
A
2
-UAV: Application-Aware Content and Network
Optimization of Edge-Assisted UAV Systems

Andrea Coletta†, Flavio Giorgi†, Gaia Maselli†, Matteo Prata†,
Domenicomichele Silvestri†, Jonathan Ashdown‡, and Francesco Restuccia⇤

†Department of Computer Science, Sapienza University of Rome, Italy
‡Air Force Research Laboratory, United States

⇤Institute for the Wireless Internet of Things, Northeastern University, United States
Corresponding Author: Andrea Coletta, e-mail: coletta@di.uniroma1.it

Abstract—To perform advanced surveillance, Unmanned
Aerial Vehicles (UAVs) require the execution of edge-assisted
computer vision (CV) tasks. In multi-hop UAV networks, the
successful transmission of these tasks to the edge is severely
challenged due to severe bandwidth constraints. For this reason,
we propose a novel A2-UAV framework to optimize the number
of correctly executed tasks at the edge. In stark contrast with
existing art, we take an application-aware approach and formulate
a novel Application-Aware Task Planning Problem (A2-TPP)
that takes into account (i) the relationship between deep neural
network (DNN) accuracy and image compression for the classes
of interest based on the available dataset, (ii) the target positions,
(iii) the current energy/position of the UAVs to optimize routing,
data pre-processing and target assignment for each UAV. We
demonstrate A2-TPP is NP-Hard and propose a polynomial-
time algorithm to solve it efficiently. We extensively evaluate
A2-UAV through real-world experiments with a testbed composed
by four DJI Mavic Air 2 UAVs. We consider state-of-the-art
image classification tasks with four different DNN models (i.e.,
DenseNet, ResNet152, ResNet50 and MobileNet-V2) and object
detection tasks using YoloV4 trained on the ImageNet dataset.
Results show that A2-UAV attains on average around 38%
more accomplished tasks than the state of the art, with 400%
more accomplished tasks when the number of targets increase
significantly. To allow full reproducibility, we pledge to share
datasets and code with the research community.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, have ob-
tained significant attention thanks to their potential use in post-
disaster scenarios, where human intervention is difficult or
inefficient due to the vastness and/or harshness of the area. The
key advantage of UAVs is the combined presence of advanced
sensor equipment, wireless multi-hop networking and mobility
in the same device, thus enabling critical applications such as
automatic target (e.g., object, person) detection and tracking.

To perform their functions, modern UAVs necessarily de-
pend on the execution of computation-heavy deep learning
(DL) tasks to analyze in real time the images of the target
area. These tasks usually rely on very deep neural networks
(DNNs) such as ResNet [1] and DenseNet [2], which are
computationally prohibitive for UAVs [3]. To extend UAVs
battery lifetime and keep task execution time within acceptable
levels, offloading the stream of tasks to neighboring edge

Approved for Public Release; Distribution Unlimited: AFRL-2022-1069.

servers (e.g., the depot) is a feasible option [4–9]. Unfortu-
nately, UAVs networks typically experience limited bandwidth
and frequent packet loss [10]. Prior work on UAV edge task
offloading — discussed in details in Section II — assumes
a single-hop communication between the UAVs and the edge
[11][12], or focuses only on networking aspects on a multi-
hop communication [13]. All fall short in considering the
specific task requirements, which ultimately limits the number
of correctly executed tasks. Existing work also rarely uses a
testbed to measure performance experimentally.

A B C D

Fig. 1: Examples of application-aware compression. A and C
(B and D) represent the images before (after) processing.

In stark contrast, we propose A
2
-UAV, an application-

aware (A2) optimization framework which jointly optimizes
UAV network deployment and task accuracy. Our key intuition
is that a different image compression will result in a different
accuracy for the DNN model. Specifically, compressed images
have low impact on the network throughput but decrease the
DNN accuracy. Conversely, uncompressed images are likely
to be classified more correctly but cause higher network
overhead. To better highlight this intuition, Figure 1 shows
an example of an original and compressed (l = 20) images
of Wildlife and Tools from the ImageNet dataset [14]. Figure
1.B shows how an hatchet at compression level l = 5 is less
recognizable with respect to its original version (Figure 1.A),
due to the low contrast with the background and the small
object dimension. On the other hand, Figure 1.D shows how
a jaguar at level l = 20 is easily distinguishable, thanks to its
fur pattern and the higher contrast with the background. We
consider lossy compression algorithms for images (e.g., JPEG
algorithm [15]), as lossless algorithms do not usually meet the
requirements of real-time applications.

Trading-off network load and latency with task accuracy
while aiming at maximizing the target coverage is a daunting
challenge. A2

-UAV considers all these aspects and balances

ar
X

iv
:2

30
1.

06
36

3v
2

 [c
s.N

I]
 2

4
Ju

l 2
02

3

between images compression and network coverage according
to current network conditions and application requirements.
In Section III-C we show that different applications have
starkly different compression-accuracy relationships. Specif-
ically, A2

-UAV maximizes the number of accomplished tasks
at the edge, producing a connected coverage formation for the
UAVs of the squad and a compression level assignment for the
UAVs that satisfy the application requirements. The connected
coverage formation is designed such that it jointly maximizes
the number of covered targets, minimizes network delay due
to inefficient routes or channel contention, and minimizes
task miss-classification due to high input compression. We
show through simulation and real-world experiments with a
testbed that GREEDY-Application-Aware Task Planning Prob-
lem (A2

-TPP) attains on the average 38% more accomplished
tasks than the state-of-the-art networking-based approach, with
a sharp increase (400% more accomplished tasks) when the
number of tasks to offload drastically increases.

This paper makes the following novel contributions:
• We design A

2
-UAV — a novel application-aware frame-

work that optimizes the number of accomplished tasks at the
edge by finding the best network deployment and compression
level assignment for the considered application. We first design
a Application Aware Task Analyzer (A2

-TA) to learn the
requirements of the tasks, and to map the possible data
compression of the UAVs to the expected task accuracy at
the edge. Then, we define the A

2
-TPP to assign the UAVs

to the tasks. We prove the NP-hardness of the problem and
formulate a polynomial-time GREEDY-A2

-TPP algorithm to
solve it efficiently;
• We study the performance of A

2
-UAV with extensive

simulations. We analyze six different critical applications for
UAVs, including Search-and-Rescue, Maritime and Wildlife
monitoring. We show how GREEDY-A2

-TPP accomplishes
around 38% more tasks with respect to existing network-
based approaches, thanks to its application-aware optimiza-
tion; Whereas, the NP-hard version (OPT-A2

-TPP) attains
on average 50% performance increase on restricted problem
instances.
• We implement A

2
-UAV into a testbed and perform

real-field experiments. We consider four UAVs and a Jetson
Nano board, mounting a Raspberry PI for computation and
communication. We execute an image analysis application
in which UAVs periodically acquire images from on-board
sensors, with different delay requirements. We implement four
state-of-the-art image classification models (i.e., DenseNet [2],
ResNet152, ResNet50 [1] and MobileNet-V2 [16]), and one
object detection model (YoloV4 [17]) which are executed at
the edge server on the Jetson Nano board, and we let the
UAVs offload tasks through WiFi connection. Experimental
results confirm the outstanding performance of A2

-UAV.

