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Functional connections in the brain are frequently represented by
weighted networks, with nodes representing locations in the brain and edges
representing the strength of connectivity between these locations. One chal-
lenge in analyzing such data is that inference at the individual edge level is
not particularly biologically meaningful; interpretation is more useful at the
level of so-called functional systems or groups of nodes and connections be-
tween them; this is often called “graph-aware” inference in the neuroimaging
literature. However, pooling over functional regions leads to significant loss
of information and lower accuracy. Another challenge is correlation among
edge weights within a subject which makes inference based on independence
assumptions unreliable. We address both of these challenges with a linear
mixed effects model, which accounts for functional systems and for edge
dependence, while still modeling individual edge weights to avoid loss of
information. The model allows for comparing two populations, such as pa-
tients and healthy controls, both at the functional regions level and at indi-
vidual edge level, leading to biologically meaningful interpretations. We fit
this model to resting state fMRI data on schizophrenic patients and healthy
controls, obtaining interpretable results consistent with the schizophrenia lit-
erature.

1. Introduction. Networks have been frequently used as a model for the brain’s struc-
tural or functional connectome. The types of nodes and edges depend on the data collection
modality; we focus on data collected from functional magnetic resonance imaging (fMRI),
although the statistical models we propose are applicable to other forms of brain imaging and
potentially to other network data settings, particularly those involving multiplex networks,
that is, multiple networks observed on a common node set. In brief, fMRI is obtained by
recording blood oxygenation level dependent (BOLD) signals from subjects over time and at
multiple locations in the brain; the raw data for each subject is thus a four-dimensional ar-
ray (BOLD signal indexed by three spatial coordinates and time). When extracting a network
from fMRI data, a node is typically taken to be either a single location in the brain (a voxel) or
a spatially contiguous group of voxels, otherwise known as a region of interest, or ROI (Smith
(2012), Zalesky, Fornito and Bullmore (2010)). Edges in brain networks capture connections
between nodes, which can reflect either structural or functional connections, depending on the
type of data collected (Bullmore and Bassett (2011), Bullmore and Sporns (2009)). Structural
connectivity has anatomical origins and can be inferred from fiber tracking methods such as
diffusion MRI (Craddock et al. (2013), Zalesky, Fornito and Bullmore (2010), Zalesky et al.
(2012)). Since we are working with fMRI data, we focus on functional connectivity which
represents temporal correlations between different parts of the brain (Friston (1994), van den
Heuvel and Pol (2010)). However, these two types of connectivity are frequently linked (van
den Heuvel et al. (2009)), and our methods are equally applicable to both types. To take
advantage of all the information available, we work with signed, weighted, dense networks
where each pair of nodes is associated with a distinct real number; in contrast to some pre-
vious methods, for example, Simpson and Laurienti (2015), we do not apply thresholding to
convert this matrix of weights into a binary network.
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Multiple studies (Power et al. (2011), Yeo et al. (2011)) have produced brain atlases
suggesting a robust parcellation of brain ROIs into functional systems, though details vary
(Craddock et al. (2013), van den Heuvel and Pol (2010)). Many neurological and psychiatric
disorders have been associated with changes in functional connectivity between such sys-
tems (Bullmore (2012), Bullmore and Bassett (2011), Craddock et al. (2009), Craddock et al.
(2013)). For instance, in schizophrenia a decrease in connectivity between the frontal and
temporal cortices has been reported (Friston and Frith (1995)). The statistical challenge here
is that while hypotheses and interpretation are framed at the level of connections between and
within functional systems, the data are collected and modeled at a finer resolution of edges
between ROIs. The scientific questions are often amenable to two-sample inference, compar-
ing patients to healthy controls while identifying and locating specific changes in functional
connectivity associated with a given disorder.

While the regression-based framework we propose is appreciably more general and can
accommodate continuous covariates, the data we work with in this paper fall into the two-
sample setting, containing resting state fMRI data from 54 schizophrenic patients and 70
healthy controls. A more thorough description of the study and imaging parameters is avail-
able in Aine et al. (2017). “Resting state” fMRI involves imaging participants who are told
to just relax in the scanner without being given any specific task to perform. As a result, the
per-voxel fMRI time series cannot be meaningfully temporally aligned between participants
because there is no synchronized task or stimulus, and it is only meaningful to consider infor-
mation averaged over time (after appropriate preprocessing, see Arroyo Relión et al. (2019)
for details). Resting state data are especially well suited for network-based analysis, since
raw time-series data cannot be meaningfully compared between patients but connectivity
networks can.

Much of the work on the problem of two-sample inference for brain connectivity networks
falls into one of several categories, as reviewed in Chung et al. (2021), which differ chiefly
in which features of the networks are to be compared. The “bag of (graph-theoretic) fea-
tures” framework uses a few global network summary measures, such as modularity or the
clustering coefficient, and compares them across samples (Bullmore and Sporns (2009)). In
this vein some recent work by Fujita et al. (2017) uses the spectral radius of each (thresh-
olded) network to compare samples, considering, for example, whether the spectral radii of
two subnetworks of a larger network are empirically correlated in a sample of networks. An-
other common approach, sometimes referred to as “bag of edges” or “massively univariate,”
arranges all the network edge weights into one vector, ignoring the network structure but al-
lowing for usual multivariate inference at the edge level. This approach requires correcting
for massive multiple testing, which tends to be overly conservative when test statistics are
correlated, as is the case here (Craddock et al. (2013)). In addition, some approaches focus
on a more global comparison in the so-called “bag of networks” framework; for example,
Tang et al. (2017) proposes a test to evaluate whether two networks were drawn from the
same generative model. In contrast to these approaches, our method proposed below offers
multiresolution inference that can operate on both local edge-level features as well as more
intermediate system-level features.

