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Scientists seek to understand the causal processes that generate sustainability problems
and determine effective solutions. Yet, causal inquiry in nature-society systems is
hampered by conceptual and methodological challenges that arise from nature—society
interdependencies and the complex dynamics they create. Here, we demonstrate how
sustainability scientists can address these challenges and make more robust causal claims
through better integration between empirical analyses and process- or agent-based
modeling. To illustrate how these different epistemological traditions can be integrated,
we present four studies of air pollution regulation, natural resource management, and
the spread of COVID-19. The studies show how integration can improve empirical
estimates of causal effects, inform future research designs and data collection, enhance
understanding of the complex dynamics that underlie observed temporal patterns, and
elucidate causal mechanisms and the contexts in which they operate. These advances
in causal understanding can help sustainability scientists develop better theories of
phenomena where social and ecological processes are dynamically intertwined and
prior causal knowledge and data are limited. The improved causal understanding also
enhances governance by helping scientists and practitioners choose among potential
interventions, decide when and how the timing of an intervention matters, and
anticipate unexpected outcomes. Methodological integration, however, requires skills
and efforts of all involved to learn how members of the respective other tradition think
and analyze nature—society systems.

social-ecological systems | coupled human-natural systems | nature-society systems |
socio-environmental systems | social-ecological-technological systems

To enhance the sustainability of nature—society systems, scientists and practitioners
seek a causal understanding of these systems. They may be interested in the impact
of environmental change or the effect of a policy, or want to identify the factors
or mechanisms that cause environmental degradation. Broadly speaking, sustainability
scientists pose two types of causal questions: What are the effects of change in a system
variable, process or structure (effects of causes), and what are the causes of change in
system state or behavior (causes of effects)? For example, in evaluating the effects of
causes, scientists may seek to assess the extent to which drought affects poverty or a new
fishery policy affects the sustainability of the fishery. They may also be interested in how
the effects vary by context or whether to expect unintended side effects. In explaining
the causes of effects, scientists may seck to identify the interacting causes or causal
pathways that bring about fisheries collapse, as well as the conditions under which this
phenomenon may be observed. Answers to both types of causal questions enhance system
understanding and thus contribute to the development of theory and to governance.
To answer causal questions, sustainability scientists use both empirical and modeling
approaches (ST Appendix, Table S1). We use the word “empirical” to refer to studies
that evaluate causal relationships and identify causal mechanisms by collecting and
analyzing quantitative or qualitative data. Examples of empirical approaches are
a randomized experimental design to assess whether community-based monitoring
improves groundwater management (1), a quasi-experimental design to assess whether an
antipoverty program increases deforestation (2), and a process-tracing design to identify
the empirical mechanism that links the need for joint action and collaborative output in
flood risk management (3). In contrast, “modeling” refers to studies that build and use
process- or agent-based models to investigate the effects of changes in causal variables
or structures, or to identify causal mechanisms through simulating system states and
trajectories. An example of process-based modeling is an air quality model that, based
on atmospheric chemistry and transport relationships, can simulate air quality changes
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resulting from COVID-19 lockdowns (4). Examples of agent-
based modeling are a spatial model of resource users’ decisions
that can simulate the effects of a fuel subsidy on spatial poverty
dynamics (5), and a model of interactions between fishers,
traders, and fish stocks that can be used to investigate how and
under which conditions cooperative forms of self-governance
emerge (6).

Whether scientists use an empirical or a modeling approach,
they will find that collecting and evaluating evidence in support
of causal claims is challenging because complex interdependen-
cies between social and biophysical processes create adaptive,
nonlinear, path-dependent, and coevolutionary dynamics. In
empirical studies, these dynamics may violate key assumptions
required for statistical causal inference, which can introduce
bias into empirical designs (7). While qualitative studies that
trace a causal process in a particular case can provide insights
into such interdependencies in particular contexts, the evidence
needed to disentangle multiple mechanisms and to generalize
is often costly or inaccessible. In addition, complex dynamics
created by adaptive human or ecosystem responses can make it
difficult to decide what and when to measure in empirical studies.
Modeling approaches can capture some of the structural and
dynamic complexity of nature—society systems. Yet the validity
of any causal claims from process-based and agent-based models
depends on the realism of the model assumptions and structure,
which is particularly challenging when it comes to representing
social dynamics and nature—society interdependencies (8, 9).

