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ABSTRACT

As Wi-Fi becomes ubiquitous in public and pri-
vate spaces, it becomes natural to leverage its intrin-
sic ability to sense the surrounding environment to
implement groundbreaking wireless sensing appli-
cations such as human presence detection, activity
recognition, and object tracking. For this reason,
the IEEE 802.11bf Task Group is defining the appro-
priate modifications to existing Wi-Fi standards to
enhance sensing capabilities through 802.11-com-
pliant devices. However, the new standard is
expected to leave the specific sensing algorithms
open to implementation. To fill this gap, this article
explores the practical implications of integrating
sensing into Wi-Fi networks. We provide an over-
view of the physical and medium access control lay-
ers sensing enablers, together with the application
layer perspective. We analyze the impact of com-
munication parameters on sensing performance
and detail the main research challenges. To make
our evaluation replicable, we pledge to release all
of our dataset and code to the community. The
dataset and code are available at https://github.
com/francescamen/SHARPax.

INTRODUCTION

In 1997, the Institute of Electrical and Electron-
ics Engineers (IEEE) released the first 802.11
standard. The document specified the physical
(PHY) and medium access control (MAC) layers
for wireless local area networks operating on the
unlicensed portion of the radio spectrum. The
name Wi-Fi was introduced in 1999 by the Wi-Fi
alliance, which ensures interoperability among
IEEE 802.11 devices. Today, Wi-Fi networks are
used to connect hundreds of millions of people
worldwide. Thus, the research community has
suggested leveraging their ubiquitousness for
wireless sensing applications. This entails obtain-
ing information about objects or people in the
environment as they act as radio signals reflectors,
diffractors, and/or scatterers, by tracking changes
in quantities that describe the way radio signals
propagate in the environment. Such quantities
are continuously estimated by Wi-Fi devices for
communication purposes to properly transmit and
decode data. The main idea behind Wi-Fi sens-
ing} is to use them as sensing primitives. This way,
Wi-Fi devices can act as sensors, opening up a

plethora of new applications such as human activ-
ity and pose recognition, person identification,
and the Metaverse, among others [1, 2].

To make Wi-Fi sensing available to the gen-
eral public, researchers are currently following
two parallel and equally important directions.
On the one hand, sensing primitives are being
made available outside of the communication
procedure through the definition of the new IEEE
802.11bf standard, which is expected to be final-
ized by 2024 [3]. On the other hand, researchers
are developing accurate and robust sensing algo-
rithms that leverage Wi-Fi sensing primitives. This
article aims to bridge these two research lines,
providing a vision of the Wi-Fi features — at the
lower layers of the protocol stack — that are key
enablers for sensing, and how they can be lev-
eraged to design sensing applications. Practical
suggestions attained from experimental evalu-
ations with commercial IEEE 802.11ax devices
and an overview of the research challenges are
presented. To the best of our knowledge, no
work in the literature provides a holistic view of
sensing in Wi-Fi networks. Moreover, this is the
first time data from commercial 802.11ax-com-
pliant devices is considered for sensing purposes.
In turn, the analysis later is the first to consider
the new orthogonal frequency-division multiple
access (OFDMA) modulation scheme that has
been introduced with 802.1Tax and will be adopt-
ed also in next-generation 802.11be networks [4].

THE INTEGRATED SENSING AND COMMUNICATIONS PARADIGM

Sensing operations are set to coexist with data
transmissions in upcoming Wi-Fi networks [2].
This concept is usually referred to as integrated
sensing and communications (in short, ISAC).
In addition to Wi-Fi, ISAC is being explored in
other radio technologies. The main approaches
are communication-centric and sensing-centric.
While the focus of the former is on reusing com-
munication signals for sensing, the latter aims to
transmit information through radar-like waveforms
[5]. In turn, when accurate sensing measurements
are needed for, e.g., safety-critical applications,
sensing-centric approaches should be adopted.
Instead, when the purpose is to provide sensing
functionalities without the burden of installing
additional hardware, communication-centric strat-
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egies are preferred. The choice also depends on
whether the sensing happens indoor or outdoor.
In this article, we focus on an indoor communi-
cation-centric scenario, while we refer the reader
to [2] for an overview of ISAC in next-generation
cellular networks.