To improve power, Zalesky, Fornito and Bullmore (2010) proposed a network-based statis-
tic (NBS) approach which reduces the number of multiple comparisons by focusing on large
connected subnetworks. Specifically, they consider the size of the largest connected compo-
nent of the graph, obtained by retaining the edges with two-sample test statistic exceeding
a given threshold, and compare to a null permutation-based distribution. However, the result
depends on the threshold for the test statistic (Kim et al. (2014)). Belilovsky, Varoquaux and
Blaschko (2016) also aim to exploit structure by assuming sparsity in the group differences:
this method has the advantage of using the time courses directly but does not account for
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multiple subjects in each group. Another set of methods uses logistic regression with the bi-
nary group indicator as response and the individual’s edge weights as explanatory variables to
obtain various likelihood-based scores further used as a test statistics with permutation-based
p-values. These include the sum of powered scores test (Pan et al. (2014)) and weighted and
adaptive variants; for a detailed review and comparisons, see Kim et al. (2014).

A more recent algorithm, proposed by Narayan, Allen and Tomson (2015), directly uses
fMRI time series to test the hypothesis that the probability of each edge is the same for the two
populations. Narayan and Allen (2016) extended this method, called R3 (resampling, random
penalization, and random effects), to testing any (discrete or continuous) covariate effects,
using random effects to account for between- and within-subject variability. Mixed effects
models generally have been gaining popularity for brain networks, because they allow for
individual heterogeneity and provide a framework for testing covariate effects. For example,
Sobel and Lindquist (2014) use a linear mixed model for causal inference, using fMRI time
series data, though this work is not designed for two-sample inference.

None of the methods discussed so far incorporates brain system structure in the ROIs, but
some recent work leverages network community structure in modeling the association be-
tween brain connectivity and various phenotypes. Xia et al. (2020) models each participant’s
brain connectivity as the sum of two low-rank matrices, one capturing the population mean
and the other reflecting the contribution of covariates and their interactions at the level of
functional systems. We will compare this method to ours in Section 3.

Our approach to modeling brain networks inherits all the advantages of a linear mixed
effects model (binary or discrete covariates, individual effects, flexible variance structure)
while accounting for network structure and enabling inference at both the system and the edge
levels. This allows for more accurate inference than what one can obtain by treating edges as a
bag of features. We incorporate system structure through a brain parcellation into functional
systems. ROIs within the same system of a meaningful parcellation tend to have similar
connectivity patterns (Smith et al. (2013)), and we leverage this property to parameterize the
model in a more interpretable and concise fashion. We also allow for some edge dependence,
induced by the parcellation, which leads to a more accurate assessment of uncertainty.

Of course, implicit in our approach are various assumptions, for example, on the form
of the variance structure, as discussed in Section 2.4. While these assumptions are unlikely
to be perfectly satisfied, in line with the classic wisdom of Box (1976) we believe that our
model may be wrong yet useful. For example, as we see in Section 3, our approach offers far
more accurate uncertainty quantification, and thus more valid inference, than a more naive
approach. In addition, conducting inference at the level of the brain system better aligns with
prevailing scientific thinking and enables the confirmation of existing scientific insights as
well as the identification of potentially novel effects.

A particularly related line of work on mixed effects models for brain networks was ini-
tiated by Simpson and Laurienti (2015) and continued in Bahrami, Laurienti and Simpson
(2019), Bahrami et al. (2017), Simpson, Bahrami and Laurienti (2019); we will collectively
refer to this body of work as the S–L (Simpson–Laurienti) approach. There are several impor-
tant differences between the S–L approach and ours. First, S–L estimates a relatively small
number of global coefficients, whereas we have both system-level and edge-level parame-
ters, allowing for greater model flexibility. Second, we directly model edge weights without
thresholding, while S–L fits a two-stage model, with the first stage determining a subset of
important edges and the second stage only modeling those. Finally, the covariance structure
of our model is appreciably more general, including nonzero covariance between both ran-
dom effects and residuals. Of course, if the simpler assumptions of the S–L approach hold,
their model may have both computational and power advantages, but such assumptions are
unlikely to be verifiable in practice.
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Another related paper by Fiecas et al. (2017) proposes a mixed effects model somewhat
similar to ours for two-sample testing at either the level of the entire network or for individual
edges. In contrast to our approach, they conduct two-sample inference by fitting two separate
models and then comparing resulting statistics instead of testing parameters corresponding to
group differences within a single model. They model within-subject covariance using a non-
parametric approach, based on sampling distributions of correlations under autocorrelation,
combined with somewhat restrictive assumptions about remaining error structure. This works
well for their setting of 11 ROIs, but they note the approach does not scale well, whereas our
covariance model is easily applicable to our dataset with 235 ROIs.

Next, we present the graph-aware linear mixed model for brain networks and the fitting
algorithm in Section 2. Section 3 presents empirical results including analysis of the COBRE
dataset, and Section 4 concludes with discussion and possible directions for future work.

2. Statistical methods: A network-aware mixed effects model.

2.1. Setup and notation. We assume that we are given a sample of N networks on n
nodes; each network is represented by its weighted n×n adjacency matrix Am, m = 1, . . . ,N .
The nodes are aligned across all networks, corresponding to a common ROI atlas in the brain
application. The entry Am,ij represents the connectivity between nodes i and j for network
m, and we focus on the undirected setting Am,ij = Am,ji with no selfloops appropriate for
fMRI data. In the brain application, the weights are Fisher-transformed Pearson correlations
between time series at different ROIs which are standard in the neuroimaging literature. Al-
ternative measure of connectivity, such as partial correlations or thresholded correlations, can
also be used; see Craddock et al. (2013), Liang et al. (2012), Smith et al. (2011), Zhen et al.
(2007) for discussions on various ways of measuring functional connectivity. There are strong
local spatial correlations between the time series at neighboring ROIs which leads to highly
dependent edge weights.

We assume that the network nodes are divided into groups corresponding to network com-
munities; in the application this corresponds to ROIs grouped into functional systems. In net-
work analysis communities are typically viewed as groups of nodes with similar connectivity
patterns; in many cases, including typical brain networks, this means that there are stronger
connections within communities than between them. In this paper we use an existing known
parcellation of the brain into functional systems; alternatively, one could apply one of the
many community detection techniques first to estimate such a parcellation.