In the presence of complex nature—society dynamics, advances
in causal understanding require more frequent integration of
empirical and modeling approaches (10-13). To make causal
claims, each approach employs different strategies that can
complement each other. Yet, these complementarities are rarely
observed in the sustainability literature. There are many reasons
for the lack of integration. They include a) challenges of bridging
epistemologies across communities and combining qualitative
and quantitative methods (14, 15), b) the resources required
for deep cross-community collaborations that can overcome
difficulties in translation between what is measured empirically
and what is modeled, ¢) a lack of incentives to invest in integrative
work, d) more difficult review processes, and importantly, ¢) a
lack of guidance on how to achieve integration. As a consequence,
communities remain separate. For example, in energy policy
research, scholarship that uses data for ex post empirical evalua-
tions and scholarship that uses modeling for ex ante predictions
are largely disconnected (16-18). In climate change research,
the flagship modeling programs rarely incorporate insights from
empirical analyses of social processes, in part because these
insights are not well suited for the intensive computational
methods used in the modeling (11, 19). In social-ecological
research, insights from rich empirical place-based studies are
rarely incorporated in social-ecological models (20).

Empirical and modeling approaches can be integrated in
different ways (S Appendix, Fig. S1 and Table S2). The simplest
form of integration is to compare the results from each approach
and assess whether the approaches support the same causal claim
(8, 16, 18). Going further in the integration, models can also
be used to expand on data-based insights about causal effects
or causal mechanisms (9, 21-24), or to inform an empirical
study in the presence of complex dynamics (7, 25-27). Similarly,
empirical studies can inform the design of a model (28-31).
Moving toward greater integration, scholars can codesign an
empirical and modeling study in order to develop and test
causal explanations through an iterative process that provides a
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structured way to identify causes, develop causal hypotheses, and
test these hypotheses using both empirical and modeling evidence
(32). Despite some examples of integration in the literature, there
is little guidance on how to do such integration or when, and for
what purposes, it is useful.

Here, we elaborate on what can be learned when these
two methodological traditions are brought into dialogue and
show how integrating them can improve causal understanding
of complex nature-society systems. We use the word “inte-
gration” to refer to a variety of possible ways of combining
the two traditions that go beyond the use of empirical data
to parameterize, build, or validate a model or the use of
modeling results to inspire hypotheses for empirical analysis.
We present four studies that illustrate how modeling can i)
improve empirical causal inference by simulating nature—society
interdependencies and their influence on the estimation of causal
effects, ii) elucidate whether the coevolution of human and
biological adaptation is a cause of observed temporal patterns
in infections, and iii), when codesigned with an empirical study,
unravel complex dynamics that explain natural resource policy
adaptation and environmental outcomes. By illustrating how one
can integrate modeling approaches with empirical ones, and by
documenting the insights that can be gained, we show how
integration ultimately can support the development of better
theories of nature—society dynamics, as well as future governance
for sustainability. We conclude with ways forward to address
some of the challenges of integrating empirical and modeling
approaches.

Four Exemplary Studies of Integrating
Empirical with Modeling Approaches

Because of its multidisciplinary nature, sustainability science
includes a variety of conceptualizations of causation, different
ideas about causes, and different norms of what is considered
an appropriate inferential practice and sufficient evidence for
making a causal claim. Consequently, the methods and types of
data used within empirical and modeling approaches are diverse,
as are the reasons and possibilities to combine them (33). We
illustrate some of this diversity with the help of four studies of
complex nature—society systems in the contexts of environmental
pollution, disease spread, and natural resource management. The
studies differ in their causal questions (effect of causes vs. causes of
effects), methods and data (quantitative vs. qualitative), and the
ways in which empirical and modeling approaches are combined.
Two studies are situated within what is often associated with the
term “causal inference.” These studies typically focus on a well-
defined cause, such as an intervention or a natural event, with the
aim to evaluate the size of its effect using (quasi-) experimental
designs and statistical methods (Studies 1 & 2). The other
two studies aim to identify causal mechanisms that can explain
observed empirical patterns in contexts where knowledge and
data about complex dynamic nature-society interdependencies
are limited. These studies intend to shed light on the causal
structure and complex temporal dynamics of the nature—society
system in order to inform future data collection (Study 3) or
develop theories of nature—society phenomena (Study 4).

