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The use of multispectral geostationary satellites to study aquatic ecosystems improves the temporal frequency
of observations and mitigates cloud obstruction, but no operational capability presently exists for the coastal
and inland waters of the United States. The Advanced Baseline Imager (ABI) on the current iteration of the
Geostationary Operational Environmental Satellites, termed the R Series (GOES-R), however, provides sub-
hourly imagery and the opportunity to overcome this deficit and to leverage a large repository of existing GOES-R
aquatic observations. The fulfillment of this opportunity is assessed herein using a spectrally simplified, two-
channel aquatic algorithm consistent with ABI wave bands to estimate the diffuse attenuation coefficient for
photosynthetically available radiation, Kd(PAR). First, an in situ ABI dataset was synthesized using a globally
representative dataset of above- and in-water radiometric data products. Values of Kd(PAR) were estimated by
fitting the ratio of the shortest and longest visible wave bands from the in situ ABI dataset to coincident, in situ

Kd(PAR) data products. The algorithm was evaluated based on an iterative cross-validation analysis in which 80%
of the dataset was randomly partitioned for fitting and the remaining 20% was used for validation. The iteration
producing the median coefficient of determination (R2) value (0.88) resulted in a root mean square difference of
0.319 m−1, or 8.5% of the range in the validation dataset. Second, coincident mid-day images of central and south-
ern California from ABI and from the Moderate Resolution Imaging Spectroradiometer (MODIS) were compared
using Google Earth Engine (GEE). GEE default ABI reflectance values were adjusted based on a near infrared sig-
nal. Matchups between the ABI and MODIS imagery indicated similar spatial variability (R2

= 0.60) between ABI
adjusted blue-to-red reflectance ratio values and MODIS default diffuse attenuation coefficient for spectral down-
ward irradiance at 490 nm, Kd(490), values. This work demonstrates that if an operational capability to provide
ABI aquatic data products was realized, the spectral configuration of ABI would potentially support a sub-hourly,
visible aquatic data product that is applicable to water-mass tracing and physical oceanography research. © 2022

Optica PublishingGroup
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1. INTRODUCTION

Geostationary satellites increase the temporal frequency of

Earth observations by enabling resampling of targeted geo-

graphic regions at up to sub-hourly intervals. A more rapid

cadence of satellite observations is advantageous, in part,

because a multitude of daily images can help mitigate partial

scene obstruction by clouds, and rapid resampling can reveal

ephemeral processes that are obscured within daily imagery

obtained using polar-orbiting satellite sensors [1]. Daily obser-

vations are satisfactory for studying mesoscale-scale processes

(e.g., gulf stream meanders) whereas geostationary satellite

observations with improved temporal resolution provide an

opportunity to investigate more rapid (e.g., deformation-scale)

phenomena, including processes that reflect the sub-daily

cadence of solar illumination and tidal cycles, albeit with a
caution on the spatial scale involved.

In aquatic ecosystems (including oceanic, coastal, and inland
waters), short-term processes can significantly degrade water
quality on sub-hourly time scales. These rapid processes can
be regular and predictable, like tidal cycles, or irregular and
episodic, including: (a) harmful algal blooms (HABs), wherein
rapid proliferation of phytoplankton produces toxic or other-
wise deleterious conditions; (b) severe storms, in which runoff
or resuspension can severely degrade water clarity; (c) anthropo-
genic pollution, including containment spills, introduction of
invasive species or noxious vegetation, and resuspension due
to vessel propulsion; and (d) fluid advection, whereupon an
ecosystem experiences a rapid change in water quality due to
the interaction with a water mass entrained by jets, streamers, or
estuarine outflows.
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Geostationary satellite observations of coastal waters around
the Korean peninsula became available in 2010 with the launch
of the Geostationary Ocean Color Imager (GOCI), which mea-
sures eight visible (VIS) or near infrared (NIR) wave bands each
hour at 0.5 km spatial resolution [2,3]. GOCI is presently the
only operational sensor dedicated to ocean color research on a
geostationary platform [4]. Observations from GOCI have been
used to detect rapid changes in water quality, e.g., changes in
phytoplankton abundance associated with advection by vertical
and horizontal currents [5], plus diurnal changes in the hori-
zontal distribution of suspended particles [6]. A successor to the
GOCI imager (GOCI-II) was launched in 2019 for continuity
of hourly imagery for the Korean peninsula [7]. In the coastal
and inland waters of the continental United States (CONUS),
there is presently no operational geostationary remote sensor
designed for oceanographic applications. The Geosynchronous
Littoral Imaging and Monitoring Radiometer (GLIMR) is pres-
ently scheduled to launch later this decade with the objective
of collecting high-resolution, hyperspectral imagery of coastal
environments at hourly intervals.

Other geostationary platforms carrying sensors that are not
primarily intended for ocean color research have been success-
fully leveraged to obtain unique oceanographic observations.
For example, the Himawari-8 meteorological satellite has pro-
vided continuous geostationary observations of the eastern
hemisphere since 2015 using the Advanced Himawari Imager
(AHI), a multispectral sensor with three VIS wave bands, plus
three NIR to short-wave infrared (SWIR) wave bands, at 10
min intervals [8]. Operational atmospheric correction of AHI
imagery produces ocean color data products [8] that have
supported aquatic research, e.g., to monitor the movement of
floating macroalgae [9]. The Spinning Enhanced Visible and
Infrared Imagers (SEVERIs) on the geostationary Meteosat
Second Generation platforms provide hourly observations of
Europe and Africa [10], which have been applied to oceano-
graphic research including the detection of coccolithophore
blooms [11].