Let ci be the community label of node i, common across all networks and taking values in
{1, . . . ,K}. We refer to an unordered pair of communities (a, b), where a, b ∈ {1, . . . ,K} as
a network cell; there are a total of K(K + 1)/2 cells corresponding to K communities. We
will use these cells as a target of inference when characterizing effects at the cell level, and
the cells will also inform our covariance structure, as discussed in Section 2.4.

Let n(a) = |{i : ci = a}| denote the number of nodes in community a, and let n(a,b) be the
number of edges in cell (a, b), where

n(a,b) =
{
n(a)n(b), if a #= b,

n(a)(n(a) − 1
)
/2 if a = b,

and let n(·,·) = n(n − 1)/2 be the total number of distinct edge weights.
Next, let y

(a,b)
m ∈ Rn(a,b)

be the vector of edge weights in cell (a, b) for subject m. We use
y

(a,b)
m,i to refer to an element of these vectorized edge weights, with i ranging from 1 to n(a,b)

for cell (a, b). Finally, let ym ∈ Rn(·,·)
be the vector of all edges for subject m, that is, the

concatenation of y
(a,b)
m across all cells and y ∈ RNn(·,·)

the vector of all edges for all subjects.
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2.2. A linear mixed effects model. Brain connectivity naturally varies across subjects,
even if they have the same disease status and other covariates. A mixed effects model is
a natural tool to incorporate this individual variation while also modeling effects of other
covariates. A linear model allows for a straightforward interpretation of these effects and can
account for the high correlations among edge weights by including a general covariance error
structure.

For simplicity, we first write out the model for a given network cell (a, b). Let xm ∈ Rp

be a vector of subject-level covariates (generally including a “1” term for the intercept), such
as disease status, age, gender, and so on. For each cell (a, b), we partition covariate effects
into cell-level effects, denoted by coefficients α(a,b) ∈ Rp , and additional edge-level effects,
denoted by coefficients η

(a,b)
i ∈ Rp , for each edge i in cell (a, b). We then model the expected

edge weight as

E
(
y

(a,b)
m,i

) = xT
m

(
α(a,b) + η

(a,b)
i

)
,

where m = 1, . . . ,N is the subject index, i = 1, . . . , n(a,b) is the edge index within the cell,
and a, b ∈ {1, . . .K} are community labels. For identifiability we require that

∑
i η

(a,b)
i,j = 0

for all j .
Adding a cell-specific subject random effect term γ

(a,b)
m and an error term ε

(a,b)
m,i , we get

the proposed linear mixed effects model for edge weights,

y
(a,b)
m,i = xT

mα(a,b) + xT
mη

(a,b)
i + γ (a,b)

m + ε
(a,b)
m,i .

The noise variables ε
(a,b)
m,i , specific to each subject and each edge, have mean 0 and are inde-

pendent of the random effects.
As an example, consider the two-sample setting where we have a single subject covariate,

say dm, which is an indicator of, for example, disease status of subject m, set to 1 if subject m
has the disease and 0 otherwise. The intercept then represents the global cell mean of subjects
who do not have the disease. In this case we have xm = (

1 dm
)T , and the model becomes

y
(a,b)
m,i = (

α
(a,b)
0 + dmα

(a,b)
1

) + (
η

(a,b)
i,0 + dmη

(a,b)
i,1

) + γ (a,b)
m + ε

(a,b)
m,i .

For every cell (a, b), the term α0 represents the cell-level mean for patients with no disease,
α1 the cell-level shift due to disease, ηi,0 the edge-specific intercept for patients with no dis-
ease, and ηi,1 the edge-specific disease effect. These are all fixed effects, whereas γ

(a,b)
m is

the subject-specific random effect for the given network cell representing individual hetero-
geneity with mean 0 over the population of subjects.

2.3. Modeling edge dependence. While we have now set up a mean model for each net-
work cell (a, b), there are correlations among edge weights across the whole brain. Not mod-
eling these correlations is inaccurate and will result in overly optimistic estimates of uncer-
tainty (Li (2015)); modeling all of them will result in an unmanageable number of parameters,
so a compromise is needed.

First, we rewrite the model collecting the terms for all edges together. Recall that ym is
the vector of all edges for subject m, and let γm ∈ RK(K+1)/2 be the vector collecting all
cell-level random effects for subject m. We assume that each random effects vector γm has
mean 0 and covariance matrix U , and the edge weights satisfy

(2.1) E(ym | γm) = Xmβ + Zγm, Var(ym | γm) = V,

where β is a vector that captures the contribution of the coefficients in α and the ηi’s for all
cells (one can easily move between unconstrained β and the original constrained parame-
terization). The random effect design matrix is responsible for “broadcasting” the cell-level
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effects γ
(a,b)
m across edges and has the block-diagonal form

Z =





1n(1,1) 0n(1,1) 0n(1,1) . . . 0n(1,1)

0n(2,1) 1n(2,1) 0n(2,1) . . . 0n(2,1)

0n(2,2) 0n(2,2) 1n(2,2) . . . 0n(2,2)

...
...

...
. . .

...
0n(K,K) 0n(K,K) 0n(K,K) . . . 1n(K,K)




,

where 1n(a,b) and 0n(a,b) are a vector of either all ones or all zeroes with length n(a,b). The
fixed effects design matrix for cell (a, b) is given by

X(a,b)
m =





xT
m xT

m . . . 0
xT
m 0 . . . 0
...

...
. . .

...

xT
m 0 . . . xT

m

xT
m −xT

m . . . −xT
m




,

where the initial columns hold the cell-level effects α(a,b) and subsequent columns capture the
contribution of the η

(a,b)
i ’s. The full design matrix for subject m is then given by “tiling” cell-

level design matrices into a block-diagonal Xm = diag(X
(a,b)
m ). Integrating out the random

effect gives

(2.2) E(ym) = Xmβ, Var(ym) = V + ZUZT ≡ &.