Modeling to Support Causal Inference in the Presence of
Nature-Society Interdependencies (Studies 1 & 2). For em-
piricists who seck to estimate the effects of causal variables
in nature—society systems using (quasi-)experimental designs,
nature—society interdependencies can lead to spillovers that pose
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challenges for causal inference. In statistics, this phenomenon is
known as “interference among units” (34), where the units of
analysis could be species, ecosystems, communities, or house-
holds exposed to a change in the value of a causal variable. In
most studies that estimate causal effects in nature—society systems,
analysts assume, either implicitly or explicitly, no spillovers
among the units. That assumption implies that the outcomes
(e.g., fish stocks, pollution) in one unit do not depend on the
value of the causal variable in other units. For example, for a
marine protected area, spillovers from zone i to zone j exist
when changing 7’s protected status changes ;’s outcome when j is
protected or unprotected. Zones 7 and j may interact via natural
mechanisms (e.g., larval dispersal) or human mechanisms (e.g.,
displacement of fishing activity).

Widespread interdependencies in nature—society systems make

spillovers the rule rather than the exception. For example, in the
simple case in which an expected causal effect is estimated through
contrasting average outcomes in treated and control groups,
this estimator would be biased if the control units’ outcomes
depend on whether they are near a treated unit. Moreover,
spillovers not only create an estimation challenge but also an
interpretation challenge: Defining a single expected causal effect
is no longer possible because a unit’s outcome under treated and
control states depends both on its own treatment status and the
treatment status of other units. Models of nature—society systems
that explicitly account for interdependencies provide insights
into understanding spillovers and point scholars to appropriate
empirical designs. We illustrate this potential in two studies
that focus on air pollution regulation (Study 1) and marine
conservation (Study 2).
Study 1: Using a process-based air quality model to inform policy
experiment designs to control air pollution in the presence of
spatial spillovers. Atmospheric transport of air pollutants exem-
plifies how spillovers complicate the causal evaluation of policies
in nature-society systems. Emission reductions at one location
can lead to changes in air pollutant concentrations hundreds of
kilometers away. These spatial spillovers complicate any attempt
to estimate the causal effect of an emission reduction policy on
air quality. However, these spatial spillovers can be described
by process-based air quality models, which simulate the spatial
distribution (e.g., the range of atmospheric transport) of air
quality changes due to emission reductions at any combination
of locations.

Here, we illustrate how these models can help researchers
design policy experiments. We consider a potential policy
experiment aimed at reducing Nitrogen Oxide (NO,) emissions
from natural gas power plants in the western United States. NO,,
is an important precursor to fine particulate matter (PM;s),
which is the target outcome in the policy experiment.

We demonstrate how empirical researchers can use simulations
from an air quality model to inform their decisions about 1)
how best to randomly assign power plants to an experimental
intervention (the treatment), and 2) how best to link measure-
ment locations (air quality monitors) to the power plants. The
western United States comprises 294 natural gas power plants
and 625 air quality monitors (Fig. 14). Importantly, monitors
are not typically co-located with the plants. We assume that, in
the experiment, half of the power plants will be assigned to receive
the intervention (which reduces its NO, emissions). We use an
air quality model, Intervention Model for Air Pollution (InMAP)
(35), to simulate the changes in PM; s observed at the air quality
monitor locations due to reductions in NO, emission from power
plants (Fig. 1B). The difference between the average PM; s in
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the treatment and control groups is the estimated average impact
of the intervention on PM; 5. See SI Appendix for more details.

Insight 1a: The treatment assignment should be clustered at
a spatial level that contains the spatial spillovers, and clusters
should account for the atmospheric transport structures.

In randomized or natural experiments, the intervention is
often assigned at the power plant level, but in the presence
of spillovers these designs can be biased. We consider two
randomized assignments: simple randomization at the plant level
and clustered randomization. The spatial clusters are rectangles of
50 km or 100 km. Plants in the same cluster are always assigned
to the same condition (treatment or control).

