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Abstract—Opening up of spectrum for shared use, such as
the Citizen Radio Broadband Service (CBRS) band, offers
unprecedented opportunities for allowing commercial operators
to operate in frequencies otherwise reserved for federal use only.
Specifically in the CBRS band, the challenge of detecting the high-
est priority incumbent radar reliably forces severe restrictions on
the transmit power for operators deploying LTE networks. While
Machine Learning (ML)-based solutions have demonstrated the
potential for detecting weak radar signals in fully overlapping
secondary signals, there exists a fundamental gap in porting these
methods for practical, real-world conditions due to a key reason:
There are no accessible datasets or even controlled methods to
generate such datasets today over-the-air (OTA), where radar and
LTE ‘overlap’ in a number of challenging SINR conditions. This
paper makes three contributions: (i) It describes the first publicly
available CBRS overlapping and non-overlapping LTE and radar
OTA dataset in the 3.5 GHz band using an experimental
testbed composed of software defined radios, (ii) It describes the
first-of-its-kind open source Application Programming Interface
(API) that can configure automatically multiple transmitters and
receiver radios, synchronize them, remove the Tx local oscillators-
induced artifacts, and carefully set their parameters such as
sampling rates, center frequencies, and time duration for sample
collection, ultimately resulting in high-fidelity data in the Signal
Metadata Format (SigMF); (iii) It demonstrates the utility of
the CBRS dataset by adapting the well-known ML model called
‘You Only Look Once’ (YOLO) for detecting and localizing the
radar and LTE signals with near-perfect accuracy, pointing to
the possibility that current FCC-mandated power thresholds can
be lowered for cellular operators in the CBRS band.

Index Terms—CBRS band, Data collection API, Incumbent
radar, LTE, RF Signals dataset for ML

I. INTRODUCTION

To alleviate the looming spectrum crunch, the Federal
Communication Commission (FCC) is actively exploring the
shared spectrum usage model, where frequencies exclusively
reserved for federal use are now being opened for commercial
cellular operators and unlicensed devices. One such example
is the use of the Citizen Broadband Radio Service (CBRS)
band (3.55-3.7 GHz), which allows incumbent radar users,
Long-Term Evolution (LTE) operators and other unlicensed
devices to share spectrum in a tiered access structure [1].
While desirable, the success of spectrum sharing depends on
the key challenge of preventing interference to the incumbents
from co-channel secondary users’ signals. In the CBRS band,
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Fig. 1: Proposed API-based dataset collection testbed.

the FCC mandates deploying Environment Sensing Capability
(ESC) sensors to detect radar signals in a myriad of complex
spectrum overlap scenarios, including the worst case of the
radar pulse being completely enveloped within the secondary
LTE signal. In such diverse interference scenarios, classical
signal processing techniques such as matched-filtering [2]
often fail to provide good detection performance. Further,
these require a prior knowledge of radar signal templates,
which is not possible as per rules of the CBRS band.

Machine Learning (ML) for solving wireless communica-
tion applications: Over the years, there has been an increasing
interest in using ML for diverse wireless communication
applications, such as radio fingerprinting [3], mmWave beam
selection for vehicular scenarios [4], etc. More relevant to this
paper, few recent works [5]-[7] use ML for radar waveform
recognition and CBRS spectrum resource allocation in low
interference scenarios showing low detection accuracy in the
range of [76.92 — 94.4] %. Additionally, these works do not
estimate the bandwidth of the radar/interfering signals. To
overcome these limitations, we use a deep learning-based
approach YOLO, which detects and localizes radar and LTE
signals with better performance accuracy even in high inter-
ference scenarios without requiring any prior knowledge.
While these ML approaches show great promise, the models
are trained and tested on datasets (described later in Table I)
that are not collected over-the-air (OTA) in the actual 3.5 GHz
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[ Applications Paper [ Architecture | Dataset: Scenario Access
Radar detection Troglia et al. [7] Federated Learning Emulated radar, Modulated Signals No
Co-channel interference Caromi et al. [2] Matched-Filter Real radar captures, Synthetic LTE Yes
Co-channel interference Caromi et al. [6] Deep Learning SDR-based radar + AWGN (wired connection) Yes
Localization, Unauthorized | Soltani et al. [9] Deep Learning Simulated radar, LTE, 5G No
signal detection
Localization Sarkar et al. [10] Deep Learning Emulated radar, OTA LTE (synthetically added) | No

TABLE I: State-of-the-art techniques that use datasets capturing co-existing RF signals in the shared CBRS spectrum.

