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ABSTRACT: The emergence of experiments capable of probing quantum dynamics at
the single-molecule level requires the development of new theoretical tools capable of
simulating and analyzing these dynamics beyond an ensemble-averaged description. In
this article, we present an efficient method for sampling and simulating the dynamics of
the individual quantum systems that make up an ensemble and apply it to study the
nonequilibrium dynamics of the ubiquitous spin-boson model. We generate an
ensemble of single-system trajectories, and we analyze this trajectory ensemble using
tools from classical statistical mechanics. Our results demonstrate that the dynamics of
quantum coherence is highly heterogeneous at the single-system level due to variations
in the initial bath configuration, which significantly affects the transient exchange of
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—

coherence between the system and its bath. We observe that single systems tend to 1500
retain coherence over time scales longer than that of the ensemble. We also compute a

novel thermodynamic entanglement entropy that quantifies a thermodynamic driving

force favoring system—bath entanglement.

1. INTRODUCTION seen at the ensemble level, including quantum dot blinking,4

the hand-over-hand myosin motility mechanism,” and
dissipative photoprotection in photosynthetic light harvesting.’
While these techniques have found enormous success in
probing classical processes, their reliance on slow, incoherent

Quantum mechanical systems, from quantum computers to
photosynthetic light-harvesting complexes, display a great deal
of variability between putatively identical systems. For
example, uncontrolled variations in the environment and

imperfections in device construction can lead to unpredictable fluorescence complicates their use in the study of quantum
behavior of individual systems and have the potential to limit systems. Instead, quantum dynamics is typically probed via
the performance and reliability of quantum devices. Under- coherent ultrafast spectroscopies’ that use short broadband
standing the physical origins and effects of this heterogeneity laser pulses to measure femtosecond dynamics, providing
can provide insight into the robustness and regulation of evidence for wavelike energy transport in photosynthesis®™"*
biomolecular processes and enable the design of more reliable and coherent nuclear dynamics in retinal photosimerization—
quantum computing devices. However, observing and the first step in human vision."” However, the practical
interpreting this dynamical variability require the development constraints of these spectroscopies require measurements on
of new experimental techniques capable of measuring quantum large ensembles of systems, preventing the study of
systems at unprecedented spatiotemporal resolution and heterogeneity in coherent dynamics.

theoretical tools for efficiently sampling, simulating, and In recent years, a new class of experiments has emerged that
analyzing their dynamics. In this paper, we combine efficient combines these spectroscopies to observe and control
quantum classical simulations with the recently developed state quantum dynamics at the single-molecule level."*™"” These
space formulation of quantum ensembles to investigate studies have revealed the heterogeneity of single-molecule

quantum dynamics at the single-molecule level. Our analysis
shows how statistical mechanical tools inspired by classical
molecular dynamics can be adapted to single-molecule
quantum dynamics, providing new thermodynamic insight
into quantum phenomena such as entanglement and
coherence.

Single-molecule spectroscopies are broadly used to probe
heterogeneous microscopic behavior in chemistry, physics, and
biophysics.' > These techniques have been successfully
deployed to reveal single-molecule processes that cannot be

behavior that underlies ensemble observations and showed that
the dynamics of individual systems can be coherently
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controlled."® However, the microscopic complexity of the
systems and their local nanoenvironments has prevented the
experimental identification of the source of heterogeneity.
Computational modeling of single-molecule dynamics can
provide valuable insight into the microscopic degrees of
freedom responsible for intersystem variability, enabling
rationally designed single-molecule coherent and optomechan-
ical control.

The dynamics of heterogeneous systems can be studied by
analyzing the statistics of ensemble member dynamics, ie.,
their trajectory ensembles. Such analysis has become common
for systems that can be simulated with classical molecular
dynamics. Numerous tools and theories, such as enhanced
sampling methods'”*’ and fluctuation theorems,”'~** have
been developed to enable the analysis and interpretation of
trajectory ensemble data. Extending these methods to quantum
systems can be problematic due to uncertainty in system
trajectories within classical phase space. However, we have
recently shown that these problems can be eliminated by
resolving trajectories in the state space of density operators.”®
We utilize this state space approach here to enable the analysis
of a quantum trajectory ensemble.

Intuitively, the trajectory ensemble can be understood in
analogy with the simulation of classical systems by molecular
dynamics as follows. First, an ensemble of initial system—bath
states is sampled from an appropriate distribution. Then, the
total system—bath quantum dynamics for each initial state is
evolved forward in time in analogy to the constant energy
propagation of classical molecular dynamics. The total
system—bath dynamics of each ensemble member can then
be projected onto the system subspace through a partial trace
over the bath degrees of freedom, leading to a system state that
is a collective coordinate of the total system—bath description.
This leads to an ensemble of system state trajectories
equivalent to molecular dynamics trajectories of classical
collective coordinates (e.g., order parameters).

The primary challenge in extending this molecular dynamics
paradigm to quantum systems is the identification of an
appropriate initial state distribution. The assertion that a
collection of quantum systems probed in an experiment
displays some heterogeneity is, in itself, not surprising. For
instance, one would certainly expect that the protein scaffolds
in a collection of photosynthetic light-harvesting complexes
will undergo conformational fluctuations that can alter the
configurations of charged side chains, the local solvation
structure, or even the spatial arrangement of chromophores
and therefore the dynamics of excitation energy transport
through the chromophore network. Indeed, this heterogeneity
in photosynthetic energy transport has been experimentally
observed through ultrafast single-molecule spectroscopy.'® The
question, then, is how to identify and represent the initial
system—Dbath states in a given physical context. Below, we will
discuss several different methods for obtaining such an initial
distribution, when each approach is applicable, and con-
sequently how we can interpret the resulting trajectory
ensemble.

As a concrete example, we consider coherent excitation
energy transfer upon the impulsive excitation of an ensemble of
chromophore pairs embedded in a condensed phase environ-
ment. The electronic excitation is the quantum system that we
are interested in analyzing. This electronic system is coupled to
a bath of nuclear modes (e.g., intramolecular vibrations) with
which it can form entanglement and transfer energy thereby
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modifying the coherent energy transfer dynamics. This bath of
nuclear degrees of freedom is itself weakly coupled to a larger
condensed phase environment that acts as an energy source and
sink thermalizing the bath. As is usually done in condensed
phase quantum dynamics simulations, the system is defined as
the degrees of freedom over which the observables of interest
are defined. We include all degrees of freedom that impact
energy transfer dynamics on the time scale of interest in the
bath. The remaining degrees of freedom which negligibly
impact system—bath dynamics on this time scale are included
in the environment. Using this convention, the only role played
by the environment is thermalizing the initial state of the bath,
and it is otherwise neglected in our analysis.

In this case, the initial system state is determined by the
impulsive excitation assumption with all systems in the
ensemble initialized with the excitation localized on the
donor state. The bath of nuclear vibrations is initially
thermalized in the ground state due to weak interactions
with the environment over a long time before excitation. We
then consider the initial state of each ensemble member’s bath
to be described by a product of localized minimum uncertainty
coherent states whose centers are sampled from an appropriate
distribution such that the ensemble reproduces the ground
state thermal distribution. Below, we discuss how this initial
state distribution is operationally well-defined as the limiting
case of what can be observed in an idealized single-molecule
experiment, commenting on how to apply this to realistic
experiments with specified spatiotemporal resolution. We will
also discuss how this initial distribution can be reached from
our knowledge that heavier nuclear degrees of freedom tend to
behave classically as localized particles and how this intuition
can be rigorously applied and extended through pointer state
analysis.