II. RELATED WORK

Only very recently has the literature considered task of-
floading in the context of edge-assisted DL-based applications
[10, 12]. Chuprov et al. [10] show how the performance of

the end-line ML systems is affected by the quality of data and
network. They consider packet loss and limited bandwidth in
a image classification task, and they recommend to stop the
system when packet loss reaches 2-5%. In Section V-C we
show that our system enables the classification task even with
15% of packet loss. Chen et al. [13] consider a hierarchical
offloading of computation tasks. Conversely from us, they
focus on the communication and routing of tasks toward a
more computational powerful device, without focusing on
the specific task requirements. Yang et al. [11] propose a
hierarchical DL task execution framework, in which only a few
lower layers of a Convolutional Neural Network (CNN) are on
the UAVs, while the edge server contains the higher layers of
the model, which need more resources. However, a single-hop
high-performance 4G network is considered, while we focus
on the more challenging scenario of multi-hop connectivity
toward the edge. Recently, Callegaro et al. [12] proposed
SeReMAS, a framework where the application-, network- and
telemetry-based features are used to select and assign UAVs
tasks to the most reliable edge servers. However, a single-hop
system is considered, and data compression is not explored.

As one of the output of A
2
-UAV is a connected cover-

age formation, we mention also some prior art on UAVs
deployment optimization [13, 18–22], which however does
not consider task offloading. Natalizio et al. [23] have consid-
ered the problem of minimizing networking resources while
maximizing the user experience (i.e., perceived quality) when
filming sport events. Moreover, [4, 5, 24] optimize network
deployment under continuous or periodic connectivity con-
straints, but they do not consider critical indicators such as
task accuracy with delay constraints, which are critical to the
UAVs mission. Recently, Nguyen proposed a Steiner-Tree-
Based Algorithm (STBA) for target coverage and network
connectivity [25], where Fermat points and the node-weighted
Steiner tree algorithm are used to find a tree such that most
of the targets are covered, and the UAVs are minimized.
In Section V, we consider variants of [25] as performance
benchmarks for A2

-UAV.

III. THE A2
-UAV FRAMEWORK

In this section, we give an overview of A2
-UAV (Section

III-B) and describe the two key components of A
2
-UAV:

A
2
-TA (Section III-C) and A

2
-TPP (Section III-D).

Fig. 2: High-level overview of A2
-UAV.

Figure 2 shows a high-level overview of A
2
-UAV. The

Application-Aware Task Analyzer (A2
-TA) at the edge server

learns the relationship between the image compression and the
accuracy on a set of classes of interest, and passes its output
to the Application-Aware Task Planning Problem (A2

-TPP)
solver, which jointly optimizes UAVs positions, routing policy,

and data compression strategy to maximize the number of
correctly executed tasks per unit of time. The optimal network
deployment and image compression levels are sent to the
UAVs network, which moves to the targets, monitors them and
streams tasks to the edge through the multi-hop connection.

A. System Model and Assumptions
We assume one or more UAVs are deployed over an Area of

Interest (AoI), which contains several targets, e.g., the location
of a vehicle, person, or any entity of interest. Each UAVs is
equipped at least with (i) multimedia sensors (e.g., camera
and microphone); (ii) a single radio for communication; and
(iii) a computational unit. The edge server is equipped with
low-latency hardware for DL computation. We do not rely
on any communication infrastructures (e.g., 5G) and assume
edge offloading is realized through multi-hop communication.
A UAV monitors a target by sampling data through its sensors
and generates a task to be executed at the edge. A task could be
“car, bicycle, or bus detection on a video camera frame every
10 frames”. The task is then sent to the edge server through a
multi-hop connection, where a state-of-the-art DL model is run
to perform the task. We assume each task has mission-driven
constraints in terms of (i) minimum classification accuracy
given a specified DL model; (ii) maximum latency, defined
as the time between the task generation and its successful
execution. Thus, a task is successfully executed if (i) promptly
offloaded to the edge; and (ii) correctly analyzed by the model
within a deadline.

Notation Description
U A set of available UAVs of the fleet
T A set of targets to cover
� The edge server
rcom Drone’s communication radius
rsens Drone’s sensing radius
lu Distance traveled by a drone
�u Drone’s overall energy consumption
êsij Amount of data transmitted through the link between UAV

i and UAV j
êaij Expected task accuracy at the edge, for each task
⇢i,j Estimated channel data rate
p̂u Position vector assigned by the solver to drone
�u Energy spent for each distance unit traveled at constant speed
↵u Energy spent in a steady position
!̂u
ij Drone u monitors the target i with a compression j or not

�u UAV initial energy
Q(s, l) A tuple with expected accuracy and data size of the frame

of the application scenario s, with compression level l
 The final connected coverage formation returned by the

greedy algorithm
⌧best Best coverage found during an iteration
⌧par Partial coverage to enhance or join with

TABLE I: Table of Symbols.

B. Overview of A2-UAV

The ultimate goal of A2
-UAV is to maximize the number of

correctly executed tasks. To approach this challenging issue,
and conversely from existing work, A2-UAV takes into account
how the task success is affected by the image compression. To
this end, A2

-UAV jointly optimizes the deployment of UAVs
and the task offloading to maximize the number of executed

tasks. Each UAV is made up of two key modules. First, the
UAV Controller implements networking and data processing
decisions (next position, targets to cover, sampling process,
and offloading routes) received from the A

2
-TPP. Second,

the Multimedia Data Pre-Processing module samples data
and creates tasks by pre-processing collected multimedia data
according to the A2

-TPP solution.

C. Application-Aware Task Analyzer (A2-TA)

The A
2
-TA module determines the relationship between

different image compression levels and task accuracy so that
UAVs can reduce the amount of transmitted data and avoid
network congestion, while satisfying application requirements.

Multimedia
Analyzer

Data
Pre-Processing

Pre-Processing
Rules

DL
Application

Prediction

Media

0.8

…

Accuracy
Levels

4

Multimedia
Feed

Test-Set
Data

Data
Sample

0.3

2

1

3

Fig. 3: Main Operations of the A2
-TA module.