CBRS band. Thus, there remains a gap in their validation in
representative environments, which cannot be fully bridged via
simulation alone. To the best of our knowledge, there is no real
radio frequency (RF) dataset that contains overlapping radar
and LTE signals captured OTA in the CBRS band for rigorous
testing in high and low interference scenarios.

Challenges in collecting OTA datasets for CBRS band:
According to the FCC requirements, the ESCs must accurately
detect 99% of radar transmissions for the scenarios with the
radar peak power above —89 dBm/MHz and the aggregate
interference (LTE+noise) power below —109 dBm/MHz, i.e.,
signal-to-interference-noise ratio (SINR) > 20 dB [8]. Creat-
ing a representative dataset that satisfies these requirements is
challenging for these reasons: It requires multiple software-
defined radios (SDRs)-based transmitters (Txs) to transmit
different OTA signals and precisely configure their parameters
such as sampling rates, time duration, transmit antenna gains,
and center frequencies. Most importantly, the presence of local
oscillator (LO) offsets in the signals transmitted via SDRs
needs to be corrected for every Tx, which otherwise could
result in false alarm(s) during the detection of the signals.
Additionally, the in-phase and quadrature (IQ) samples of
the OTA collected overlapping signals should have accurate
timestamps and properly documented metadata in standard-
compliant formats for re-usability of the dataset by the re-
search community.

APIs for collecting complex datasets: We develop and
publicly release a Python-based Application Programming In-
terface (API) which simplifies and automates dataset recording
campaigns by interfacing NI’s Universal Software Radio Pe-
ripheral (USRP) devices via USRP Hardware Drivers (UHDs).
It requires a single text-based configuration file in JavaScript
Object Notation (JSON) or Yet Another Markup Language
(YAML) format, to configure complex scenarios with multiple
Txs and Rxs over the large ranges of parameters. It provides
continuous playback of waveforms for each Tx while support-
ing different waveform formats such as TDMS (NI’s Technical
Data Management Streaming) and MAT (MATLAB). It stores
datasets in the open source Signal Metadata Format (SigMF)
[11] with comprehensive, human readable, and easy-to-parse
JSON-based metadata files.

In Fig. 1, we show our proposed API-based CBRS dataset
collection testbed, which configures the Tx SDRs for trans-
mitting LTE and radar signals OTA, and the Rx SDR for
collecting and saving IQ samples in SigMF format. Thereafter,
spectrograms are created and fed to ML model (e.g., YOLO)
for detection and localization of the interfering LTE and radar
signals in the CBRS band.

Our contributions are as follows:

o We provide a 55.5GB real-world RF dataset which con-
tains overlapping and non-overlapping radar and LTE
signals with a controlled SINR range of 15 — 35 dB. The
signals were transmitted and recorded OTA at 3.5 GHz
in an RF anechoic chamber using Ettus X310 SDRs.

o To collect this dataset, we develop a generic API-based
solution that can be easily adapted for other, general
purpose dataset generation needs. This API interfaces
between Python and UHD drivers to provide unified
control over SDRs configurations. We describe the API
configuration process for the collection of an RF dataset
containing the radar and LTE RF signals in the shared
CBRS band (3.55 — 3.7 GHz).

o« We demonstrate the efficacy of this real-world dataset
in detecting and localizing RF signals in time-frequency
space in the CBRS band using the framework designed in
our previous work [9] for detecting signals in 3.5 GHz
band using the “You Only Look Once’ (YOLO) object
detection model.

II. USE CASES FOR CBRS SIGNAL DATASET AND API

In this section, we discuss how the dataset created for the
CBRS band could benefit a broader set of activities related
to ML-based solutions for wireless sensing. We also review
existing approaches for these activities and prior datasets
relevant to CBRS spectrum sensing in Table I.

