IEEE INFOCOM 2023 - IEEE Conference on Computer Communications | 979-8-3503-3414-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/INFOCOMS53939.2023.10228870

SEM-0O-RAN: Semantic and Flexible O-RAN
Slicing for NextG Edge-Assisted Mobile Systems

Corrado Pulighedduf, Jonathan Ashdown®, Carla Fabiana Chiasserinif, and Francesco Restuccia
1 Politecnico di Torino, Italy
o Air Force Research Laboratory, United States
1 Institute for the Wireless Internet of Things, Northeastern University, United States

Abstract—5G and beyond cellular networks (NextG) will
support the continuous execution of resource-expensive edge-
assisted deep learning (DL) tasks. To this end, Radio Access
Network (RAN) resources will need to be carefully “sliced” to
satisfy heterogeneous application requirements while minimizing
RAN usage. Existing slicing frameworks treat each DL task
as equal and inflexibly define the resources to assign to each
task, which leads to sub-optimal performance. In this paper,
we propose SEM—O-RAN, the first semantic and flexible slicing
framework for NextG Open RANs. Our key intuition is that
different DL classifiers can tolerate different levels of image
compression, due to the semantic nature of the target classes.
Therefore, compression can be semantically applied so that the
networking load can be minimized. Moreover, flexibility allows
SEM-O-RAN to consider multiple edge allocations leading to
the same task-related performance, which significantly improves
system-wide performance as more tasks can be allocated. First,
we mathematically formulate the Semantic Flexible Edge Slicing
Problem (SF-ESP), demonstrate that it is NP-hard, and provide
an approximation algorithm to solve it efficiently. Then, we
evaluate the performance of SEM—-O-RAN through extensive
numerical analysis with state-of-the-art multi-object detection
(YOLOX) and image segmentation (BiSeNet V2), as well as real-
world experiments on the Colosseum testbed. Our results show
that SEM—O—-RAN improves the number of allocated tasks by up
to 169% with respect to the state of the art.

Index Terms—network slicing, computation offloading, O-
RAN, semantics, NextG, edge computing, resource allocation

I. INTRODUCTION

The number of mobile devices using 5G-and-beyond cellu-
lar networks (NextG) is expected to reach 64 billion by 2025
[1]. Among others, vehicle-to-everything (V2X) communica-
tions [2], [3] are enabling autonomous driving [4] and drone-
based delivery [5]. Thanks to V2X, the self-driving car market
will reach global revenue of $49.79B by 2024 [6].

To perform their mission-critical operations, V2X and
other mobile devices will continuously execute complex com-
puter vision (CV)-based DL tasks, which require as input
high-resolution images (e.g., frames of a video) or three-
dimensional LIDAR (Light Detection and Ranging) data [7].
Examples include multi-object classification of blockages, in-
tersections, driveways, fire hydrants, and people [8]. However,
continuously sending multimedia data to the edge may eventu-
ally saturate the RAN. For example, in the Cityscape dataset
[9], images have a 100 KB size on average. By assuming
that real-time self-navigation requires DL inference on frames
collected from 4 cameras each 10 ms, the traffic load would
be 32 Gb/s if 100 vehicles are connected to the RAN.

Approved for Public Release; Distribution Unlimited: AFRL-2022-1622

To this end, RAN slicing [10]-[15] allows Virtual Network
Operators (VNOs) to virtualize and allocate the computational
and networking resources of the RAN according to their needs.
Interestingly, RAN slicing is fully supported by the Open RAN
(O-RAN) framework, which disaggregates the NextG RAN
hardware from its software components to allow fine-grained
real-time flexible control of the RAN components [16]-[18],
as summarized in Section III-A.

Existing Issues. The current state of the art — discussed
in detail in Section VI — either does not support O-RAN
or defines edge-based tasks in a monolithic fashion, which
leads to sub-optimal performance, as shown in Section V-B.
To this end, we propose SEM—-O—-RAN, the first O-RAN slicing
framework for NextG edge-assisted mobile applications.

Two core innovations separate SEM—O-RAN from the
state of the art. First, existing work pre-defines the number
and type of edge resources needed to perform a given task.
Conversely, we define a task in terms of required end-to-end
latency and accuracy-per-class performance, thus allowing
flexibility in the way edge resources are allocated. Flexibility
allows for the consideration of multiple edge allocations
leading to the same task-related performance, ultimately im-
proving system-wide performance. In Section V, we show
that flexibility improves the number of allocated tasks by up
to 31% with respect to the state of the art [11]. Second,
SEM-O-RAN considers the semantics of the DL task to further
reduce the network overhead by compressing the images. For
example, Fig. 1 shows that classifying cars is semantically less
difficult than bicycles, thus images can be compressed more
aggressively if classifying cars is the priority. In Section V,
we show that combining flexibility and semantics improves
the performance by up to 169% with respect to [11].

Technical Challenges. Introducing flexibility and appli-
cation semantics into the O-RAN slicing mathematical for-
mulation is challenging, since (i) the relationship between
the allocated slice, image compression, classification accuracy
for the target classes, and network latency cannot be easily
expressed in closed form, since state-of-the-art DL models are
highly non-linear; (ii) the flexibility in edge resource allocation
makes the optimization significantly more complex, as shown
in Section IV-B. To the best of our knowledge, no other work
has holistically tackled these two aspects at the same time.

Summary of Novel Contributions

e We present SEM—O—RAN, the first semantic and flexible
slicing framework to support edge-assisted DL task offloading

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

(a) Compression 0.47x, 29.5 KB (b) Compression 0.04x, 2.3 KB

Fig. 1: Stronger compression rates make some objects unde-
tectable and/or harder to detect by CV-based DL models.

in NextG networks. SEM—-O—-RAN is fully compliant with the
O-RAN specifications (Section III), which allow for the near-
real-time control of slices configuration. To perform the actual
slicing, we mathematically formulate the Semantic Flexible
Edge Slicing Problem (SF-ESP), which (i) optimizes the
number of DL tasks executed at the RAN edge while (ii)
guaranteeing strict guarantees on the DL task latency/accuracy,
and (iii) avoiding resource over-provisioning (Section IV).
The SF-ESP is fundamentally different from existing
formulations, since (a) it incorporates highly non-linear re-
lationships between slicing, compression, end-to-end latency,
and classification accuracy; (b) employs flexibility in resource
assignments to balance the consumption of the different types
of resources and avoid the depletion of the most requested
ones. We demonstrate that the SF-ESP is NP-hard, and propose
a greedy algorithm to solve it efficiently (Section IV-C);

e We evaluate SEM—-O-RAN through extensive numerical
analysis (Section V-B) and through a prototype implemented
on the Colosseum network emulator [19] (Section V). We
consider two state-of-the-art CV problems, i.e., multi-object
detection with the YOLOX model [20] and the COCO dataset
[21], as well as the image segmentation problem on the
Cityscapes urban mobility dataset [9] with the BiSeNet v2
real-time classifier [22]. We compare SEM-O-RAN with 5
baselines, including the state-of-the-art SI-EDGE framework
[11]. Our results show that SEM—O—RAN improves the number
of allocated tasks by up to 169% and by 18% on average with
respect to SI-EDGE. To allow replicability and benchmark-
ing, we have released our algorithm as open-source'.