We assume that subjects are not correlated in which case the overall covariance of y is
given by a block diagonal matrix with repeated blocks of & on the diagonal and 0 elsewhere,
and the overall design matrix X = (XT

1 XT
2 . . . XT

N)T . This block structure in the covariance
allows us to avoid direct inversion of a very large matrix: assuming all inverses are well
defined, the best linear unbiased estimator of β is given by the generalized least squares
(GLS) estimator,

(2.3) β̂ =
(∑

m

XT
m&−1Xm

)−1(∑

m

XT
m&−1ym

)
.

In fact, all estimators of this form, even when the assumed covariance structure &̌ #= Var(ym),
are unbiased estimators of β under model (2.2), since

E(β̌) =
(∑

m

XT
m&̌−1Xm

)−1(∑

m

XT
m&̌−1E(ym)

)
= β.

2.4. Graph-aware variance structure. In addition to computational savings, there are
multiple reasons to impose structure on the variance. With no additional assumptions on V ,
the decomposition & = V + ZUZT is not unique, and V and U are not identifiable. There
are multiple options for solving this identifiability problem, and incorporating network cell
structure into variance assumptions, as we have done for the mean, has the additional benefit
of being faithful to the data structure in the application.

Recall that we impose network structure through using cells (a, b). In the decomposition
& = V + ZUZT , the second term already has a block structure corresponding to network
cells, and it would be natural to impose some structure on V that creates a structure corre-
sponding to network cells in &. Figure 1 shows two examples that achieve this goal: a di-
agonal V and a block-diagonal V . Diagonal V allows for heteroscedastic noise at each edge
(which we can estimate because we have multiple subjects), and block-diagonal V further
allows for dependence between edge noise variables belonging to the same network cell. In
both cases the resulting covariance matrix & = V +ZUZT is dense, allowing for dependence
between all edge weights.
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FIG. 1. Decomposition of the intrasubject covariance matrix of edge weights, V + ZUZT = & with diagonal
V (top) and block-diagonal V (bottom).

2.5. Model fitting with the EM algorithm. In practice, the GLS estimator (2.3) is not
computable, since V and U are unknown. We take the approach of jointly estimating V , U ,
and β by maximum likelihood under the normal assumption on the random effects and the
errors. Specifically, we assume that γm ∼ N(0,U) and

ym = Xmβ + Zγm + εm,

where εm = {{ε(a,b)
m,i ,1 ≤ i ≤ n(a,b)} : 1 ≤ a ≤ b ≤ K} ∼ N(0,V ) is the concatenated error

term independent of γm.
The normal assumption is reasonable for our edge weights measured by Fisher’s z-

transformation of the Pearson correlation coefficient r which is designed to make the cor-
relations close to normally distributed. The transformation is defined as

z = 1
2

log
(1 + r

1 − r

)

and is commonly used in neuroimaging (Varoquaux and Craddock (2013)). Since normality
is difficult to verify in practice, this can also be viewed as a generic M-estimation approach
with a loss function corresponding to the normal likelihood.

We use the EM algorithm to find maximum likelihood estimates (MLE) of V , U , and
β . The derivation under the normal assumption is straightforward and is omitted here. The
algorithm consists of the following two steps, iterated until convergence once initialized. For
conciseness we write < f > to denote the conditional expectation of f , given the observed
data y.

E-step. Calculate posterior means of γm and γmγ T
m , given the data, as

〈γm〉 = UZT (
V + ZUZT )−1

(ym − Xmβ),

〈
γmγ T

m

〉 = (
U − UZT (

V + ZUZT )−1
ZU

) + 〈γm〉〈γm〉T .

M-step. Update the estimate of U to

Û = 1
N

∑

m

〈
γmγ T

m

〉
,
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and update the estimates of V and β by repeating the following steps until convergence:

V̂0 = 1
N

∑

m

〈
(ym − Xmβ̂ − Zγm)(ym − Xmβ̂ − Zγm)T

〉
,

V̂ =
{

diag(V̂0), if V is modeled as diagonal,
block-diag(V̂0), if V is modeled as block-diagonal,

β̂ =
(∑

m

XT
mV̂ −1Xm

)−1 ∑

m

XT
mV̂ −1(

ym − Z〈γm〉).

Initialization. The coefficients β̂ can be initialized by ordinary least squares, taking

β̂(a,b) =
(∑

m

(
X(a,b)

m

)T
X(a,b)

m

)−1 ∑

m

(
X(a,b)

m

)T
y(a,b)
m , β̂ = {

β̂(a,b) : 1 ≤ a ≤ b ≤ K
}
.

To initialize V , we first calculate, for each pair of cells (a, b), (c, d), the empirical covari-
ance

&̂(a,b),(c,d) = 1
N − 1

∑

m

(
y(a,b)
m − X(a,b)

m β̂(a,b))(y(c,d)
m − X(c,d)

m β̂(c,d))T .

Then we initialize U = (U(a,b),(c,d)) by taking

Û (a,b),(c,d) = 1
n(a,b)n(c,d)

n(a,b)∑

i=1

n(c,d)∑

j=1

&̂
(a,b),(c,d)
ij

and initialize V with a diagonal matrix, regardless of what assumptions we later make about
it, as

V̂ (a,b) =
(

1
n(a,b)

n(a,b)∑

i=1

&̂
(a,b),(c,d)
ii − Û (a,b),(c,d)

)

In(a,b) , V̂ = diag
(
V̂ (a,b)),

where In is the n × n identity matrix.

Implementation. To increase the stability of the algorithm and to speed up convergence,
we implement the EM algorithm for the equivalent model,

y
(a,b)
m,i = ζ (a,b)

m + xT
mη

(a,b)
i + ε

(a,b)
m,i .

Writing ζm = {ζ (a,b)
m }1≤a≤b≤K , ζ

(a,b)
m = xT

mα(a,b) + γ
(a,b)
m and µm = {xT

mα(a,b)}1≤a≤b≤K , we
have

ζm ∼ N(µm,U).