A. Co-channel Interference Management

Identifying the presence of incumbent signal transmission
(here, radar) overlapping in frequency with a lower priority
signal (here, LTE) and timely informing such events to the
spectrum access management system (SAS) has broad appli-
cation in different licensed and unlicensed bands. Exciting
research wherein ML algorithms identify available vacant
spectrum, regulate the power of the interfering signals, and
identify regions where LTE networks may operate, can usher
in new paradigms for fully automated SAS. In [6] and
[2], simulated/field-measured signals of shipborne radar with
synthetically added interference (noise or LTE) are used for
radar detection using signal processing and deep learning
(DL) techniques. We believe that using real RF datasets that
capture co-existing radar and LTE signals can comprehensively
validate approaches like these, which attempt to solve inter-
ference detection problems using powerful ML techniques.
It is difficult to obtain LTE/radar co-existence datasets from
an existing ESC sensor deployment along the coast due to
reluctance from vendors for sharing their data and also for
security and privacy reasons (for example, it is illegal to track



the source radar geographical location). In all such cases,
our datasets and the SDR-based data collection API can help
accelerate research activities given the extensive ability to tune
the system for different conditions.

B. Time-Frequency Localization

We define ‘localization’ as estimating temporal and spectral
occupancy of the RF signals existing in shared spectrum bands.
Such information, especially for overlapping signals, aids the
SAS in taking decisions related to completely stopping the
secondary transmission or shifting the center frequency of
the interfering secondary signals. Recently, we used the well
known DL YOLO architecture [12] to detect, classify, and
localize overlapping weak radar and strong 5G/LTE signals
in the CBRS band under high noise conditions using a
fully simulated dataset in MATLAB [9]. In a seminal prior
work, the authors in [10] localize radar signals in the CBRS
band by generating a dataset that uses a signal generator
for emulating radar pulses and synthetically adding OTA-
captured LTE signals. However, this dataset is not publicly
available. These examples suggest that OTA data collection
is both challenging and necessary. Our API-based testbed
lowers the barrier towards collection of diverse RF datasets by
allowing configuration of all the scenario-specific variations in
frequencies, gains, signals, and data collection cycles in just
one configuration file. The API runs the SDRs without further
human intervention to collect a comprehensive OTA dataset.

C. Unauthorized Signal Detection

Many spectrum sharing models, especially the one used in
the CBRS band, have limited ability to detect opportunistic
transmissions of unauthorized signals, e.g., LTE and 5G users
that are not registered with the SAS to operate in the CBRS
band. Such signals could either coincide with the incumbent
signals or exist separately within the shared band. For identi-
fying them, it is crucial to detect, classify, and localize all
the ongoing transmissions and share this information with
the SAS, which can compare them with the list of registered
signals. In our recent work [9], we attempt the labeling of
all transmissions (radar, authorized/unauthorized LTE/5G) in
the CBRS band using a simulated dataset. We believe that the
ML-based algorithms for the detection of unauthorized signals
will greatly benefit from our real-world dataset containing LTE
and radar signals co-existing at same/different frequencies.

III. RF DATA RECORDING API FOR DATASET
GENERATION

To test and validate ML models, different researchers use
different simulation tools, channel models, and/or ray-tracing
applications to generate datasets for their specific scenarios.
Thus, available datasets are typically stored in heterogeneous
formats and with different kind and completeness of metadata
(scenario descriptions). This makes it quite difficult to gener-
alize and compare the ML models and to adopt the datasets by
the broader research community. Another important aspect is
the augmentation of the AI/ML model training and validation
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Fig. 2: RF data recording API reference architecture.

with real-world RF datasets. This can ultimately improve
the robustness of the trained AI/ML algorithms in practical
environments since these datasets include additional effects
like RF impairments and real-world channel properties which
are not covered by simulation environments. In addition, the
underlying ML algorithms require large datasets to get trained
for a wide variety of potential scenarios and the performance
depends on the quality and representability of the datasets.

To the best of our knowledge, there is no existing dataset
recording tool that provides a holistic consideration of the
previous problems and challenges. The proposed RF Data
Recording API is a free and open-source Python-based API
to record real-world RF datasets in an easy and automated
way utilizing NI’'s USRP platform. It has been created by NI
in collaboration with Northeastern University and published
under an open-source license on Github [13]. The generation
of real-world datasets could be critical in determining how the
algorithms perform in the real world. The recorded datasets are
saved in the SigMF metadata format. SigMF is an open-source
standard that specifies a way to describe sets of recorded digi-
tal signal samples with data properties and comprehensive sce-
nario descriptions provided in JSON-based SigMF metadata
files. This allows usage of the recorded datasets for various
research areas such as ML for wireless communication. In
addition, this will simplify the management of dataset libraries
and encourage adoption by other researchers.