Compared to the plant-level assignment, the cluster-level
assignment significantly reduces potential biases due to spillovers
(Fig. 1C). If treatment is randomly assigned at the plant level,
79% of the assignments generate misleading results. The policy
would appear to be either ineffective (no significant changes in
PM; s compared to the control group) or even harmful to the
air quality (increases in PMj 5). These misleading results arise
because, if a control group plant is next to a treatment group
plant, the air quality monitors near the control plant may be
downwind of the treated plant and thus measure a decrease in
PM; s. However, if the treatment assignment is randomized at
the cluster level, the chances of significantly detecting a decrease
in PM3 5 increases to 84% (50 km cluster) or 95% (100 km
cluster) from 20% (plant-level assignment). Of course, when
choosing the size of the cluster, experimentalists must consider
potential tradeoffs—the cluster size needs to be large enough to
contain much of the spillovers but not so large that the effective
sample size is too small (i.e., the design is underpowered). While
our modeling example does not identify an optimal cluster design
(in terms of the radius or shape of the cluster), it implies that the
choice of a cluster should account for the physical structure of
atmospheric transport, which can be characterized by simulations
using process-based air quality models.

Insight 1b: Air quality model simulations inform the decision
about the spatial aggregation of the measurement at monitor
locations.

Air quality monitors are not often co-located with power
plants, and thus empirical researchers must determine how best to
link air quality monitors to power plants. One common approach
is to calculate the average pollution measurements from all air
quality monitors within a certain distance of a power plant (36)
and then quantify if the air quality measured near the treated
plants differentially changes compared to the control plants. This
radius is often chosen without careful consideration.

Using model simulations, we tested different distances (25 km,
50 km, 100 km, 200 km, and 300 km) to see how they impact the
estimated effects on PM; s (Fig. 1.D). We find that there is a trade-
off in choosing the radius. A small radius (e.g., 25 km) yields the
largest estimated impacts, in terms of PMj; s improvement, and
avoids misleading estimation results due to the spatial transport
(i.e., an erroneous conclusion that the intervention increases
PM; s). However, a 25-km radius fails to capture the complete
effect of the intervention because not all power plants have a
monitor within that radius (only 232 out 0 294 do). In contrast, a
larger radius (e.g., 200 km) ensures all power plants are associated
with a monitor, but that radius yields misleading evaluation
results because the spatial aggregation range is too large. Within
a200-km radius of a power plant in the control group, there may
exist monitors that are also close to treated units. Spillovers may
thus generate misleading results. Choosing the range for spatial
aggregation is thus a context-dependent decision, and this study
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Impacts of design and evaluation choices on the estimated effects of an air quality policy. (A) The location of natural gas power plants (black circle) and

surface air quality monitors (green) in the western United States. (B) Simulated PM5 5 changes (shown by the colors) due to emission reduction at a selected
power plant (black circle) and the surrounding air quality monitors (monitors that are <100 km are shown in green color). (C) The range of estimated effects on
PM> 5 under three treatment assignments. The table shows the percentage of assignment cases in which one could detect a statistically significant decrease in
PM, 5 (<0%), a significant increase in PM; 5 (>0%), or a nonsignificant result (statistical significance level at P = 0.05). (D) The estimated impacts on PM; 5 under
different ranges of spatial aggregation and the number of power plants that would be included in the analysis.

demonstrates that process-based air quality models can inform
this decision.
Study 2: Using an agent-based fishery model to estimate causal
effects of a gear restriction regulation in the presence of spatial
spillovers. Like atmospheric processes, human mobility can lead
to spillovers in nature—society systems. Greater mobility implies
more potential spillover, and the nature and severity of the
resulting statistical challenges will depend in complex ways on the
whole system. To demonstrate this point, we extend the spatial-
dynamic bioeconomic model of a fishery in ref. 7. The simulation
model captures key interactions among human (fishers) and
natural (fish) elements that are subject to dynamic, spatial
processes and feedback, such as harvesting-induced changes in
fish stocks that trigger mobility of fishers. The seascape is divided
into three discrete fishing zones, and fishers make decisions about
whether to fish and, if so, in which zone to fish (see ST Appendix
for model details).