Geostationary meteorological satellites have continuously
imaged the western hemisphere, including the CONUS, for
47 years. Beginning in 1975, the Geostationary Operational
Environmental Satellites (GOES) have provided sub-daily
observations centered over the equator of the western hemi-
sphere to support CONUS weather monitoring. Presently, two
fourth generation, termed R series (GOES-R), satellites are
positioned to view the western hemisphere: GOES-16 from
a more eastern orbital position (GOES-East) and GOES-17
from a more western orbital position (GOES-West). Both
GOES-East and GOES-West provide redundant observations
of the CONUS, which significantly mitigates the risk of data
loss due to sensor degradation or failure. Data continuity is also
supported by the recent and upcoming launches of two more
GOES-R satellite systems in 2022 and scheduled for 2024,
respectively.

GOES observations are not widely used for aquatic research,
in part, because legacy GOES platforms did not have multi-
ple ocean color wave bands. For example, the GOES-N series
(beginning in 2006) contained only one wave band within
the VIS domain. The Advanced Baseline Imager (ABI) was
added to GOES in 2017 (i.e., the GOES-R series) to improve

observations of the atmosphere, land, cryosphere, and ocean
[12]. ABI provides radiance observations at 16 wave bands and
resamples the CONUS at 5 min intervals with 0.5–2 km spatial
resolution (at the equator) depending on the wave band [13].
ABI contains multiple enhancements to earlier GOES instru-
ments in addition to improved spectral resolution, including
decreased positioning and pointing uncertainties, as well as a
lunar calibration capability [14]. A summary of the spectral
characteristics for the ABI sensor is shown in Table 1, recon-
structed from [13]. Although ABI contains fewer VIS wave
bands than many existing or legacy ocean color sensors, ABI
spectral response functions for VIS and NIR wavelengths are
comparable to those of the Ocean Land Imager (OLI) sensor
aboard the U.S. Geological Survey Landsat-8 platform, shown
in Fig. 1, which has provided sufficient spectral information
to retrieve useful water quality parameters [15,16]. Despite
the increased number of spectral channels from ABI relative to
earlier GOES instruments, the ABI VIS observations have also
not been widely used for aquatic ecosystem research due to the
absence of a band in the green domain [17], and an operational
ocean color capability for ABI imagery has not been established.

Recent research has established a trajectory towards an ocean-
observing capability for ABI, including the development of
cloud masks compatible with the ABI spectral configuration
[18], the development and validation of ABI sea surface tem-
perature (SST) algorithms [19], and the synthesis of artificial
green wave band data to produce red, green, and blue (RGB)
composite imagery [20,21]. For example, a synthetic green
wave band algorithm was recently applied to track the evolution
of water masses in the northern Gulf of Mexico based on ABI
synthetic RGB imagery [20]. The primary objective of this
study is to evaluate potential aquatic applications for ABI VIS
imagery, for example, by deriving an algorithm to estimate the
diffuse attenuation coefficient for photosynthetically available
radiation, K d (PAR), using in situ data that was synthesized
from neighboring higher-resolution wave bands to match the
ABI spectral configuration. K d (PAR)—which integrated the
diffuse attenuation coefficient for spectral downward irradi-
ance, K d (λ), across the VIS domain—is a useful parameter
for comparing optical properties of different water masses [22]
and is appropriate for ABI applications based on the broad

Table 1. Nominal Spectral Specifications of ABI Wave

Bands, with Corresponding Spatial Resolutions [12]

and Generalized Transmittance of the Atmosphere

under Clear Conditions
a

Wave Band
(bandwidth)
[nm]

Spatial
Resolution

[km]
Atmospheric

Transmittance
Research

Applications

470 (40) 1 High AA
640 (100) 0.5 High AA
860 (40) 1 High AA & AC
1370 (30) 2 Low N/A
1600 (60) 1 High AC
2250 (50) 2 High AC

aPotential research applications for each wave band include aquatic algo-

rithm (AA) development and atmospheric correction (AC), unless not

applicable (N/A).
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Fig. 1. Spectral response functions of the ABI (upper) and OLI (lower) sensors for VIS and NIR wave bands.

spectral response function (SRF) characteristics and low spectral
resolution of the ABI instrument.

2. METHODS

A. Field Data

Aquatic field observations were used to synthesize ABI data
products and evaluate ABI aquatic algorithms. An in situ opti-
cal dataset was obtained by deploying the Compact-Optical
Profiling System (C-OPS) in oceanic, coastal, and inland water
bodies [23–25]. C-OPS is a handheld profiler with a kite-shaped
back plane that helps to maintain the appropriate planar and
solar sensor geometry during profiling. For this study, C-OPS
was routinely (97% of the time) equipped with the Compact-
Propulsion Option for Profiling Systems (C-PrOPS), a digital
thruster accessory that allows sampling in shallow or otherwise
non-navigable waters, reduces adjacency effects, and improves
surface loitering to optimize the vertical sampling resolution
(VSR) of the in-water observations [26]. The mean VSR of
the in situ data products considered herein was 6.0 mm, but
the VSR was optimized based on water body characteristics
including depth, stratification, and turbidity, with a VSR of
0.9 mm achieved within highly attenuating or shallow waters
[23]. The C-OPS spectral configuration contained 19 wave
bands spanning the ultraviolet (UV), VIS, and NIR, with 10 nm
bandwidths, including wave bands centered at 465, 490, 625,
and 665 nm, which were spectrally adjacent to the ABI blue and
red wave bands.