Fig. 2 shows the block diagram of the RF data recording
API which interfaces NI’'s USRP SDRs that are connected to a
Linux server. The Python-based data recording API allows to
easily configure complex data recording campaigns by using
just a single configuration file for setting all desired parameter
values and variations for multiple connected SDRs. Data
recording campaigns can be configured via a YAML or via
a JSON configuration file. Functionally there is no difference
between these two configuration formats. The YAML format
is more verbose with inline comments closely attached to the
respective parameter settings and therefore good for beginners.
The JSON configuration file allows for very compact descrip-
tions of complex configurations. As additional input the data
recording API requires pre-generated IQ waveforms in a sup-
ported binary format together with corresponding text-based
waveform configuration files. The latter contain the transmit



waveform configuration parameters, which will be added to the
SigMF metadata of the generated recordings. Since different
waveform generators usually apply different naming conven-
tions for the waveform parameters, a Wireless Link Parameter
Map Dictionary file in YAML format is used to define the
mapping between waveform configuration parameters and the
target SigMF metadata output fields. This approach allows
to flexibly adapt to different waveform generators’ naming
schemes or to add new or self-defined waveform parameters by
just modifying the Wireless Link Parameter Map Dictionary
file. The number of Tx and Rx stations can be scaled with
individual parameter configurations. Each Tx station can do a
continuous waveform playback with an individual waveform.
Several waveforms (e.g. 5G NR, LTE, Radar, WiFi) have been
given as a template. To mitigate the Tx LO leakage/DC offset,
the LO configuration can be used for that. It can be enabled
or disabled via the API configuration file. For each IQ data
record, data formatting and saving in SigMF format is done
automatically. Each record has two files: the SigMF binary file
where the actual data is stored, and the SigMF metadata file
in a JSON format. The metadata file provides a description
about the test scenario, the RF configuration and hardware
information of both Tx and Rx stations, and the individual
information of each Tx waveform. The API can be executed
in several RF modes (Tx and Rx, Tx-only, and Rx-only).

IV. DATASET COLLECTION USING API & ITS
APPLICATION FOR LOCALIZING THE CBRS SIGNALS

A. Data Collection Setup and Dataset Description

Our dataset collection setup consists of three Ettus X310
USRPs, one each for the radar transmitter (incumbent
user) and LTE (secondary user) signals in the CBRS band
(3.55 — 3.7 GHz), and a third USRP for receiving IQ samples
of these OTA signals. All USRPs have free-running oscillators;
they are not synchronized. Due to the transmission restrictions
in the CBRS band, we conduct the experiment in an indoor
RF anechoic chamber as shown in Fig. 3.

We consider 3GPP standard-compliant time division du-
plex downlink LTE signals of bandwidths 5,10, 15,20 MHz
corresponding to different LTE test models (or E-UTRA
models)- 1_1,1_2,2,3_1,3_2, and 3_3 which vary in number
of resource blocks, types of modulation, etc.. We generate
these signals using NI RFmx Waveform Creator [14] in TDMS
format. We synthetically generate type 1 radar waveform using
National Institute of Standards and Technology’s simulated
radar waveform generator [6] with parameters: bandwidth 2
MHz, sampling rate 20 MHz, pulse repetition rate 1010 pulses
per second, and pulses per burst 10 pulses.

We configure center frequency, sampling rate and time
duration of OTA signals’ frame captured by the Rx radio
in the API configuration file as 3600 MHz, 30.72 MHz,
and 40 ms, respectively. Further, we consider two different
scenarios of overlapping and non-overlapping radar and LTE
signals in different frames by, respectively, setting same or
different center frequencies of the Tx radios in the range
[3600 — 15.36, 3600 + 15.36] MHz. The former one captures
interference scenarios between the radar and LTE signals,

Fig. 3: Experimental setup of API-based dataset collection in
RF anechoic chamber.

