Machine learning for automated content analysis: characteristics of training data impact reliability
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Natural language processing (NLP) has the capacity to increase the scale and efficiency of content analysis in
Physics Education Research. One promise of this approach is the possibility of implementing coding schemes
on large data sets taken from diverse contexts. Applying NLP has two main challenges, however. First, a large
initial human-coded data set is needed for training, though it is not immediately clear how much training data
are needed. Second, if new data are taken from a different context from the training data, automated coding
may be impacted in unpredictable ways. In this study, we investigate the conditions necessary to address these
two challenges for a survey question that probes students’ perspectives on the reliability of physics experimental
results. We use neural networks in conjunction with Bag of Words embedding to perform automated coding of
student responses for two binary codes, meaning each code is either present or absent in a response. We find
that i) substantial agreement is consistently achieved for our data when the training set exceeds 600 responses,
with 80-100 responses containing each code and ii) it is possible to perform automated coding using training
data from a disparate context, but variation in code frequencies (outcome balances) across specific contexts can
affect the reliability of coding. We offer suggestions for best practices in automated coding. Other smaller-scale
investigations across a diverse range of coding scheme types and data contexts are needed to develop generalized
principles.
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I. INTRODUCTION

Content analysis is crucial in Physics Education Research
(PER) for interpreting open-ended data generated by stu-
dents [1]. The scale of these studies, however, is often lim-
ited to a few hundred students at a single institution because
it is incredibly time consuming to apply a coding scheme.
As techniques in machine learning and Natural Language
Processing (NLP) advance, education researchers see many
promising potential applications to content analysis. Integrat-
ing machine learning and NLP with traditional content analy-
sis methods could lead to dramatic improvements in the scale
at which content analysis can be applied. This improved scal-
ing would allow researchers to analyze all at once large data
sets collected from students at a variety of universities, across
a wide range of years, and across a wide variety of student
populations and conditions.

Previous science education research that incorporates NLP
into content analysis falls into two categories of machine
learning methods: supervised and unsupervised. Unsuper-
vised methods organize or cluster data without considering
any labels applied to the data. These methods have been used
in PER, for example, to systematically study trends over time
in the PERC proceedings [2], to highlight words in student
writing that are likely to be associated with a code [3], and
to develop a construct map that identifies patterns in student
writing [4]. Unsupervised approaches can aid qualitative re-
searchers in noticing patterns in their data but cannot be used
to apply an a priori coding scheme.

Supervised methods, on the other hand, can use a coding
scheme and a bank of coded data to automate coding of new
data (such as in [5]). While the coding scheme can be devel-
oped using unsupervised methods (as seen in Ref. [4]), here
we focus on supervised methods where one trains an algo-
rithm to replicate a coding scheme from coded training data
alone.

The primary downside of using supervised methods is that
their success generally scales with the amount of training
data provided. Generating the training data, particularly via
an established coding scheme, requires a significant upfront
human coding investment. Studies that have used this ap-
proach have often used small amounts of data (N 67
and N =~ 150) and found mixed results: across categories
and question types within the same coding scheme, Cohen’s
kappa (a measure of inter-rater reliability) spans the full range
from 0 to 0.9 [6, 7]. Other methods using coding schemes
where human inter-rater reliability falls in the 0.6 - 0.75 range
have achieved inter-rater reliability with the original coder on
par with another human [5, 8]. When using machine learn-
ing to analyze education data, there is rarely an abundance of
coded data due to limited resources in data collection and hu-
man coding time. Furthermore, it is hard to know how much
coded data are necessary to achieve particular consistent lev-
els of reliability in a large-scale study.

Educational data sets are also likely to contain outcome im-
balances where, for example, the frequencies of codes across
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all student responses may be very different for different codes
or populations of students. They may also contain feature im-
balances where, for example, a small subset of the responses
that contain a code might express that idea quite differently.
Coding performed by machine learning algorithms can be
systematically biased by both outcome imbalances and fea-
ture imbalances [9].

Thus, before NLP can be applied to large-scale studies, it
is crucial to test simpler and smaller data sets to understand
what characteristics of coded PER data are sufficient to get
reasonably reliable machine coding. First, researchers need
to know how much human coding time investment they need
to make before an algorithm can take over. Second, they need
to understand just how different new data can be from the
training data while still being able to trust the machine cod-
ing. The answers are likely to depend deeply on the com-
plexity of the coding scheme, the type of student data being
analyzed, and the different characteristics of various student
sub-populations. Researchers need a sense of what to expect
before investing huge amounts of time in coding a training
set. Thus generalized principles should be gleaned from a
bank of smaller-scale tests across a variety of contexts.

