, y, z)iPn,Xn(Yn, dy)⌫n+1(dz)

=

Z

E

⌧
(Ln + Fn + Ĝn)(Xn, y),

Z

B
G̃(Xn, y, z)⌫n+1(dz)

�
Pn,Xn(Yn, dy)

= 0.

Also by Cauchy-Schwartz inequality, (20) and (21)

E

h
|hFn(Xn, Yn+1), Ĝn(Xn, Yn+1)i|

��Fn

i

6
�
E
⇥
kFn(Xn, Yn+1)k2

��Fn

⇤�1/2 ⇣
E

h
kĜn(Xn, Yn+1)k2

��Fn

i⌘1/2

6 m̄1/2
F,2m̄

1/2

Ĝ,2
(1 + kXnk)f0+g0 ,

and similarly,

E

h
|hLn(Xn, Yn+1), Ĝn(Xn, Yn+1)i|

��Fn

i
6 m̄1/2

Ĝ,2

⇣
m̄1/2

L,2,2 _ 1 + kXnk
⌘1+g0

.

Hence, on {kXnk > B},

E
⇥
kXn+1k2|Fn

⇤
6 kXnk2 + 2m̄1/2

L,2,2kXnk+ m̄L,2,2 + m̄F,2(1 + kXnk)2f0

+ (m̄Ĝ,p + m̄G̃,pm
p
⇤)(1 + kXnk)2g0 � 2m0kXnk1+�

+ 2m̄1/2
F,2m̄

1/2

Ĝ,2
(1 + kXnk)f0+g0 + 2m̄1/2

Ĝ,2

⇣
m̄1/2

L,2,2 _ 1 + kXnk
⌘1+g0

. (22)

Since �0
.
= 2(f0 _ g0) _ (f0 + g0) _ (1 + g0) < 1 + �, by (SS-5) it follows from the

above inequality that we can choose C > B large enough so that for kxnk > C,

E
⇥
kXn+1k2 � kXnk2 | Fn

⇤
6 m1

�
kXnk�0 � kXnk1+�

�
< 0.
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Also notice that choosing C > B _ 1 we have for kXnk > C
p
E [kXn+1k2|Fn] + kXnk 6 m2(1 + kXnk)1_�0/2 6 21_�0/2m2kXnk1_�0/2.

Therefore for kXnk > C,

E [kXn+1k|Fn]� kXnk 6
p
E [kXn+1k2|Fn] � kXnk =

E
⇥
kXn+1k2 | Fn

⇤
� kXnk2p

E [kXn+1k2|Fn] + kXnk

6 m3

⇣
kXnk�0�1_�0/2 � kXnk1+��1_�0/2

⌘
.

Because of assumption (SS-5), notice that

kxk�0�1_�0/2 � kxk1+��1_�0/2 �����!
kxk!1

(
�1 � > 0,

�m3 � = 0.

In either case, there exist a constant A > 0, and a su�ciently large C, such that

E [kXn+1k|Fn]� kXnk 6�A on kXnk > C. (23)

Next, notice that
���kXn+1k � E

⇥
kXn+1k

��Fn

⇤ ���

6
���kXn+1k � kE[Xn+1

��Fn]k
���+
���kE[Xn+1|Fn]k � E

⇥
kXn+1k

��Fn

⇤ ���

6kXn+1 � E
⇥
Xn+1

��Fn

⇤
k+

���E
⇥
kXn+1k � kE[Xn+1

��Fn]k
��Fn

⇤ ���

6kXn+1 � E[Xn+1|Fn]k+ E
⇥
kXn+1 � E[Xn+1|Fn]k

��Fn

⇤
.

Hence,

⌅n = E

h��kXn+1k � E
⇥
kXn+1k

��Fn

⇤��p
���Fn

i
6 2pE

h
kXn+1 � E[Xn+1|Fn]kp

���Fn

i

= 2pE
h
kL̄(Xn, Yn+1) + F̄ (Xn, Yn+1) + Ḡ(Xn, Yn+1, ⇠n+1)kp

���Fn

i

6 m4(1 + kXnk)p(l1_f1_g0) ⌘ �p(Xn),
(24)

where �p(x)
.
= m4(1+kxk)p(l1_f1_g0). Since l1_f1_g0 < 1/2, for large enough p, we

have p(l1 _ f1 _ g0) < p/2� 1. It now follows from Theorem 2.2 (using V (x) = kxk)
that for any r 2 (0, &(s = p(l1 _ f1 _ g0), p)), supn EkXnkr < 1. Since p > 0 is
arbitrarily large, the assertion follows.