This simply combines the terms xT
mα(a,b) and γ

(a,b)
m , both depending only on m and (a, b), to

get “mean-shifted” random effects terms, {ζ (a,b)
m }. This model is mathematically equivalent

to the previous one but empirically converges faster and is less dependent on the initial value
of β , due to centering.

The most time-consuming part of the algorithm is updating β in the M-step which involves
inverting the large matrix

∑

m

(
XT

mV −1Xm
)
.
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In a typical neuroimaging application, the size of this matrix will be in the tens of thousands;
for the COBRE dataset analyzed in Section 3, it is approximately 28,000 × 28,000. To avoid
inverting this matrix, we instead solve for β using a block coordinate descent algorithm. This
implementation takes around five minutes to fit the model to the COBRE data with a diagonal
V and around 15 minutes with a block-diagonal V on a machine with 10 2.8 GHz Intel Xeon
E5-2680v2 processors, each with eight GB of memory. In contrast, the OLS estimator that
we compare against is almost trivially fast to compute (less than one minute) and indeed is
essentially solved during the initialization of our approach.

3. Empirical results. The COBRE schizophrenia dataset, introduced in Section 1, con-
tains resting state fMRI connectivity brain networks of 54 patients with schizophrenia and 70
healthy controls. Data were downloaded via NITRC (http://fcon_1000.projects.nitrc.org/indi/
retro/cobre.html) and processed by Professor Stephan Taylor’s lab in the Department of Psy-
chiatry at the University of Michigan. This dataset is also available via the COINS platform
(Landis et al. (2016), Wood et al. (2014)).

After preprocessing, individual voxels are combined through spatial smoothing into 264
ROIs from the functional parcellation by Power et al. (2011), and Fisher-transformed pair-
wise Pearson correlations between the time series at each of the ROIs are used as edge
weights. Empirically, these weights are approximately normal which is expected from Fisher-
transformed correlations. The parcellation of Power et al. (2011) divides the 264 ROIs into
14 functional systems which play the role of communities; these systems are shown in Ta-
ble 1 and Figure 2. We used only systems 1 through 13 and excluded the 28 nodes of the
“Uncertain” system from the analysis, since we have no a priori reason to believe that nodes
that could not be clearly assigned to any system have a homogeneous connectivity pattern.
Also, the data for node 75 are missing from the COBRE dataset which leaves a total of
264 − 28 − 1 = 235 ROIs for the subsequent analysis. In addition, as part of our collabora-
tor’s preprocessing pipeline, nuisance covariates, including age, gender, motion (summarized
as mean framewise displacement and its square), and handedness, were removed before fit-
ting our model. This processed data was also used in Arroyo Relión et al. (2019) and is
available in the graphclass package.

We use this dataset as a basis for two experiments where we can control ground truth:
in Section 3.1 we assess the performance of our methods on synthetic data drawn from a
model based on a fit to the COBRE data, while in Section 3.2 we assess the validity of our
methods under the global null by using only randomly labeled healthy controls. We next fit
our method to the full COBRE dataset and present the estimated parameters in Section 3.3,
conduct inference in Section 3.4, and then apply a related, competing method in Section 3.5.

3.1. Assessing the effect of variance modeling in synthetic data. Before we proceed to
analyze the COBRE data, we perform a comparison of several versions of our method on
synthetic data simulated based on the COBRE dataset, but in a way that allows us to vary
parameters of interest. The goal is to understand the effect of variance modeling on discov-
ering individual effects of interest in a realistic setting where we nonetheless know the truth.
To generate synthetic data, we first fitted the linear mixed effects model (2.1) to the COBRE
dataset using a diagonal matrix V . Then, for each network cell (a, b), we calculated the p-
value for the z-test of the hypothesis H0 : α

(a,b)
1 = 0, where α

(a,b)
1 is the coefficient of the

binary disease indicator xm in cell (a, b) (xm = 0 for healthy controls and 1 for schizophrenic
patients). Standard errors were computed from the standard GLS variance estimator, taking
the square root of the diagonal elements of

(∑

m

XT
m

(
V + ZUZT )−1

Xm

)−1
.

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
https://github.com/jesusdaniel/graphclass
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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TABLE 1
Functional systems from Power et al. (2011)

System Number of nodes

1 Sensory/somatomotor Hand 30
2 Sensory/somatomotor Mouth 5
3 Cingulo-opercular Task Control 14
4 Auditory 13
5 Default mode 58
6 Memory retrieval 5
7 Visual 31
8 Fronto-parietal Task Control 25
9 Salience 18

10 Subcortical 13
11 Ventral attention 9
12 Dorsal attention 11
13 Cerebellar 4
−1 Uncertain 28

We chose as “true positives” the 13 cells with p < 0.05 and set α
(a,b)
1 = 0 for the remaining

78 cells for the purpose of simulating synthetic data. Using this information, we refitted the
GLS model with EM to obtain a diagonal V̂ , Û , and β̂ (which comprises both cell- and edge-
specific effects) with the 78 true negative α1’s set to 0. Then we generated a new synthetic
dataset by drawing

ym ∼ N
(
Xmβ̂, V̂ + ZÛZT )

, m = 1, . . . ,100

FIG. 2. The 13 functional systems from Power et al. (2011) represented by color. Left column: Sagittal view from
the left (top) and the right (bottom). Right column: Axial view from above (top) and from below (bottom). Figure
generated using BrainNet (Xia, Wang and He (2013)).
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FIG. 3. Boxplots of the errors, α̂1 − α1, with 100 replications. Outliers are indicated by +’s, and a horizontal
line marks 0 (no error).

with 50 subjects each from healthy and schizophrenia populations. Our goal was to compare
the usual OLS estimator,

β̂OLS =
(∑

m

XT
mXm

)−1(∑

m

XT
mym

)
,

to the proposed GLS estimator. For each generated dataset, we fitted our model with all 91
covariates in two ways, with either diagonal or block-diagonal V , and we also fitted OLS for
comparison. For each estimator we computed standard errors for GLS and OLS according to
their respective standard formulas. The entire simulation was repeated 100 times.