II. TWO KEY CONCEPTS IN SEM—0O—-RAN

The first main concept is the semantic-based slicing. In
Fig. 1, we notice that different target classes have different
tolerances to image compression. Intuitively, some classes
are semantically “harder” than others, especially in some
circumstances. For example, a person or a car can be more
easily identified in a noisy image as opposed to a bicycle
or a backpack. In the left side of Fig. 2 we quantitatively
evaluate this behaviour, showing the mean Average Precision
(mAP) values corresponding to the different mobile sensing
applications defined in Tab. II. The mAP is a metric used
to evaluate object detection models, defined as the mean over
all object classes of the area under the Precision-Recall Curve.
The takeaway point here is that there is a margin for significant

Thttps://github.com/corrado113/Semoran

compression on the images sent to the edge for inference, while
still obtaining acceptable inference accuracy on average.

The second concept is the flexibility in task resource alloca-
tion. Indeed, a task requires many different kinds of resources,
from networking to computation and storage. Therefore, the
slicing algorithm can allocate different amounts of resources
in each category and still meet performance requirements. To
illustrate this point, the right side of Fig. 2 shows experimental
end-to-end task latency results of inference on the state-
of-the-art YOLOX deep neural network (DNN) model for
object detection [20] computed using the Colosseum network
emulator [19], as a function of the allocated Resource Block
Groups (RBGs) and GPUs. In this plot, 10 images per second
were generated from a single User Equipment (UE), without
employing image compression.

o
@
o

o
o
IS

X 6.0625
Y 2.995

Level 0.356092
d

X 5.875
Y 2.0326
Level 0.483161

o}

X 10
Y 2.0326
Level 0.364039

.

o
o

mean Average Precision
o
B

0 02 04 06 08 1 5 . . . A
Compression scaling factor RBGs

Fig. 2: (Left) Mean Average Precision (mAP) as a function

of the compression scaling factor for the application classes

defined in Tab. II; (Right) Experimental latency as a function

of allocated radio Resource Block Groups (RBGs) and GPUs.

The key takeaway is that more than one combination of
RBG/GPU allocations can lead to the same latency perfor-
mance while allowing more allocated tasks. For example, let
us assume that 25 RGBs and 4 GPUs are the maximum radio
and computational resources available in the RAN, and that
two tasks (T1 and T2) requiring 0.4 s of latency need to
be allocated. According to Fig. 2, two different RGB/GPU
allocations meet the 0.4s latency requirement, namely (6, 3)
and (10, 2). Let us assume T1 is allocated (6, 3), which is
the most resource-efficient allocation. In this case, however,
T2 could not be allocated as there would only be 1 GPU left.
Instead, if (10, 2) is allocated to T1, T2 can be allocated since
2 GPUs and 10 RBGs are still available.

ITII. THE SEM-O-RAN FRAMEWORK
A. Background Notions on O-RAN

The core philosophy behind O-RAN is the clear separation
the RAN software and hardware [23], by disaggregating the
RAN into a Radio Unit (RU), Centralized Unit (CU) and Dis-
tributed Unit (DU). The RU implements extremely low-latency
operations related to the lower Physical Layer (PHY). The DU,
in turn, implements the upper portion of the PHY, as well as
the Medium Access Control (MAC) and Radio Link Control
(RLC). These are controlled in a softwarized manner by a
RAN Intelligent Controller (RIC), which is further divided into
a Non-real-time RIC, handling high-level RAN orchestration

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

Virtual Network Operator (VNO) Space Physical Radio and Edge Infrastructure COCO Dataset CityScapes Dataset
(()) () YOLOX MASK-R-CNN
Mobile Mobile Mobile G DU/RU 1 @, DU/RUM (D) D Radio Info:
Task 1 Task 2 Task N s — A - A 8 @ [
Y U U SNR of
. ; I U UE1 ... UES0
O-RAN Slice Request (OSR) l, Centralized P2 U 7
Unit (CU) RAN Edge l O Edge Info:
Task Descriptor Task Requir t: T |\ T="1 et 3) v .
DL Service Latency & Accuracy B B0 ! Semantic] U Available
DL Model Number of UEs Radio Computation ' Deep L . | U GPU: 50%
DL Target Classes Tasks per Second Statistics Statistics < || Ueep Learning -y
| Analyzer rApp ! Latency/ Accuracy
r'r— 1 |1 - |1 =====p---- 1) Functions 5)
Human- lJ — 1 <3 O N T .
achi o1 [;
Machine - Task 1 Descriptor Task 2 Descriptor { Semantic i
R,a‘,i‘" Object Recognition Image Segmentation Edge Slicing 1
Task Descriptor | | | | oo~ Slicing 'YOLOX DL Model MASK-R-CNN DL Model] xApp !
Al i Semantic i (RBs) Person, Car, Bicycle N/A SR ——
—— — Edge Slicing -
- 1 1 C
U Fee R EEES w] xApp ! orrii1$51on Task 1 Requirements Task Requirements
U _Ll Semantic |_|’> U T [sk Less than 0.5s latency, Less than 0.1s latency, @)
U 0 Deep Learning | ‘ T BeriTask More than 85% accuracy, More than 90% accuracy,
100 UEs, 50 Tasks 10 UEs, 30 Task:
DL :_ _A_n_aly_zir_rffp__: Latency & Task Computation g picOllesks b pdOlecks 5
Model Accuracy Requirements Slicing = T
5 7’ RAN and Edge Slicing:
GPU, RAM 8 8 (6)
Databass G () 70% RBs, 40% GPU to Task 1, Compression: 50%
Non-Real-Time RIC Near-Real-Time RIC 30% RBs, 60% GPU to Task 2, Compression: 40%

Fig. 3: Functional Blocks and O-RAN Interfaces used by SEM-O-RAN (Left); A Walk-through of SEM-O-RAN (Right).

and management, and a Near-real-time RIC, implementing
fine-grained control policies such as RAN slicing, scheduling,
and load balancing. Third-party applications called xApps and
rApps can be hosted in the Non-real-time RIC and Near-real-
time RIC, respectively. The former may implement data-driven
control loops or may be used for RAN-specific data collection
and analysis. On the other hand, rApps may implement high-
level policy guidance as well as application-level interfaces.
Please refer to [16] for more information regarding O-RAN.