The article is outlined as follows: In Section 2, we present
the P-ensemble description of the density matrix as an
unraveling of the standard ensemble description and discuss
important equilibrium and dynamical properties of systems
described within the P-ensemble framework. In Section 3, we
present a simple spin-boson model as a representation of a
condensed phase molecular donor—acceptor pair. We describe
the decomposition of an equilibrium Boltzmann distribution
(describing the initial state of the bosonic bath) as a product of
minimum uncertainty coherent states whose centers are
distributed according to an effective-temperature Boltzmann
distribution, for which we provide multiple justifications, and
outline our numerical implementation of the single-system
density matrix dynamics. In Section 4, we present results
highlighting heterogeneity within the dynamics of single-
system density matrices and contrast them with the ensemble
density matrix description. Finally, we make concluding
remarks and highlight potential applications of this theory in
Section S.

2. THEORETICAL FORMALISM

In this section, we present a formalism for analyzing the
statistical distribution of single quantum system dynamics from
within an ensemble. This formalism explicitly resolves the
evolution of individual systems in a quantum state space that
naturally lends itself to interpretation through the intuitive
framework of classical statistical mechanics. We contrast this
formalism with the traditional density matrix formalism used
for describing quantum ensembles.

https://doi.org/10.1021/acs.jctc.1c00477
J. Chem. Theory Comput. 2022, 18, 2047—-2061
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The utility of our choice of formalism can be illustrated by
considering two different hypothetical experiments. In the first
experiment, a large number of sample systems are simulta-
neously excited by a laser pump sequence and then allowed to
evolve for some time 7, after which a probe sequence is applied
to measure their state. In the second experiment, the same
sample is diluted such that only a single quantum system
resides within the path of the pump and probe lasers, thus
allowing for repeated initialization and measurement of single
systems. Unlike the first experiment, which reports on the
average properties of an ensemble, the second experiment can
provide explicit information about the distribution of states
and its dynamics. The theoretical basis for studies in
nonequilibrium dynamics relies on the knowledge of this
distribution and its temporal evolution.

2.1. Quantum Ensembles and Observables. The
outcome of ensemble experiments is completely described
within the ensemble density matrix, p. The expectation value of
any observable A that can be measured in such an experiment
can be computed directly from this density matrix as

Alp] = Tr{Ap} (1)

The p-ensemble is widely used to describe quantum systems
embedded in an environment. As such, a large number of
theoretical and computational tools have been developed to
characterize the dynamics and statistical mechanical properties
of p.””*® However, despite encoding information about the
statistics of observed properties, the ensemble density matrix,
p, does not contain the necessary information to discern the
statistics of individual systems or their heterogeneity.

This single-system information is contained within our
quantum state space formalism. Specifically, the properties of
each individual system are described by a single-system density
matrix, I, that captures its intrinsic quantum uncertainties. The
overall state of the ensemble is then given by a probability
distribution, P(I'), which specifies the fraction of single
systems that are in a given state. This construction separately
treats quantum uncertainty, as encoded by I', and the classical
heterogeneity through the distribution P(I"). By definition, the
properties of density matrices are retained by I', and the
distribution P(I') behaves in Liouville space analogously to a
classical ensemble distribution on position—momentum phase
space.”’

A description of an ensemble system by p is hereby referred
to as a p-ensemble representation, while a description
incorporating P(I") is referred to as a P-ensemble representa-
tion. The P-ensemble contains more information than its
corresponding p-ensemble. A p-ensemble can be recovered
from the P-ensemble through a simple averaging, via

p =)= / dITP(T) 5
where (-) represents the average over the distribution P(I"),
and the integral is taken over the set of all density matrices.
However, a P-ensemble cannot be unambiguously specified
from a given p.

The P-ensemble was first proposed by Davies in the
mathematical study of quantum stochastic processes”*” and
has been applied in the formulation of stochastic unraveling
methods for quantum dynamics simulations’®>> and in the
theory of closed loop quantum feedback control.>*** In these
previous contexts, the distribution was used to describe a
Monte Carlo process introduced for numerical convenience or
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was generated by the repeated collag)se of the quantum state
due to continuous measurement.’””’ We apply a similar
mathematical framework here to describe a distribution that
arises due to heterogeneity between quantum systems (see ref
26 for a detailed discussion of the relationship between these
different distributions and the physical situations that they
describe). In all of these applications, the P-ensemble must be
introduced since the ensemble average that defines p in eq 2
integrates out important information.

The P-ensemble is able to characterize certain observables
reporting on the heterogeneity between members of an
ensemble that are not possible to formulate in the p-ensemble.
A simple example of this is the variance of an observable A. In
the p-ensemble, only one variance can be defined:

Var[A] = A*[p] — Alp]* = Tr{A’p} — Tr{Ap}’ 3)
where the average defined by the overbar is that of eq 1. This
expression corresponds to the overall variations of the
observable A. In the P-ensemble, however, this variance can
be split into two, separately observable, contributions. Using eq
2, the p-ensemble variance can be decomposed as

Var,[A] = (Varr[A]) + Vary[A]

- / Tr{AT}P(C)dl" — ( / Tr{Ar}p(r)dr)2
(4a)
(Varr[A]) = (Tr{A’T} — Tr{AT})
= f Tr{A2T}P(T)dT" — / Tr{AT P P(T)dl

(4b)
Var[A[T]] = (AX[T']) — (A[T])
- f Tr{ATPP(T)dl
2
_ ( / Tr{AF}P(F)dF) (40

where Varp[A[I']] captures differences in the average values of
A across different systems in the ensemble and ( Varp[A])
captures how much of the variance comes from uncertainty in
the outcome of A at the single-system level. This equality can
be seen by adding and subtracting the term [Tr{Al'}*P(I")dl"
in eq 4a and splitting the resulting four terms into eqs 4b and
4c. These two observables highlight the ability of P-ensemble
descriptions, and the single-molecule experiments that they
model, to capture heterogeneity within an ensemble of
individually addressable systems.

2.2. Thermodynamic Equilibrium. Systems described by
the quantum P-ensemble are subject to a Boltzmann-like
probability distribution law. The derivation of this distribution
follows that for purely classical ensembles, i.e., maximizing
distributional entroAPy subject to a constraint on the ensemble
average energy.38_ ® In the P-ensemble, we maximize S =
JP(D)In(P("))dI’, subject to a constraint that the ensemble
density matrix satisfies the Gibbs state:

ohH

={IY= ——
P =0 = s)

1 . e
where f = P and H is the Hamiltonian. For an N-
B

dimensional system, the Gibbs state imposes N constraints

https://doi.org/10.1021/acs.jctc.1c00477
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on the diagonal components of the density matrix and N(N —
1)/2 constraints on the oft-diagonal matrix elements.
Incidentally, the Gibbs constraint is significantly more
complicated than simply fixing the mean energy, as is used
to define the classical canonical distribution. Nevertheless, this
constraint yields a Boltzmann-like distribution over the set of
density matrices:
e—[}FI[I‘]
P(I') =

(6)

where H[I'] = Tr{HI'} is the quantum average over state I,
and Y= [ dre I is the state space partition function.