If Gn(x, y, z) are centered, that is, if Ĝn ⌘ 0, then of course m̄Ĝ,p can be taken
to be 0 for all p > 0, and from (22) , �0 = 2(f0 _ g0). Consequently, we do not need
g0 < � to have �0 < 1 + �.

Corollary 4.4. Consider the class of {Fn}-adapted Markov processes taking values

in R
d
, whose dynamics is defined by

Xn+1 = L(Xn) + F (Xn) +G(Xn)⇠n+1, (25)

where F,L : Rd ! R
d
, G : Rd ! M

d⇥d0
are continuous functions, and d 6 d0.

Assume that

(M-1) F , G and L satisfy the growth conditions (a) kL(x)k 6 kxk for kxk > B, (b)

kF (x)k 6 mF (1 + kxk)�0 , and (c) kG(x)k 6 mG(1 + kxk)g0 ;
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(M-2) for some constants m0, B and exponent � > 0,

hF (x), L(x)i 6 �m0kxk1+�
for kxk > B;

(M-3) the exponents satisfy: (a) �0 < (1+�)/2, or �0 = (1+�)/2 and mF 6 m0/2;
(b) g0 < 1/2;

(M-4) the ⇠n are i.i.d R
d0
-valued random variables with density ⇢ with respect to

Lebesgue measure, �leb; ⇢(z) > 0 for all z 2 R
d0
, supz2Rd0 ⇢(z) < 1, and for

each p > 0, mp
⇤ = E(k⇠1kp) < 1;

(M-5) for some ✓ > 0 and "0 > 0,

uTG(x)G(x)Tu > "0u
Tu/(1 + kxk)✓ for all u, x 2 R

d.

If, in addition, E(⇠1) = 0, then (a) {Xn} is PHR and aperiodic with a unique

invariant distribution ⇡, (b) supn Ex0(kXnkr) _ E⇡kXnkr < 1, and (c) (12) or

equivalently, (13) holds with V (u) = kuk for any x0 and r > 0. If E(⇠1) 6= 0, then
the same assertion is true provided g0 < � ^ 1/2

Proof. Since L,F and G are continuous, it follows by the dominated convergence
theorem that {Xn} is weak-Feller. From assumption (M-5) it follows that GGT is
positive definite (in particular, non singular) and that det(G(x)GT (x)) > "d0/(1 +
kxk)✓d. Note that P(x, ·) admits a density q(x, ·). Specifically,

q(x, y) =
1p

det(G(x)GT (x))
· ⇢
�
G(x)�R(y � L(x)�H(x)

�
6 sup

z
⇢(z)(1 + kxk)✓d/2/"d/20 ,

where G(x)�R = GT (x)
�
G(x)G(x)T

��1
is the Moore-Penrose pseudoinverse (in par-

ticular, right inverse) of G(x). Moreover, since ⇢(z) > 0 a.s, for each x, q(x, y) > 0
a.s in y (with respect to �leb), and consequently, {Xn} is �leb-irreducible. This
shows that Condition (3.2-d) of Theorem 3.2 holds. The various assertions now
follow from Theorem 3.2 and Proposition 4.2

Remark 4.5. The condition (M-5) is much weaker than the uniform ellipticity
condition that is sometimes imposed on GGT for these kinds of models — the latter
requiring, for some "0 > 0, uTG(x)G(x)Tu > "0uTu for all u, x 2 R

d. Corollary
4.4 also holds, with some possible minor modifications, for systems of the form
(25) taking values in other locally compact spaces with ⇠n admitting a density ⇢
with respect to the Haar measure. In particular, for such systems taking values in
a countable state space like Z

d or Q
d, notice that the transition probability mass

function (density with respect to the counting measure) q(x, y) naturally exists
and q(x, y) 6 1, that is, the bound on q in condition (3.2-d) of Theorem 3.2 is
trivially satisfied. Hence condition (M-5) in Corollary 4.4 is not needed in this case.
However, depending on the specific model, one may still require G to have full row
rank for establishing irreducibility of the chain.

As an important application, the above corollary can be used to establish ergod-
icity of numerical schemes of stochastic di↵erential equations (SDEs).