B. SEM—-O-RAN: Functional Blocks and Interfaces

Fig. 3 shows the functional blocks of SEM-O-RAN, as
well as how the blocks are mapped into the O-RAN modules
and interfaces. The core modules of SEM-O-RAN are the
Semantic Deep Learning Analyzer (SDLA) and the Semantic
Edge Slicing Module (SESM), which respectively reside in
the Non-real-time RIC and Near-real-time RIC portions of the
O-RAN as an rApp and an xApp. The SEM-O-RAN and the
VNO communicate through a human-machine interface [16].
Each VNO requires slices for a given set of mobile tasks. Each
mobile task corresponds to an O-RAN Slice Request (OSR),
which is composed of a Task Description (TD) field and a
Task Requirements (TR) field. The TD is used to define the
DL service requested, the DL model to be used and the DL
target classes, while the TR specified the latency and accuracy
requirements, the number of UEs requested, and the number
of jobs (e.g, inference on an image) per second generated by
the UEs. As shown in Fig. 3-Right, a TD could be (’Object
Recognition”, ”YOLOX”, ”{Person, Car, Bicycle}”), with the
corresponding TR defined as (”0.5 s max latency”, ”0.85 min
accuracy”, 7100 UEs”, 7’50 jobs/sec”). The TD is submitted
to the SDLA rApp, which is tasked to compute the latency
function [(-) and accuracy function a(-), which output the
latency and accuracy values associated to a given TD, a given
level of task compression and amount of edge resources (see
Section IV-A for a more formal definition). The accuracy
function can be computed through representative datasets. An

initial value of the corresponding latency function can be
obtained through emulation.

The latency and accuracy functions are then shared with
the SESM xApp running in the Near-real-time RIC. These are
ultimately used to solve the Semantic Flexible Edge Slicing
Problem (SF-ESP), as detailed in Section IV. The output of the
SF-ESP xApp is ultimately three-fold: (i) select which tasks to
admit; (ii) their compression level; and (iii) the computational
resources (GPU/RAM) and the number of Physical Resource
Blocks (PRBs) assigned to each admitted task. Real-time
information about the available computational resources and
the current radio-level statistics are provided to the xApp
through the E2 interface. The former is used by the SF-ESP to
properly account for the resources that are actually available in
the RAN edge, which are shared through an Enriched Interface
(ED) to the RAN. The latter are used to select and update
the appropriate latency function from the SDLA according to
the radio channel status. The radio slicing and computation
slicing are respectively shared with the CU and the RAN
edge through the E2 interface. The CU then takes care of
propagating the slicing information to the appropriate DUs.
The compression level per task is fed back to the VNO,
which then communicates this information to the UEs. We
acknowledge that this is impractical at scale, however, as
of now, the O-RAN specifications do not allow for direct
communication between RIC apps and device applications.

C. A Walk-through of SEM—O—RAN.

We provide a simplified walk-through of an actual slicing
request and enforcement operation in SEM-O-RAN on the
right side of Fig. 3. First, TDs are sent to the SDLA rApp
(Step 1). If latency/accuracy functions are not already present,
they are computed by using the appropriate datasets/models
and stored in the Non-real-time RIC (Step 2). Otherwise,
the functions are sent to the SESM xApp (Step 3), which
receives the TRs (Step 4) and the current radio/edge status
(Step 5), which are used used to produce the RAN and edge

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

Video Surveillance Target Class DL Service Edge Platform

N _A : o ;
—>Ip Video object detection > Radio
—{Person = @
= Image super-resolution ["
R CPU
Target Seek & Track =
|] 2
—» | o |
.{5 .{ﬂ V.. Video object detection > |2’ [|__|Memory
» Vehicle L) (2 [
- Single object tracking | fé L
5] Storage
Crossing Monitoring § . ﬁ
N N — —— | |
—>»{ | Person| Multi object tracking > I GPU
[Zlgg OIS sl
[{Vehicle| video object detection [L

Fig. 4: System model example with C' = 3 application classes,
each of which is run by |D.| = 2,Ve € C devices. Each
device requests |T.4| = 2,Ve,d tasks to be offloaded to the
Edge infrastructure, thus requiring the concurrent allocation of
m = 5 types of radio and compute resources.

slicing (Step 6). Finally, the current radio/edge status may
be shared with the SDLA rApp for refinement of the latency
functions (Step 7) to be used for future slicing decisions. If
slice requests change, e.g., because a new task is created, a
new slicing allocation is computed. Note that new and already
running tasks are equally considered, thus it may happen that
previously running tasks are no longer admitted and must be
terminated.

IV. SEMANTIC FLEXIBLE EDGE SLICING (SF-ESP)

We introduce the system model in Section IV-A. Then, we
formalize the SF-ESP and prove its NP-hardness in Section
IV-B. We propose a greedy algorithm in Section IV-C.

A. System Model

We define an application class as a high-level objective
that has to be achieved through the execution of one or more
DL tasks with certain requirements. Every application class
specifies the DL service, the classes of objects over which the
DL service is supposed to be applied to, and the requirements
for maximum delay and minimum expected accuracy that a
device running that application must satisfy. For example, a
monitoring application class could require the detection and
tracking of person and vehicle objects located in proximity
of a road intersection with a minimum expected accuracy of
0.50 mAP and maximum end-to-end delay of 800 ms. Fig 4
shows an example with 3 application classes.

Let C = {1,...,C} be the set containing the application
classes. The set of devices running an application class ¢ € C
is D.. A device d € D., according to its application class
¢, submits a set of tasks 7., to be offloaded on the RAN
edge using its wireless link. A task, uniquely identified at the
system level by the tuple (¢, d, t), is the periodic execution at
the edge of a DL service over certain classes of objects, which
is applied over a stream of inference data sent by the device,
and whose results are then sent back to the requesting device,
for a period of time not known a priori. To make the notation
clearer, let us define 7 = (¢, d, t) € T as a generic task. Given
7, we define the compression scaling factor as z, € (0,1] =

{z € R|0 < z < 1} such that the bitrate of the inference data
stream is scaled by that factor, i.e. b2 = z;b,, where bZ is the
compressed stream and b, is the original stream without any
applied compression. A higher scaling factor implies higher
inference accuracy. A lower scaling factor sacrifices the data
quality to decrease the file size, thus requiring lower network
bandwidth and improving latency. In our model, we assume
that the inference data original stream size is constant and
depends on the application class. Furthermore, we assume the
compression latency as constant for different scaling factors.

Given the type of edge resource k € K = {1,...,m}, we
denote with s;; the amount of resource of type k assigned
to each task 7 € T. Resource types can be networking, e.g.,
Physical Resource Blocks (PRBs), as well as computational,
e.g., GPU time and memory needed to run the DL models in
the RAN edge. Since edge resources are limited and costly, the
total amount of assigned resources of type k cannot exceed the
capacity Sy, Vk. Thus, careful resource allocation is needed to
avoid over-provisioning. Since not every resource has the same
cost, we define the coefficient p; as the cost associated with
each edge resource type k.