While we fitted GLS using both a diagonal V and block-diagonal V covariance structure,
the model from which we drew data perfectly coincides with the former. While the block-
diagonal V covariance structure contains diagonal V as a special case, it is appreciably more
flexible, and we anticipated that this additional flexibility may result in some overfitting in
this case, although, as we shall see, the effect is quite modest.

Figure 3 shows the boxplots of errors for the main parameter of interest, cell-level dif-
ference between populations α̂1 − α1, for the three types of estimators and the 91 network
cells. All three estimators look similar, and all the boxplots are centered around 0, as they
should be since all three estimators are unbiased. A perhaps surprising result is that the point
estimates for both diagonal and block-diagonal V methods are precisely the same. This is
a consequence of looking at only effects at the level of network cells and of the particular
covariance structures assumed.

For valid inference we need not just an accurate point estimate but also an accurate stan-
dard error. A comparison of the standard error of α̂1, estimated using OLS and GLS to the
empirical standard deviation of the estimated parameter sd(α̂1), is shown in Figure 4, with
boxplots of the ratio estimated s.e./ sd(α̂1) for the three estimators. The three rows in Fig-
ure 4 show the results from OLS, GLS with a diagonal V , and GLS with a block-diagonal
V , from (a) to (c). Ideally, these boxplots should be centered around 1, but the OLS ratios
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FIG. 4. Boxplots of the ratios of the standard errors computed from the corresponding formula to the empirical
standard deviation of α̂1 with 100 replications. Outliers are indicated by +’s, and a horizontal line marks 1
(estimated standard deviation coincides with empirical standard deviation). Note that the vertical scale of panel
(a) is different from (b) and (c), since OLS severely underestimates standard errors. Also, for OLS the variability
for a given cell across simulations is dramatically smaller than variability between cells which makes outliers the
only easily visible part of the boxplots.

are much smaller than 1, though also the most stable; the GLS standard errors, on the other
hand, are much closer to the truth and also more variable themselves. This shows that OLS
severely underestimates standard errors by assuming independence, while GLS leads to hon-
est inference. Careful scrutiny of Figure 4 reveals that the block-diagonal V method slightly
underestimates standard errors, perhaps due to the slight overfitting resulting from its un-
needed (in this setting) additional flexibility: the mean ratio of the diagonal V method is
1.001, whereas the mean ratio of the block-diagonal V method is 0.951.

We also compared coverage rates of 95% confidence intervals for α1, defined by [α̂1 −
1.96∗ s.e.(α̂1), α̂1 +1.96∗ s.e.(α̂1)] for the three estimators, as shown in Figure 5. As we can
expect from Figure 4, OLS confidence intervals have poor coverage, but both GLS methods
give coverage close to 95%: averaging across network cells, coverage is approximately 94.7%
for diagonal V and 93.2% for block-diagonal V . Because coverage for the GLS method is
reasonably close to nominal, for these two methods we further computed the false positive
rate (FPR) and the true positive rate (TPR) to assess the size and power of the procedure,
respectively. The diagonal V method had an FPR of approximately 0.054 and a TPR of
approximately 0.369, while the block-diagonal V method had an FPR of approximately 0.070
and a TPR of approximately 0.336.

While we do not claim that this data-based simulation gives us a good estimate of just
how far off the standard errors are in real data, we argue that it does show the errors will
be unrealistically small if the model is fitted with OLS. This is generally what we expect
when the observations are positively correlated, and with many aspects of the simulated data
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FIG. 5. Coverage of the confidence intervals, [α̂1 − 1.96 ∗ s.e.(α̂1), α̂1 + 1.96 ∗ s.e.(α̂1)], with 100 simulations.
The horizontal line corresponds to 95% coverage. Note that the vertical scale in panel (a) is different from panels
(b) and (c) due to poor coverage by OLS.

matching the real data, this simulation gives us some idea of the differences between OLS
and GLS performance that can be expected to arise in the application.

3.2. Validity under global null. Next, we evaluate the distribution of p-values obtained
by our method under the null hypothesis of no difference between two populations. We use
only the 70 healthy controls and split them randomly into two groups of 35. In this case
p-values obtained by fitting the model should be uniformly distributed if the model is per-
forming valid inference.

We repeat the random splits into two groups 100 times, fitting our model and computing
p-values for the hypotheses α

(a,b)
1 = 0 every time, resulting in a total 9100 p-values (91

cells × 100 repetitions). Figure 6 shows the histogram of these 9100 p-values from OLS
and GLS. The GLS histograms look close to the uniform, whereas the OLS histogram has a
large number of small p-values, and approximately 2/3 are less than 0.05. After applying the
Benjamini–Hochberg multiple testing correction (Benjamini and Hochberg (1995)) to control
FDR at 5% (as we do in our application), the OLS method rejects the null hypothesis, on
average, for 56.7 cells (out of 91) in each replication of the simulation. In contrast, the models
with diagonal and block-diagonal V reject, respectively, 0.23 and 0.37 out of 91 hypotheses
on average. Even with the more conservative Bonferroni correction, OLS still rejects 41 cells
on average, whereas the rates for the two GLS methods are 0.14 and 0.28. To quantify the
comparison of the distribution of the p-values to the uniform, we apply a Kolmogorov–
Smirnov test and compare the p-values for a given cell across the 100 replications to the
uniform distribution. This gives us 91 resulting p-values for each method shown in Figure 6,
which we again compare to the uniform distribution by a Kolmogorov–Smirnov test (note that
because there may be some dependence across cells, the p-value obtained from this procedure
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FIG. 6. Distribution of p-values under the null hypothesis.

is not strictly valid but still serves as a concise data summary). As may be anticipated from
Figure 6, applying this procedure gives a p-value of 0 (to machine precision) for OLS, 0.6098
for GLS with a diagonal V , and 0.01653 for GLS with a block-diagonal V .