Example 4.6. Euler-Maruyama scheme for ergodic SDEs: Consider the SDE

X(t) = X(0) +

Z t

0
F (X(s))ds+

Z t

0
G(X(s))dW (s),
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and suppose that X is ergodic with invariant / equilibrium distribution ⇡ - which
is typically unknown. Approximating this equilibrium distribution is an impor-
tant computational problem in various areas including statistical physics, machine
learning, mathematical finance etc. Since numerically solving the corresponding
(stationary) Kolomogorov PDE for ⇡ is computationally expensive even when the
dimension is as low as 3, one commonly resorts to discretization schemes like the
Euler-Maruyama method:

X�(tn+1) = X�(tn) + F (X�(tn))�+�1/2G(X�(tn))⇠n+1.

Here the ⇠n are iid N(0, I)-random variables, and {tn} is a partition of [0,1) with
tn+1�tn = � - the step size of discretization. However, the use of such discretization
techniques in approximating ⇡ is justified provided one can establish (a) ergodicity
of the discretized chain {X�(tn)} with a unique invariant distribution ⇡�, and (b)
convergence of ⇡� to ⇡ as � ! 0. This is a hard problem involving infinite time
horizon, and usual error analysis of Euler-Maruyama schemes, which has of course
been well studied in the literature, is not useful here, as they are over finite time
intervals. In comparison, much less is available on theoretical error analyses of these
types of infinite-time horizon approximation problems, and some important results
in this direction have been obtained by Talay [28, 27, 7]. A recent paper [6] (also see
the references therein for more background on the problem) conducts a thorough
large deviation error analysis of the problem in an appropriate scaling regime.

This short example does not attempt to address both the points (a) and (b)
of this problem as that requires a separate paper-long treatment. Here, we are
only interested in the point (a) above - which is ergodicity of the discretized chain
{X�(tn)}. It is well known that ergodicity of X does not guarantee the ergodicity
of the discretized chain X�. Discretization can destroy the underlying Lyapunov
structure of an ergodic SDE!

In [28, 27] among several other important results, Talay et al. in particular
showed that the chain {X�(tn)} is ergodic with unique invariant measure ⇡� and
E(f(X�(tn)) ! ⇡�(f) as n ! 1 for any f 2 C1(Rd,R) such that f and all its
derivatives have polynomial growth under the assumption (i) hF (x), xi 6 �m0kxk2,
for kxk > B, (ii) F and G are C1 with bounded derivatives of all order and (iii)
GGT is uniformly elliptic and bounded. An application of Corollary 4.4 shows
that this result can be significantly improved with stronger convergence results
under weaker hypothesis (c.f (M-1) -(M-5)). In particular, uniform ellipticity and
boundedness conditions on GGT , which are quite restrictive for many models, can
be removed.

4.2. Moment stability of linear stochastic control systems. Consider the
system

Xn+1 = AXn +Bun + ⇠n+1 (26)

We are interested in the problem of finding conditions under which a linear stochas-
tic system with possibly unbounded additive stochastic noise is globally stabilizable
with bounded control inputs {un}. Stabilization of stochastic linear systems with
bounded control is a topic of significant interest in control engineering because of its
importance in diverse fields; suboptimal control strategies such as receding-horizon
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control, and rollout algorithms, among others, can be easily constructed incorpo-
rating such constraints, and have become popular in applications. Here we simply
refer to [25] and references therein for a detailed background on this topic.

Of course, boundedness of some moments of the noise component is necessary for
attaining (moment) stability of the system. Specifically, we consider the following
problem:

Problem: Suppose U
.
= {z 2 R

m : kzk 6 Umax}. We consider admissible possible
k-history dependent control policies of the type ⇡ = {⇡n} so that ⇡n : Rd⇥k ! U,
and for every y1, y2 . . . , yk 2 R

d, ⇡n(y1, . . . , yk) 2 U. Given r > 1 and Umax > 0,
find an admissible policy ⇡ = {⇡n}n2N with control authority Umax, such that the
system (26) with un = ⇡n(Xn�k+1, . . . , Xn�1, Xn) is r-th moment stable, that is,
for every initial condition X0 = x0, supn Ex0kXnkr < 1.

It is known that mean square boundedness holds for systems with bounded con-
trols where A is Schur stable, that is, all eigenvalues of A are contained in the
open unit disk (the proof uses Foster-Lyapunov techniques from [18]). In the more
general framework, under the assumption that the pair (A,B) is only stabilizable
(which in particular allows the eigenvalues of A to lie on the closed unit disk), [25]
using [22] showed that there exist a k-history dependent control policy that ensures
moment stability of (26), provided the control authority Umax is chosen su�ciently
large. It was conjectured in [25], that the lower bound on Umax can possibly be
lifted with newer techniques, and here we demonstrate that is indeed the case. The
following result is an easy corollary of Proposition 4.2. For simplicity, we assume
that A is orthogonal and (A,B) is reachable in k-steps. The steps from there to
the more general case are similar to that in [25]. In case B has full row rank, it
will follow that k can be taken to be 1, that is, the resulting policy is stationary
feedback.