Figure 3 shows the workflow of the A
2
-TA, which is

executed before the network deployment, by using the datasets
of the specific DL application. The A

2
-TA iterates over the

sampled data, changing compression according to the UAV
sensors capabilities (step 1 and step 2). Each revised data
sample is fed to the DL application, which outputs a prediction
(step 3). Finally, predictions are compared with the ground
truth, to infer and store the model performance according such
data compression (step 4).

More formally, the function: Q : S ⇥ L ! R2 maps an
application scenario in the set S and a compression level in
the discrete set L = {1, .., 100} a tuple in R2 representing the
average accuracy and data size. The function is determined by
iterating over the application scenarios, possible compression
levels and relative dataset entries. Each sampled image is
compressed according the compression level l by the JPEG
compression algorithm [15], and it is fed into the DL model
to determine accuracy and data size.

(a) (b)

Fig. 4: Accuracy as a function of JPEG compression level.

To give an example, we consider 5 scenarios: Maritime
(Fireboat, Wreck, Lifeboat, Ocean liner, Speedboat), Search-
and-Rescue (SaR) (Fire truck, Ambulance, Police van, Ger-
man shepherd, Pickup truck) Wildlife (Kit fox, Polecat,
Red wolf, Zebra, Jaguar), Tools (Screwdriver, Power drill,
Hatchet, Hammer, Chainsaw), Pets (Golden retriever, Pomera-
nian, Guinea pig, Persian cat, Hamster). Figure 4.a shows
the accuracy for the different scenarios as a function of the
compression, while Figure 4.b shows the accuracy for the
same scenario when different DL models are used. The figures
highlight the need of the A2

-TA. For example, images of Tools
have low accuracy, constraining the compression at level l = 8
to achieve at least 40% of accuracy, while Wildlife can achieve
the same accuracy with higher compression l = 25.

D. A2-TPP MILP Formulation

We formalize A2
-TPP as a Mixed Integer Linear Program-

ming (MILP). Hereafter we denote the edge server as �, the
set of targets to monitor as T , the set of available UAVs of
the fleet as U . The A

2
-TPP solver outputs: (i) a connected

coverage formation of UAVs, and (ii) the compression level
each drone must adopt to capture images when inspecting a
target.

Definition III.1. A subset of UAVs F ✓ U is deployed ac-
cording to a connected coverage formation, when some of the
UAVs in F are employed to inspect a subset of targets M ✓ T ,
while being connected to the base station �, either directly or
through a multi-hop sequence of the other UAVs in F .

Definition III.2. A task for a drone u 2 F covering a
target t 2 M , consists in delivering an image captured from
the drone’s on-board cameras to the base station �. It is
said to be an accomplished task if two conditions hold: (1)
when received at �, the time since the task was created is
not superior to a threshold �; (2) when the captured image
reaches �, the DL model outputs a correct prediction for it.

We define the UAV sensing range and communication range
as rsens and rcom, respectively. We denote with p the position
vector of the entities involved, and to (pxu, p

y
u) for the x and

y coordinates respectively. In particular pu is the position of
UAV u, 8u 2 U at the beginning of the mission; pi to the
position of the target i, 8i 2 T ; p� the position of the edge
server. We denote with p̂u the position vector assigned by the
solver to drone u, 8u 2 U . We define the distance traveled
for each drone as lu = |pu � p̂u|, 8u 2 U .

To estimate energy consumption, we define �u as the
energy spent for each distance unit traveled at constant speed,
and ↵u as the energy spent in a steady position, for a
given unit of time. The values of �u and ↵u are estimated
through on-field experiments or from technical specifications.
The overall energy consumption for UAV u is defined as
�u = lu · �u + ↵u · ⇤, 8u 2 U , where ⇤ is an upper-bound
of the time required, once reached the targets, to monitor the

targets and complete the mission. We constraint the reachable
points according to the UAVs initial energy �u, as follows:

�u + |p� � p̂u| · �u  �u, 8u 2 U (1)

This constraint defines the positions that are reachable as they
let the UAVs with enough energy to come back to the edge-
server for recharging operations. We use the binary variables
!̂
u
ij 2 {0, 1}, which define if the drone u monitors the target i

with compression level j or not. A target i is monitored if an
only if the UAV u is close enough to the target position pi.
Formally we want to constraint !̂u

i,j = 1 () |p̂u � pi| 
rsens which becomes 8u 2 U , 8i 2 T , 8j 2 L: :

rsens � |p̂u � pi|�Mcost · (1� !̂
u
i,j)

rsens  |p̂u � pi|+Mcost · !̂u
i,j

(2)

where Mcost is a big constant number. Next, we enforce that
a target is covered by at most one UAV and that each UAV
can cover only one target:

X

u2U

X

j2L
!̂
u
ij  1, 8i 2 T ,

X

i2T

X

j2L
!̂
u
ij  1, 8u 2 U (3)

We introduce an extended node set V = U [{�} and
we consider all the possibles communication paths among
nodes, i.e., all the edges (i, j) 8i, j 2 V . A binary variable
�̂i,j 2 {0, 1}, indicates if the nodes i and j are too distant
to communicate. The relation |p̂i � p̂j | � rcom) �̂ij = 0 is
enforced as follows:

|p̂i � p̂j |  rcom +Mcost · (1� �̂ij), 8i, j 2 V (4)

We define the data frame offloading as a network flow formu-
lation. We introduce a set of variables êsij defining the amount
of data transmitted through the link between UAV i and UAV
j. We define ê

a
ij to account for the expected task accuracy

at the edge, for each task. We impose that the edge does not
generate any outgoing flow, for both data and accuracy flows:

X

j2V
ê
s
�j  0,

X

j2V
ê
a
�j  0 (5)

We allow a flow only for between neighboring nodes:

ê
s
ij + ê

a
ij  �̂ij ·M, 8i, j 2 U (6)

The maximum bandwidth allowed between two UAVs is
constrained to respect the estimated channel data rate ⇢i,j :

X

j2V
ê
s
ij  ⇢i,j , 8i 2 U (7)

We specify that a UAV can transmit only towards another
UAV, resulting into a tree rooted at the edge:

X

j2V
�̂ij  1, 8i 2 U (8)

We impose flow conservation as follows:
X

k2V
ê
s
uk �

X

k2V
ê
s
ku =

X

i2T

X

j2L
bi,j · !̂u

ij , 8u 2 U (9)

which imposes that, for each outgoing edge from u, the flow
is increased by expected data size of the target covered by the
UAV u . We also impose that the edge receives all the data
produced by the covered targets:

X

k2V
ê
s
k� =

X

i2T

X

j2L
bi,j · !̂k

ij (10)

To conclude, we constraint the accuracy of the targets at the
edge-server, as follows:

X

k2V
ê
a
uk �

X

k2V
ê
a
ku =

X

tij2T 0

ai,j · !̂u
ij , 8u 2 U (11)

Objective Function: maximize covered targets, DL tasks
accuracy, and energy spent by the UAVs:

max ↵ ·
X

j2V
ê
a
�j + � ·

X

i2T ,j2L,u2U
!̂
u
ij � ⌘ ·

X

u2U
lu (12)

The term ↵ prioritizes the maximization of the accuracy,
while � weights the importance of covering the targets and
⌘ minimized the distance traveled by the UAVs.