For composite systems comprised of a system with Hilbert
space H, and a bath with Hilbert space g, the density matrix,
I, is an operator acting on the tensor product space Hy ® Hj.
In this case, the reduced system density matrix o = Trpl" can be
understood as a lower dimensional collective coordinate of the
total density matrix I. We define a constrained energy,
entropy, and free energy for each state ¢ in the same manner as
a classical collective coordinate

—kBTIn( / 50 — TrBF)e_ﬁH[r]dF>

= Hyglo] — TS,[o] (7)

Flo]

where

Hylo] = / HIT16(c — Trl)e PHM=Fel g ©
is the reduced system Hamiltonian of mean force. If the
Hamiltonian H = Hg + Hg + V can be split into system, Hg,
bath, Hj, and coupling V Hamiltonians, then the distribution
in eq 6 can be projected onto the space of system (reduced)
density matrices using the projection I' = ¢ = Trpl". In the
large bath (or equivalently weak coupling) limit [V < |Hjl,
and thus Hy;[o] ~ HJO'],“ giving

oAUo1-TS o)

Po)=—— ©)

where Z = f doe PULOI=TSIOD ¢ the state space partition

function, and S,[6] = kg / drs(o — Trl)e PEBITIHVIND g the
entropy associated with the system—bath entanglement.

2.3. State Space Geometry and Dynamics. The
population dynamics of a quantum P-ensemble can be
characterized by a quantum Liouville theorem for P-ensembles.
This theorem can be derived by first considering the equations
of motion for individual ensemble members, as given by the
Liouville—von Neumann equation for the total system—bath
evolution. In the state space of density operators, these
equations of motion take a fluid dynamical form where the
probability density flows along a vector field defined by the
time derivative of the density matrices at each point in the state
space.”

The directionality of flow on this state space is defined by
the trace inner product on the Liouville space of operators.
This dot product of two operators, A and B, is thus defined as

A-B = Tr{A'B} (10)

For any given basis of the system Hilbert space {¢} a
standard orthonormal basis can be constructed for the

Liouville space {E; = le;)(e/} such that the trace inner product
defines the operator matrix elements A; = A-E;;

We have previously shown that under the Liouville—von
Neumann equation for closed system evolution, the probability
distribution takes the incompressible convective form

0 .
atP(l“, t) = =Vp.P(T, t)-T’ (11)
where Vi denotes the gradient on Liouville space and iAl" =
[H, I'] is the dynamical evolution vector field defined by the
Liouville—von Neumann equation. This approach can be
generalized to open systems using the Nakajima—Zwanzig
equation for system dynamics,’® where interaction with the
bath introduces dissipative frictional contributions that drive
the narrowing of the distribution to a single point and
stochastic bath kicks that lead to the broadening of the
distribution. The thermal steady state given by eq 9 reflects a
balance of these two opposing bath contributions implying a
fluctuation—dissipation relation.

Due to its similarity to classical dynamics, the P-ensemble
Liouville theorem enables an intuitive analysis and interpreta-
tion of single-system quantum dynamics. Using a trajectory
ensemble approach, a set of initial conditions can be sampled
from an initial state space distribution P(I, 0) and then
propagated in time to produce an ensemble of trajectories.
This trajectory ensemble can then be analyzed to determine
the time-dependent state distribution. Such an approach is
similar to classical molecular dynamics simulations and allows
any method for propagating the underlying equations of
motion to be used to compute the distribution dynamics.
Moreover, the statistics of system dynamics can be computed
directly from the trajectory ensemble with each member of the
ensemble representing the dynamics of a single molecule
within the ensemble. In the remainder of this paper, we will
describe the implementation of such a trajectory ensemble
approach in the setting of the standard spin-boson model to
illustrate how thermodynamic insight can be gained in single-
molecule quantum dynamics.

3. NUMERICAL METHODS: SPIN-BOSON MODEL

For proof-of-concept numerical simulations, we utilize the
uncorrelated bath spin-boson model that consists of two
discrete “spin” states, each of which is coupled bilinearly to a
set of harmonic oscillators. Such a model is often utilized as a
simple representation of a molecular donor—acceptor pair in
the condensed phase, where the two spin states represent
localized electronic excitations on the donor and acceptor
molecules and the independent baths represent the local
vibrational normal modes coupled to these excitations (e.g.,
the intramolecular vibrations of the donor and acceptor). In
the Meyer—Miller—Stock—Thoss (MMST) mapping repre-
sentation,”~** obtained by replacing the quantum system state
projection operators with bosonic raising and lowering
operators as la) — 4], the Hamiltonian can be expressed as

D

~ 1 A2 A2 A A

A== Y B +oR)+ Y hyRals,
) k=1

2 ae(0,1) kg, a,pe(0,1)

D
1 A2 A2 1 ~
= 3 z z (Pka + aszaRka) + T z hap(R)
ae(0,1) k=1 a,pe(0,1)
X (qaq\/} + ﬁaﬁﬂ - haa/})
(12)

https://doi.org/10.1021/acs.jctc.1c00477
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where haﬂ(f{) = (6 + Zk 1k Rk) s T+ Aaﬂ(l a/}) de-
scribes the coupling between each of the spin states and their
independent baths, as well as the coupling between the spin-up
[1) and spin-down 10) states. Here, we have chosen ¢, — ¢, =
Ay = 100 cm™
Each state’s independent (but identical) bath is charac-
terized by the spectral density defined, in this case, by the
Drude—Lorentz form as
@) = 20— —2 i 5(w - @)
(13)

with bath correlation time y™' = 50 fs and reorganization
energy A = 20 cm ™. These values are typical for describing the
impact of solvent fluctuations on the electronic excitation of
molecular chromophore systems in solution. We have
represented the spectral density by sampling D = 200 modes
from each of the independent baths according to the
methodology described in ref 45.

3.1. Quantum Dynamics Algorithm. Computing the
time evolution of high-dimensional quantum systems relies on
approximations or assumptions to circumvent the issue of an
exponentially scaling state space. To demonstrate the
theoretical framework alluded to above, we apply the partially
linearized density matrix (PLDM) dynamics algorithm,** a
mixed quantum classical propagation scheme that treats the
relevant degrees of freedom quantum mechanically and the
irrelevant degrees of freedom explicitly in a classical-like
manner. Crucially, the PLDM algorithm makes no inherent
assumption about the initial state of the system, allowing one
to deconvolute the dynamics of, in our application here, a
thermal distribution of states into a heterogeneous ensemble of
single-molecule realizations. This, in turn, provides access to
the underlying statistical properties of a heterogeneous
dynamical ensemble of single-molecule systems.

The PLDM algorithm, which combines a semiclassical
coherent state path integral description of the quantum
subsystem within the MMST mapping representation with a
truncated Wigner approximation for the dynamics of the

bath,*’

: 4852
dynamics of open quantum systems.

has proven fruitful in describing nonequlibirum
Since a semiclassical
dynamical description of the mapping variables (as defined by
the Hamiltonian in eq 12) is quantum mechanically exact, the
central approximations of the PLDM algorithm are the
linearization of the bath phase space path integrals (the so-
called truncated Wigner approximation) and the neglect of the
quantum subsystem’s parametric dependence on quantum
fluctuations about the bath’s linearized (classical) trajec-
tory.****3% A detailed description of the PLDM derivation
has been presented previously, so we refer the interested reader
to this literature*™*® for such details and simply present the
final result for an approximate time-evolved reduced density

matrix element as

2051

1 / (noynd)
—_— dR A P R
a0 fz)w Z (R

y / dqodp0 dqodp0
Qzh)™ 2zh)™

X g(qoi po)g(qol Po)(q(nf) + lpt(nf))(q (”0) -
X (q/(”o) + ipo(”o))(q/("t) lpt/(” )

O-nf,n(’(t) X

ip")

(14)

Here W"")(P,, R,) is the partial Wigner transform with
respect to the bath degrees of freedom of the (1, nj)-th system
matrix element of the initial density operator,

G(q, p) = exp[ Za l(q(()‘)2 + (a)z)] provides a Gaus-
sian distribution of mapping variable initial conditions, and
mapping variables with a subscript t are obtained by
propagating classical trajectories from their initial conditions
(labeled with a subscript 0).