Suppose an empirical researcher seeks to estimate the average
effect on fish stocks from the imposition of a spatial gear
restriction, i.e., a legal restriction on the type of gear that fishers
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can use in specific zones. Regulators impose the gear restriction
in Zone 3 to increase the zone’s fish stock. The researcher can
observe Zone 3’s pre- and postrestriction stocks. To estimate
the counterfactual stock in Zone 3 in the absence of the gear
restriction, the researcher uses Zone 1 and Zone 2 as comparison
(control) zones and estimates the gear restriction’s effect via
the popular Before-After-Control-Impact (BACI) design (a.k.a.,
difference-in-differences). The zones are identical in terms of
their deterministic and stochastic processes. Thus, in the absence
of spillovers, the BACI design would perform well: The average
trend in fish stocks in Zone 1 and Zone 2 is a valid estimate of
the expected counterfactual trend of Zone 3 in the absence of a
gear restriction. With spillovers, however, the BACI design may
perform poorly. The bioeconomic model allows us to simulate
the true effect of the gear restriction and contrast it with the
estimate an empirical researcher would get in the presence of
spillover.

The study generates two key insights about estimating the
causal effect of the gear restriction from observable data when
nature—society interdependencies lead to spillovers. Both insights
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would be difficult for a researcher to anticipate in the absence of
a model.

Insight 2a: When the causal variable decreases the ability of
fishers to harvest, empiricists should expect: a) the true causal
effect on the stock in the treated zone to increase when the study
context moves from zero human mobility to modest mobility
(Fig. 24); and b) when the preintervention resource exploitation
is high, the true causal effect may decrease when the study context
moves from modest mobility to high mobility (i.e., for some
contexts, the empiricist should expect nonmonotonic changes
in the size of the causal effect as mobility increases due to
compensatory effects) (Fig. 2B).

Insight 2a implies that modeling can help empiricists under-
stand the dynamics that will moderate the magnitude of the
expected treatment effect and whether this moderating effect
is monotonic or not. The nonmonotonic pattern in Fig. 2B is
not observed when the causal variable is hypoxia (low dissolved
oxygen in the water column), which is the causal variable studied
in ref. 7. The modeling reveals why. With a gear restriction,
the causal variable is “assigned” to the human component of the
human-nature system (i.e., the harvesting technology), whereas
with hypoxia, the causal variable is assigned to the environmental
component (i.e., stock growth rate and carrying capacity). That
contextual difference leads to different feedback and dynamics.
When the stock is treated with a negative shock in the case of
hypoxia, potential biomass is taken out of the system in the treated
zone with no compensating biomass added in the nontreated
zones. When humans are treated with a negative shock (a gear
restriction that lowers instantaneous profitability), no potential
biomass is removed, and human responses trigger a compensatory
effect that allows biomass to increase both in the treated and in
the nontreated zones.

The moderating effect of mobility is not easily discerned in
the absence of a model that incorporates the dynamics and
feedback inherent in a nature—society system, yet it is important
for assessing the quality of an empirical design, such as the likely
statistical power (i.e., how much information about the causal
effect can the design provide?). A small amount of spillover can
be good for power, in the sense that the minimum detectable

A . Pre-restriction Exploitation: Modest

True Treatment Effect
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Human Mobility (MRS)

effect goes up dramatically, making the treatment effect easier to
detect. Yet, in cases where the causal effect is nonmonotonically
affected by spillovers, too much spillover makes it harder to detect
the causal effect (in addition to potential bias, which is described
in Insight 2b).

Insight 2b: When the causal variable reduces the ability
of fishers to harvest, empiricists using a BACI design should
expect that: a) the divergence between the true causal effect and
the estimated effect will grow when the study context moves
from zero mobility to higher mobility; and b) the direction
of the divergence (i.e., the sign of the bias) depends on the
preintervention exploitation levels (Fig. 3).

Insight 2b implies that modeling can help empiricists un-
derstand the challenge that spillovers pose in popular empirical
designs for estimating causal effects from data. As in the case
of a hypoxia (7), the divergence between the estimated average
causal effect of the gear restriction and its true average causal
effect is higher at higher levels of mobility (Fig. 3). But in
contrast to the hypoxia case, the sign of the divergence—
i.e., whether we are overestimating or underestimating the
true effect—depends on the prerestriction conditions (contrast
Fig. 3 A, C and B, D). This difference arises because of the
nonmonotonic relationship between the true causal effect and
mobility in the high exploitation case (Fig. 2B). Thus, the model
demonstrates that the degree to which spillovers affect empirical
estimation is determined by which element of the coupled
human-environment pair is affected by the causal variable.