PHYSICAL AND MEDIUM ACCESS CONTROL LAYERS:
Wi-Fi SENSING ENABLERS

As sensing primitive, most research activities focus
on the channel state information (CSI), which cap-
tures information about the signal multi-path prop-
agation. Since multi-path is caused by reflections,
diffraction, and scattering associated with objects
in the environment, it contains rich information
for sensing purposes. The CSI usually refers to
the channel frequency response (CFR), which is
the frequency representation of channel impulse
response (CIR) (i.e., the time series containing
the delay and amplitude of the different paths).
The CSl is continuously estimated for equalization
purposes, by leveraging training fields in the data
packets [1]. However, current Wi-Fi standards are
designed for communications and do not provide
the proper support for the integration of sens-
ing functionalities. Moreover, sensing primitives
are not released by commercial devices. Thus,
researchers currently leverage ad-hoc procedures
to extract CSI. This ultimately hinders the devel-
opment and commercialization of sensing sys-
tems. For this reason, a new IEEE Task Group (TG)
— called 802.11bf — is defining modifications to
the 802.11 standards at both the MAC and PHY
layers to support sensing. The amendment will
define a unified procedure to directly obtain the
sensing primitives in both the sub-7 GHz and the
millimeter wave (mmWave) bands. The proce-
dure will involve different devices taking the roles
of initiator, responder, transmitter, and receiver.
The sensing can be monostatic, bistatic, or mul-
tistatic based on whether the sensing transmit-
ter and receiver are distinct devices or are the
same entity. We refer the reader to [3] for a more
in-depth overview of IEEE 802.11bf.

FREQUENCY AND SPATIAL DIVERSITY FOR SENSING

The structure of the CSI depends on the specific
waveform employed. However, an important ele-
ment to consider is to maximize the diversity that
the communication system supports. Indeed, con-
currently obtaining data about the propagation
of radio waves characterized by different carrier
frequencies (frequency diversity), or captured at
different points in space (space diversity) is crucial
to provide good adaptation of the sensing algo-
rithms to changing conditions.

As a source of frequency diversity, sensing
algorithms can leverage the orthogonal frequen-
cy-division multiplexing (OFDM) and OFDMA
modulation schemes adopted by Wi-Fi devices
(IEEE 802.11n/ac/ax/be/ad/ay). Such schemes
transmit data over frequency-orthogonal radio
spectrum sub-channels. Thus, the per sub-channel
CFR can be used for sensing purposes. By consid-
ering different sub-channels, sensing algorithms
can obtain more fine-grained ranging information.
Another source of frequency diversity resides in
simultaneously obtaining data from multiple trans-
missions in the 2.4-7.125 GHz range, and/or in

the 57.24-70.20 GHz range. Very recently, the
Federal Communication Commission (FCC) and
the European Commission have opened, respec-
tively, the 5.925-7.125 GHz and 5.945-6.425
MHz spectrum for unlicensed use [6]. Spectrum
bands above 57 GHz — mmWave, used by IEEE
802.11ad/ay devices — are more challenging
from a communication standpoint, yet are appeal-
ing for sensing purposes, as they offer wider band-
widths and, in turn, more sensing granularity.

Spatial diversity can be obtained by leveraging
multi-input, multi-output (MIMO) and/or perform-
ing cooperative sensing. As for the former, since
Wi-Fi devices need to obtain the channel informa-
tion between each pair of transmitter and receiver
antennas, data associated with different physical
channels can be obtained for sensing purposes.
Cooperative sensing is another way to incorpo-
rate spatial diversity into sensing procedures by
combining the channel information from multiple
Wi-Fi devices. However, this requires strict coordi-
nation among the sensing devices to obtain syn-
chronized data starting from the device-specific
transmission and collection schedules [7].

We remark that IEEE 802.11bf is not expected
to specify novel transmission schemes for radio
signals. Other IEEE TGs such as IEEE 802.11be [4]
are working on such aspects.

APPLICATION LAYER: WI-FI SENSING ALGORITHMS

While providing the proper support for sensing
at the physical and medium access control layers,
IEEE 802.11bf is not expected to define specific
sensing algorithms. Conversely, the sensing primi-
tives — collected by leveraging the diversity at the
PHY and MAC layers — allow designing sensing
applications [1]. Current approaches can be cat-
egorized into model-based, learning-based, and
hybrid, as discussed next [8].