The in situ data products evaluated herein adhered to an abso-
lute radiometry perspective, wherein the absolute accuracy of
individual corrected data products met validation requirements,
i.e., 1% absolute radiometry [27], for individual wave bands
[28]. For comparison, a common legacy approach in which
radiometric quantities require normalization between spectral
regions, i.e., radiometry in which “only the ratios of the fluxes
are important,” can be described as relative radiometry [29].
Adherence of the in situ dataset to an absolute radiometry per-
spective is most succinctly demonstrated by the recent successful
development of single-channel optical algorithms for aquatic
remote sensing [24].

Observations were obtained from globally representative
water bodies, based on approximately equal representation from
oceanic, coastal, and inland waters, as well as an expansive range
in bio-optical parameters. The latter included the coefficient for
absorption by colored dissolved organic matter (CDOM) at 440
nm, aCDOM(440), which exceeded three decades in dynamic
range and encompassed more than 99% of global waters by
surface area [24]. Prior to sampling, water bodies were classified
as either conservative or nonconservative based on an objective
set of criteria. The conservative classification indicated that
modifications in the optical properties of a water mass were
attributed to linear mixing of parent water masses, while the
nonconservative classification indicated that optical properties
were likely significantly influenced by internal nonlinear proc-
esses, e.g., rapid proliferation of a HAB species or continued
concentration of a constituent in a drought-stricken lake [23].
The conservative criterion supports algorithm development
across a continuum of oceanic, coastal, and inland waters,
and its implementation has revealed that a continuous transi-
tion in optical complexity—rather than a binary complexity
threshold—is applicable when describing optical properties
across a global range of water bodies [16]. The in situ optical
data products considered herein for developing the K d (PAR)

algorithm were from the conservative portion of the dataset
presented by Hooker et al . (2020) [23], resulting in a dataset
containing 766 observations. More information on the globally
representative dataset, including a map of sampling locations,
can be accessed in Hooker et al . (2020) [23].

1. DataProductsDerived from the FieldDataset

The above-water data product evaluated herein for the in situ

dataset was the normalized water-leaving radiance, [LW(λ)]N,
with λ representing wavelength, which was derived in a near-
surface (less than 1 m) homogeneous layer and synthesized for
ABI wave bands using linear interpolation of the C-OPS data
products at the nearest available wave bands.

The radiometric brightening or darkening of [LW(λ)]N

data products is a primary spectral mode corresponding to
transitions in optical complexity for many water masses [16].
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Radiometric brightness (β) was quantified by trapezoidal inte-
gration of [LW(λ)]N across the relevant spectral domain as
follows:

β =

n−1
∑

i=1

1

2
(λi+1 − λi )([LW(λi )]N + [LW(λi+1)]N), (1)

wherein n denotes the number of channels with center
wavelength λ, and i is an index variable.

The ratio of [LW(470)]N over [LW(640)]N, hereafter 3470
640,

was derived from the ABI synthesized dataset and applied as an
estimator for K d (PAR). This spectrally simplified algorithmic
approach is based on end-member analysis (EMA), in which
a ratio of the shortest and longest corrected wave bands (i.e.,
the spectral end members) relates to changes in water-mass
properties [16,23–25]. EMA is based on the findings that across
a global range of water bodies the dynamic range in the spec-
tral response is highest at the spectral end members [27], and
aCDOM(440) algorithms based on the most spectrally separated
data products are more robust to changes in optical complexity
[23,30]. The expression of the spectral end members across clear
to turbid water bodies reveals that optical complexity develops
more continuously for more spectrally separated wave band
ratios, which can be exploited for environmental monitoring
(i.e., water-mass tracing) purposes [16].

Common optical oceanography data products were esti-

mated using the in situ 3470
640 data products, including K d (λ)

and K d (PAR). The latter was derived for the in situ dataset
by integrating K d (λ) across the VIS domain using spectral
weighting. The K d (PAR) data product is the preferred estimand
for this work because the broadband sensitivity of K d (PAR)

is useful for comparing the bio-optical properties of different
water masses, e.g., due to differences in organic and inorganic
particle content [22]. Evaluating K d (PAR) is also appropriate
because spectrally nonspecific data products are congruous with
the broad SRF characteristics of the ABI instrument. Spectral
changes in the underwater light field as a function of depth,
which are relevant to deriving PAR across dissimilar depths,
were not considered herein because of the focus on near-surface
observations [24].

2. IllustrativeWater BodyComparisons

Water body comparisons were selected from the global in situ

observations—including conservative and nonconservative
water bodies—by identifying pairs of related observations
anticipated to share similar bio-optical properties, but for which
perturbations that could potentially modify bio-optical prop-
erties (e.g., resuspension or addition of dissolved or particulate
compounds) had been recorded for one of the observations in
the pair. These opportunistic comparisons included scenarios
wherein the state of the environment was unequivocally known
before and after an event, and each optical state was sampled
within a short amount of time. Six examples of water-mass mod-
ifications were analyzed, summarized as follows: (a) constituent
outflow from a marsh into a large inland bay; (b) estuarine
turbidity maximum within the mixing of a large estuary; (c)
severe storm effects on a coastal bay; and anthropogenic events,
including: (d) the consequences of a tugboat maneuvering a ship

in a large channel; (e) the presence of invasive plants in a large
lake; and (f ) ship traffic within an inner harbor with respect to
the outer harbor open to a bay.

The water body comparisons were evaluated as individual
scenarios wherein optical differences between related observa-
tions were quantified based on changes in the mean values of

three parameters, 3470
640, β, and K d (PAR), using the absolute

percent difference, φ:

φ = 100
|X̄ − Ȳ |

Ȳ
, (2)

where X̄ and Ȳ indicate the mean 3470
640, β, or K d (PAR) val-

ues observed within each comparison, for the modified and
reference water bodies, respectively.