Theorem III.1. The A2-TPP problem is NP-Hard.

Proof. We show that A
2
-TPP generalizes the Steiner tree

problem with minimum number of Steiner points and bounded
edge-length STPMSPBEL, a known NP-hard problem [26].
Given a set P of n terminal points in a 2-dimensional
plane, a positive constant R, and a non-negative integer B,
STPMSPBEL asks whether it exists a tree spanning a set of
points P ✓ Q s.t. each edge has a length less than R and
the number of Steiner points (i.e., Q \ P) is less than or
equal to B. Any instance of STPMSPBEL can be reduced
to an instance of our problem in polynomial time. The set of
points P represents our target set T [{�}, and B defines the
number of available UAVs, with communication range equal
to R. We consider UAVs with unlimited batteries and one
compression level (i.e, |L| = 1). This problem instance finds
a solution that maximizes the number of connected targets
with the edge server, moving the minimum number of UAVs.
If such a solution exists, and covers all the points in P , then
it also exists a tree spanning a set of points P ✓ Q, where
each edge has length less than R and the number of Steiner
points is less then or equal to B. The complexity of the above
reduction is polynomial, thus we derive that A2

-TPP problem
is at least as hard as the STPMSPBEL problem [26].

IV. A POLYNOMIAL TIME HEURISTIC FOR A
2
-TPP

We propose a greedy heuristic to solve A2
-TPP in polyno-

mial time. We first introduce the algorithm, and then prove its
polynomial time complexity.

A. Algorithm Overview
GREEDY-A2

-TPP outputs a connected coverage formation –
also referred to as coverage for brevity – for the UAVs, and
a compression level assignment for each covered target. Both
coverage and compression need to meet the criteria expressed
in Equation 12, that is, optimizing the number of accomplished

Algorithm 1: GREEDY A
2
-TPP

Input: U : set of UAVs, T : set of targets
Output: a connected coverage formation

1 bT , , ⌧par, cpar {�}, {�}, {�}, 0
2 while T � bT 6= ; or |V [Vpar| < |U| do
3 tbest, ⌧best, cbest ;, ;,1
4 for t 2 T � bT do
5 ⌧temp TST({t} [C(⌧par), rcom)
6 ctemp COST↵(⌧temp, ⌧par, , COMPRESSION(⌧temp))
7 if ctemp < cbest and |Vtemp|� 1  |U|� |V [Vpar| then
8 tbest, ⌧best, cbest t, ⌧temp, ctemp
9 if tbest = ; then

10 [⌧par
11 break
12 ⌧los TST({�, tbest}, rcom)
13 clos COST↵(⌧los, ⌧par, , COMPRESSION(⌧los))
14 if clos < cbest � cpar then
15 [⌧par
16 ⌧par, cpar ⌧los, clos
17 else
18 ⌧par, cpar ⌧best, cbest
19 bT bT [{tbest}
20 R, · COMPRESSION()

21 return , R

tasks. Our approach is to maximize the number of inspected
targets, producing a coverage of minimum congestion, and
minimizing task misclassification due to low frame resolution.
Specifically, a coverage ⌧ = (V,E,W) is a Triangular Steiner
Tree [27] in which the set of nodes V represents the positions
UAVs must reach to cover the target nodes in M , while staying
connected with the base station � in a multi-hop manner. The
set E represents the link between UAVs, thus the routes data
streams must follow through the network. The function W

maps each e 2 E to a weight that represents link’s bandwidth.
In our implementation we estimate this value empirically. It
is assumed that at the base station, communication happens
through dedicated transceivers and does not require actual
coverage with a drone. Thus, at any time it holds |V |  |U|+1.

B. GREEDY-A2-TPP

Algorithm 1 returns a coverage formation , merging partial
coverage formations ⌧par generated to cover targets using the
minimum deployment cost at each iteration. In the initializa-
tion phase, we let: bT be the set of covered targets, initially
containing only the base station; be the coverage archived
so far; ⌧par be the partial coverage iteratively grown that is
added to when it cannot be further expanded; cpar be the
cost of the partial coverage generated so far (line 1). The while
loop iterates until either all the targets are covered T � bT 6= ;
or the number of UAVs used does not exceed the fleet size
(line 2). The variables tbest, ⌧best, cbest contain respectively the
best target found at each iteration, the coverage including that
target and its cost. A for loop over the uncovered targets
T � bT allows to find the best target to add, building new
temporary coverage formations ⌧temp using the targets already
covered by ⌧par (namely the set C(⌧par)) and adding to them the
candidate target t. Then we evaluate the cost of ⌧temp (lines
3-6). This cost combines the number of drones needed for
the coverage, and the loss in accuracy due to the channel

Algorithm 2: COMPRESSION
Input: a coverage formation ⌧i
Output: R vector with compression levels for all targets in ⌧i, L

vector with loss in accuracy due to all targets in ⌧i

1 sort t by Q(S(t), ⇤).b 8t 2 C(⌧i) in ascending order
2 bC, L,R C(⌧i), hi, hi

3 for t 2 bC do
4 P SHORTEST-PATH(⌧i,�, t)

5 B BOTTLENECK(⌧i, P)

6 R(t) argmaxl2L Q(S(t), l).b  min{B; Q(S(t), ⇤).b}
7 L(t) Q(S(t), ⇤).a�Q(S(t), R[t]).a

8 Wi(e) Wi(e)�Q(S(t), R(t)).b 8e 2 P

9 bC bC � {t}
10 return R,L

contention. We will talk in more detail about how this cost
is computed when describing Algorithm 2. Then we check if:
(i) ⌧temp has a lower cost than ⌧best (ii) and if ⌧temp can be
covered with the remaining UAVs. If both checks go through,
then t becomes the best candidate tbest and the associated
candidate coverage ⌧temp with its cost ctemp are stored into
⌧best and cbest respectively (lines 7-8). In case no target was
set as a best candidate, (i.e., tbest = ;) the while loop breaks.
This happens only when the second condition at line 7 is not
met for any target, that is no coverage formations can stick to
the remaining fleet size constraint. Then, the cost paid to cover
only tbest that is cbest�cpar is compared to the cost clos of a new
line-of-sight (los) branch ⌧los grown using only tbest as target.
If ⌧los costs less than the partial grown tree so far ⌧par, then ⌧par
is merged with the final tree . Then ⌧los becomes the new
partial connected coverage to grow. Otherwise growing ⌧par is
still convenient, so ⌧best becomes the new partial deployment
including the new target tbest and ⌧los is discarded (lines 12-19).
When the algorithm terminates (line 20) the final coverage
along with all the compression levels assigned to each target
are returned.