MODEL-BASED APPROACHES

This strategy leverages radio propagation models
to capture channel variations due to the presence/
movement of objects and individuals. Model-based
algorithms can be used for example to detect the
presence of an object or a person by monitoring
the range, Doppler, and angles spectra [9].

The frequency diversity provided by OFDM
and OFDMA allows computing the distance
between the device and the obstacle in the envi-
ronment. This is obtained by computing the sig-
nal spectrum over the different OFDM/OFDMA
sub-channels for each CFR estimate. Depending
on the length of the propagation path, each copy
of the transmitted signal is affected by a time
delay that reflects on a frequency shift on each
OFDM/OFDMA sub-channel. Therefore, peaks
on the spectrum reveal the presence of obstacles
and their range. Notice that the range granularity
is inversely proportional to the bandwidth. For
example, with 160 MHz bandwidth (802.11ax),
the range granularity is about 2 meters. In this
respect, the newly available 6 GHz and mmWave
bands will be more beneficial for ranging purpos-
es as they provide higher bandwidths [10].

The moving velocity of the sensing target can
instead be estimated considering the Doppler
shift induced by the movements. The estimate is
obtained by computing the spectrum over subse-
quent transmissions with fixed inter-packet time,
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FIGURE 1. Experimental setup for sensing data collection and processing.

considering one single OFDM/OFDMA sub-chan-
nel. The estimate captures how the frequency
shifts associated with the path length vary in time,
and thus, the target moving velocity. The results
on the available sub-channels can be combined to
increase the accuracy of the estimate [11].

Spatial diversity allows identifying the angular
position of the target by analyzing the phase shift
among the signal copies received at the different
antennas. The higher the number of antennas is
the higher the angular shift granularity is [11].

LEARNING-BASED AND HYBRID APPROACHES

In general, model-based approaches do not per-
form well when the sensing task requires rec-
ognizing a high number of different situations,
e.g., human activities/gestures, with a significant
number of activities, and they do not general-
ize well to multiple subjects and environments.
Learning-based approaches, instead, allow cap-
turing more fine-grained features without requir-
ing manual feature extraction from the CSI [8].
Learning-based techniques span from tradition-
al machine learning algorithms, such as cluster-
ing, to advanced deep learning strategies, such
as residual networks and attention mechanisms.
Hybrid approaches are currently being investigat-
ed to leverage the advantages of learning-based
and model-based approaches [12]. We point
out that training learning-based and hybrid tech-
niques require large datasets featuring significant
diversity in terms of days of measurements, envi-
ronments, Wi-Fi hardware, and subjects (in the
case of human sensing). This is key to designing
algorithms that can generalize well over differ-
ent domains, thus enabling their implementation
on commercial devices for plug-and-play sensing
solutions [13].

Do COMMUNICATION PARAMETERS MATTER?
EVALUATION WiTH COMMERCIAL 802.11 DEVICES

To answer this question, we analyze the impact of
the sensing bandwidth and the channel sampling
period on the classification accuracy. We focus
on the human activity recognition task consid-
ering SHARP, the state-of-the-art algorithm pro-
posed in [13]. We collected a completely novel
dataset — which we pledge to share with the com-
munity — entailing [EEE 802.11 channel data cap-
tured in an indoor environment (https://github.
com/francescamen/SHARPax). Notice that IEEE
802.11bf devices are currently unavailable in the
market as they are expected to be commercial-
ized by 2024. Moreover, as discussed above, the
main new feature of 802.11bf is to unveil sens-

ing primitives while it is not expected to intro-
duce new transmission schemes that are left to
other amendments. In turn, we considered IEEE
802.11ax devices as they implement the latest
802.11 standard release that is currently replacing
the majority of Wi-Fi deployments. To the best of
our knowledge, our dataset represents the first
collection of 802.11ax CSI data from commercial
devices. In Fig. 1 we depicted the network setup
together with a summary of the sensing data col-
lection and processing steps followed for the eval-
uation, as detailed next.

Experimental network setup. We set up an
IEEE 802.11ax network with two Asus RT-AX86U
Wi-Fi access points (APs). The network has been
deployed in a house corridor by placing the rout-
ers along the two long edges, spaced apart by
4 m. The devices exchanged Wi-Fi data over the
IEEE 802.1Tax channel number 157 using the
OFDMA resource unit RU1-996, i.e., with a band-
width of 80 MHz and 996 sub-channels.