The PLDM algorithm is numerically implemented by
performing integrals over initial conditions through a Monte
Carlo sampling procedure to generate an ensemble of
independent initial conditions in phase space, integrating
Hamilton’s equations of the form

R,=M""'P,
1 ~
= _VR1V0(R1) - EVRf(hm(PT) qQ, R-:)
+ I:;m(p/r’ q/‘r) RT))

oh,(p, q, R J
- (@) _ (B)
qr ap(a) z haﬁ(R )p
T ﬁ 1
(a oh,(p, 4, R,) 1
o = - PR LS el
aqr p=1 (15)

and computing each trajectory’s contribution to the time-
evolved density matrix elements according to the Hermite
polynomial terms in eq 14. In the above expressions, Vy(R)
incorporates a state independent, bare bath potential, and

h,.(p» q» R,) is the second term in eq 12 after dropping the
Kronecker delta that arises from mapping variable canonical
commutation relations.”

Duplicate mapping variable equations of motion of the form
given in the last two lines of eq 15 must be propagated for the
unprimed (“forward”) and primed (“backward”) mapping
variables. These different mapping variable initial conditions
are propagated independently for the forward and backward
mapping variables using the Hamiltonian defined by the same
mean nuclear path R,.

For the spin-boson model parametrized as described above,
which is characterized by relatively weak system—bath
interactions, the PLDM algorithm has been shown to
reproduce exact results nearly quantitatively for the ensemble
descrlptlon In support of these findings, it has recently been
shown that the leading order quantum correction to PLDM is
quadratic in the system—bath coupling strength.”* As such,
while approximate, we expect that this dynamics scheme will
provide a reasonable description of the decoherence and
entanglement time scales underlying the single-molecule
density matrix dynamics considered here.

https://doi.org/10.1021/acs.jctc.1c00477
J. Chem. Theory Comput. 2022, 18, 2047—-2061
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3.2. Sampling Single-Molecule Bath Configurations.
The initial density operator is chosen in factorized form as

—pH,

py =5 ®p" =10)(0l ® °

(16)
1 A2 142y .
Zae(o ) Zk (B + @i Ry ) is the bare bath

Hamiltonian. Wigner transformation of the initial bath density
operator yields the bath Wigner function as

B

where H, =

Pk
2P

Ry

2
203,

W(R, P) Hexp
k

(17)

with 6p, = /L and oy = [ — defining
k 2tanh[fhw; / 2] k 2w tanh[fhw; / 2]

the quantum distributions of bath momenta and positions,
respectively.

The position and momentum component Gaussian
distributions of the bath’s thermal Wigner function can each
be expressed as a convolution of, for example, two auxiliary

(1) provided that
(2)2

= GPk

and 0'(2)
(1)2

Gaussian functions with widths op

these auxiliary distribution widths satlsfy

with analogous definitions for the position dlstrlbution widths.
Utilizing this convolution property, the initial bath config-
urations that give rise to a heterogeneous ensemble of Liouville
space trajectories are chosen by sampling the centers of
minimum uncertainty coherent states for each mode from an
effective-temperature Boltzmann distribution since the Wigner
function can be expressed as

(P

haw,

W(R, P) x / dP'dR e~ T A GPI+ 3ol R~ X

@ (R—R})

X e Z, n (18)

1 haw, 1
kB 2 tanh(M)
2

transforms of these coherent states have the form

where ] = T with T = 1{. The Wigner

(R, B) x o~ (PP [ har = (Re=R()* / (19)
for the kth mode. It can readily be shown that this choice of
bath density decomposition is equivalent to choosing the
single-system density operator as a product of coherent state
projection operators, I = T1dR:, Pi){R}, Py, with coherent
state width parameters chosen so that

@ 1/4 5
(R} ) = (2| et 10
nh (20)

We then find that the distribution function of single-system
density operators that satisfies eq 2, p(1) (given our choice of
ensemble bath density operator), is provided by the effective-
temperature Boltzmann distribution in eq 18.

This statistical decomposition scheme of the thermal density
operator into minimum uncertainty wavepackets is not
mathematically unique. In fact, there exist an infinite number
of different decomposition schemes (i.e., P(I")) that reproduce
the same initial density operator. This reflects the increased
information content of a P-ensemble description of an
ensemble compared to the p-ensemble description, as
represented in eq 2. Correspondingly, selecting this particular
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decomposition scheme reflects an input of additional
information regarding the experimental scenario being
considered.

We can reach this minimum uncertainty coherent state
decomposition in several physically important ways. While
these justifications are related, and all valid, they lead to slightly
different interpretations of what the trajectory ensemble is
representing. (More precisely, they determine the ontological
and epistemic status of the trajectory ensemble. That is, they
determine whether the trajectory ensemble represents a state
of knowledge about a collection of systems or the physical
quantum states of those systems.) Naively, one could simply
insert this decomposition as an axiomatic assumption. In this
case, the trajectory ensemble is simply an information
theoretical object that propagates (under the action of physical
laws) the information that we introduce with that assumption.
The utility and ultimate physical reality of this trajectory
ensemble are then determined by the utility or physical reality
of the axiomatic assumption which is considered separately
from the ensemble itself. In the absence of any further physical
justification, this particular coherent state decomposition
corresponds to the assumption that we have obtained the
maximum possible information about the initial configuration
of the bath that is allowed by quantum mechanics. It is
therefore useful, as a limiting case of what is knowable about
the system in contact with a bosonic bath.

Concretely, we reach this decomposition by considering an
experiment where we measure the (Heisenberg-limited) initial
positions and momenta of all bath oscillators the instant before
exciting the donor dye molecule. In this case, each trajectory is
a complete description of the observables of the excitonic
system conditioned on the results of the bath measurements.
That is, the trajectory ensemble represents the predicted
outcome of a specific experiment. This experiment physically
realizes the situation assumed above where the maximum bath
information is acquired. One is free to consider other
experimental conditions where different bath conditioning
schemes are employed by decomposing the system into the a
posteriori states of that scheme.”” For example, if we consider a
system where only some subset of the bath modes is measured
(e.g., the slow modes of the bath), then we can decompose
only those modes using the coherent state scheme and average
over the full thermal distribution of the other modes. This
approach simply employs the usual p-ensemble averaging
procedure over the unobserved modes while decomposing the
observed ones. We note that such an experiment does not
necessarily require that the bath is explicitly measured and the
outcome recorded. All that is needed is that we can guarantee
that a collection of measurements corresponds to the same
bath state. In single-molecule experiments, this arises when
some subset of bath modes is slow compared to the
measurement time of the experiment. Repeated measurements
in a single molecule are therefore taken at a fixed value of that
bath mode.