3.3. Parameter estimation in full dataset. We now fit model (2.1) to the entire COBRE
dataset with disease status as a binary covariate. Figure 7 shows the estimated mean networks
for the two populations, that is, {α̂0 + η̂i,0} and {α̂0 + α̂1 + η̂i,0 + η̂i,1}, with either diagonal

FIG. 7. Estimates of the mean networks for healthy and schizophrenia patients.
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FIG. 8. Estimates of differences between the two populations, healthy and schizophrenic, with diagonal and
block-diagonal V . Blue represents larger mean for control group and red represents larger mean for schizophrenia
group.

or block-diagonal V . The dominant structure in the means is the community structure, with
stronger connectivity within each functional system, which is expected.

Figure 8a and Figure 8c show the cell-level differences in connectivity between the two
populations, that is, α̂1. Negative α̂1 (blue) corresponds to higher values for controls and
positive α̂1 (red) for schizophrenic patients. The higher control values in cell (9,9), corre-
sponding to lower connectivity within the salience system for schizophrenic patients, match a
previously reported dysfunction in schizophrenia (Palaniyappan et al. (2013)). Schizophrenia
effects on the frontal and parietal brain regions (system 8) also have been reported (van den
Heuvel and Pol (2010)).

Figure 8b and Figure 8d show differences between the two populations at the edge level,
that is, ({α̂0 + α̂1 + η̂i,0 + η̂i,1}) − ({α̂0 + η̂i,0}) for each edge i. The edge effects are quite
heterogeneous, especially for the large cells, such as (5,5). The heterogeneous cell effects
suggest that we do need to include edge-level effects, and in fact, interpreting cell effects
without the edge effects may lead to misleading results.

3.4. Hypothesis testing for group comparisons. To assess the differences between groups
more formally, we perform hypothesis tests. First, consider testing the edge-level effects, with
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FIG. 9. Estimates of edge-level difference between healthy vs. schizophrenic for significant edges at 5% signifi-
cance level (after Benjamini–Hochberg correction).

the null H0,i : α1 + ηi,1 = 0 vs. alternative H1,i : α1 + ηi,1 #= 0 for every edge i. Results with
the Benjamini–Hochberg multiple testing correction, controlling FDR at 5%, are presented
in Figure 9. Both diagonal and block-diagonal V give very similar results with 150 and 149
significant edge-level differences, respectively; 148 edges out of these two sets are the same.

We chose the Benjamini–Hochberg correction primarily because it does well on power,
but other choices are possible, including methods that control familywise error rate (FWER),
such as Bonferroni’s, Holm’s (Holm (1979)), and Hochberg’s (Hochberg (1988)), or the
Benjamini-Yekutieli method for controlling FDR under dependency (Benjamini and Yeku-
tieli (2001)). Applying the Benjamini–Yekutieli procedure to our data yielded only 22 signif-
icant edges for both diagonal V and block-diagonal V ; while this procedure is valid under
dependency, it is known to be conservative.

Figure 10 shows the positive and negative edge differences plotted on the brain. Our re-
sults generally agree with previous findings on schizophrenia, including a disconnection be-
tween the frontal and the temporal cortices (Bullmore and Bassett (2011), Friston and Frith
(1995)) and occipito-temporal disconnections (Zalesky, Fornito and Bullmore (2010)). Fig-
ure 10 clearly shows the asymmetric connectivity difference between healthy control and
schizophrenia for left and right hemispheres which is also aligned with previous studies
(Angrilli et al. (2009), Mitchell and Crow (2005), Ribolsi et al. (2014)).

We next test the cell-level hypotheses H
(a,b)
0 : α

(a,b)
1 = 0 vs. H

(a,b)
1 : α

(a,b)
1 #= 0 for ev-

ery network cell (a, b). Results, both prior to and after correction for multiple testing, are
presented in Figure 11. At the cell level, the increase in connectivity within system 8, the
fronto-parietal task control system, was associated with the lowest p-value, both for diago-
nal and block-diagonal V , as shown in Figure 11. This is consistent with a previous study
(Venkataraman et al. (2012)) which reported increased connectivity between parietal and
frontal regions.

With varying significance level, we also look at the number of rejected hypotheses (out
of 91) using OLS and GLS (with diagonal/ block-diagonal V ) after Benjamini–Hochberg
correction. From Figure 12 we can see that OLS rejects many more hypotheses (more than
half, even at the smallest significance value) than either version of GLS. Our simulation
results suggest this is due to the underestimation of standard errors with OLS. The GLS
results are more realistic: from Figure 12 we can see that at 5% significance level, GLS with
diagonal V does not find anything, and GLS with a block-diagonal V finds four significant
cells, (8,8), (2,11), (6,12), and (13,13); see Figure 11.
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FIG. 10. Estimates of edge-level difference on the brain. Blue edges represent larger mean for healthy control
and red edges represent larger mean for schizophrenia. Line width represents the magnitude of the difference.
Figures generated using BrainNet Viewer (Xia, Wang and He (2013)).

The distributions of raw p-values from OLS and GLS are shown in Figure 13. Consis-
tent with the simulation findings, OLS produces a large number of small p-values, and the
ordering of p-values is also fairly different between OLS and GLS. On the other hand, the
p-values from GLS with diagonal and block-diagonal V agree closely, and the cells with the
lowest p-values match. Top five cells, ordered by p-values, are shown in Table 2.

FIG. 11. Values of α̂
(a,b)
1 for cells (a, b) with α̂

(a,b)
1 significant at 5% before multiple testing correction. Cells

retaining significance after the Benjamini–Hochberg correction are marked with an asterisk (*). With diagonal
V , there are no significant cells after correction.
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FIG. 12. Number of rejected hypotheses as a function of significance level with a Benjamini–Hochberg multiple
testing correction. Red: OLS; green: GLS with diagonal V ; blue: GLS with block-diagonal V .