CFR data collection. We used the AX-CSI tool
to obtain the CFR for each packet collected by
the receiver [14]. We considered an inter-packet
distance of T, = 7.5 ms, being reasonable for sens-
ing applications. We asked a volunteer to perform
three activities, i.e., walking and running around
the room, and staying in place. We also added an
“empty room” class, for a total of four classes. For
each class, data from four different campaigns —
lasting two minutes each — were collected. Note
that we focus on a limited set of activities and a
single subject as we are mainly concerned with
studying how a sensing system behaves when
changing some communications parameters rath-
er than proposing new sensing strategies. We
refer the reader to [13] for additional evaluations
involving more subjects and activities.

CFR data processing. The CFR phase offsets
associated with hardware imperfections were
corrected using the approach developed in [13].
Hence, Doppler vectors were computed every
time a new measurement was obtained at the
receiver considering a channel observation win-
dow of 25 channel readings (the current measure-
ment together with the 24 previous ones), and
averaging over the available OFDM sub-channels
(see [13]). The deep neural network (DNN) in
[13] was trained as a four classes classifier. The
DNN took as input N = 256 consecutive Doppler
vectors at a time to estimate whether the person
was present in the room and, in case, which activ-
ity they performed. Once trained, the DNN was
used to predict the classes on CFR data never
considered during training, thus allowing for a fair
evaluation of the sensing performance.

Performance evaluation. A four-fold cross-val-
idation mechanism has been used, with two cam-
paigns used for training, one for validation, and
the remainder for testing. Nine different validation
rounds were performed, for a total of 108 evalua-
tion sets. The statistics of the accuracy and F1-score
averaged over the 108 tests and the four classes
are reported in Fig. 2 and Fig. 3. The bars cover the
25-75 percentile interval, the horizontal line with-
in each bar represents the median value, and the
whiskers span over the 5-95 percentile interval.

Figure 2 shows the sensing results considering
seven different OFDMA RUs as specified by the
802.117ax standard. This allows evaluating how
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the sensing performance changes when chang-
ing the number of OFDMA sub-channels, and, in
turn, the sensing bandwidth. The RUs are iden-
tified by two numbers where the one after the
dash indicates the number of sub-channels, i.e.,
996, 484, or 242 for respectively 80 MHz, 40
MHz, and 20 MHz RU bandwidth. The number
before the dash indicates which of the RUs char-
acterized by the same number of sub-channels is
considered, i.e., 1, 2, 3, or 4, starting from lower
frequency sub-channels to higher frequency ones.
The results indicate that there is not a clear link
between the number of sub-channels leveraged
for sensing and the sensing accuracy. This sug-
gests that — more than blindly relying on higher
bandwidths — the design of sensing applications
should consider properly selecting the sub-chan-
nels that are the best for sensing purposes based
on some architecture-defined metrics. The higher
the number of sub-channels, the more choices are
available for the selection process.

In Fig. 3 we evaluate the impact of the sampling
period on the sensing performance. Each evalua-
tion has been performed by re-sampling the sens-
ing data at RU1-996 considering sampling periods
of T./2, T./3, T./4, and T./5. We also evaluate the
impact of changing the number of Doppler vectors
used as input for the neural network accordingly
to the sub-sampling operations, i.e., N, N/2, N/3,
N/4, and N/5. The first group of bars refers to the
reference metrics, i.e., without sub-sampling. We
notice that the sensing performance decreases
when sub-sampling the signal, even if there is not a
clear trend as T./3 offers better performance than
T/2. Therefore, the sampling period should be
properly evaluated for each sensing design.

IS EVERYTHING READY? RESEARCH CHALLENGES ABOUT
INTEGRATING SENSING INTO WI-FI NETWORKS

Although the community is actively defining
proper PHY/MAC layer modifications to enable
sensing, it is not clear how communications,
computation and sensing services will be highly
intertwined. To bridge this gap, we provide an
overview of the main research challenges to ISAC
in Wi-Fi networks.