The performance requirements are imposed by the related
application class. Such requirements are defined in terms of
(1) minimum expected prediction accuracy A. on the selected
object classes, and (ii) maximum expected end-to-end latency
L. for each of the applications running on the mobile devices
belonging to class c. By defining a, and [, respectively as the
expected accuracy and latency of task 7, an allocation solution
is acceptable only if a, < A. and I, > L., V7 = (¢, d,t) € T.
Notice that the accuracy and latency are not trivial functions
of the slice allocation and compression factor. Specifically,
the accuracy depends on the highly nonlinear output of a
DNN, while the latency has a strong dependency on the radio
technology and channel conditions between the RU and the
UE, even when the slice allocation and the compression factor
are given. For this reason, integrating a complex mathematical
model to account for all of the great numbers of factors
involved (e.g., Signal-to-Noise-Ratio (SNR), Modulation and
Coding Scheme (MCS), carrier(s) frequency to name a few)
would be impractical. Instead, we consider a data-driven
approach where the accuracy and latency functions can be
constructed through a regression model, keeping the explicit
dependencies of the accuracy a-(z) : (0,1] — RT and latency
l-(z,8) : (0,1] x R*™ — R functions on the compression
scaling factor and resource allocation, and assume that those
are given as part of the problem input. In the performance
evaluation, we consider latency and accuracy as piecewise
functions defined only for the discrete solution values allowed
in our experiments.

B. SF-ESP Problem Formulation

We consider the decision variables to be as follows:

e X = [z,], defined as the task admission vector where
the generic element, z., is a binary variable indicating
whether task 7 is offloaded to the edge or not;

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Table of Symbols

[Symbol [Description

Set of all application classes

Application class index

Mobile device index running an application

Task index requested by a device

t-th task requested by device d belonging to class ¢
the generic task identified by the triplet (c,d,t)

Set of all tasks 7 of all devices from all classes

Set of all Edge resource types

Edge resource type index

m Total number of resource types
Pk Price of the resource type k
xTr Admission of task T
Stk Slice allocation of the resource type k for T
Sr Slice allocation vector (S+1, ..., S7m) for T
ar Expected inference accuracy for the task 7
lr Expected E2E latency for the task 7
Ac Minimum accuracy tolerable for class ¢ tasks
Le Maximum latency tolerable for class c tasks
Zr Compression scaling factor for the task 7
Sk Total capacity of type k resource

e s = [s;] = [($r1,,Srm)], i.€., the resource allocation

matrix;

e Z = [2,] defined as the compression scaling factor vector.

Note that the data quality is maximum when z, = 1 and
decreases for lower values of z,. Consequently, the expected
inference accuracy a,(z) is directly derived from z,, as it
has no dependency from the resource allocation, while the
expected latency [(z, s) is a result of the choice of both z, and
{8+ }vk- The problem formalization according to the system
constraints and definitions is given by:

m
S ;Tzk:pk(&c — G0 BE (1a)
s.t. > sewwr < Sk, k=1,...,m, (Ib)
€T
zr € (0,1], Vr € T, (1)
ar(z:) > Acx, NT €T, ce C, (1d)
l-(27y87)2: < L., VT €T, ceC, (le)
o, € {0,1}¥r € T. (1)

The objective function (la) maximizes the number of allo-
cated tasks =, according to their priority py, while minimizing
the allocated resources s,;. Notice that the SF-ESP includes
both integer and continuous variables, thus it belongs to the
class of mixed integer nonlinear problems (MINLP). Theorem
1 below proves that the problem is NP-hard.

Theorem 1. The SF-ESP is NP-hard.

Proof. We prove the result by showing that the binary mul-
tidimensional Knapsack problem (0/1 d-KP), which is NP-
hard [24], can be reduced to an instance of the SF-ESP in
polynomial time. Let us assume that the compression factor
is fixed to z; = 1,Vr, and the slice allocation s.; is given
for every task and resource type. Then let us ignore the

constraints on performance by making them always satisfied,
i.e., by setting A; = 0 and L; = inf. The problem now has
only x as the decision variable and the value and weight of
each task are known and constant. The problem thus is an
instance of the 0/1 d-KP, whose statement is the following:
given a set of items (tasks), each with a multidimensional
weight (resource allocation) and a value (unused resources by
their price), determine which items to include in a collection
so that the total weight is less than or equal to a given limit
(total resources) and the total value is maximized. We observe
that the SF-ESP is a reduction of 0/1 d-KP that can be built
in polynomial time. u
The above proof also suggests that SF-ESP is a harder
problem than 0/1 d-KP, as it is a combination of the 0/1 d-
KP, and a variant of the strongly correlated knapsack with
variable weights and non-linear constraints. Even though
an algorithm with (1—¢)-approximation ratio exists for the 0/1
d-KP [25], for the strongly correlated knapsack with variable
weights an algorithm with an acceptable approximation ratio is
available only for the simpler case where constraints are linear
[26, KL.C2]. Thus, we provide a greedy heuristic algorithm for
which, however, the existing results do not permit to obtain a
non-trivial approximation ratio.
C. Greedy Algorithm for the SF-ESP

Given the NP-hardness of the SF-ESP, we propose a greedy
heuristic to find a sub-optimal solution with low computational
complexity, which is based on the primal effective gradient
method of [27] for the 0/1 d-KP. This method sorts tasks
based on their effective gradients, a measure of the task’s
relative value according to a penalty vector that prioritizes
the allocation of unused resources, then it admits tasks with
the highest gradients. However, to calculate the gradient of
a task, we need to first find its resource requirement. If we
assume that the latency function [(z,, s,) is monotonically
increasing over the compression factor z,, then the optimal
task compression factor z is the minimum that satisfies the
accuracy requirement A, from (1d):

*_

Zr

min z; s.t. a-(z;) > A)

zr
As for the resource allocation s.., our requirement-driven task
definition allows for the latency and accuracy constraints to
be satisfied with several combinations of resource allocations,
with the best being not the minimum, but the one that maxi-
mizes the number of admitted tasks. Then, the optimal choice
is to balance resource consumption according to resource
availability. E.g., if radio resources are scarce, instead of
depleting them, we allocate a few radio resources and balance
the increased network latency by lowering the processing delay
through increased compute resources, to allow additional tasks
to still use the remaining radio resources. We achieve this
behavior by maximizing the primal gradient function of [27]:
st = argmax PG(s;)

sr

(3
st (25, 8:) < Le, Sri < Sk — ZSTkIT ,Vk
7T

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

To efficiently find a solution to Eqgs. 2 and 3, which depend
on the definition of the accuracy and latency functions, it
would be necessary to know the properties of the functions
(e.g., monotonicity, convexity). Since we consider accuracy
and latency as generic functions, we solve the equations
through the enumeration of the resource allocation solution
space.