which is missing in all the publicly available CBRS datasets.
Our dataset contains 3,360 frames capturing IQ samples of
overlapping signals and 1,920 frames of non-overlapping
scenarios with their SigMF metadata files. Most importantly,
we change the distances and gains of the Tx and Rx radios to
capture radar signals in high and low interference generated
from the LTE+noise present in the background in the CBRS
band. To quantify this, we explicitly calculate the value of
SINR (= ratio of the peak radar power per MHz to the average
noise and interference power per MHz in the CBRS band)
for each frame and add it in the respective frame’s metadata
file. The range of SINR in the dataset is [15,35] dB. Since
the FCC requires current ESC sensors to provide 99% radar
detection accuracy for SINR values > 20 dB, we consider
the corresponding frames to represent low interference cases,
while frames with the SINR values < 20 dB to represent
high interference cases. This varied SINR feature makes our
real OTA signals’ dataset one-of-its-kind due to its potential
to serve the ML applications that target to achieve radar
detection in high interference from secondary users’ LTE
signals and background noise such as the work [9]. Tt is
important to note that due to the limitation on distances
required for achieving the FCC-mandated signals’ powers and
the noise of the receiver, the received power of our signals is
higher, but the SINR requirements of the FCC are met. Lastly,
while collecting our dataset, we correct the LO leakage that
creates an undesired peak at the center frequency of the radio
by enabling the LO offset removal in the API configuration
file. The presence of this peak in the frames used to train
the ML models could result in inaccurate detection and poor
performance.

The resulting dataset contains 5,640 binary files and ac-
companying meta files occupying 55.5 GB. Our dataset can
be accessed here: https://genesys-lab.org/CBRS or https://dx.
doi.org/10.21227/zdg0-7242

B. YOLO for Signal Detection and Localization

To demonstrate the competence of our real-world OTA
CBRS signals’ dataset in training ML model to detect and lo-
calize LTE and radar signals, we use YOLO-based framework,
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which we earlier used with a simulated CBRS radar and LTE
signals dataset [9]. The YOLOv3 [12] is an object detection
framework that uses spectrogram as input and provides the
detected signals along with their labels, detection probabilities,
and bounding boxes to specify time and frequency boundaries.
It has several advantages over other ML-based models- 1) it
looks at the entire image at test time, hence its predictions
are informed by the global context in the image, and 2) it
is faster than other neural network-based model (1000x faster
than R-CNN and 100x faster than Fast R-CNN) because it
makes predictions with one network evaluation. These features
make YOLO viable for signal detection, classification, and
time-frequency localization in the shared CBRS band.

Our work brings a new dimension to the data that is fed
to the YOLO framework. By considering partially and com-
pletely overlapping signals (CBRS radar and LTE), we stress-
test YOLO'’s signal identification/localization performance for
shared spectrum applications such as interference detection
and anomaly detection. To use our dataset in training the
YOLO framework, we first generate spectrograms from the
collected IQ samples of each frame of duration 40 ms and
sampling rate 30.72 MHz. We shuffle our spectrograms and
partition them 70%, 20%, and 10% to create training, valida-
tion, and testing sets, respectively. Next, we create one label
file for the signals in each frame required for running the
YOLO framework. The label file contains the class numbers
(0 for radar and 1 for LTE) and the relative placements of
signals (their x center, y center, width, and height with respect
to spectrogram’s origin) present in the spectrogram of the
considered frame. Thereafter, we train and test the YOLO
model and observe that the radar and LTE signals are detected
with high probabilities of detection, correct labels, and near
accurate time-frequency boundaries in both the overlapping
and non-overlapping scenarios, as shown in Fig. 4. The code
used to demonstrate the results of YOLO on our dataset is
downloaded and used “as is” from this publicly accessible and
open source repository: https://github.com/ultralytics/yolov3.

To get more insights on the statistical performance of
YOLO-based signal detection framework trained using our
real-world CBRS signals’ dataset, we compute object detection
metrics-recall and precision. Recall is defined as ratio of
number of true positives to the total number of signals in all the
spectrograms in the test set, while the precision is computed
as true positive count divided by total number of positives for
that signal label [9]. The values of these metrics for both radar
and LTE signals are provided in Table II. We observe that the
recall for radar detection drops to 86.6% in case of our real-
world dataset-based training, while it is 98% in case of the
simulated dataset-based training for course signal detection in
our work [9]. This drop in performance is attributed to the
following reasons:

o The impairments present in wireless channel and radios

are captured in our real dataset.

o The real dataset contains frames corresponding to high
interference scenarios (SINR 15 — 35 dB), which adds
complexity in the detection of narrow radar signals.

o The LTE signals considered in the real dataset have
varying pattern of resource block allocations. For in-

tader 0.95; radar (QIE

overlapping non overlapping

Fig. 4: Sample output spectrograms of YOLOv3 with bound-
ing boxes around the detected radar and LTE signals in
overlapping (left) and non-overlapping (right) scenarios during
testing.