In this study, therefore, we test data from an open-response
survey question that probes students’ perspectives on mea-
surement reliability [10]. The question was used across three
years with students at one university. We ask the following re-
search questions: 1) How much human-coded data are needed
in the training data set to achieve substantial agreement with
human coders? 2) How do the characteristics of the training
set, including the prevalence of a code and the context of the
responses, affect the reliability of machine coding?

II. METHODS

A. Data Sources

We selected methods that were suitable for a large-scale
study that spans multiple types of student populations. Thus,
for our study we used neural networks where accuracy in-
creases as training set size increases. Furthermore, we se-
lected a survey question that has been asked previously at
multiple institutions to gain insight into students’ perspec-
tives on experimental results: “How do you know whether or
not an experimental result is acceptable or trustworthy? What
gives you confidence that the data is trustworthy?”” [10].

The question was posed to students enrolled in an introduc-
tory physics lab course at Cornell University. This lab course
prioritizes students learning experimental skills and develop-
ing expert-like mindsets toward experimental physics. Data
were collected in the spring semesters of 2019, 2021, and
2022 and divided into three subsets based on when and in
what form the question was administered to students (see
Table I). All responses in subsets I & III are from students
in their first semester of a skills-based experimental physics
course, while subset II contains a mix of students in the first
and second semester of the lab sequence.



TABLE I: Data subsets used in the study.

Subset Set type How asked? Year N
I Train Pre homework 2019 376
II Train Post survey 2021 361
I Test Pre survey 2022 452

In Subset I, the survey question was assigned to students as
a homework question in the first week of class. In Subsets II
& 111, the survey question was posed to students in a Pre- or
Post-class survey. This resulted in significant differences in
the typical writing style between subset I and subsets I & III
as students tended to put more effort into the question when
posed as homework. The average length of a response in sub-
set I was 48 words while the average length of responses in
subsets IT & III was 21 and 24, respectively.

B. Coding Scheme

The authors iteratively revised the coding scheme
from [10] using the new data set and developed a new 7-code
scheme. The codes are not mutually exclusive because a sin-
gle response can contain multiple ideas. Thus, responses are
coded one code at a time: the coder reads a response looking
for any ideas that match the inclusion criteria of the current
code and ignores any other information even if it is relevant
to a different code in the scheme.

Here we focus on two of the seven codes. First, Ex-
pected Result (ER), a broadening of Comparison to The-
ory in [10, 11] to include any mention of a result matching
an expected outcome. Second, Consistent Results (CR), a
combination of Comparison with Others and Repeatability
from [10, 11]). ER is an uncommon code that was even less
common in subset II, the only subset collected at Post (see Ta-
ble II). CR is a more common code, though the outcome bal-
ance varies across the subsets (see Table II). Two coders es-
tablished a very high degree of inter-rater reliability for each
code within each data subset: Cohen’s kappa ranged from
0.85 to 0.96 depending on the subset and code. A kappa value
of 0.8-1.0 is considered to be near perfect agreement [12]. In
this paper we are primarily concerned with developing the
machine learning methods to perform automated coding so
we will not discuss the educational significance of these two
codes.

TABLE II: The proportion of responses that contained each
code for each subset, according to human coders.

Subset Expected Result Consistent Results
I 0.35 0.82
I 0.07 0.53
111 0.23 0.66
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C. Machine learning methods

To prepare the responses for automated coding, we used
the following protocol on the full data set: i) split all words
in each response into individual words (called tokens), ii)
remove all punctuation, iii) remove any tokens that contain
non-alphabetic characters (such as numbers), iv) remove stop
words (such as “the” and “is”), and v) remove any remain-
ing tokens that contain only one character [13]. A vocabulary
was created out of all remaining tokens that occurred more
than once, as exceedingly rare tokens have little predictive
power. The vocabulary size was 1083 words.

To convert student writing into numerical input for a neural
network, an encoding method transforms words into a vector
or matrix in a way that captures linguistic elements relevant
in the coding scheme. We selected the Bag of Words binary
encoding method. This is an NLP approach in which each re-
sponse is transformed into a simple vector describing whether
or not a word is present in the response. In preliminary tests
using only subset I data, we found that Bag of Words binary
encoding performed better than a few other encoding meth-
ods. Note that this and other coding schemes may be better
modeled with a different encoding method.