Algorithm 1 Greedy Algorithm for the SF-ESP

1: T, + T > consider all tasks candidate for admission

2: for all 7 € T do

3: G, 0,2, < 0,5, < (0,...,0), 2, < 1

4 if 327 then > if minimum accuracy can be met

5: zr <= 2zX > save the optimal compression factor

6: else

7: T, « T, \ T

8: repeat

9: for k < 1,m do

10: Ok <= D er SThTr > occupied resources

11: for all 7 € T, do

12: if 3Gy < max,_, PG(s;) s.t. s; < Sk — o, Vk
then

13: sy < argmax, PG(s;) s.t. 571 < Sk — o

14: else

15: T.+ T\ T

16: T+ 7| Gy = max{G,; }v,

17: Ty 1 > admit task whose gradient is maximum

18: T« T\ 7
19: until 7, = (
20: return (z,, Sr, 27)vreT

21: function PG(s;) > calculate the primal gradient

22: if o, = 0,VEk then > penalize resource usage equally
23: return (ZZL pr(Sk — STk))nl/Q/(ZZL Srk/Sk)

24: else > penalize resource usage as per availability
25: return O pr(Sk —

sei)) (X o) 2/ (32 sron/Sk)

The preliminary step of the greedy algorithm (Alg. 1) is to
(1) include all submitted tasks to the candidate task set (line 1),
that contains the tasks that are considered feasible and worth
of admission, and (ii) initialize the solution by setting the
task admission vector and resource allocation matrix to zero,
and the compression scaling factor to the unitary vector (line
3). Then, for each task, the optimal compression factor z* is
calculated according to its target accuracy (line 5), as per Eq. 2.
An initial pruning of the candidate task set is performed by
removing tasks whose target accuracy can not be met for any
compression factor (line 7). The main loop of the algorithm
(lines 8-19) examines the tasks in the candidate task set to
find the most convenient one to admit, based on the current
resource occupation and until the set empties. First, the current
resource occupation vector is updated (line 10). After that, the
maximum primal gradient of each task in the candidate task
set is calculated by exploring the feasible resource allocations
(line 12), following Eq. 3. The primal gradient is calculated

according to the function, defined in lines 21-25, in which
the return value is computed differently whether resources
are currently free (line 23) or not (25). If the maximum
gradient is found, then the corresponding resource allocation
for the examined task is saved (line 13), otherwise the task is
discarded (line 15). Then, the task with the maximum value
of maximum primal gradient is found (line 16), admitted by
setting to one its corresponding value of the task admission
vector (line 17) and therefore removed from the candidate task
set (line 18). Finally, after the loop ends, the task admission
vector, the resource allocation matrix, and the scaling factor
vector are returned as the solution of the SF-ESP (line 20).

V. PERFORMANCE EVALUATION

We evaluate the performance of SEM-O-RAN through ex-
tensive numerical analysis (Section V-B) and practical exper-
iments on the Colosseum network emulator (Section V-C).
A. Experimental Setup

Applications and datasets. As far as the DL services
are concerned, we consider object detection and instance
segmentation, which are state-of-the-art problems in computer
vision (CV). For the former, we consider (i) the widely-
known Common Objects in Context (COCO) as the dataset,
which is a large-scale image database containing more than
200K labeled examples across 80 object classes [21]; (ii) the
YOLOX classifier, which is based on the Modified CSP v5 as
the backbone and has 54.2M parameters [20]. For the latter,
we selected (i) the Cityscapes dataset, which contains pixel-
level annotated video sequences of street scenes recorded in
50 different cities [9]; (ii) the BiSeNet v2 real-time classifier,
which is based on a bilateral segmentation backbone network
and has 14.8M parameters [22]. For performance evaluation
purposes, we define a set of 10 object detection tasks in Tab. IIL.

TABLE II: Multi-object detection applications.

[Application | Target Classes |
COCO All Entire set of classes (80) of COCO
COCO Urban Bicycle, car, motorcycle, bus, truck, traffic
light, stop sign, person
COCO Bags Handbag, backpack, suitcase
COCO Animals Bird, cat, dog, horse, sheep, cow, elephant,

bear, zebra, giraffe

Person

All evaluation classes (19) of Cityscapes
Car, truck, bus, train, motorcycle, bicycle
Pole, traffic light, traffic sign

Road, sidewalk

Person

COCO Person
Cityscapes All
Cityscapes Vehicles
Cityscapes Objects
Cityscapes Flat
Cityscapes Person

Baselines. For comparison purposes, we consider the fol-
lowing baselines: (1) SI-EDGE [11], the state-of-the-art algo-
rithm for RAN edge slicing; (2) MinRes-SEM, an algorithm
that considers the semantics but, instead of flexibly allocating
resources, it allocates the minimum resources for each task; (3)
FlexRes-N-SEM, which implements flexible resource alloca-
tion following Eq. 3 but does not consider the semantics; (4)
HighComp, which compresses each task to 10% of its original
size, so as to reach mAP of about 0.25 in the COCO dataset.
This is a baseline that tries to compress aggressively tasks

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

to minimize resources; (5) HighRes, which statically allocates
tasks 20% of the total amount of resources. This is a baseline
that attempts to maximize the probability that admitted tasks
will meet application constraints.

Prototype on Colosseum. We designed and developed a
proof of concept of SEM-O-RAN on the Colosseum network
emulator [19], and used the open-source SCOPE framework
[28] as prototyping platform for NextG systems. Since SCOPE
did not support the uplink slicing of resources, we extended
SCOPE to implement uplink slicing as well.

GPUs (()) Radio
(1 per SRN, 1 an Intelligent
20 total) Controller
| (RIC)
DNN Massive Channel Emulator DU/
Models (MCHEM) CU/RU
1
| V) !
Task 1: “Bags” Task 2: “Animal” Task 3: “Flat” Uplink
6 SRNs 6 SRNs 6 SRNs Streaming
Latency: 0.31s Latency: 0.31s Latency: 0.5s Traffic
mAP: 0.18 mAP: 0.50 mloU: 0.50 (1SRN)

Fig. 5: Experimental setup on Colosseum.