Finally, this minimum uncertainty decomposition can be
reached without reference to any particular experimental
measurement of the bath by considering the preferred (pointer
state) basis of a system in a condensed phase environment. We
assume that the total spin-boson composite is weakly coupled
to a superenvironment of ambient particles such as solvent
molecules or even ambient photons. Before the donor is
excited, these particles will continuously scatter off the nuclei
described by the boson bath. This ongoing scattering process

https://doi.org/10.1021/acs.jctc.1c00477
J. Chem. Theory Comput. 2022, 18, 2047—-2061


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00477?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

acts as a measurement (in the von Neumann sense) of the
boson bath since the angle and momentum of the ambient
particles after the scattering event depend on the positions and
momenta of the bosonic modes. This leads to environment-
induced superselection (sometimes abbreviated as einselec-
tion) into a preferred basis of minimum uncertainty coherent
states.”” >’ The minimum uncertainty decomposition scheme
is therefore the unique scheme imposed by the preferred basis
resulting from an environment of scattering particles.
Intuitively, the environment of scattering particles encodes
“which path” information about the position and momentum
of each mode that is equivalent to performing a Heisenberg-
limited measurement of their configuration as we described
above. This decomposition into minimum uncertainty wave-
packets can in fact be derived ab initio by explicitly considering
the dynamics of the bosonic bath (before donor excitation) in
contact with a scattering environment.>”” In this case, the
trajectory ensemble is an objective (and dynamically verifiable)
representation of the state of the spin-boson model under the
action of a scattering bath performing which-path measure-
ments. (As a subtlety, we note that we have assumed that the
coupling to the environment is sufficiently weak that it does
not affect the system—bath dynamics on the time scales
considered. This corresponds to an assumption that the
ambient particles are dilute.) This approach can be generalized
to other types of environments (e.g, isolated high-quality
optical cavities) by decomposing into their pointer state
basis.”***

These decomposition schemes allow us to unambiguously
define a P-ensemble representation for a broad range of
systems. The information theoretical decomposition scheme is
simply a formal prescription for how external information can
be encoded into the P-ensemble and is therefore applicable
whenever such information is provided. We can apply the
measurement-induced decomposition scheme whenever we are
provided with a collection of (potentially weak) bath
measurements upon which we can condition. In practice, this
requires the construction of a realistic model of the bath
degrees of freedom that are conditioned upon, which may not
always be available.

The pointer state decomposition scheme is particularly
useful since it can be defined directly from a Hamiltonian
expressed as a sum H= Hs + HB + Hg + VbB\ + VBE of system
bath and environment Hamiltonians HS, Hg, and Hp and
interaction potentials VSB and VBE Given such a Hamiltonian,
several methods exist to define a unique pointer basis
appropriate for the model, summarized in ref 58 and references
therein. In principle, this requires only that we are able to write
down reasonable models for the system, bath, and environment
as separately definable subspaces.

Formally, we can define a system subspace as a Hilbert space
upon which all observables that we would like to model act
upon. We then partition the remaining degrees of freedom
between bath and environment subspaces by requiring that
AllVeell= < where
| Al =inf{c > 0: Ayl < clyl V y € H} is the usual oper-
ator norm and 7 is the time interval that we are interested in
modeling. Such definitions are always formally possible and are
simply prescribed by the operators and time scales of interest,
with longer time scales of interest requiring the explicit
inclusion of more degrees of freedom into the bath. In practice,
however, this process may require us to include more bath
degrees of freedom than can be reasonably simulated, or the
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model Hamiltonians may be so complicated that the
computation of the pointer basis becomes unfeasible. More-
over, in a given setting it may not be obvious which degrees of
freedom contribute to a particular experimental observable
making the definition of the system difficult.

The resulting distribution can therefore be interpreted as an
effective-temperature classical Boltzmann distribution of
quantum mechanical minimum uncertainty Gaussian wave-

packets taken by scaling the physical temperature, f = L T,

according to the expression under eq 18. In the low-
temperature (or high-frequency) limit the kth mode’s
effective-temperature approaches 0, and the minimum
uncertainty coherent state collapses onto the origin, rendering
it equivalent to a harmonic oscillator ground state. In contrast,
the high-temperature (or low-frequency) limit of the effective
temperature approaches the physical temperature as

T, — T(l - ﬂ%)

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we analyze the heterogeneity of dynamics
within a trajectory ensemble of the spin-boson model. We
generate this trajectory ensemble following the methodology
described in Section 3. To proceed, we substitute eq 18 into eq
14 for the initial Wigner density, interchange the order of
integration over coherent state centers and bath phase space
initial conditions, and express the time-evolved reduced
density matrix as an integral over coherent state centers in
the phase space of the bath variables:

o) & [ apare TAGH 0G0 ) (21)

where the matrix elements of 6'*”®)(t) involve integrating
over the initial conditions sampled around each coherent state
center according to eq 14. In our numerical implementation of
eq 21, we generate 5000 independent bath coherent state
center configurations, (P’, R'), by Monte Carlo sampling the
effective-temperature Boltzmann distribution at a physical
temperature of T = 300 K. For each bath configuration, the
integrals over phase space initial conditions in eq 14 are
computed by averaging over 2 X 10* paths to resolve the initial
product of bath minimum uncertainty coherent states and
mapping variable coherent states. After averaging over the
effective-temperature Boltzmann distribution of single-mole-
cule configurations, one recovers the standard ensemble
density matrix description. In every case, the system is
initialized in the 10)(0l state. In making a connection with eq
2, we have that the effective-temperature Boltzmann
distribution plays the role of the initial distribution function,
P(T, t = 0), while 6®"®)(t) represents the time-revolved
single-system density matrix, I'(t). We also emphasize that it is
crucial to sum over many semiclassical mapping variable paths
to generate each single-system density matrix. Each semi-
classical path is not physically meaningful and can display
nonphysical properties such as negative populations. Only after
summing over many such paths (2 X 10* in these studies) with
initial conditions sampled from a wavepacket, in our case a
minimum-uncertainty coherent state, can we generate physi-
cally meaningful single-system density matrices.

For a two-level spin system, the state space of density
operators can be conveniently mapped to the three-dimen-
sional real-valued Bloch sphere. Each single-molecule “trajec-
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Figure 1. (A—C) Cartesian coordinates of sample single-molecule trajectories (red) and ensemble-averaged trajectory (blue) showing the
heterogeneity of dynamics within the ensemble. Each Cartesian coordinate corresponds to the quantum average of the corresponding Pauli spin
matrix as defined by eq 22 for an ensemble of trajectories computed using eq 14. (D) Standard deviation of quantum-averaged values for each Pauli

matrix within the single-molecule ensemble and for the radial dispersion s..

tory”, for example, is defined as a time-ordered sequence of
points in the Bloch sphere, {5(t)}, with

o(t) = (1 + (03, + (03, + (15 o)

where x, y, and z are time-dependent real-valued coefficients
and S, = (10)(11 + I1){0l), S, = i(10){1l = 11){0l), and S, = (I
1){1l — 10){0l) are the Pauli matrices. We can interpret each
Cartesian coordinate i = S;[6] as the quantum average of the
Pauli operator S; for i = %, y, z.