C. Assignment of Compression Levels

Algorithm 2 determines the compression levels for each
UAV in F inspecting targets in M . The rationale is to increase
the compression of data flowing from a target, based on the
bandwidth assigned to it, leaving more bandwidth to targets
having more to send. The algorithm iterates over the targets
t covered by the candidate input tree, sorted in ascending
order based Q(S(t), ⇤).b, that is the load produced by the
target t according to the task analyzer A2

-TA, belonging to
the application scenario S(t) and at the minimum compression
level (denoted by ⇤) (lines 1-3). At each iteration a bottleneck
bandwidth B for the target is computed. This quantity is the
bottleneck capacity on the path from the source of flow t, to the
destination �. This value is influenced by the number of targets
t shares this path with. The bandwidth allocation function can
be thought as slight modification of the Depth First Search
(DFS) (line 5). To derive the maximum quantity of load that
can be transferred from the target t per unit time, we vary
the compression level while remaining subject to the flow

constraint (line 6). We store in the vector R the compression
level for each target. We store the loss in accuracy for t subject
to compression level R(t), comparing the accuracy due to the
best quality Q((S(t), ⇤).a (line 7). The weights of the tree
are updated considering the used bandwidth (line 8). Both the
compression levels and the loss for each target are returned.

D. Cost of a Coverage

The cost of a connected coverage formation is parameterized
by ↵. This exogenous parameter weights the importance given
to the the accuracy of the tasks. Notice that the importance
given to task accuracy opposes to the minimization of the
number of UAVs employed. Therefore the cost is a linear com-
bination of the average loss in accuracy, and the percentage
of used UAVs to cover the new target in ⌧i which was not
present in the previous formation ⌧i�1, the cost is computed
as COST↵:

↵ ·
P

t2C(⌧i) L(t)

|C(⌧i)|
+ (1� ↵) · |Vi � Vi�1|� 1

|U|� |V [Vi�1|
(13)

E. GREEDY-A2-TPP Example Execution

Figure 5 shows an example of execution of GREEDY-
A
2
-TPP. The gray triangle is the edge server �. The black

dots and red squares represent the target and relay positions,
respectively. Figure 5-a shows three temporary coverage ⌧temp,
each covering a different target. The cost of each of the
coverage is compared (algo. 1, line 7). Say ⌧temph�, t3i is the
cheapest coverage among them, that is the tree covering �

and t3. At the subsequent iteration shown in Figure 5-b, two
Triangular Steiner Trees covering �, t3 and a new target among
the remaining uncovered ones in T � bT (i.e., t2 and t1) are
proposed. Say the tree ⌧temph�, t3, t2i is the cheapest coverage
among them. In Figure 5-c the cost of ⌧temph�, t3, t2i is com-
pared with a line of sight coverage ⌧losh�, t2i. The cheapest
coverage among the two becomes the one to grow from the
subsequent iterations (algo. 1, line 14). Say the cheapest
coverage among them is ⌧temph�, t3, t2i. In Figure 5-d we see
two grown versions of the tree covering t1, whereas in Figure
5-e we see a line of sight coverage of t1. Say that comparing
the cost of ⌧temph�, t3, t2, t1i, and ⌧losh�, t1i, the cheapest is
the line-of-sight version. The tree ⌧losh�, t1i becomes the new

f

3

1 2

e

3

1 2

c

3

1 2

b

3

1 2

d

3

1 2

a

3

1 2

Fig. 5: GREEDY-A2
-TPP algorithm example

tree to grow from the subsequent iterations. ⌧temph�, t3, t2i is
archived in . There are no more targets to cover. ⌧losh�, t1i
is archived in the algorithm stops returning .

F. Properties of GREEDY-A2-TPP

Lemma IV.1. Computing the compression level assignment
has polynomial time complexity of O(|U|2).

Proof sketch. To measure the cost of a coverage tree ⌧i,
the set of targets in the tree C(⌧i) is sorted by their ex-
pected transmission load in ascending order. Sorting requires
O(|T | log |T |) time complexity. The for loop iterates over the
targets in ⌧i first computing the bottleneck bandwidth for t,
having approximately the cost of a Depth First Search and
Shortest Path, that is O(log |Vi|) for the tree. Iterating over
the compression levels to find the highest resolution to fit
the bandwidth has constant complexity |L| i.e., the cardinality
of the discrete set of possible compression levels. Iterating
over the edges of the path P to update the residual band-
width has cost O(log |Vi|). Other assignments have evident
constant complexity. By noticing that |Vi| = O(|U|) the
overall time complexity of computing the cost of a coverage
tree is O(|T | log |U|). The complexity further simplifies by
considering |T | = O(|U|), thus resulting in O(|U|2).

Theorem IV.2 (Time Complexity of GREEDY-A2
-TPP).

GREEDY-A2-TPP with input T targets sets has polynomial
time complexity of O(|U|6).

Proof sketch. The while loop is executed, in the worst case,
until all the targets in T are included in the final solution
 . Within the while loop, a for loop iterates over the set
of uncovered targets. For each of them a Triangular Steiner
Tree ttemp is computed, and the time complexity is bounded
by O(|T |4) [27]. The cost of each tree is computed with
complexity O(|U|2) as shown in Lemma IV.1. Once the best
candidate target to cover has been chosen, the Triangular
Steiner Tree tlos of the shortest path path towards the target,
and the relative cost clos are computed. The time complexity
to find a stripe can be considered constant in time. The
overall time complexity of GREEDY-A2

-TPP is thus given
by: O(|T |(|T |(|T |4 + |U|2) + |U|2)) = O(|U|6).

V. PERFORMANCE EVALUATION

We extensively evaluate A2
-UAV through simulation (Sect.

V-B) as well as real-world experiments (Sect. V-C).

A. Evaluation Setup
Application. We consider a monitoring application where

UAVs need to perform image classification or object detection
tasks on target locations by sampling images at given frame
rate (e.g., 24 frames per second (fps)). We adopt (i) ResNet-50,
a CNN with 50 layers [1]; (ii) ResNet-152, an extended version
with 152 layers [1]; (iii) DenseNet [2], which consists of a
Dense Convolutional Network (i.e., each layer is connected to
all the other layers in a feed-forward fashion); (iv) MobileNet-
V2 [16], a new neural architecture for mobile devices; (v)

YoloV4, the state-of-the-art model for object detection. All
the models were trained on the ImageNet database [14].