Fig. 5 shows a high-level overview of the SEM-O-RAN
prototype. We utilize a set of 20 Standard Radio Nodes
(SRNs) to implement the O-RAN network, with 1 SRN used
to process received jobs of admitted tasks and to implement
the DU/CU/RU and the RIC, where we run the slice admis-
sion system and the solvers of the SF-ESP, implemented in
MATLAB. Out of the remaining 19 SRNSs, to emulate traffic
separated from the mobile applications requiring RAN slices,
we use one SRN to generate uplink streaming traffic with the
iperf tool. The other 18 SRNs are used to implement a system
where a VNO requests three slices for object detection tasks.
Up to 20 Tesla K40m GPUs can be utilized to run the DNNSs.
As for the PHY, we utilize the standard SCOPE parameters,
i.e., 10 MHz of bandwidth corresponding to 50 PRBs in total
grouped in 17 RBGs. We assign the uplink streaming traffic
2 RBGs, thus, 15 RBGs are available for slicing.

B. Numerical Results

Fig. 6 shows the number of allocated tasks by SEM—-0-RAN
and the baseline algorithms, as a function of the number
of requested tasks. To further investigate the impact of our
approach, we consider (i) different numbers (2 and 4) of
edge/network resources (e.g., CPUs, GPUs, PRBs, etc.); (ii)
different thresholds of accuracy (“low”, “medium” and “high”)
and latency (“low”, “high”). We define the accuracy thresholds
A, as 0.20, 0.35, and 0.55 mAP for object detection tasks and
0.35, 0.50, and 0.70 mean Intersection over Union (mloU) for
instance segmentation tasks, while for latency threshold L.
we choose 0.2 seconds and 0.7 seconds. Tasks are equally
distributed across the applications defined in Tab. II. We

empirically formulate a latency function [, that expresses the
computational and network latency as a function of compres-
sion factor, resource allocation, and task generation rate.

Fig. 6(a) shows that, in general, the performance of
SEM-O-RAN is similar to the one given by MinRes-SEM.
Even when the requirements are medium accuracy and high
latency, SEM—-O—-RAN allocates 20% more tasks than SI-EDGE
and FleRes-N-SEM, and 402% more tasks than HighRes,
when 50 tasks are generated. On the other hand, when the
accuracy requirements deviate from medium, we start to
notice that SEM-O-RAN delivers significantly better perfor-
mance than SI-EDGE. Specifically, we notice that when high
mAP/mloU is required, only SEM-O-RAN and MinRes-SEM
are able to allocate tasks that meet the requirements. SI-EDGE
does not allocate tasks since SI-EDGE considers all the tasks
as belonging to the ”All” application, which can never reach
the required mAP/mIoU of 0.55/0.70 (see the left side of
Fig. 2). While HighComp and HighRes do allocate tasks, they
will not meet the requirements. The reason is that HighComp
and HighRes allocate tasks while being agnostic of the target
latency and accuracy. The effect of joint semantic slicing and
flexible resource allocation is even more evident in Fig. 6(b),
where more types of edge/network resources are considered. In
this case, SEM—-O-RAN overperforms all the other schemes in
all of the considered scenarios, especially when the number of
tasks increases and the requirements become more stringent.
The results indicate that SEM—O-RAN allocates up to 169 %
more tasks than the existing state-of-the-art SI-EDGE
algorithm and 18,5% on average.

C. Experimental Results

Fig. 7 shows our experimental results on Colosseum, in
which we change the VNO slice requirements by updating
the number of frames per second (fps) that will be generated
by each UE every 25seconds, while latency and accuracy
constraints are kept constant (values in Fig. 5). Whenever the
requirements are updated, SESM computes a new solution
and enforces new slice configurations. Thus, we report the
experimental end-to-end latency for each slice as a function of
time, as well as the end-to-end latency threshold requirement
for each task. To further investigate the advantage of flexible
allocation and semantic slicing, we compare SEM—-O-RAN to
MinRes-SEM and FlexRes-N-SEM. Accordingly, we show the
related output of the slicing algorithm in terms of RBGs (radio
resources) and GPUs (computing resources).

We see that SEM-O-RAN successfully allocates “Bags”,
”Animals” and “Flat”. Notice that the reason why RBG allo-
cation decreases as the fps request decreases is that for lower
values of fps, the experienced latency increases, since some
time is spent for LTE uplink scheduling requests from the UEs
[29]. With higher fps, the UE is able to use RBGs granted
by the eNB to exchange traffic pertaining to multiple frames,
thus leading to lower latency even if network utilization is
higher. In the third and fourth periods, all three tasks are
allocated by SEM—-O-RAN. The impact of flexible resources
is demonstrated in (e) where we see that MinRes-SEM does

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

- SEM-O-RAN MinRes SEM - HighComp - Tasks executed within constraints

[s-EDGE I FiexRes N-SEM [HighRes £ """ Tasks executed exceeding constraints
Low accuracy, Low latency Low accuracy, High latency Low accuracy, Low latency Low accuracy, High latency

15 15 30 30 /

10 —— — 10 . - s 20 - ;‘ 3

et i WL L BB s b b b bwe KL BL

. . ‘ ; ; N . . . = " - -

10 20 30 40 50 10 20 30 40 50 10 20 30 40 51 10 20 30 40 50
ﬁ Medium accuracy, Low latency Medium accuracy, High Iantem:y= Q Medium accuracy, Low latency Medium accuracy, High latency
o 2 30 30
= el =
9} - ! @ i
20 30 40 50 1 20 30 40
High accuracy, High latency High accuracy, High latency
30
20
10 b L
0 75 l i
10 20 30 4
Requested tasks Requested tasks
(a) Numerical results with 2 types of edge/network resources. (b) Numerical results with 4 types of edge/network resources.

Fig. 6: Numerical results and comparison between SEM—O-RAN and baselines.

| — Measured end-to-end latency — — — — Mean end-to-end latency threshold Allocated RBGs — Allocated GPUs
0.36 0.36 T
Lat[s]o Lat [10.52 Lat[s] *°F
atsfp.32 at [s]0.32 — 1 1 R at|s =17 — 7 71T — 7 — — — 7
0aPAAMA A = — 0_3YUA\A/\VWAVVN\\ of
0.28 0.28 05}
6 6 6r
RBGs4 RBGS4 FiBGs4
GPUs GPUs GPUs —
22 1fps 5 fps 10 fps 20 fps 22 1fps 5 fps 10 fps 20 fps 22 fps 5 fps 10 fps 20 fps
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Time [s] Time [s] Time [s]
(a) SEM-O-RAN, ”Bags”, z = 0.28 (b) MinRes SEM, "Bags”, z = 0.28 (c) FlexRes-N-SEM, "Bags”, z = 0.14
0.36 0.34 4
0.34 032 0.5}
Lat [s]0.32 A a AL] — Lat[s] = | — — — W 77777 o Lat[s] [~ —— —t+ —— —F — — — j ———
0.3 0.3 of
0.28 0.28 -05F
6 6 6F
RBGS4 RBGS4 RBGS4'
GPUs GPUs GPUs
212 fps 5 fps 10 fps 20 fps 212 fps 5 fps 10 fps 20 fps 212 fps 5 fps 10 fps 20 fps
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Time [s] Time [s] Time [s]
(d) SEM-O-RAN, ”Animals”, z = 0.28 (e) MinRes-SEM, ”Animals”, z = 0.28 (f) FlexRes-N-SEM, ”Animals”, z > 1
0.6 0.6 0.6
Lat[s]0.5~ — — — + — — — + — — — —| — = Lat[E% T T - Lat[s]05— — — — 1 — — — 1 I
0.4F 0.4r 0.4
6f 6F 6l
RBGs, | RBGs,, | RBGs ,|
GPUs —— GPUs E— GPUs
2 2fps 5fps [T0fps |20 fps 2 2fps 5fps [T0fps |20 fps 2 2 fps 5fps 10fps 20 fps
20 40 60 80 100 20 40 60 80 100 20 20 60 80 100
Time [s] Time [s] Time [s]
(g) SEM-O-RAN, “Flat”, z = 0.08 (h) MinRes-SEM, ”Flat”, z = 0.08 (i) FlexRes-N-SEM, “Flat”, z = 0.18