This trajectory representation has several useful features.
First, the pure state density matrices that indicate the lack of
system bath entanglement are found on the surface of the
sphere, while states inside the sphere indicate the presence of
system bath entanglement. The pure states correspond to the
open system states that can be described by a wave function
ly) with po.. = ly)(yl. The z axis describes the relative
population of the donor and acceptor sites while the x and y
components describe the real and imaginary coherence
between the states.

4.1. Heterogeneous Dynamics. Using this coordinate
system, the dynamics of individual systems can be visualized
and contrasted with the ensemble-averaged dynamics. The x, y,
and z components of the trajectory ensemble are plotted in
Figure 1. We observe that single-system dynamics differs
significantly from one another and from that of the ensemble
average. These results highlight the rich distribution of single-
molecule dynamics that is obscured by ensemble averaging.
Even after 2 ps, where the ensemble-averaged dynamics has
relaxed to a steady state, single molecules continue to show
significant oscillatory behavior that is washed out when
averaged over the ensemble.

The P-ensemble variances given by eq 4c provide a
convenient method for quantifying the heterogeneity within
these dynamics. The standard deviations in the quantum-
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averaged spin coordinates s,(t) = \/Va[S[o(t)]] (i = x, y, 2)
are defined in eq 4c and can easily be computed from the
trajectory ensemble. For any observable A, we simply compute
the time-dependent quantum average along each evolving
trajectory A[co(t)] = TrAoc(t). The ith trajectory then yields a
time series of classical numbers A,(t) that can be analyzed
using the usual tools of classical statistics. To obtain the time-
dependent standard deviation, we simply use the usual formula
for sample standard deviation from classical statistics

sy(t) = \/Zfil (A,(t) — (A(t)))*/N, where N is the number
of trajectories and (A(t)) = XN |A(t) is the sample mean of
A((t). Figure 1D shows the heterogeneity in single-molecule
observables within the ensemble. This can be conveniently

summarized by the radial dispersion s, = , lsj + S; + sz2 which

measures the mean distance of a single-molecule trajectory
from the ensemble average.

We find that within the first 100 fs, initially identically
prepared single systems rapidly spread around the Bloch
sphere before slowly relaxing closer to the ensemble average
over time scales of approximately 500 fs due to dissipation and
decoherence processes. However, even at 500 fs, the
trajectories exhibit significant dispersion from the mean of s,
~ 0.4. Over time scales of 1 ps, the trajectory ensemble slowly
broadens, and the influence of the bath leads to a broad,
dynamic steady-state distribution.

A more complete picture emerges when the trajectory
ensemble is visualized within the Bloch sphere, as plotted in
Figure 2. We observe that at early times ~100 fs, trajectories
primarily spread out along a ring on the Bloch sphere, defined
by rotating the initial state about a precession axis. This
indicates that at early times, the primary effect of the bath is to
modulate the time scale of the system dynamics without
changing its precession axis. Remarkably, at these times, on the
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A.

Figure 2. Snapshots of ensemble states at (A) t = 0 fs, (B) t = 100 fs, (C) t = 200 fs, and (D) t = 2 ps (steady state). The color of each point
indicates its z coordinate. An ensemble of systems initialized in state |0) fans out along a ring of nearly pure states in the first ~100 fs. Between 100
and 200 fs the trajectories then spread out around the sphere before dephasing to give a distribution of states inside the Bloch sphere. Notably,
most systems do not fully decay to the ensemble-averaged equilibrium leaving a heterogeneous equilibrium distribution.

order of the system-dephasing time, the individual trajectories
remain close to the surface of the Bloch sphere, indicating
minimal entanglement formation with the bath. This behavior
indicates that at early times the influence of the bath on
individual systems is dominated by slow modes of the bath that
modulate the dynamical frequency of the system, related to
hap(R) in eq 12, leading to ensemble coherence loss. This
behavior is similar to the frozen mode trajectory approx-
imation, where slow modes of a bosonic bath are stochastically
sampled as an intermediate to computing nonmarkovian
dynamics.>”

At intermediate times, ~200 fs, we observe the tendency for
trajectories to spread out over a spherical shell within the
Bloch sphere. The diffusion of the trajectories off the ring seen
in Figure 2B indicates that the precession axes around which
each of the different systems evolve are fluctuating and
deviating from one another as faster modes of the bath become
involved and modulate the dynamics more significantly.
Notably, even at these times, the individual systems remain
fairly close to the surface of the unit sphere, indicating that
system—bath entanglement is relatively slow to develop with
the parameters used in these simulations and that this
entanglement is not isotropic about the Bloch sphere,
suggesting that some coherence coordinates develop entangle-
ment better than others. In contrast, by ~2 ps Figure 2D shows
the quasi-steady-state distribution of points, indicating a more
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isotropic distribution around the Bloch sphere that has
decayed significantly toward the center of the state. However,
even in this quasi-steady state, the distribution retains some
width, indicating that even at equilibrium, individual systems
behave differently and do not collapse to a maximally
entangled state. The width of the sampled distribution is
consistent with the prediction of eq 6 that there is a
competition between the Shannon entropy of the P(I),
which drives the distribution to broaden, and the entanglement
entropy that favors a vanishing Bloch vector radius. Moreover,
this partial collapse toward a steady-state distribution of finite
width suggests the existence of a fluctuation—dissipation
relation to impose balance between heterogeneous interactions
with the bath and coherence and energy relaxation processes.

Further insight can be gained by splitting the dynamics into
radial and angular components. The dynamical change in the
Bloch sphere radius of the trajectories captures the dynamics of
entanglement formation between the system and bath and the
consequent loss of coherence at the individual system level. By
analysis of the statistics of these “radial” dynamics, the
mechanism leading to decoherence can be examined to
elucidate the dynamics of quantum phase information at the
single-system level. In contrast, the angular dynamics at fixed
radius captures the complementary dynamical change in
quantum phase information as each system coherently evolves
under a fluctuating Hamiltonian reflecting the noisy influence
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Figure 3. (A) Time-dependent Bloch sphere radii of (red) S0 sample trajectories and (blue) ensemble-averaged density matrices. (B) Histogram of
dephasing times, 7, ,, for 5000 trajectories (red) compared to the dephasing time for the ensemble-averaged density matrix (blue). Dephasing

times are determined by the first passage time of a trajectory through a sphere with r_

= % shown as the dashed line in (A).

of the bath. This “angular” dynamics reveals the dynamical
influence of bath interactions on the system dynamics and the
role they play in driving heterogeneity in the trajectory
ensemble.

4.2, Decoherence and Dephasing. We now consider the
heterogeneity in relaxation between different systems in the
ensemble. In particular, we are interested in capturing the
dephasing mechanisms by which quantum phase information is
lost in the ensemble. There are two mechanisms by which
phase information is lost. In the first, interaction between the
system and bath leads to the formation of entanglement and
the loss of quantum phase information to the bath in a process
called decoherence. Alternatively, interaction with the bath can
lead to fluctuations in the energy levels of the system and
therefore in the dynamical frequencies of the system. As a
result, different systems in the ensemble evolve with different
quantum phases leading to interference and an apparent
disappearance of coherence upon ensemble averaging, a
process we refer to as heterogeneity-induced dephasing. We
note that this accounts for frequency fluctuations at all time
scales and therefore includes dephasing due to both static
heterogeneity in the Hamiltonians of individual molecules
(often referred to as inhomogeneous broadening) and
dynamical fluctuations of those Hamiltonians (often referred
to as homogeneous broadening).