Accuracy on test set Per-Test Model (TM)
Category LTE RADAR
Precision  Recall | Precision Recall
T™I1_1 1 0.99 0.97 0.87
T™I1_2 1 1 0.96 0.85
T™2 1 1 0.97 0.90
TM3_1 1 0.99 0.96 0.87
TM3_2 1 0.99 0.97 0.86
TM3_3 1 0.99 0.97 0.86
All TM 1 0.99 0.97 0.86

TABLE II: Performance metrics of YOLO-based detection
of radar and LTE signals. The results are shown for various
LTE test models and highlights that Radar recall is best when
overlapping with LTE TM2.

stance, 5 MHz LTE signals corresponding to test models
1.1,1.2,3_1,3_2,and 3_3 look like a contiguous solid
block spanning entire frame duration, while that corre-
sponding to the test model 2 is made of small solid
blocks with the space between these blocks representing
unused resource blocks. The former LTE signals make
detection of overlapping narrow radar signals even more
challenging as seen from the lower values of recall for
the radar signals (rows in blue color) compared to that in
the latter case (row in violet color) in the Table II.

This highlights the fact that the simulated datasets alone cannot
train well the ML models in representative environments.
Though the radar detection accuracy mandated by the FCC
is 99%, note that we are not trying to further improve our
YOLO-based framework [9] to achieve this accuracy with our
current real-world dataset because the focus of this paper is to
provide a challenging and representative OTA CBRS signals’
dataset. In this context, robust ML-based approaches may help
in detecting co-existence of radar and LTE signals with high
accuracy. We discuss a few such directions in Section V-A.

V. FUTURE RESEARCH DIRECTIONS
A. Adapting the Dataset for Robust ML-based Sensing

ML-Model generalization to unseen environment settings:
ML model trained on data collected in one environment often
fails to perform well on similar data collected in new unseen
environment. This unseen environment could result from the



use of different set of parameters (e.g., sampling rates, time du-
ration, etc.) or different wireless channels (e.g., indoor/outdoor
environment) for new dataset collection. Such ML model
generalization problems are open for signal detection in the
shared CBRS band as well. In this regard, our current dataset
could serve as data collected in one environment and our
API could be readily used for generating similar datasets in
different environments. These can then be leveraged in ML
techniques such as transfer/meta learning for robust signal
detection in the shared CBRS spectrum use cases.
Multi-modal fusion for accurate signal detection: Fusing
multi-modal data inputs (such as spectrograms and IQs) in
ML techniques for robust radar detection (i.e., improved
detection accuracy) is an open avenue for research. The IQ
samples of our collected dataset can be readily used to create
spectrograms for investigating ML fusion frameworks in this
direction. Motivated by the work [15] that used IQ samples
and cyclostationary features extracted from them to detect
direct spread spectrum signals within LTE frames with better
accuracy, we believe the IQ samples of our collected dataset
can be post-processed to extract desirable features and used
for exploring different multi-modal fusion frameworks [15].

B. Enhancements to Data Collection API

From an API architecture design perspective, we plan to
study an event trigger-based dataset collection capability that
could allow for precise synchronization and more complex
traffic patterns involving multiple devices operating concur-
rently in the same physical environment. We will also explore
how data collection framework, packaged as an rApp or XxApp,
can be integrated within OpenRAN (ORAN) to transmit and
collect data through the radio interfaces and train ML models
at the non-real time Radio Intelligence Controller (RIC).

VI. CONCLUSION

In this paper, we develop a Python-based API that simplifies
and automates collection of any real-world RF datasets using
NI's USRP platform. We adopt this API for generating one-
of-its-kind RF dataset containing OTA radar and LTE signals,
collected using SDRs in an RF anechoic chamber at frequen-
cies corresponding to the shared CBRS spectrum band. This
dataset consists of 5640 frames of IQ samples for duration
40 ms each, containing both overlapping and non-overlapping
scenarios of the radar and LTE signals for a wide SINR range
of 15— 35 dB, which can serve a variety of ML-based shared
CBRS spectrum applications. We outline a few such use cases
where this dataset and API can be used to accelerate research
in this direction, while demonstrating their efficacy in the use
case of localizing CBRS signals in time-frequency space using
a well known ML model for object detection- YOLO.
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