In training, neural networks take in this numerical input
and a numerical output and construct a model from the train-
ing data that maps inputs onto outputs. In this case the numer-
ical outputs are 0/1 for absent/present, depending on whether
the coder identified that the code was in the response. Sep-
arate neural networks were used to independently model the
two codes. The neural networks were built in Python using a
feedforward neural network model in Keras.

D. Evaluation of automated coding

Training data came from subsets I and/or II and test data
always came from subset III. We evaluated the accuracy and
reliability of the automated coding of subset III by compar-
ing the machine learning algorithm’s coding of 100 of the
responses to human-generated codes. Each response in the
data set could contain neither, one of, or both the ER and CR
codes, therefore machine coding for each code was performed
separately. For testing training set size, we randomly selected
responses from the data subsets to create a training data set
and tested performance across 5 neural network initial condi-
tions. We repeated this analysis for 20 random training sets,
and averaged across all 100 tests. For testing the data con-
texts, we selected three training sets of comparable size: sub-
set I, subset II, and one randomly selected combination of the
two. We averaged results for each across 10 neural network
initial conditions.

We calculated accuracy and Cohen’s kappa to evaluate our
machine learning models. Accuracy, the fraction of correct
code applications, is often the first metric reported by a ma-
chine learning algorithm performing a test. In content anal-
ysis coding, acceptable inter-rater accuracy is 0.80-0.90 de-
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FIG. 1: (a) Accuracy and (b) kappa as a function of training
set size (samples randomly pulled from subsets I and I com-
bined). The horizontal lines in (a) illustrate the algorithms’
first-order attempt at coding in cases of insufficient training.
Error bars represent the standard deviations from repeated
trials with randomized initial conditions and training data.

pending on the details of the coding scheme [14]. When
researchers assess their ability to accurately apply a coding
scheme to data, however, they often use Cohen’s kappa in-
stead to account for the random chance that two people would
happen to code a response the same way. A kappa value of
0.6-0.8 is considered to be substantial agreement [12].

III. RESULTS

A. The effect of training size

Accuracy appears relatively high throughout the full range
of training set sizes (Fig. 1). The accuracy for ER (a more
rare code) is consistently higher than the accuracy of CR (a
more common code), which we attribute to the different pos-
itive rates for each code.

When the training size was very low (N = 73), the ma-
chine coded very few responses as containing ER (on average,
1.5/100 true positives and 0.5/100 false positives). In con-
trast, it coded almost all responses as containing CR (4/100
true negatives and 1.5/100 false negatives on average). We in-
terpret this to mean that, in cases of insufficient training, the
algorithm’s first-order attempt will be to code all responses
with the most common outcome. Thus, a lower bound on
accuracy is the condition where all responses are coded as
containing CR and none are coded as containing ER, which
translates to accuracies of 0.79 and 0.68, respectively (Fig.
1). The higher outcome imbalance (much fewer than 50%
positive instances of the code) for ER means the accuracy for
ER is higher than for CR (closer to 50% positive instances)
for all training set sizes.

Compared to accuracy, Cohen’s kappa is able to better ac-
count for outcome imbalances. This metric starts off very low
for both codes at low training set sizes and grows quickly as
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FIG. 2: The number of responses coded with (a) expected
results and (b) consistent results in three different types of
training set (bars) and the corresponding kappa (points).

the training data set size is increased, with significant over-
lap between codes (Fig. 1). We infer that Cohen’s kappa may
be a more descriptive and conservative metric for identifying
conditions that allow for accurate predictions. Kappa starts to
level off, while maintaining continuous increases, once con-
sistent substantial agreement is achieved (N ~ 600 for both
codes, with 80-100 positive responses for each code).

B. The effect of training and test set context

Next we examine the reliability of tests from three types
of training data: all subset I data (N=376), all subset II data
(N=361), and a random sampling of responses from both I &
IT (N=361). We selected 361 responses at random from the
full set of subsets I & II so that the training set size would be
comparable across the three training data types. The models
constructed by the three types of training data were applied
to an identical set of 100 responses from subset III.

We see that Cohen’s kappa depends on the type of training
data (Fig. 2). For ER, using only subset I is most effective,
followed by the random set selected from both I & II. Using
subset II alone resulted in a low kappa value, likely because
ER was rare in that training set. For ER, training sets perform
better with more examples of the code.

This pattern of higher reliability with more positive exam-
ples, however, does not carry over to the automated coding of
CR (Fig. 2). This code is much more common in all training
set types compared to ER (Table II). In this case, the training
data set that performs the best is subset II, where CR is least
common. Moderate agreement can more readily be achieved
because positive examples of this code are more common. We
expect the algorithms over-predicted CR in subset I and the
random I + II subset.