DATA COLLECTION, TRANSMISSION AND PROCESSING

Data collection. Either the Wi-Fi APs or devic-
es such as smartphones, tablets, and laptops, i.e.,
non-AP stations (non-AP STAs), can gather sens-
ing data (Fig. 4 on the left). The device where to
execute this phase should be selected based on
the required accuracy and Wi-Fi device manufac-
turers will need to properly consider the sensing
needs during the design phases. For example, the
antenna placement should be reconsidered as
external antennas provide better signal-to-noise
ratio (SNR), and equally spaced antennas ease
the computation of the angle of arrival (AoA) to
estimate the position of targets [2].

Data processing. For this phase, Wi-Fi APs,
non-AP STAs, and ad-hoc edge devices may serve
as computing units. Alternatively, the processing
can be offloaded to cloud services (Fig. 4 on the
right). The choice should be guided by the need-
ed computing power and the time sensitivity of
the sensing application. In general, learning-based
or hybrid approaches require higher computing
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1.07
0.9
0.81
0.7 1
0.61
0.5 m==accuracy

0.41 Fl-score

RUI-996 RUI-484 RU2-484 RUI-242 RU2-242 RU3-242 RU4-242
resource unit

FIGURE 2. Average accuracy and Fl-score with different OFDMA RUs.

1.0 7
0.9 1
0.8 1
0.7 1
0.6 1
0.51

£
0.4 1
0.31 mm— gccuracy Fl-score
T () (4] (5) (53) (53) (54) (6) (53)
sampling

FIGURE 3. Average accuracy and Fi-score considering different sampling periods and number of Wi-Fi channel read-
ings used as input for the activity classifier.

power due to the long training process. In this
respect, the training is expected to be performed
either by the application vendors or demanded
to the final users. In the former case, the data
is collected, processed, and stored only by the
application provider thus the user is not required
to collect data for training. This approach is the
most convenient from a user privacy perspec-
tive. However, it may lead to decreased sensing
performance as sensing is actually performed in
a different scenario than the ones considered at
training. The latter approach consists in providing
the user with the sole learning-based architecture
that will be trained with user-specific data collect-
ed on the final deployment. While this strategy
would be the best in terms of the accuracy of the
trained algorithm, it may be of difficult applicabili-
ty as the system would not be plug-and-play. As a
tradeoff between the two approaches, few shots
adaptation and continual learning algorithms can
be considered, and the adaptation can be per-
formed both on the local computing facilities or
remotely on the cloud managed by the vendor.
The inference phase requires less computing
power but still needs memory support to save
the learned parameters. To this end, strategies for
resource-constrained devices, such as Wi-Fi APs
and non-AP STAs, are being developed. Overall,
we expect that both on-site and remote comput-
ing will be available, and that end users will have
access to a marketplace where to download sens-
ing applications for their devices. Each application
will have some requirements in terms of sensing
data collection and support for computation, and
different versions would be made available to pro-
vide broad support. Wi-Fi AP will probability be
provided with some basic sensing features already
included, with the possibility to install additional
tools depending on the resource availability.

Data transmission. Depending on where the
sensing data collection and the processing phases
are executed, the sensing data may need to be
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transmitted from the sensing data collector to
other local or remote entities that manage the
processing, as depicted in Fig. 4. Such data trans-
mission makes it essential to integrate some data
protection and encryption strategies to prevent
adversarial attacks against the sensing service. In
this respect, IEEE 802.11bf introduces the protect-
ed management frames for the sensing measure-
ment report transmission. Moreover, when data is
transmitted to the cloud, some techniques should
be applied to anonymize the information and pre-
vent possible privacy issues and data leakages.

SENSING SECURITY AND PRIVACY

The pervasiveness of sensing into our everyday
lives will necessarily elicit security and privacy con-
cerns. Given the broadcast nature of the wireless
channel, a malicious eavesdropper could easily
capture the CSI reports and track the user’s activ-
ity without authorization. Worse yet, end-users
may not even realize they are under attack when
using radio-frequency-based monitoring solutions.