Fig. 7: Experimental results obtained through Colosseum, where we report the end-to-end latency as a function of time, as
well as the end-to-end latency threshold requirement. We change the slice requirements by updating the number of generated
frames per second (fps) by each UE every period of 25 seconds and show the related output of the slicing algorithm in terms
of RBGs (radio resources) and GPUs (computing resources). In each caption, we show the chosen compression rate.

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

not allocate ”Animals” in the first period. The reason is that
SEM-O-RAN is balancing RBGs with GPUs, requesting 6
RBGs and 5 GPUs during the first period. Since MinRes-SEM
would have requested 8 RBGs and 1 GPUs, this would have
led to 16 RBGs in total, which exceeds system capacity.

Finally, from Figs. (c), (f) and (i) it emerges that FlexRes-
N-SEM, by not considering the semantics, performs worse
than the former two approaches. By keeping in mind that
FlexRes-N-SEM assumes that every task is of type “All”, it
will compress the tasks in “Bags” to 14% of their original
size to maximize the number of tasks allocated. Conversely,
SEM-O-RAN and MinRes-SEM compress “Bags” to 28%,
which leads to successful allocation since the mAP constraint
will be met. Worse yet, FlexRes-N-SEM will allocate re-
sources for “Bags” but the tasks will fail because they will
not meet the required mAP. Thus, even if FlexRes-N-SEM
saves resources by compressing more, it cannot achieve the
required mAP. As shown in Fig. 7(f), the ”Animals” task is
never admitted by FlexRes-N-SEM, because it assumes that a
mAP of 0.5 can never be reached by ”All”, while SEM-O—-RAN
and MinRes-SEM, by considering the semantics, compress
the tasks to the optimal level and can successfully admit it.
As for “Flat”, FlexRes-N-SEM is always able to allocate it
successfully but, by assuming the type as the more complex
“All”, it does not select the same aggressive compression
factor that instead is chosen by SEM—-O-RAN and MinRes-
SEM (18% instead of 8%), at the cost of higher RBGs
consumption in the latest period of Fig. 7(i).

VI. RELATED WORK

RAN slicing has attracted significant attention over the last
years [11], [12], [14]. Moreover, as the RAN gets softwarized,
mobile edge computing (MEC) becomes crucial to address the
ever-stringent latency demands of mobile applications [30],
[31]. We refer the interested reader to the surveys [32], [33].

Specific to the slicing of edge resources, Van Huynh et
al. [34] presented a mechanism for slicing of computation,
networking, and storage through a deep dueling neural net-
work that provides slices admission while avoiding over-
provisioning and maximizing the VNO’s reward. However, the
authors in [34] do not focus on how to partition the MEC
resources and only focus on admission control. Conversely,
Ndikumana et al. [35] consider the allocation of heterogeneous
resources for MEC task offloading, while in [36] Liu et al.
propose a framework for MEC-enabled wireless networks
called DIRECT, which however does not consider the case
when MEC and networking resources are on the same edge
node. Moreover, these frameworks are not O-RAN-compatible,
which is instead one of the primary targets of this paper.

So far, most of the research focus in O-RAN has been
on designing algorithms for RAN control and optimization.
Bonati et al. [18] have developed an xApp running deep rein-
forcement learning (DRL) agents to select the best-performing
scheduling policy for each RAN slice. In our work, we do not
select scheduling policies but instead focus on RAN slicing.
D’Oro et al. [17] proposed an orchestration mechanism to
select the optimal DL models and execution location for each

model complying with timescale requirements, resource, and
data availability. Conversely, we focus on properly slicing
MEC resources for timely execution of CV-based DL models
under strict accuracy constraints. Although flexible resource
allocation has been considered in the context of Virtual
Network Function (VNF) [37], [38], existing formulations do
not consider application semantics, and, in general, cannot be
easily applied to address edge task offloading problems.

The closest work to ours is SI-EDGE [11], a MEC slicing
framework that allows network operators to instantiate hetero-
geneous edge slices. The key limitation of SI-EDGE is that it
does not consider DL semantics, which is the core advantage
of our approach.

VII. CONCLUDING REMARKS

We have proposed SEM—-O—-RAN, the first semantics-based
slicing framework for NextG O-RAN networks. SEM—O—-RAN
delivers better performance by semantically compressing
the images sent to the edge. Moreover, unlike prior art,
SEM-O-RAN does not consider each task as monolithic, but
flexibly allocates radio and computational resources so as to
maximize the number of admitted tasks. We have mathemati-
cally formulated the Semantic Flexible Edge Slicing Problem
(SF-ESP), demonstrated that it is NP-hard, and proposed a
greedy approximation algorithm to solve it efficiently. We have
evaluated the performance of SEM-O-RAN through extensive
numerical analysis by comparing it to several baseline algo-
rithms including the state-of-the-art scheme [11]. We have
implemented a prototype of SEM-O-RAN by using the Colos-
seum network emulator through the SCOPE framework for
NextG systems [28]. Our numerical and experimental results
show that through our semantic-based approach, SEM-O-RAN
improves the number of allocated tasks by up to 169% with
respect to the existing state-of-the-art work, while still meeting
accuracy and delay constraints. We believe that beyond the
results presented in this paper, the proposed semantic-based
approach can serve as the foundation for future research on the
utilization of application-level features in the low-level design
and optimization of wireless networks.

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER

This work is funded in part by the National Science
Foundation (NSF) grant CNS-2134973 and CNS-2120447, by
an effort sponsored by the U.S. Government under Other
Transaction number FA8750-21-9-9000 between SOSSEC,
Inc. and the Government., and by the European Union’s
NextGenerationEU instrument, under the Italian National Re-
covery and Resilience Plan (NRRP), Mission 4 Component
2 Investment 1.3, enlarged partnership “Telecommunications
of the Future” (PE0O000001), program “RESTART”. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the NSF, the Air Force Research
Laboratory, the U.S. Government, or SOSSEC, Inc.