Scenarios. To emulate common scenarios for UAVs, we use
the five scenarios described in Section III-C, i.e., Maritime,
Search-and-Rescue, Wildlife, Tools, Pets. We also design an
Urban reconnaissance scenario including various objects, such
as wreck, fireboat, ambulance, police van, revolver, crate,
packet, backpack, mountain bike, motor scooter. To ensure
repeatability of our experiments, we let the UAVs sample
images from a labeled subset of ImageNet. Where not other-
wise stated, each target location generates 500 tasks (images)
uniformly sampled among these classes.

Metrics. We measure the Percentage of Accomplished
Tasks, defined as the ratio between the number of successfully
completed tasks (according to Definition III.2) and the number
of the generated tasks. The accomplishment of a task is
influenced by its deadline�. In order to study the performance
of A2

-TPP at varying application scenarios, we let � vary:
low values represent delay critical applications (e.g., intrusion
detection), whereas high values, delay tolerant ones (e.g.,
agriculture). We also measure Computational Time, that is the
time required by the algorithms to output a connected coverage
formation and compression levels for the targets.

Comparison. We evaluate A2
-UAV through real-field exper-

iments and simulation, considering both the optimal solution
OPT-A2

-TPP and the greedy algorithm GREEDY-A2
-TPP,

against STBA [25]. STBA is a state-of-the-art networking-
based approach that is the closest to our work. STBA covers a
set of targets while providing network connectivity to the edge
server. To find a connected tree, STBA uses a node-weighted
Steiner tree algorithm, which computes a set of Fermat points
to place relays, and then computes a tree among the targets and
the edge-server, minimizing the needed UAVs. To allow for a
fair comparison, we enhance STBA with data compression in
three variants: 1) H-STBA, which does not compress data, but
uses the Highest available quality for collected data (l = 1);
2) M-STBA which uses the Medium compression (l = 50);
and 3) L-STBA which uses an extreme compression (l = 100)
resulting in the Lowest data quality.

B. Simulation Results

We used the NS-3 network simulator [28], setting most
of parameters in line with the devices used in our real-
field experiments (e.g., WiFi interface 802.11n at 2.4 GHz),
and testbed measured values (UAVs transmission range is
16m, sensing radius 1m, and maximum speed 5m/s)1. The
simulated area is a square of 500⇥500m, with an edge-server
positioned in the center of the bottom border. The number of
targets varies from 4 to 50, and the number of UAVs from 4
to 50.

1) Multiple Scenarios: Figures 6 illustrates the efficacy of
our solution for different scenarios, reporting also the theoret-
ical upper bound (blue dotted line). In the most challenging
scenario, i.e., Tools, with a strict task deadline (� = 0.1sec)

1The code is available at https://github.com/flaat/AA-UAV

Fig. 6: Accomplished tasks (%),
� = 0.1sec

Fig. 7: Accomplished tasks (%)
at increasing of �

Fig. 8: Accomplished tasks (%)
with 6 Targets, � = 0.1sec

Fig. 9: Accomplished tasks (%),
4 targets, � = 0.1sec

Fig. 10: Accomplished tasks
(%), increasing targets

Fig. 11: Computational time
(sec)

and DenseNet-201 DL model, OPT-A2-TPP completes 41%
of tasks, with an improvement of 52% respect the best
STBA variant, i.e., H-STBA, which completes less than 27%
of tasks. The theoretical upper-bound for DenseNet-201 in
the same scenario is 60%, meaning that under ideal network
conditions of zero latency and no compression, the DL model
would correctly classify only 60% of the tasks (Figure 4.a
show the complexity of predicting tools images, even for un-
compressed images). In the case of Pets and Maritime, OPT-
A
2
-TPP reaches the highest percentage of accomplished tasks

— 65% and 70% respectively — where the upper-bounds are
90% and 88%. The improvement with respect to the best
STBA variant, i.e., M-STBA, is 55% and 50%. Pets require
a compression level lower than l = 50 (see Figure 4.a) to
achieve satisfactory performance, forcing both OPT-A2

-TPP

and GREEDY-A2
-TPP to select a medium compression level,

more similarly to M-STBA.
In Wildlife and Search-and-Rescue (SaR), the gap between
both the A

2
-TPP versions and STBA variants increases

significantly. OPT-A2
-TPP and GREEDY-A2

-TPP complete
respectively 60%, 63% and 49% and 54% of tasks, against
39% and 37% of M-STBA. The motivation behind this sharp
improvement is the use of the A

2
-TA, which understands

that even high compressed images can achieve satisfactory
performance. Therefore, both our solutions can achieve high

accuracy with low network usage, executing the tasks within
their deadline � = 0.1 seconds. GREEDY-A2

-TPP completes
20% and 31% more tasks than M-STBA.

2) Urban Scenario: Figure 7 shows the performance in
the Urban scenario as a function of task deadline � 2
{0.06, 0.07, 0.08, 0.09, 0.1}, when DenseNet-201 is employed.
OPT-A2

-TPP accomplishes tasks up to 72% in the case of
� = 0.1sec, while the best variant M-STBA achieves only
48% of tasks at the same �. OPT-A2-TPP accomplishes
58% more tasks than M-STBA with the tightest deadline,
as it adapts the compression of images to meet the latency
constraint. The plot also confirms the performance of OPT-
A
2
-TPP that outperforms the network-based approaches (i.e.,

M-STBA) up to 45 � 50%. GREEDY-A2-TPP follows the
OPT-A2-TPP trend always remaining widely above the
performance of STBA solutions. Figure 8 shows the percent-
age of accomplished tasks as function of the number of UAVs,
with 6 targets randomly distributed in the area. We employ
DenseNet-201, which achieves a maximum accuracy of 80%,
and set � = 0.1sec. Both OPT-A2

-TPP and GREEDY-
A
2
-TPP outperform the STBA variants, as they cover all

the targets with only 8 UAVs. Conversely, the STBA variants
require at least 10 UAVs to cover all the targets, and achieve
lower performance. OPT-A2

-TPP covers 15 � 20% more
targets than STBA algorithms, in all the scenarios, completing
69% of tasks (using 10 UAVs), while the best variant M-
STBA accomplishes only 42% of tasks with the same number
of UAVs. We can notice how GREEDY-A2

-TPP performs
better as quickly as number of UAVs grow reaching similar
performance of OPT-A2

-TPP.