FIGURE 4. Integration of sensing in Wi-Fi networks. Channel data are collected by the sensing units. Hence, the sensing application is executed on the comput-

In fact, with respect to cameras, wireless sensing
applications also work in the dark, with smoke
or dust in the environment, and when obstacles
— e.g., walls, furniture — are between the sensing
device and the subject (operating on the sub-7
GHz bands). However, as yet, research and devel-
opment efforts have been focused on improv-
ing the classification accuracy of the phenomena
being monitored, with little regard to security and
privacy issues. To address this point, the first
important aspect is the development of DNN-
based Wi-Fi sensing systems robust to adversarial
machine learning techniques. Moreover, individu-
als should be provided the opportunity to opt out
of sensing services, as depicted on the left side of
Fig. 5. This would require the widespread intro-
duction of reliable sensing algorithms for subject
identification. Although some techniques have
been proposed [1], it is unclear whether they
are resilient to malicious users actively trying to
impersonate other users, as shown on the right
side of Fig. 5, or adverse channel conditions, i.e.,
presence of noise and interference from other
technologies. Identification techniques should
also be tested against adversaries, either through
active techniques, i.e., a device carefully jamming
the sensing activity, or passive techniques, i.e.,
materials shielding and/or deflecting the Wi-Fi
radiation. Another issue arises when the malicious
entity estimates the CSI and performs sensing on
ongoing Wi-Fi traffic. Here, a possible solution is
to encrypt the training fields of the data packets
so that only trusted devices can retrieve them and
estimate the CSI. This option was already adopted
in [EEE 802.11az to protect the location/ranging
information from potential eavesdroppers.

COOPERATIVE AND MULTI-BAND SENSING

Cooperative and multi-band sensing will provide a
unique opportunity to not only boost the sensing
accuracy, but also to leverage the increased loca-
tion awareness of blockages to design intelligent
sensing-aided Wi-Fi communications that will ame-
liorate the performance of mmWave Wi-Fi links.
For example, understanding the size and move-
ment of blocking entities through sub-7 CSI reports
could guide beam selection in the mmWave link, as
shown in Fig. 6. By the same token, understanding
the location of a non-AP STA by using sub-7 sens-
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ing can help reduce the overhead associated with
beam scanning and alignment. A key challenge will
be to coordinate time-sensitive cooperative sensing
operations among multiple Wi-Fi devices in differ-
ent spectrum bands. Indeed, communication-re-
lated sensing will be extremely time-sensitive for
different safety-critical applications such as auton-
omous driving and telemedicine, or for virtual/
augmented/mixed reality and holography for enter-
tainment and remote working. These applications
require the sensing information to be available at
the communication end-point within milliseconds
from the acquisition. To this end, a possible strat-
egy could be to introduce control channels in the
sub-7 band exclusively dedicated to the coordina-
tion of low-latency cooperative sensing operations.

SENSING IN SPECTRUM-SHARING BANDS

From IEEE 802.1Tax onward, Wi-Fi devices will
share the spectrum with incumbents in the 6
GHz band, such as licensed point-to-point and
satellite services, as well as other license-exempt
ultra-wideband systems and 5G NR-Unlicensed.
To protect incumbent services, license-exempt
devices operate under restrictions such as maxi-
mum emitted power and indoor-only operation.
Given the intense spectrum sharing in the 6 GHz
band, further investigations should address how
to make sensing robust to interference.

INTEGRATING SENSING AND COMMUNICATIONS

To make communication and sensing services
coexist in Wi-Fi networks, sensing transmissions
— i.e., performed to obtain channel estimates
— could be “piggybacked” into data packets to
avoid decreasing the communication through-
put. However, data packets may be subject to
significant interference in the 6 GHz band, which
may be tolerable for data recovery but intoler-
able from a sensing perspective. Therefore, a
core issue is to determine the optimal trade-off
between making reserved use of the spectrum for
sensing operations and piggybacking sensing into
data packets. Similar to multi-band sensing, dedi-
cated channels could be used to improve sensing
performance without a significant decrease in sys-
tem throughput.

CONCLUDING REMARKS

Sensing services are expected to be implemented
within Wi-Fi networks by 2024 through the release
of the IEEE 802.11bf standard. Researchers are cur-
rently working on two parallel directions that will
enable integrating sensing into Wi-Fi networks. The
Wi-Fi technological peculiarities leveraged for sens-
ing purposes are detailed in this article, together
with the approaches to developing Wi-Fi sensing
algorithms. We included practical lessons learned
from experimental evaluations with commercial
devices and an overview of the open research
challenges. Overall, we trust that our contribution
will provide a comprehensive overview of the
opportunities and challenges of Wi-Fi sensing.
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