By monitoring the coherence of the systems at the trajectory
level, we are able to resolve these two process separately. To
do this, we note that the coherence of a quantum state can be
captured by its purity

1 1
Pur(p) = Trp* = Z(l + x>+ + 2 Z(I + 1)

(23)

which is related to its Bloch sphere radius, r. The purity
quantifies the entanglement between the system and the bath
with Pur(p) = 1 indicating a pure state with no system bath

entanglement and Pur(p) —>i indicating a maximally

entangled state.

Therefore, by analyzing the radial dynamics of individual
trajectories we can not only determine the relative contribution
of heterogeneity-induced dephasing and decoherence mecha-
nisms but also examine the heterogeneity in decoherence time
scales within the ensemble. By plotting these radial trajectories
alongside the ensemble-averaged dynamics, as shown in Figure
3A, we find that individual systems dephase much slower than
the ensemble-averaged trajectory. In particular, at time scales
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on the order of ~100—200 fs, we see that the ensemble-
averaged trajectory (blue trace) rapidly dephases, leading to a
decrease in its radius. In contrast, nearly all of the individual
trajectories (red traces) retain a much higher purity r > 0.5 at
these time scales, indicating that heterogeneity-induced
dephasing rather than system—bath entanglement is respon-
sible for the early time dephasing of the ensemble average. In
the context of our spin-boson system, this result is consistent
with the primarily transverse diffusion of trajectories onto rings
and hollow spherical shells in Figure 2B and C. The opposite
case where dephasing is dominated by entanglement phase loss
would show most of the single-system trajectories decreasing
in radius at approximately the same time scale as the ensemble-
averaged trajectory.

This finding is not without precedent, as a similar
observation has been made in the modeling of photosynthetic
light-harvesting systems,”’ line widths in single-molecule
spectroscopy,”"*> as well as coherent single-molecule experi-
ments."*”"” In these studies, single molecules are seen to have
narrower spectral line widths than the ensemble, leading to a
distinction between inhomogeneous broadening (present only
in the ensemble spectrum) due to static heterogeneity between
the transition frequencies of individual molecules and
homogeneous broadening due to unresolved dynamic
fluctuations in the transition frequency of each molecule
during the measurement. Since both of these mechanisms lead
to dephasing, the longer lifetimes of the single molecules
compared to the ensemble are then attributed to the lack of
inhomogeneous broadening in the single-molecule spectrum.
While the results we present appear qualitatively similar, the
physical mechanism behind the longer coherence time of single
molecules is very different. In the trajectory ensemble, both the
static and dynamic variabilities in the transition frequency are
captured by the single-molecule trajectories. Both of these
dephasing sources, which correspond to the same physical
mechanism and differ only in how they are resolved in a given
experiment, are treated as heterogeneity-induced dephasing
and do not play a role in the coherence loss of the single-
molecule trajectories. They both lead to fluctuations in the
angular dynamics at a fixed radius that we will consider at
length in the following section. This single-molecule coherence
loss in our simulations arises only due to the formation of
entanglement between the system and bath (ie., true
decoherence). The rich dynamics and distribution of single-
molecule decoherence behavior we see in Figure 3 describe
only this dynamic entanglement formation between the system

https://doi.org/10.1021/acs.jctc.1c00477
J. Chem. Theory Comput. 2022, 18, 2047—-2061


https://pubs.acs.org/doi/10.1021/acs.jctc.1c00477?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00477?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00477?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00477?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00477?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

and bath. As we discussed in Section 3.2, the trajectory
ensemble we study here corresponds to the limit where the
maximum allowable information about the bath configuration
has been obtained. These decoherence time statistics therefore
capture the longest possible coherence times that can be
achieved by accounting for all bath-induced frequency
fluctuations.

Analysis of the histogram plotted in Figure 3B reveals that
the individual systems show significant heterogeneity in their
decoherence time scales. Evidently, certain initial bath states
entangle with the system much more slowly than others,
leading the system to retain quantum phase information for
longer times. By understanding the entanglement process at
the single-system level, it may be possible to design systems
that promote the well-insulated bath states to protect
coherence in the system. This radial dynamics exhibits highly
nonexponential decay, making the quantification of decoher-
ence times difficult. We therefore define the decoherence time,
7,5, as the time of first passage through a shell within the

Bloch sphere of radius r = %

The distribution of 7;,, values is plotted in Figure 3B. We
observe significant heterogeneity in this measure of decoher-
ence time with a distributional mean and standard deviation of
447 and 371 fs, respectively. The distribution of decoherence
times is asymmetric with a fat tail at larger values of 7|,
corresponding to a subpopulation of systems that are especially
slow to develop entanglement. Approximately 12% of all
single-molecule trajectories fail to cross the cutoft radius of

r= % during their 2 ps trajectory, indicating the existence of

bath states that allow the system to retain most of its quantum
phase information.

As shown in Figure 3A, at the single-system level we observe
significant oscillations in r rather than the mostly monotonic
decay seen in the ensemble average, indicating that phase
information does not flow unidirectionally from the system to
the bath, as one would conclude based on the ensemble-
averaged behavior. Similarly, the rapid decrease in r observed
in the ensemble behavior cannot be reliably interpreted to
quantify system—bath entanglement or ensemble dephasing
because it convolutes these two effects. The oscillations in r for
single-system dynamics indicate that system phase information
can delocalize into the bath and return to the system, driven by
certain modes of the system—bath interaction. In fact, this
fluctuating radial dynamics is the mechanism behind the broad
steady-state distribution and balances the entanglement-driven
relaxation to prevent total collapse onto the maximum entropy
state.

4.3. Heterogeneity in System Dynamics. We now turn
our attention to the angular dynamics within spherical shells of
fixed radii. This dynamics predominantly captures the coherent
evolution of the spin system under the influence of the
fluctuating bath. The angular dynamics effectively projects out
the incoherent relaxation processes considered in the previous
section, which act in the longitudinal direction. A convenient
way to visualize the angular dynamics is to plot the precession
axis implied by the system dynamics. Since the unitary
coherent dynamics of spin systems precesses about an axis
defined by an effective Hamiltonian in Bloch sphere
coordinates, the dynamical change in the direction and
magnitude of the axis captures the influence of the fluctuating
bath. The rotation axis is equivalent to the angular velocity
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studied in classical Langevin analysis of the rotational diffusion
of rigid bodies.

To extract the axis of rotation from the dynamical trajectory,
we apply Rodrigues’ rotation formula for the rotation axis &
between two points a and b

¢ axXb
" la x bl (242)
a'b
cos(IB) = o (24b)

where the first expression gives the unit vector & of rotation,
and its norm, under the Euler vector convention, is given in the
second expression by the angle of rotation. Letting a = p(t)
(the Bloch vector at time t) and b = p(t + 6t) be two adjacent
time steps in the trajectory and assuming negligible dephasing
in one time step of 6t = 1 fs, we can rewrite these equations to
give

i_ PXP
lp X pl (25a)
PP
cos(I€) =~ 1 + =6t
Ipl* (25b)

Taking the small-angle approximation, valid for small 6t, we
obtain the approximate expression Il & p-pét/Ipl2. In Figure 4,

Figure 4. Distribution of precession axes & represented by their Euler
vectors, defined in eq 25a at (A) t =0 fs and (B) t = 2 ps in the steady
state. These axes represent the system Hamiltonian and the
fluctuating random force that arises due to bath dynamics. The
color of each vector shows its magnitude.

we plot these precession axes at the initial, t = 0 ps, and final, ¢
= 2 ps, simulation time steps. This plot shows that, at early
times, individual trajectories precess along the same axis but at
different frequencies. This behavior corresponds to the early
time spread of trajectories around a ring defined by the
precession axis as seen in Figure 2B. At later times, however,
the direction of the axes has randomized, indicating that
different trajectories precess in different directions, spreading
out around the sphere as seen in Figure 2C and D.