3. Cross-Validation of aKd (PAR)AlgorithmUsing

SynthesizedABIDataProducts

Relationships between 3470
640 and K d (PAR) were evaluated using

a cross-validation approach with 80% of the dataset partitioned
to derive model coefficients (i.e., fitting or modeling) and 20%
of the dataset partitioned for evaluating the goodness-of-fit
(i.e., validation). The cross-validation exercise was performed
for 10,000 randomly partitioned iterations, and the median-
performing result based on the coefficient of determination, R2,
is presented herein.

Uncertainty in the estimation of K d (PAR) was evaluated
using the root mean square difference (RMSD):

RMSD =

[

1

NV

NV
∑

i=1

(X i − Yi )
2

]1/2

, (3)

where i is an index variable, NV is the number of observations
in the validation data subset, and X i and Yi are the algorithm
and observed K d (PAR) values, respectively, from the validation
data subset. RMSD is presented using raw values as well as
log10-transformed variables, denoted RMSD-log.

B. Satellite Data

ABI imagery is available from December 2018 for three domains
or tiers, depending on usage, as follows: (a) the full field of view
(Full Disk); (b) U.S. waters only (CONUS); and (c) smaller
targeted regions (Mesoscale). The resample rates for the three
domains are approximately 10, 5, and 1 min, respectively [31].
The coverage extent for observations obtained at the GOES-
West and GOES-East positions are shown in Fig. 2 for one
potential configuration of the CONUS and Mesoscale domains.
ABI observations can be accessed in near real time (NRT)
through Google Earth Engine (GEE), with data available for
analysis within 50, 25, and 20 min of the observation times for
the Full Disk, CONUS, and Mesoscale domains, respectively
[31].

Satellite imagery of the coastal ocean off of southern
California was obtained and processed using the GEE platform
[33] via the online code editor [34]. The ABI imagery used in
this study was obtained from the CONUS tier of the GOES-17
ABI Level 2 Cloud and Moisture Imagery GEE repository, and
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Fig. 2. GOES-R coverage for the western (upper panel) and eastern
(lower panel) viewing geometries. The regions of the CONUS data
products (sensed on 29 July 2021 and 2 November 2017 for the west-
ern and eastern domains, respectively) are shown as RGB pseudo-color
imagery [32]. Two regions of the mesoscale data products (sensed
on 1 February 2019 and 1 January 2021 for the western and eastern
domains, respectively) are outlined in red. The region covered by each
mesoscale domain is variable through time based on user requests.

the data products were the default GEE reflectance factor prod-
ucts, ρ(λ), at VIS and NIR wave bands with a spatial resolution
of 2 km [35]. Both land and clouds were masked, and ρ(λ)

values at VIS wave bands were adjusted for ocean-viewing pixels
by applying an offset to the reflectance spectra so that the NIR
component was equal to zero. The resulting adjusted reflectance
factors, ρ̂(λ), were more appropriate for the comparisons shown
herein, although the adjustment is not intended as a satisfactory
substitute for an ocean-appropriate atmospheric correction.

Ratios of ρ̂(470)/ρ̂(640), hereafter ̺470
640, were exported from

GEE for an ABI image sensed at approximately noon local time
on 26 October 2021 within the region spanning 30−37◦N and
116−124◦W.

Imagery from the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument aboard the Aqua
polar-orbiting satellite platform was retrieved for the same
geographic region and sensing time (within 10 min) as the
ABI observations using a GEE repository containing standard
mapped imagery with a resolution of 4 km [36].

MODIS K d (490) was calculated as follows:

K d (490) = 10̂

[

4
∑

i=0

(c i × b
i )

]

+ 0.0166 , (4)

where bi is the log10-transformation of the ratio of remote sens-
ing reflectances at 488 over 547 nm raised to the power of the

index i , and the c i terms are sensor-specific coefficients avail-
able in Ref. [37]. A MODIS K d (PAR) data product was not
estimated from MODIS K d (490) to minimize uncertainties
related to combining multiple remote sensing algorithms.

The K d (PAR) algorithm was not applied to the ABI observa-
tions because the default GEE ABI products had not undergone
an ocean color atmospheric correction. Instead, a principal com-

ponent analysis (PCA) was conducted to compare the ABI ̺470
640

data products with the match-up MODIS Aqua K d (490) data
products, after reprojecting the ABI imagery in GEE to 4 km
to match the resolution of the MODIS GEE products. An ABI

K d (490) data product was estimated from the ABI ̺470
640 obser-

vations using the first PCA component in the ABI-to-MODIS
comparison as a slope to transform the ABI observations.
The proportion of variance in the MODIS imagery that was

explained by the ABI ̺470
640 data products was quantified using

R2 statistics of log10-transformed data products in the matchup
imagery.

3. RESULTS

A. Water Body Comparisons Using In Situ Simulated

ABI Data Products

The six water body comparisons are plotted based on the in situ

synthesized [LW(470)]N and [LW(640)]N values, shown in
Fig. 3. In all comparisons, the differences in the [LW(470)]N

and [LW(640)]N signals correspond primarily to a radiometric
brightening or darkening of the water mass, quantified herein
using β [Eq. (1)]. Ocean color algorithms generally mitigate the
effects of broadband brightening or darkening by using band

ratios, e.g., the 3470
640 formulation presented herein, but changes

in β are included to provide an additional quantitative metric
for interpreting bio-optical modifications within each water
body comparison.