Integrating Modeling and Empirical Approaches to Assess
Causal Implications of Complex Dynamics. Complex dynamics
in nature—society systems, such as when disturbances, stochastic-
ity, or path dependence fundamentally alter system dynamics,
make causal attribution significantly more challenging from
both conceptual and empirical perspectives (Fig. 4). In A, the
parallel trend between treatment and control units means that
the treatment effect is not time-varying. In B, the disturbance
affects not only the outcome’s magnitude, but also its dynamics,
by reducing the amplitude of the waves in this stylized case.
As a result, the magnitude of the treatment effect no longer

B . Pre-restriction Exploitation: High

True Treatment Effect

J
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Fig. 2. Expected causal effect of a spatially designated gear restriction. The treatment effect is the percent increase in the fish stock compared to the
counterfactual stock. This effect varies with the degree of fisher mobility and the level of prerestriction fishing activity. Human mobility is modeled by the
marginal rate of substitution between fishing revenue and travel cost (MRS); higher values imply greater mobility. (A) Modest prerestriction exploitation implies
that the prerestriction stock was maintained at approximately maximum sustainable yield. (B) High prerestriction exploitation implies the prerestriction stock

was low.
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Fig.3. Divergence of the true causal effect of a gear restriction and the estimated causal effect. The divergence depends on the degree of fisher mobility and the
level of prerestriction fishing activity. (A and B) Ratio of the estimated to the true effect. Values above (below) 1 imply the design overestimates (underestimates)
the effect. (C and D) Simulated fish stocks from a single model run for a high mobility case (MRS = 20) with moderate (C) and high prerestriction fishing activity
(D). Zone 3 is treated with the gear restriction at t = 100, and Zone 1 is the comparison zone. For both zones, Actual is what happens with treatment and

Counter is what would have happened in the absence of treatment.

has a time-independent definition. Defining the treatment effect
empirically requires a conceptual understanding of the system’s
dynamics.

In real systems with complex dynamics, empirically estimating
a treatment effect can require a model that facilitates such
understanding. This requirement also applies to the identification
of causal pathways or mechanisms because the temporality of
the system, such as its history, stochasticity, feedback, or path
dependence, can affect if and how a mechanism plays out. Our
causal understanding of dynamic nature—society systems thus
depends upon our capacity to understand key drivers of system
behavior, such as adaptive human behavioral responses to changes
in natural systems. This can be achieved for example through
improving the plausibility of the models we use to describe system
behavior using empirical assessments, or through codesigning
an empirical study and a model, so that the empirical study
can provide insights into complex causal processes while the
modeling can analyze the effectiveness and generality of found
mechanisms in a dynamic nature—society context. We illustrate
this potential in two studies, one from the COVID-19 pandemic
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in the United States (Study 3), and one from natural resource
policy change (Study 4).

Study 3: Using a process-based model to improve causal under-
standing of the drivers of COVID waves. Complex nature—society
system dynamics resulting from the spread of the COVID-19
virus make both empirical causal analysis and predictive modeling
very challenging. COVID-19-associated behavior changes are
among the most dramatic collective behavior changes the world
has ever seen. In 2020, billions of people worldwide upended
their lives in order to fight this virus with the first tool available:
distance. Across the United States, typical daily travel distances
dropped by 95% during the height of the “safer-at-home” phase
of the pandemic (Fig. 5A4). These changes in mobility, however,
did not affect COVID spread as expected. In our empirical
analysis of drivers of COVID-19 waves (see SI Appendix for
details), we consistently observe lower mobility associated with
higher COVID-19 infection and transmission rates (Fig. 5B).
This observation is exactly opposite of expectations based on
the physical process of person-to-person transmission through
respiratory contact. The apparent paradox holds even after
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including a temporal lag between mobility and cases and across
a wide range of geographies and time periods between 2020 and
2021.

Similarly, predictive models have been largely ineffective at
describing the long-term (> 1 mo) dynamics of the COVID-19
pandemic in the United States, in particular, the repeated occur-
rence of waves (23). A characteristic wave pattern in COVID-19
cases is consistent across geographic scales, continents, income
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levels, and through a broad range of COVID-19 mitigation
strategies and capabilities (Fig. 5D). A primary modeling chal-
lenge is identifying when a new wave will begin and when the
current wave will recede in the absence of data on turning points
(23).