3) Robustness to Channel Errors: In Figure 9 we plot the
percentage of accomplished tasks by varying the probability
of channel error 2 {0, 0.05, 0.1, 0.15}, in a setting with
20 UAVs and 4 targets. Both OPT-A2

-TPP and GREEDY-
A
2
-TPP are the most robust algorithms, increasing their im-

provement with respect to STBA variants. OPT-A2-TPP com-
pletes up to 170% more tasks than the other approaches.
On the other hand, M-STBA and H-STBA experience severe
delays and drastic performance reduction due to frequent
TCP re-transmissions, which introduces additional data in the
network, further overloading communication links.

4) Scalability: Figure 10 investigates the percentage of
accomplished tasks in a scenario with 50 UAVs, varying the
number of targets from 10 to 50. We do not include the OPT-
A
2
-TPP when the targets are more than 20, due to prohibitive

computational time. This result underlies the huge benefit
introduced by the polynomial time solution GREEDY-A2

-TPP,
which scales gracefully when the problem instance grows in
complexity. The figure shows that GREEDY-A2

-TPP has near
optimal performance with 10 targets, accomplishing 63% of
the tasks, while L-STBA accomplishes only 38% of them.
All the algorithms have a slightly decreasing trend as the
number of targets increases, as the UAVs have to offload more
tasks with possible network congestion and missed deadlines.
The STBA variants quickly drop their performance due to

congestion and long delays, while GREEDY-A2
-TPP is able

to keep satisfactory performance around 50%, trading off
compression and accuracy to cover all targets and offload their
data. With 50 targets GREEDY-A2

-TPP accomplished 5 times
the tasks of the best STBA variant. Finally, in Figure 11 we
investigate the computational time. We restrict the time to a
maximum of 5 hours (18000 seconds), and we consider no
solutions after that time. We consider a general STBA instance
without compression levels, as they do not affect the execution
time. While OPT-A2

-TPP has very huge computational times
even with 10 targets, GREEDY-A2-TPP is 15x faster than
the STBA solutions.

C. Experimental Testbed Results
We now evaluate the performance through our experimental

testbed. The testbed is composed of 4 UAVs and an edge
server with dedicated GPU. We emulate missions with up
to 4 targets. We run 10 experiments for each scenario and
we average the results. Each UAV includes a DJI Mavic Air 2
drone, mounting a Raspberry PI 4 model B and a power bank,
as shown in Figure 12. The on-board Raspberry PI, powered
by the power bank is used to generate and pre-process tasks,
and to offload them to the edge according to the optimization
plan. For repeatability and to emulate different scenarios, we
sample images from the ImageNet dataset [29].

Field *****
Time 9:00-18:30 a.m.
Temperature +4 - 15°C
Wind Speed 0.0 to 4.3 m/s
Field Size 65x35(meters)
Nr. Of UAVs 4
Nr. Of Targets Variable (from 1 to 4)
Humidity 60% - 77%
AMSL 2 meters

TABLE II: Experimental Set-
ting

Raspberry Pi 4B
Power Bank with

15Ah and 18W
output

DJI Mavic Air 2

Fig. 12: UAV implementation.

The edge server is a Jetson Nano board, used to run the
DL models and execute tasks. It mounts a Raspberry PI for
computation and communication. TCP links are established for
reliable connectivity. Considering the limited capabilities of
the edge server, we execute only ResNet-50 and MobileNet-V2
on the Jetson Nano, which have approximately 0.03 seconds
of inference time [30]. For DensNet-201, ResNet-152, and
YoloV4, we used a laptop with an NVIDIA RTX-2060 Graph-
ics Processing Unit (GPU). In the experiments, we consider up
to 4 targets placed at around 15 meters from the edge. Table
II reports the experimental settings in the Urban scenario. The
first set of experiments evaluates the impact of increasing the
number of targets (from 1 to 4), with MobileNet-V2. Figure
13 shows the percentage of accomplished tasks at the edge-
server with a task deadline of � = 0.4sec. The plot shows that
the OPT-A2

-TPP finds the best trade-off between accuracy
and data compression. It completes more than 67% of the
tasks, independently of the number of targets. This is close
to the maximum performance achievable with the DL model
(i.e., 78%), represented by the blue horizontal line. GREEDY-
A2-TPP instead reaches up to 57% accomplished task, with

Fig. 13: Accomplished Tasks
(%) at increasing targets,
MobileNet-V2, � = 0.4sec

Fig. 14: Accomplished Tasks
(%) at increasing of �, using 3
targets and MobileNet-V2

a 20% average improvement over the best STBA version
(M-STBA). Conversely, the best STBA variant (i.e., M-STBA)
does not complete more than 46% of tasks, independently of
the number of targets. In particular, with 2 targets, all STBA
variants perform very poorly, completing less than 30% of
tasks. The superiority of A2

-UAV in both the approaches (Opt
and Greedy) is confirmed by results on the percentage of
accomplished tasks by varying the deadline � 2 [0.1, 0.5]
(see Figure 14). Opt-A2

-TPP reaches an improvement over
the percentage of executed tasks with respect to M-STBA up
to 76% when � = 0.3sec. The GREEDY-A2

-TPP approach
instead improves M-STBA results (when �=0.3sec) around
50% upholding our intuition. We investigated the performance
of GREEDY-A2

-TPP and OPT-A2
-TPP also when other DL

models are applied. Table III summarizes the results in the case
of � = 0.3sec and 4 targets, for ResNet50, MobileNet-V2
(executed on the Jetson Nano) and ResNet152, DenseNet201
and YoloV4 (executed on a laptop with a dedicated GPU).
The results show that both our solutions outperforms all STBA
variants independently of the applied model. In particular, with
DenseNet201 OPT-A2

-TPP has the best performance.

DL Model OPT-A2
-TPP GREEDY-A2

-TPP L-STBA M-STBA H-STBA
ResNet50 66.64 62.88 25.42 36.14 21.86
ResNet152 67.89 65.27 29.93 37.96 24.70

DenseNet201 70.17 68.33 32.92 41.87 26.99
MobileNet-v2 69.29 57.36 18.37 38.94 21.91

YoloV4 59.32 51.3 15.22 31.52 17.18

TABLE III: Percentage of Completed Tasks, � = 0.3sec

VI. CONCLUSIONS

In this paper we proposed A
2
-UAV, a novel application-

aware optimization framework for reliable and effective DL
task offloading in multi-hop UAVs networks. For the first time,
we considered the accuracy and delay requirements of the
specific DNN tasks, to jointly optimize task assignment and
offloading. Through extensive simulation, we demonstrated
that A2

-UAV is able to deal with different network condi-
tions, maximizing the application performance at the edge.
A
2
-UAV outperforms existing approaches, getting and average

improvement w.r.t. the state-of-the-art algorithm of 38%. We
finally validated our solution through real-field experiments,
considering four DJI Mavic Air 2 UAVs and a Jetson Nano
board as edge server. We share datasets and code with the
research community to allow reproducibility.