The percent differences among mean 3470
640, β, and K d (PAR)

values for the examples shown in Fig. 3 are summarized using φ

[Eq. (2)] in Table 2 and establish three detectability parameters.
The detectability parameters may be assessed by intercom-
parison between the scenarios, or by satisfaction of a 15%
detectability threshold, chosen to match suggested uncertainty
objectives for in situ calibration and validation activities for
ocean targets to support future NASA missions [28]. The 1:1
line included in Fig. 3 demonstrates that most scenarios resulted
in changes in radiometric brightness, and φβ was greater than
φ

3470
640

for all comparisons in Table 2. In other words, the pri-

mary spectral mode expressed for the water body comparisons
can be summarized as broadband radiometric brightening
or darkening of the water bodies, which the ABI band-ratio
approach evaluated herein would most likely be insensitive to.
Secondary optical modifications are detectable after mitigation
of brightness differences, with φ

3470
640

values each greater than a

15% detectability threshold, with the exception of the harbor
marine ship traffic comparison.

The φKd (PAR) values were greater than φ
3470

640
for all scenarios

presented herein and greater than φβ for all scenarios with the
exception of the harbor ship traffic and estuarine tidal mixing
scenarios. The relatively high responsivity of K d (PAR) in these
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Fig. 3. Bio-optical transition scenarios observed using an in-water
optical profiler. Data product wavelengths are synthesized to match the
ABI spectral configuration. The environmental conditions surround-
ing each scenario are as follows: (a) constituent outflow from a marsh
into a large inland bay (blue circles); (b) estuarine turbidity maximum
within the mixing of a large estuary (red circles); (c) severe storm effects
on a coastal bay (green circles); and anthropogenic events, including:
(d) consequences of a tugboat maneuvering a ship in a large channel
(black squares); (e) presence of invasive plants in a large lake (black
diamonds); and (f ) ship traffic within an inner harbor with respect to
the outer harbor open to a bay (black circles).

scenarios is consistent with literature that suggests the use of
K d (PAR) for water body comparisons based on the high degree

of information conferred [22]. Lower φ values for 3470
640 are likely

due, in part, to the reduced spectral range of the ABI sensor. For
example, a prior EMA study showed that the dynamic range in

3
λ1
λ2

ratios is a function of the spectral range of the band-ratio

pair, and that a more spectrally expansive 3
λ1
λ2

ratio provides
greater sensitivity to water-mass modifications and increased
loglinearity in some algorithmic relationships [23,30].

B. Estimation of Kd(PAR) from In Situ Synthesized

ABI Data

The in situ 3470
640 data products from the conservative global

waters dataset were used to estimate common aquatic
bio-optical parameters, including K d (PAR). The median
performing cross-validation iteration for estimating K d (PAR) is

shown in Fig. 4, with the fitting dataset indicated in gray and the
validation dataset indicated in red. The algorithm residuals in
the fitting and validation datasets are similar in log-space ampli-
tude across the full range in K d (PAR), which includes a global
range of oceanic, coastal, and inland conservative water bodies.
RMSD for the median-performing validation was 0.319 m−1,
or 8.5% of the range in the in situ K d (PAR) validation dataset.

A similar algorithmic perspective was also evaluated to derive
other data products, including K d (490) and aCDOM(440),
with RMSD values of 0.273 m−1 and 0.209 m−1, or 9.9% and
10.6% of the ranges in K d (490) and aCDOM(440), respectively,
for the median-performing in situ validation datasets (R2 of
0.72 and 0.87, respectively). The median R2 value (0.88) is
consistent with that of a previously published EMA approach
for aCDOM(440) estimation, which used a spectrally similar

wave band ratio, i.e., 3465
625, that was selected to match legacy

ocean color wave bands [30]. The estimation of K d (490) was
slightly degraded relative to K d (PAR) due to increased scatter
in the more oligotrophic portion of the in situ dataset, as well
as decreased loglinearity of the K d (490) relationship, which
resulted in underestimation of K d (490) in the more turbid

Fig. 4. Cross-validation results for estimating K d (PAR) from
observations of 3470

640 using the in situ ABI dataset. The randomly
selected validation and modeling (or fitting) datasets are shown in red
and gray, respectively, corresponding to the cross-validation iteration
(out of 10,000) that produced the median log10-space R2 value. The
number of observations in the validation and modeling datasets are
defined as NV and NM , respectively.

Table 2. Differences between Mean Detectability Parameters Using 3470
640

, β, and Kd(PAR) Values for Comparison

Scenarios (Open Versus Solid Symbols) in Fig. 3

Environmental Scenario φ3470
640

[%] φβ [%] φKd (PAR) [%] Symbol in Fig. 3

Marsh waters outflow 60.4 142.8 179.8 Blue circles
Estuarine tidal mixing 53.3 96.6 59.7 Red circles
Resuspension by typhoon 22.7 83.5 168.8 Green circles
Resuspension by tugboat 16.3 53.0 69.2 Black squares
Adjacency to invasive plants 92.2 126.8 912.7 Black diamonds
Harbor ship traffic 0.7 25.6 6.2 Black circles
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portion of the in situ dataset, i.e., water bodies wherein K d (490)

was greater than approximately 0.1 m−1.