3.5. Comparison with Xia et al. (2020). A related approach that can be applied in our
setting was proposed by Xia et al. (2020), who fit a model of the relationship between pheno-
types and brain connectivity using penalized least squares. Adjusting their notation to match
ours, they solve the optimization problem

(3.1) minimize
(,α

N∑

m=1

∥∥A(m) − ( − dmZαZT
∥∥2
F + λ1‖(‖* + λ2‖α‖1,

where ( ∈ Rn×n is the intercept, α ∈ RK×K is a matrix of cell effects, dm is a binary indicator
for schizophrenia diagnosis, ‖(‖* is the nuclear norm of ( (i.e., the sum of the singular
values), ‖α‖1 is the sum of the absolute values of the entries of the matrix α, and λ1 and λ2
are tuning parameters. We applied this method to the COBRE data using code available from
Xia et al. (2020). We selected tuning parameters by searching over a grid, with each parameter
taking possible values in the set {e−10, e−9, . . . , e10}, and computing the average loss from

FIG. 13. Scatter plot of raw p-values. Left: OLS vs. GLS with block-diagonal V ; right: GLS with diagonal V

vs. GLS with block-diagonal V . Histograms depict the marginal distribution of p-values for each setting.
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TABLE 2
Five most significant cells from GLS methods. The ordering of the cells, obtained by two GLS versions, is the

same. Last three columns show the p-values from GLS methods and the Benjamini–Hochberg adjusted
significance level, that is, 0.05k

91 for k = 1 . . .5

p-value rank Network cell Diagonal V Block-diagonal V Adjusted significance level

1 (8,8) 8.9e−04 3.0e−04 5.5e−04
2 (6,12) 0.0012 5.1e−04 0.0011
3 (2,11) 0.0017 5.9e−04 0.0016
4 (13,13) 0.0025 0.0012 0.0022
5 (4,5) 0.0072 0.0041 0.0027

five-fold cross-validation at each point. We then refitted the model with the best-performing
parameters (λ1 = e2, λ2 = e6); we visualize both ( and α in Figure 14.

The intercept ( appears qualitatively similar to that estimated by our method (see left
column of Figure 7). Since this method induces sparsity in the cell effects α, we compare
the cells it selected as nonzero to the cells our method identified as statistically significant
(see Figure 11). While there are some overlaps between the two sets of results (e.g., cells
involving Brain System 5, the Default mode system), overall the patterns are not especially
similar. These dissimilarities can largely be explained, however, by considering the objective
function (3.1) which does not adjust for the relative size of the network cells induced by the
varying functional system sizes. For example, the cell (5,5) comprises 1653 edges, whereas
the cell (13,13) has only six edges. Since the penalty on α does not adjust for this, the
model tends to select the largest cells. Whether or not this is a desirable property depends
upon the question being asked; in the present setting we are more interested in knowing
which cells show group differences, as opposed to just minimizing the fitted error of the
model. Another important distinction is that the method of Xia et al. (2020) does not provide
inference, so it is more difficult to assign significance to the pattern of discovered effects.
Our approach, in contrast, provides p-values which can be then appropriately corrected for
multiple comparisons.

4. Discussion. We introduced a new framework for modeling multiple brain networks
with the goal of taking network structure into account when assessing covariate effects, in

FIG. 14. Results of applying the method of Xia et al. (2020). Left: The intercept (; right: the cell effects α.
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modeling both the mean and the variance. The choice of a linear mixed effects model al-
lowed for a simple interpretable decomposition into cell-level and edge-level effects while
accounting for individual variation. In an important departure from typical network models,
we allowed for reasonably general dependency between a very large number of edges by al-
lowing a general variance structure in the linear model. While our application focused on a
single binary disease status covariate, the method can be applied to a general linear model in
subject-level covariates.

Our empirical results suggest that, without a variance structure that allows for some edge
dependence, standard errors are severely underestimated, producing unreliable and mislead-
ingly small p-values. Modeling the variance with a network community structure, on the
other hand, results in accurate standard errors, as shown both on synthetic data and on the
analysis of healthy subjects from the COBRE data split into two parts at random. While the
analysis comparing schizophrenia patients and healthy controls has no ground truth, our re-
sults confirm important earlier findings, such as a disconnection between frontal and temporal
cortices in schizophrenia (Bullmore and Bassett (2011), Friston and Frith (1995)).

Previously proposed methods for comparing brain networks tend to perform standard two-
sample inference on either global graph summaries or vectorized edge weights. While the
global graph summaries do account for network structure, they tend to collapse a lot of infor-
mation and, generally, do not do as well in classification tasks (Arroyo Relión et al. (2019)).
Vectorized edge weights, on the other hand, preserve all the information but do not take ad-
vantage of the network structure. In contrast, our method allows inference, both at the level
of cell means (as depicted, e.g., in Figure 11) and at the level of individual edges (as de-
picted, e.g., in Figure 9), and it does so while accounting for edge dependence. Importantly,
it provides an interpretable model and, in particular, hypothesis testing for specific systems
in the brain, which none of the previous methods can easily do. System-level inference also
greatly reduces the number of hypotheses to be tested, compared to the massive-univariate
approach (vectorized edge weights) which suggests our tests have more power after correct-
ing for multiple testing. While some previous work (Xia et al. (2020)) does directly consider
system-level effects, it does not readily provide inference for these effects, and so results must
generally be interpreted qualitatively.

One limitation of any approach that works with edge weights is that these are summary
statistics drawn from a sequence of time courses acquired via fMRI; shorter time courses or
higher levels of noise will limit the effectiveness of the method. While we include individual
edge random effects that can reflect this noise in edge weights, there is a limit to how useful
the results can be in the presence of very noisy edge weights. Another potential limitation of
our method is using a predetermined parcellation. While one can learn a parcellation first or
even use the fitted edge effects to improve a given parcellation (e.g. split cells that show a
lot of heterogeneity), validity of inference in the presence of such a model selection step is
unclear. Still, we believe developing graph-aware approaches that strike a balance between
massively univariate but information-preserving methods and global summaries is a fruitful
direction for future work on multiple network analysis, both for the brain imaging application
and other applications involving multiplex networks, such as global trade networks (in multi-
ple commodities), transportation networks (by different means of transport), social networks
(with different types of connections), and many others.
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