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[3]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Ericsson, “Ericsson Mobility Report,” tech. rep., November 2021.

S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-
to-Everything (V2X) Services Supported by LTE-Based Systems and
5G,” IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70—
76, 2017.

T. Zugno, M. Drago, M. Giordani, M. Polese, and M. Zorzi, “Toward
Standardization of Millimeter-Wave Vehicle-to-Vehicle Networks: Open
Challenges and Performance Evaluation,” IEEE Communications Mag-
azine, vol. 58, no. 9, pp. 79-85, 2020.

H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner,
and P. Xiao, “5SG NR-V2X: Toward Connected and Cooperative Au-
tonomous Driving,” IEEE Communications Standards Magazine, vol. 5,
no. 1, pp. 48-54, 2021.

E. Frachtenberg, “Practical Drone Delivery,” Computer, vol. 52, no. 12,
pp. 53-57, 2019.

Market Watch, “North America Self-driving Car Market - Global
Industry Analysis, Size, Share, Growth, Trends, and Forecast.”
https://tinyurl.com/w64u9jwn, 2020.

H. Ye, L. Liang, G. Ye Li, J. Kim, L. Lu, and M. Wu, “Machine Learning
for Vehicular Networks: Recent Advances and Application Examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94-101, 2018.
R. Ravindran, M. J. Santora, and M. M. Jamali, “Multi-object Detection
and Tracking, based on DNN, for Autonomous Vehicles: A Review,”
IEEE Sensors Journal, vol. 21, no. 5, pp. 5668-5677, 2020.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for
Semantic Urban Scene Understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimaries, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan,
D. Corujo, et al., “SGrowth: An End-to-End Service Platform for
Automated Deployment and Management of Vertical Services over 5G
Networks,” IEEE Communications Magazine, vol. 59, no. 3, pp. 84-90,
2021.

S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melodia,
“SI-EDGE: Network Slicing at the Edge,” in Proceedings of the Twenty-
First International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing, pp. 1-10,
2020.

S. Mandelli, M. Andrews, S. Borst, and S. Klein, “Satisfying Network
Slicing Constraints via 5G MAC Scheduling,” in Proceedings of IEEE
International Conference on Computer Communications (INFOCOM),
pp- 2332-2340, IEEE, 2019.

V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Slicing Cell
Resources: The Case of HTC and MTC Coexistence,” in Proceedings
of IEEE International Conference on Computer Communications (IN-
FOCOM), pp. 667-675, IEEE, 2019.

S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The Slice is
Served: Enforcing Radio Access Network Slicing in Virtualized 5G
Systems,” in Proc. of IEEE International Conference on Computer
Communications (INFOCOM), pp. 442450, 1IEEE, 2019.

G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, “POSENS:
A Practical Open Source Solution for End-to-End Network Slicing,”
IEEE Wireless Communications, vol. 25, no. 5, pp. 30-37, 2018.

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” arXiv preprint arXiv:2202.01032, 2022.

S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN: Network
Automation through Orchestrated Intelligence in the Open RAN,” in
Proc. of IEEE International Conference on Computer Communications
(INFOCOM), May 2022.

L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intel-
ligence and Learning in O-RAN for Data-driven NextG Cellular Net-
works,” IEEE Communications Magazine, vol. 59, pp. 21-27, October
2021.

L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, et al., “Colos-
seum: Large-Scale Wireless Experimentation Through Hardware-in-the-
Loop Network Emulation,” in 2021 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN), pp. 105-113, IEEE,
2021.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of European Conference on Computer Vision
(ECCV), pp. 740-755, Springer, 2014.

C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “BiSeNet V2:
Bilateral Network with Guided Aggregation for Real-Time Semantic
Segmentation,” International Journal of Computer Vision, vol. 129,
pp- 3051-3068, Nov 2021.

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art and the
Road Ahead,” Computer Networks, vol. 182, pp. 1-28, December 2020.
H. Kellerer, U. Pferschy, and D. Pisinger, Multidimensional Knapsack
Problems, pp. 235-283. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

A. Frieze and M. Clarke, “Approximation Algorithms for the m-
Dimensional 0-1 Knapsack Problem: Worst-Case and Probabilistic
Analyses,” European Journal of Operational Research, vol. 15, no. 1,
pp. 100-109, 1984.

K. Nip, Z. Wang, and Z. Wang, “Knapsack with Variable Weights
Satisfying Linear Constraints,” vol. 69, p. 713-725, nov 2017.

Y. Toyoda, “A Simplified Algorithm for Obtaining Approximate So-
lutions to Zero-One Programming Problems,” Management Science,
vol. 21, no. 12, pp. 1417-1427, 1975.

L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An Open and
Softwarized Prototyping Platform for NextG Systems,” in Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), pp. 415-426, 2021.

G. Pocovi, I. Thibault, T. Kolding, M. Lauridsen, R. Canolli, N. Ed-
wards, and D. Lister, “On the Suitability of LTE Air Interface for
Reliable Low-Latency Applications,” in 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pp. 1-6, 2019.

J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
Offloading in Multi-Access Edge Computing Using a Deep Sequential
Model Based on Reinforcement Learning,” IEEE Communications Mag-
azine, vol. 57, pp. 64-69, May 2019.

J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular
Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 2, pp. 2092-2104, 2019.
1. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429-2453, 2018.

S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for Internet
of Things Realization in 5G Networks,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 957-994, 2021.

N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and Fast Real-Time Resource Slicing with Deep Dueling
Neural Networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1455-1470, 2019.

A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint Communication, Computation, Caching, and
Control in Big Data Multi-Access Edge Computing,” IEEE Transactions
on Mobile Computing, vol. 19, no. 6, pp. 1359-1374, 2019.

Q. Liu and T. Han, “DIRECT: Distributed Cross-Domain Resource
Orchestration in Cellular Edge Computing,” in Proceedings of ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), pp. 181-190, ACM, 2019.

M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar,
“Dynamic VNF Placement, Resource Allocation and Traffic Routing in
5G,” Computer Networks, vol. 188, p. 107830, 2021.

J. Martin-Pérez, F. Malandrino, C. F. Chiasserini, M. Groshev, and
C. J. Bernardos, “KPI Guarantees in Network Slicing,” IEEE/ACM
Transactions on Networking, vol. 30, no. 2, pp. 655-668, 2021.

Authorized licensed use limited to: Northeastern University. Downloaded on October 06,2023 at 19:53:48 UTC from IEEE Xplore. Restrictions apply.