C. Estimation of Kd(490) from ABI Imagery

A direct matchup between ABI and MODIS 4 km data products
was evaluated by comparing coincident aquatic pixel values
from mid-day imagery observed on 26 October 2021 in south-
ern and central California. The values of the ABI band ratio
ρ470

640 are compared with MODIS K d (490) values in Fig. 5, with
the values for each pixel from the matchup shown in gray. A
line with slope derived using the first component of the PCA is
overlaid in red. Residuals to the line defined using the PCA slope
are greatest in amplitude for the clearest waters, i.e., K d (490)

less than 0.1 m−1, with greater K d (490) values estimated
on average for clear waters by MODIS. A lower prediction

of K d (490) values using the ̺470
640 approach compared to the

MODIS K d (490) product was anticipated in very clear waters
because the MODIS algorithm [(Eq. (4)] includes the addition
of a constant, which is consistent with a pure water attenuation
contribution [38], i.e., Kw(490). Conversely, the lower limit in

the ̺470
640 loglinear formulation is zero, a nonphysical estimate

due to the requirement that K d (490) be greater than Kw(490).
Adhering to the pure-water limit by adding an offset to the
ABI formulation would decrease the goodness-of-fit or would
require a higher-order formulation for the ABI data products.
Because the goal of this analysis is to capture spatial patterns and
not to minimize uncertainty in clear-water data products, the
simplified loglinear approach is presented rather than a more
complex, e.g., polynomial, fitting. The simplified approach is
also consistent with the in situ cross-validation analysis, wherein
no offset was applied to [LW(λ)]N ratios to estimate K d (PAR).

Fig. 5. Scatterplot of coincident pixel values (gray) obtained from
GEE for an ABI and MODIS matchup, observed on 26 October 2021.
The first principal component is overlaid in red. R2 values were derived
using log10-transformed variables. The number of coincident oceanic
pixels is defined as N.

Future work, which should include an ocean-optimized atmos-
pheric correction scheme for the ABI data products, could
expand on the approach shown herein to improve estimation in
clear waters.

Fig. 6. Coincident MODIS (upper) and ABI (lower) imagery of
estimated K d (490) in central and southern California waters, observed
at mid-day on 26 October 2021. The generalized transition separating
the central and southern California coastal ocean regions approxi-
mately corresponds to location of Point Conception, labeled in each
panel.
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Figure 6 shows a side-by-side comparison of coincident
MODIS (upper panel) and ABI (lower panel) K d (490)

observations. Consistent with the agreement found in Fig.
5 (i.e., R2 = 0.60), the coincident MODIS and ABI images
show similar spatial structures. For example, observations from
both sensors reveal a jet-like structure of increased K d (490)

values extending away from the Point Conception coastline
in the middle of the image. Advection of coastal waters with
elevated phytoplankton concentrations are common in this
region, where highly productive waters fueled by coastal upwell-
ing [39] along the central California coastline encounter an
abrupt change in the coastline geometry near 34.4◦N (Point
Conception), where the approximately north-south coastline
direction of central California gives way to the approximately
east-west coastline direction in the northern portion of the
Southern California Bight. The K d (490) products from the
ABI and MODIS imagery also both reveal increased defini-
tion of fronts and eddies north of 34.4◦N, e.g., associated with
coastal upwelling common in that region, and relatively clear,
low K d (490) values south of 34.4◦N, where the coastline geom-
etry decreases the prevalence or intensity of alongshore winds
favorable for producing upwelling.

Increased noise in the ABI K d (490) imagery relative to the
MODIS K d (490) imagery indicates that the ABI estimation
is degraded in quality relative to the MODIS product, which
is anticipated because the MODIS sensor is a dedicated ocean
color platform with greater signal-to-noise requirements and
with an ocean-optimized atmospheric correction approach. The
ABI imagery sometimes shows striping effects and produces
fewer pixels with high K d (490) estimates in the nearshore
waters than those shown for MODIS.

4. DISCUSSION

Polar-orbiting ocean color satellites improve long-term mon-
itoring of oceanic environments by enabling global ocean
observations at approximately daily resample rates. Daily
imagery is sufficient for resolving many oceanic and coastal
processes. For example, decorrelation scales for phytoplankton
blooms within the California Current System (CCS) are of the
order of days to weeks [40]. There are numerous examples of
processes that are known to occur on time scales of less than
one day, particularly within dynamic coastal and inland water
regions, which can result in rapid degradation of water quality.
Some examples of these processes include regular diurnal and
semi-diurnal tidal, atmospheric, or biological cycles, as well
as sudden, ephemeral events, including containment failures
or pollutant spills, plus river mouth breaching events that can
inject terrestrial and riverine materials into coastal waters and
significantly alter the water composition. The six example sce-
narios comparing optical modifications of related water masses

shown in Fig. 3 resulted in φ values for the 3470
640 data products

that were above a 15% detectability threshold (Table 2). The
time scales for the examples shown were of the orders of minutes
(e.g., passage of a tugboat) to hours (e.g., tidal mixing) to days
(e.g., passage of a typhoon).

Recent autonomous, aquatic-observing activities have
established a trajectory towards achieving continuous, rapid
sampling for global aquatic ecosystems, including sub-orbital

and satellite activities. For example, in situ semi-autonomous
systems have reached maturity, including airborne [30,41] and
shipboard [42] systems, as well as a fully autonomous surface
vessel [43–45]. Airborne ocean color sensors provide unique
remote sensing advantages in regard to spectral, spatial, and
temporal specifications—especially for coastal and inland
waters [46]—but they are not the focus of this study because
their sampling coverage is not comparably continuous, i.e., it is
usually episodic.

Research on sub-daily processes using satellite observations
is presently limited due to the sparsity of rapid-sampling space-
borne sensors with operational oceanographic capabilities.
There are many opportunities to overcome this deficit, includ-
ing by developing applications for small satellite constellation
systems that are presently being introduced by private industry
and government agencies [47,48], as well as by the develop-
ment of oceanographic data processing pipelines for existing
geostationary weather satellite infrastructure [8]. Observational
capabilities that can match the more rapid cadence of short-term
processes in ocean systems can help advance basic research on
these processes and reveal situations when sub-daily processes
are relevant to daily or weekly observations. For example, tidal
conditions and currents alter the surface expression of kelp
forest canopy, which itself does not generally vary at sub-daily
rates [49]. Accounting for the effects of tides and currents for
remote sensing of kelp forest ecosystems is difficult because
the relationships vary in time and space. Mixing and advection
patterns of coastal ocean surface waters evolve across hourly
(e.g., deformation scale) to daily (e.g., mesoscale) time scales,
including the formation of jets and eddies, as well as deposition
from riverine pulses or ephemeral wind events.