Proposition 4.7. Consider the system defined by (26). Suppose that A is orthog-

onal and the pair (A,B) is reachable in k steps (that is, rank(Rk) = d, where

Rk = [B AB A2B . . . Ak�1B]). Then for any Umax > 0, there exists a k-
history dependent policy ⇡ = {⇡n} such that given (Xn�k+1, . . . , Xn�1, Xn) =
(xn�k+1, . . . , xn�1, xn), ⇡n(xn�k+1, . . . , xn�1, xn)

.
= fn mod k(xbn/kck) for some func-

tions f0, f1, . . . , fk�1 : Rd ! R
m

where kfi(x)k 6 Umax for i = 0, 1, 2, . . . , k � 1,
and for which supn Ex0kXnkr < 1 for any x0 2 R

d
.

Proof. Define X̂(k)
n = Xnk, and notice that by iterating (26) we get

X̂(k)
n+1 =AkX̂(k)

n +Rk

0

BBB@

u(n+1)k�1
...

unk+1

unk

1

CCCA
+

kX

j=1

Ak�1�j⇠nk+i ⌘ AkX̂(k)
n +Rkû

(k)
n + ⇠̂(k)n

Notice that E(⇠(k)n ) = 0 and supn Ek⇠
(k)
n kp 6 Ĉk for some constant Ĉk > 0. Since

Rk has full row rank, it has a right inverse R�
k . We define

sat(y) =

(
y if y 2 B(0, Ûmax),

Ûmax y/kyk otherwise,
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and choose û(k)
n = �R�

k A
k sat(X̂(k)

n ), where Ûmax is such that kR�
k A

kkÛmax 6
Umax. This yields the system

X̂(k)
n+1 = AkX̂(k)

n �Ak sat(X̂(k)
n ) + ⇠̂(k)n .

Since for kzk > Umax, hAkz,�Ak sat(z)i = �kzk (recall that A is orthogonal), we

have from Proposition 4.2 that there exists a constant c(k,r)0 such that

sup
n

EkX̂(k)
n kr = sup

n
EkXnkkr < c(k)0 .

It is now immediate from a sequential argument that for any ` = 0, 1, . . . , k� 1, we

have EkXnk+`kr 6 c(k,r)` , where c(k,r)` = 3r�1
⇣
kAkrc(k,r)`�1 + kR�

k A
kkrUr

max +mr
⇤

⌘
.

Notice that the original controls un are defined

un = �ET
k�(n mod k)R

�
k A

k sat(Xbn/kck),

where the matrices Ej 2 Mm⇥km, j = 1, 2, . . . , k, are defined by

Ej =

"
0m⇥m . . . 0m⇥m Im⇥m| {z }

j-th block

0m⇥m . . . 0m⇥m

#

In particular, from the state at time nk, the present and the next k � 1 controls
uj , j = nk, nk + 1, . . . , nk + k � 1 can be computed.

Appendix A. Appendix.

Lemma A.1. Let ⌫ be a signed measure on a complete separable metric space E.
Suppose that g : E ! [0,1) is a measurable function such that |⌫|(g) =

R
g d|⌫| <

1. Then
1

2
|⌫|(g) 6 k⌫kg 6 |⌫|(g),

where we recall that k⌫kg = sup{f :|f |6g} |⌫(f)|.

Proof. The second inequality is trivial since for any measurable f with |f | 6 g, we
have |⌫(f)| 6 |⌫|(|f |) 6 |⌫|(g). For the first inequality, let E = Y [N be the Hahn
decomposition for ⌫ (in particular, Y \ N = ?), with the corresponding Jordan
decomposition ⌫ = ⌫+ � ⌫� (i.e., supp(⌫+) ⇢ Y and supp(⌫�) ⇢ N ). Choose
f = g1Y . Then

k⌫kg > |⌫(g1Y)| = |⌫+(g1Y)� ⌫�(g1Y)| = ⌫+(g1Y) = ⌫+(g),

where the last equality is because supp(⌫+) ⇢ Y. Similarly, choosing f = g1N , we
have k⌫kg > ⌫�(g), whence it follows that 2k⌫kg > |⌫|(g).
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