VII. ACKNOWLEDGEMENT OF SUPPORT AND DISCLAIMER

This work is funded in part by the G5828 "SeaSec:
DroNets for Maritime Border and Port Security" project under
the NATO’s Science for Peace Programme, by the National
Science Foundation (NSF) grant CNS-2134973 and CNS-
2120447, as well as by an effort sponsored by the U.S.
Government under Other Transaction number FA8750-21-9-
9000 between SOSSEC, Inc. and the Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Laboratory,
the U.S. Government, or SOSSEC, Inc.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 4700–4708.

[3] M.-A. Messous, S.-M. Senouci, H. Sedjelmaci, and
S. Cherkaoui, “A game theory based efficient computation
offloading in an UAV network,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 5, pp. 4964–4974, 2019.

[4] J. Scherer and B. Rinner, “Multi-robot persistent surveillance
with connectivity constraints,” IEEE Access, vol. 8, pp. 15 093–
15 109, 2020.

[5] N. Bartolini, A. Coletta, M. Prata, and C. Serino, “On connected
deployment of delay-critical fanets,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 9720–9727.

[6] M. Samir, C. Assi, S. Sharafeddine, D. Ebrahimi, and
A. Ghrayeb, “Age of information aware trajectory planning
of UAVs in intelligent transportation systems: A deep learning
approach,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 11, pp. 12 382–12 395, 2020.

[7] Y. Chen, N. Zhao, Z. Ding, and M.-S. Alouini, “Multiple UAVs
as relays: Multi-hop single link versus multiple dual-hop links,”
IEEE Transactions on Wireless Communications, vol. 17, no. 9,
pp. 6348–6359, 2018.

[8] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communi-
cation design for multi-UAV enabled wireless networks,” IEEE
Transactions on Wireless Communications, vol. 17, no. 3, pp.
2109–2121, 2018.

[9] S. Hosseinalipour, A. Rahmati, and H. Dai, “Interference avoid-
ance position planning in dual-hop and multi-hop UAV relay
networks,” IEEE Transactions on Wireless Communications,
vol. 19, no. 11, pp. 7033–7048, 2020.

[10] S. Chuprov, L. Reznik, A. Obeid, and S. Shetty, “How degrading
network conditions influence machine learning end systems
performance?” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2022, pp. 1–6.

[11] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading Op-
timization in Edge Computing for Deep Learning Enabled
Target Tracking by Internet-of-UAVs,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9878–9893, 2020.

[12] D. Callegaro, M. Levorato, and F. Restuccia, “SeReMAS: Self-
Resilient Mobile AutonomousSystems Through Predictive Edge
Computing,” arXiv preprint arXiv:2105.15105, 2021.

[13] W. Chen, Z. Su, Q. Xu, T. H. Luan, and R. Li, “VFC-
based cooperative UAV computation task offloading for post-
disaster rescue,” in IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 2020, pp. 228–236.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE conference on computer vision and pattern recognition.
IEEE, 2009, pp. 248–255.

[15] A. C. Bovik, Handbook of image and video processing. Aca-
demic press, 2010.

[16] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Inverted residuals and linear bottlenecks: Mobile
networks for classification, detection and segmentation,” CoRR,
vol. abs/1801.04381, 2018.

[17] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” CoRR, vol.
abs/2004.10934, 2020.

[18] L. Bertizzolo, S. D’oro, L. Ferranti, L. Bonati, E. Demirors,
Z. Guan, T. Melodia, and S. Pudlewski, “Swarmcontrol: An
automated distributed control framework for self-optimizing
drone networks,” in IEEE International Conference on Com-
puter Communications (INFOCOM). IEEE, 2020, pp. 1768–
1777.

[19] M. T. Rashid, D. Y. Zhang, and D. Wang, “Socialdrone: An
integrated social media and drone sensing system for reliable
disaster response,” in IEEE International Conference on Com-
puter Communications (INFOCOM). IEEE, 2020, pp. 218–227.

[20] N. Bartolini, A. Coletta, G. Maselli et al., “A multi-trip task as-
signment for early target inspection in squads of aerial drones,”
IEEE Transactions on Mobile Computing, vol. 20, no. 11, pp.
3099–3116, 2021.

[21] X. Wang and L. Duan, “Dynamic pricing and capacity alloca-
tion of UAV-provided mobile services,” in IEEE International
Conference on Computer Communications (INFOCOM). IEEE,
2019, pp. 1855–1863.

[22] T. Kimura and M. Ogura, “Distributed collaborative 3d-
deployment of UAV base stations for on-demand coverage,” in
IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2020, pp. 1748–1757.

[23] E. Natalizio, N. R. Zema, E. Yanmaz, L. D. P. Pugliese, and
F. Guerriero, “Take the field from your smartphone: Leveraging
UAVs for event filming,” IEEE Transactions on Mobile Com-
puting, vol. 19, no. 8, pp. 1971–1983, 2019.

[24] D. Tateo, J. Banfi, A. Riva, F. Amigoni, and A. Bonarini,
“Multiagent connected path planning: PSPACE-Completeness
and how to deal with it,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[25] T. N. Nguyen, B.-H. Liu, and S.-Y. Wang, “On new approaches
of maximum weighted target coverage and sensor connectivity:
Hardness and approximation,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 3, pp. 1736–1751, 2019.

[26] G.-H. Lin and G. Xue, “Steiner tree problem with minimum
number of steiner points and bounded edge-length,” Information
Processing Letters, vol. 69, no. 2, pp. 53–57, 1999.

[27] F. Senel and M. Younis, “Relay node placement in structurally
damaged wireless sensor networks via triangular steiner tree
approximation,” Computer Communications, vol. 34, no. 16, pp.
1932–1941, 2011.

[28] nsnam, “Network Simulator-3 (NS-3),” 2021. [Online].
Available: http://www.nsnam.org/

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Im-
agenet large scale visual recognition challenge,” International
journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[30] Nvidia, “Jetson nano: Deep learning inference benchmarks,”
2021. [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano-dl-inference-benchmarks

http://www.nsnam.org/
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

	Introduction
	Related Work
	The A2-UAV Framework
	System Model and Assumptions
	Overview of A2-UAV
	Application-Aware Task Analyzer (A2-TA)
	prob MILP Formulation

	A Polynomial Time Heuristic for prob
	Algorithm Overview
	Greedy-prob
	Assignment of Compression Levels
	Cost of a Coverage
	Greedy-prob Example Execution
	Properties of Greedy-prob

	Performance Evaluation
	Evaluation Setup
	Simulation Results
	Multiple Scenarios
	Urban Scenario
	Robustness to Channel Errors
	Scalability

	Experimental Testbed Results

	Conclusions
	Acknowledgement of Support and Disclaimer