Geostationary observations also provide potential advantages
for processing oceanic data products that are enabled by resam-
pling relatively stable targets within a single day, e.g., removal
of outliers using temporal filters [4]. Operational capabilities
to derive oceanic data products from existing geostationary
spaceborne infrastructure would improve the redundancy of
global ocean satellite observations to mitigate data losses due
to cloud obstruction or in the event of a system failure or mal-
function. Atmospheric correction is not the focus of this study,
but NIR and SWIR ABI wave bands that are located in spectral
regions with high atmospheric transmittance [13], i.e., atmos-
pheric windows, are shown along with a comparison to MODIS
channels in Fig. 7. An operational atmospheric correction for
AHI observations designed to produce ocean color data prod-
ucts has been produced [8], and more recently, an ocean color
atmospheric correction approach relevant to coastal waters was
developed for both the AHI and ABI sensors based on a spectral
matching method [17].

A. Development of a Kd(PAR) Algorithm for

Resolving Horizontal Structure

Water-mass tracing, or the ability to distinguish between adja-
cent water masses with dissimilar bio-optical properties to
resolve horizontal structures such as fronts and eddies, leverages
the high resample rates of geostationary weather satellites, with-
out requiring the derivation of more specific data products that
are more commonly targeted by the ocean color community,
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Fig. 7. Atmospheric transmittance (black), with the nominal locations of the ABI (red) and MODIS (blue) central wavelengths for the NIR and
SWIR wave bands overlaid.

e.g., chlorophyll a (Chl a ) or aCDOM(440). Existing SST data
products from ABI provide a useful but incomplete capability
for water-mass tracing because temperature is a nonconserva-
tive parameter that may be modified by solar radiation and is
generally insensitive to biological processes.

The environmental scenarios presented in Fig. 3 and Table 2
quantify the detectability of various generalized bio-optical
transitions (e.g., harmful algae, ship traffic, and storm re-
suspension) based on the available scenarios obtained during
opportunistic field sampling. The use of three detectability
parameters in Table 2 ensures at least one opportunity to detect
the phenomena presented. When all three parameters exceed
the 15% detectability threshold, which is true for all but one
of the environmental scenarios, the greater the chance the phe-
nomenon of interest cannot be confused with an alternative
explanation for spectral changes. The fact that the harbor ship
traffic is detectable with only one parameter emphasizes how
the flushing of the harbor into the adjoining bay continuously
dilutes the episodic spectral changes created within the harbor
confines.

The detectability parameters presented must also be weighed
based on the observational strategies or technologies employed,

as follows: the 3470
640 data product provided decreased sensi-

tivity compared with β or K d (PAR) but was applicable to a
wide range of sensing perspectives, including high-altitude or
spaceborne platforms because the ratio mitigates sensitivity to
some atmospheric correction uncertainties; the β data product

provided increased bio-optical sensitivity compared with 3470
640

but required absolute—rather than relative—radiometry, and
therefore was less applicable to high-altitude or spaceborne
remote sensing requiring atmospheric correction; and the
K d (PAR) data product provided a sensitive and informative
parameter for detecting bio-optical transitions but could not be
measured directly by an above-water sensor. The focus of this
study is to uncover potential applications for ABI observations,
and the subsequent discussion herein focuses on approaches
that are consistent with the ABI spectral configuration and that
mitigate inherent uncertainties associated with atmospheric
correction.

The K d (PAR) parameter was selected as the estimand in this
study because K d (PAR) is useful for comparing light atten-
uation properties between water bodies [22]. The K d (PAR)

parameter provides a convenient data product for water-mass

tracing because K d (PAR) captures differences in water tur-
bidity, including those related to changes in the concentration
and composition of organic and inorganic particles and the
content of dissolved materials such as CDOM. In addition,
K d (PAR) is less sensitive to spectral dependencies in K d (λ),
which is congruent with the coarser spectral capabilities of the
ABI instrument based on broad SRFs and limited spectral chan-
nels. Most importantly, although K d (PAR) cannot be measured
directly by above-water sensors, above-water data products have
been shown to enable accurate estimation of K d (PAR) [24].
Observations of K d (PAR) are also relatively common in ocean-
ography because vertical PAR profiles are routinely measured
by ocean surveys and monitoring programs, e.g., the California
Cooperative Oceanic Fisheries Investigations (CalCOFI) [50].
Although K d (PAR) is not appropriate for all oceanographic
investigations, there is no single data product that is applicable
to every environmental monitoring target, and data products
should be selected to match the capabilities of the sensors being
utilized.