Following the procedure used in classical Langevin analysis,
we systematically study the effect of bath fluctuations by
considering the axis—axis correlation function

Cee(s, t) = (E(s)-£(1)) — (§(s))(&(1))

where (-) denotes the average over the P-ensemble distribution
as in eq 2, which can be equivalently computed by averaging
over the trajectory ensemble. At equilibrium, where the start
time s — —oo, this expression is invariant under time

(26)
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Figure 5. Axis—axis correlation functions starting at (A) t = 0 fs and (C) at equilibrium ¢ > 1 ps. Correlation functions were computed using n =
5000 trajectories of length 7 = 2 ps, sampled every At = 1 fs. The power spectra from t = 0 and at equilibrium are shown in (B) and (D),
respectively. At both times, axis fluctuations show the signatures of bath oscillations at a frequency of w ~ 36 THz.

translation and therefore only depends on 7 = t — s giving the
one index notation Cg%q)(t).

By plotting both of these time correlation functions in
Figure S, we see that the axis fluctuations indicate the presence
of marked oscillations on the tens of femtoseconds time scale.
These time scales can be systematically analyzed by
considering the power spectrum of these fluctuations, obtained
by taking the magnitude of the Fourier transform of Ce:. The
resulting frequency domain analysis shows a clear peak at ~40
THz, corresponding to 2y, where ¥ is the frequency peak of the
Drude—Lorentz spectral density that characterizes the boson
bath. In this model, we considered a simple parametrized bath
model that allows us to directly compare the observed power
spectrum to the bath density of states. However, in more
complicated settings, the spectral properties of the nuclear bath
are often unknown. By analyzing the dynamical correlation
functions of single-system dynamics, we see that they can
provide powerful tools for directly extracting the statistical and
dynamical properties of the relevant bath fluctuations.

4.4. Entanglement Entropy. System—bath entanglement
plays a significant role in determining P(I") at longer times. As
we observe in Figures 2 and 3, as the ensemble approaches
steady state, ~500 fs, the systems occupy a region of the Bloch
sphere with a range of r-values around (r[I']) &~ 0.1—0.8 that
can be significantly larger than that of the ensemble density
matrix, r[p] & 0.2. Because the single-system states are not
influenced by heterogeneity-induced dephasing, their values of
r report directly on their level of entanglement with the bath.
Thus, P(I') encodes the statistics necessary to quantify the
thermodynamic influence of system—bath entanglement.
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The specific distribution of Bloch sphere coordinates that
emerge at larger times reflects a balance between competing
entropic factors. The distributional entropy of the system is
maximized when r = 1, thus favoring states along the surface of
the Bloch sphere. On the other hand, system—bath
entanglement favors states with r 0. The steady-state
distribution of P(I") reflects the thermodynamic balance
between these two effects.

The thermodynamic considerations outlined in eq 6 show
that the same mathematical trade-off arises between the
Shannon entropy of the distribution used in the entropy

maximization process and the free energy H — TS,. The first
contribution in this state-space free energy is easily understood
as the quantum average energy of a given state, describing the
energetic bias toward lower energy states of the spin system.
The physical interpretation of the entanglement entropy as
well as its mathematical computation is more challenging. As
discussed in Section 2.2 the entanglement entropy describes
the entropic drive toward forming system—bath entanglement,
since there are many more entangled system—bath states than
pure ones in the composite state space. As such, it can be
understood as the entropic bias of the collective coordinate
defined by the system-reduced density matrix 6. This opens up
a variety of tools from classical statistical mechanics for the free
energetic analysis and potential biasing of collective
coordinates.

Here we have considered the simplest problem of free
energy estimation from a trajectory ensemble. We begin by
estimating the probability distribution by collecting all time
points t > 1.5 ps in the trajectory ensemble. We proceed by
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Figure 6. Free energy estimates log(P) are shown at three slices through the Bloch sphere indicated in (A) at (B) z=—1/2, (C) z=0,and (D) z =
1/2. The probability density P(c) was computed using a Gaussian kernel density estimate with Scott’s rule used in bandwidth selection. Black
contours indicate the distribution at log(P) = §, 10, 15, and 20. The distribution was estimated using all time steps after t > 1.5 ps. The system has
not fully equilibrated in these simulations but nevertheless shows that even at long times, where the ensemble-averaged density matrix p has
reached equilibrium, the single-molecule distribution does not fully collapse onto the ensemble-averaged equilibrium state.

performing a Gaussian density estimation using this discrete
sampling from the near-equilibrium distribution using Scott’s
rule for bandwidth selection. This procedure places a Gaussian
distribution at each sampled point and sums over the ensemble
to obtain an estimated continuous probability density. Once
the distribution has been obtained, the free energy can be
easily calculated as F(6) = —kzTIn(P(6)) and is plotted in
Figure 6.

The inhomogeneity we observe in these results indicates that
the system has not fully equilibrated. The initial system
distribution, a J function at the south pole of the Bloch sphere,
is very far from equilibrium and could not be equilibrated on
the simulation time scale. This observation is surprising since
the ensemble dynamics equilibrated on a time scale ~500 fs
while the single-molecule distribution still shows signatures of
the initial state ~2 ps. These results indicate that single-
molecule distributions can display interesting dynamics long
after the ensemble-average has reached its steady state.

5. CONCLUSION

In this paper, we have presented an efficient method for
sampling and simulating the quantum dynamics underlying
coherent single-molecule experiments and applied it to the
canonical example of a spin-boson model. We then exploited
the geometric isomorphism between classical phase space and
Liouville space under the state-space distribution formalism to
analyze the resulting trajectory ensemble using an approach
analogous to classical statistical mechanics. These analyses
have revealed a remarkable heterogeneity in the decoherence
properties within single-molecule ensembles and showed that
even at room temperature, a significant proportion, ~12%, of
single molecules within an ensemble may retain substantial
coherence even when the ensemble has fully decohered. This
result motivates future systematic study of the bath states
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responsible for these long-lived coherences in order to drive
the design of systems with long-lived coherent dynamics at
room temperature through bath engineering. Moreover, we
showed that the statistics of bath fluctuations that drive the
heterogeneity between single molecules can be extracted and
reflect the underlying bath density of states, providing new
tools for the analysis of quantum dynamical trajectories.

By showing that the reduced density matrix of the system is
a collective coordinate of the overall system—bath state, we
have also used the trajectory ensemble to compute a
thermodynamic entanglement entropy that quantifies the
thermodynamic drive toward entanglement in open quantum
systems. Taken together, these results present a practical set of
tools for simulating and analyzing the results of single-molecule
experiments and highlight the insight that can be gained from
the thermodynamic analysis of these ensembles. For example,
similar analysis can be applied to gain single-molecule insight
into recent studies that used quantum classical trajectories to
compute ensemble-averaged full counting statistics of currents

. L 63,64
in molecular junctions.
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