IV. DISCUSSION

Reliability increases with size. We find that, with suf-
ficient data (training set size ~ 600 responses with 80-100
positive responses for each code), neural networks are able
to consistently achieve substantial agreement with human
coders. Furthermore, the level of agreement continuously
increases as more data are added to the training set. While
accuracy as a function of training set size depends on the fre-
quency of the code in the data set (outcome imbalance), reli-
ability (via Cohen’s kappa) as a function of training set size
does not depend on this balance.

Results from previous studies are consistent with our find-
ings of the relationship between training data size and kappa.
Studies with very small data sets (N =67 [6] and N ~ 150 [7])
do not consistently reach moderate agreement, instead find-
ing a wide range of agreement levels (0-0.7) across different
codes. Consistent higher kappa values are achievable, how-
ever, when N is much higher or when unsupervised methods
are used in the development of the coding scheme [4, 5].

Automated coding of data from a different context than
the training data can be performed, but take caution.
Most studies involving machine learning use portions of the
same data set for both training and testing [4, 6, 7]. In this
study, we were interested in developing methods capable of
machine coding large-scale data sets across institutions and
contexts. For example, we are interested in understanding
how a machine learning algorithm would perform in coding
data from an entirely new cohort of students or students un-
der different experimental conditions. In this study, all tests
were done using a different cohort of students in the training
data set (either a mix of subsets I & II or one of these indi-
vidually) as in the test data set (subset III). Figure 1 demon-
strates it is not necessary to have data from the same popula-
tion of students in the training and test sets to perform reliable
automated coding. For both codes, sufficient reliability was
achieved around N = 600 despite no subset III data in the
training set.

Some characteristics of the training set, however, do im-
pact reliability (Fig. 2). For ER, kappa was highest for the
subset I training set. Kappa was lowest for Subset II because
this training set contained very few examples of ER, likely
because the instructional goals of the lab course are in line
with decreasing the likelihood that students hold ideas in line
with the ER code. There are two possible explanations for
this pattern of reliability: first, the more balanced the pres-
ence of the code in the dataset (i.e., approximately 50% of
responses contain the code), the better the reliability; second,
that Pre-class data are better at predicting Pre-class data. To
distinguish between these explanations, we turn to CR, a code
that is present in the majority of responses.

For CR, kappa was much more consistent with moderate
agreement across all training set types. This is likely because
more examples of this code were present in all the training
sets compared to ER. The highest performing training set,
subset II, is the one that used only Post data, rejecting the idea
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that Pre data are inherently superior for predicting other Pre
data. Another possible explanation for the high performance
of subset II training data may be that subsets II & III were
asked in a survey and thus both had shorter average response
lengths, but this effect was not also seen for ER. Alternatively,
the improved performance may be because subset II had the
most balanced outcomes (present in approximately 50% of
the responses) of all the training sets. Subset I, in contrast,
had an overabundance of the code in the data set and had the
lowest reliability. Though it may seem counter-intuitive that
the training set with the most examples performed the worst,
the overabundance of the response means that the algorithm
is not as well trained on what is excluded from the code.
Thus our data show that imbalanced outcomes in the
training data are the primary factor in determining de-
creased reliability. Different characteristics of the training
set (e.g. Pre vs. Post) mostly matter in so far as they affect
the balance of outcomes. More testing across other types of
questions and codes is needed to generalize this conclusion.

V. CONCLUSION

We have examined the utility of a supervised machine
learning algorithm for use in machine coding of responses
to an open-ended survey question. Though the functionality
of machine coding is highly dependent on the context of the
question asked and the population of students in the data set,
some takeaways from our particular analysis may be broadly
applicable:

* You need more than about 80-100 responses that contain
each code before you can consistently see substantial agree-
ment with human coding. For coding schemes and data like
ours, substantial agreement is consistently achieved around
N = 600 total responses.

* You can successfully use training data from previous co-
horts of students to code new data, but changes that alter
the balance of outcomes (including those caused by differ-
ent characteristics like Pre vs. Post) may decrease reliabil-
ity.

* Optimal coding for binary schemes occurs when about half
of the responses in the training data contain the code. Cod-
ing reliability decreases if the frequency of outcomes is too
low or too high.

More research that uses different types of coding schemes for

different types of student writing is needed to test the gener-

alizability of these observations.
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