The in situ dataset used in the cross-validation analysis was
applicable to a global range of conservative water bodies as
follows: the dataset consisted of approximately equal representa-
tion from open ocean, coastal, and inland waters; and the dataset
spanned a global range in CDOM absorption [16,30,45].
Rather than partitioning data based on optical complexity,
i.e., case-1 versus case-2 distinctions, an objective conservative
versus nonconservative categorization was assigned prior to
sampling, with conservative waters defined as those resulting
in a linear mixing of parent water masses [23]. The resulting
K d (PAR) algorithm does not indicate significant log-scale
nonlinearities or non-uniform residuals, and the fitting and
validation datasets did not contain substantial outliers asso-
ciated with coherent subsets of the conservative (generally a
more expansive portion than the case-1 partition) water bodies,
suggesting that an ABI K d (PAR) algorithm could provide
a useful water-mass tracing tool without requiring regional
tuning. These results are consistent with an earlier evaluation

of a spectrally similar band ratio, 3465
625, which was evaluated

for estimation of aCDOM(440) by drones or aircraft, but which
was less robust than algorithms using more spectrally expansive
band ratios, e.g., 3412

670 or 3320
780 [30].
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B. ABI and MODIS Intercomparison

Similar regional patterns in the ABI and MODIS K d (490)

images were consistent with expectations of local differences in
water optical properties based on the common oceanographic
characteristics of the region (Section 3.C). The intercomparison
agreement was based on ABI reflectance products that were
intended for terrestrial—not oceanic—targets, and the ρ(λ)

spectra were adjusted by subtracting the NIR components. The
ρ(λ) adjustment improved the applicability of the default GEE
ABI reflectance data products for ocean targets, but was not a
substitute for an ocean-appropriate atmospheric correction.
For example, VIS ρ̂(λ) data products derived for waters with
nonnegligible NIR signals were likely to be significantly under-
estimated. Improved results would likely be obtained using
an operational ABI atmospheric correction method that was
intended for oceanic or aquatic targets, but no such operational
capability is presently available. Recently, an ocean-optimized
atmospheric correction scheme that is also relevant to more tur-
bid coastal water types was demonstrated for ABI imagery [17]
but is not operational. The absence of an operational atmos-
pheric correction is not a detraction for this study, because the
primary objective herein is to evaluate potential aquatic appli-
cations for ABI VIS imagery by evaluating spectrally simplified
algorithms. A follow-on study should exploit the successes
documented here and use this study as a baseline for establishing
the performance of more sophisticated processing.

Horizontal striping artifacts were observed in some ABI
images. Striping artifacts are common in satellite oceanography
due to the relatively low signal of oceanic targets combined with
calibration or solar geometry differences between detectors
or due to the effects of a rotating mirror [51–54]. Solutions to
removing striping artifacts from geospatial datasets include
smoothing and filtering functions. Applicable destriping algo-
rithms [54] could potentially improve the agreement between
the MODIS and ABI K d (490) fields but were outside the
scope of this work, which focused on evaluating potential ABI
oceanographic applications and not on atmospheric correction
or image post-processing.

Match-up image comparisons between MODIS and ABI
were conducted near mid-day, when solar-geometry challenges
to the ABI image quality, e.g., glint contamination and high air
mass conditions, are generally minimized. High sensor or solar
zenith angles increase the prevalence of glint contamination and
complicate atmospheric correction by increasing the path length
that light travels through the atmosphere [4]. The appropriate
time window each day for ABI rapid-sampling observations will
be determined by the capability of corrections related to solar
geometry effects, combined with the temporal characteristics of
available in situ validation datasets.

Observations obtained from geostationary orbits con-
fer advantages for image processing as follows: atmospheric
parameters or surface features within a scene can be considered
temporally for quality control; sensor geometries are constant
across imagery for any given target or pixel; and resample rates
can be lengthened (e.g., with temporal averaging) to boost
signal-to-noise parameters [4]. Other advantages are derived
from the synergies between geostationary and polar-orbiting
sensors. For example, high resample-rate geostationary imagery

of western Europe obtained using the SEVIRI sensor was
improved by normalizing data products to those obtained from
match-up MODIS imagery, which had radiometric capabilities
that were more suitable for ocean color research [55]. Additional
applications that combine geostationary and polar-orbiting
observations should be explored further, including the potential
to use water-mass tracing data products observed by geostation-
ary sensors, e.g., K d (PAR), for temporal interpolation between
same-day imagery from separate ocean color sensors.

5. CONCLUSION

A spectrally simplified algorithm compatible with the ABI
spectral configuration was found to produce robust estimation
of K d (PAR), as well as other common optical oceanographic
data products including K d (490) and aCDOM(440), across
a globally representative in situ dataset. The K d (PAR) data
product provides a convenient and informative parameter for
comparing water body properties [22] and was selected for this
work because of its anticipated utility for water-mass tracing.
K d (PAR) is sensitive to changes in water turbidity related to
organic and inorganic particle loading, but is relatively insensi-
tive to finer spectral dependencies in K d (λ) that are unlikely to
be resolved using a spectrally limited sensor such as ABI. Cross-
validation analysis indicated that a ratio of in situ ABI VIS data
products was strongly associated with K d (PAR), with a median
R2 value of 0.88 and an RMSD value constituting 8.5% of the
range in the K d (PAR) validation dataset. The results suggest
that advancements in ABI processing for aquatic remote sensing
could support a water-mass tracing capability based on an EMA
estimation of K d (PAR) using ABI VIS wave bands.

Coincident imagery from MODIS and ABI indicated that

spatial features observed in the ABI ̺470
640 data products were sim-

ilar to those observed in the MODIS K d (490) data products,
with an R2 value of 0.60. Potential improvements to the qual-
ity of the ABI data products, specifically the application of an
ocean-appropriate atmospheric correction [17] or the removal
of striping artifacts [54], were not applied for the purposes
of this work, but would likely result in increased correlation
between the MODIS and ABI data products. The findings pre-
sented herein indicate that the ABI sensor could provide useful
rapid resampling imagery of aquatic ecosystems in the coastal
zone. An operational atmospheric correction methodology
focused on retrieving oceanic data products, e.g., [LW(λ)]N,
would help realize this objective. Continuing the approach used
in this study of accessing and processing imagery in a cloud-
based environment, e.g., GEE, would be beneficial for ensuring
low latency times and open-source transparency, and decreasing
computing requirements for a broader user base.
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