Our study of the COVID-19 pandemic in 2020 and 2021
in the United States shows how dialogue between modeling
and empirical analyses of a temporally complex system, such
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Fig. 5. Disease influences human behavior, which drives early COVID waves. (A) shows the median, 25th to 75th percentile, and fifth to 95th percentile
distribution of mobility changes for all US counties between March 2020 and April 2021, compared to February 2020. The data are normalized by county so
that 1 is median county-level mobility in February 2020. (B) shows the association between weekly new cases and 14-d lagged and normalized mobility in the
US Northeast for July to September 2020. (C) shows an example result from the Lotka-Volterra Model. (D) shows 7 d moving average cases for the Chicago

metro area, Texas, and South Africa. See S/ Appendix for data sources.
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as the COVID-Society system, improves causal understanding
and helps address both the empirical and modeling challenges.
This dialogue identifies important drivers in system behavior,
demonstrates when new models are needed, and clarifies how
empirical analysis can provide conceptually relevant results.

Insight 3a: A single shift in the understanding of causal
interactions in this system can address both the empirical and
modeling analytical challenges. Treating human behavior as
causally affected by disease explains the association between high
levels of disease and high levels of mitigation, and it provides
an explanation for repeated waves in COVID-19 cases that are
unexpected in classical epidemiological models.

Dialogue across approaches provides the insight needed to
explain both the empirical association and the wave-like dynam-
ics. Both empirical and modeling communities explored the effect
of human behavior on disease, e.g., “to what extent did mobility
reductions cause reductions in transmission?.” However, neither
community significantly explored the causal relationship in the
opposite direction “what is the effect of disease on behavior?”
This gap is apparent when seeking to explain both analytical
challenges. Within mathematical epidemiology, there is some
history of endogenizing behavioral reactions to disease to explain
waves and the long-run path of disease (37, 38), but they were
not initially applied to the COVID-19 pandemic. In a review of
350 articles on nonpharmaceutical interventions in the context
of the COVID-19 pandemic, only one publication explored the
effect of disease on behavior, and none examined the potential
for a bidirectional causal relationship between behavior and
disease (22).

We argue that strong and bidirectional causal relationships
between disease prevalence and disease mitigation activity re-
sult in complex features of system behavior—particularly the
recurring waves in COVID-19 cases. This bidirectional causality
provides an explanation for the apparent paradox observed in the
empirical association between high cases and high mitigation.
These characteristic waves cause a strong temporal dependence
in the difference between “what is,” and “what might have been”
(as in Fig. 4), where some kind of mitigation changes the timing
of waves in cases. This hampers our ability to estimate the causal
effect of mitigation.

Insight 3b: Because disease and human behavior dynamics
operate on similar timescales, modelers must account for both
processes when characterizing system behavior. This requires
modeling attention focused on behavioral dynamics, as well as an
empirical focus on measuring and characterizing human behavior
in ways that can be coupled to existing biophysical models of
disease dynamics and other nature—society interdependencies.

Building from Insight 3b, we propose a model designed to
explore the endogenous interactions of COVID-19 mitigation
behavior and disease. With perfect data, one could define
mitigation activity to include the full suite of activities aimed at
reducing disease spread, from federal policy to individual choices.
In practice, we can only measure a handful of these—particularly
changes in movement patterns.

We propose that mitigation behavior may be equivalent in
importance to the virus’ innate biological properties for the
course of disease outbreaks. We adapt a Lotka—Volterra model to
dynamically represent interactions between viral spread and our
mitigation actions, casting mitigation behavior as the “predator”
(M) and infections as “prey” (I). This model captures biological
characteristics of disease and adaptive behavioral responses, and
it predicts waves in COVID-19 cases that we observe across
cities, states, nations, and the world despite the vast range of
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mitigation strategies that have been employed (see S/ Appendix
for justification).
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The basic Lotka—Volterra equations (Egs. 1 and 2) lead to a long-
term relationship characterized by steady oscillations in the levels
of new cases and mitigation behavior (Fig. 5C). Many new cases
lead to an increase in mitigation effort, and increased mitigation
results in case levels declining. As cases decline, mitigation efforts
also fall, providing an opportunity for the virus to spread again.

During the first year of the pandemic, the globally dominant
strain of the disease closely matched the original genome
sequence, the infected population was still a small share of the
total, and pharmaceuticals were not yet available, and so the
oscillating features of COVID-19 case levels likely were driven
by nonbiological characteristics, specifically societies’ mitigation
actions.

However, over the longer term, other factors will complicate

this dynamic relationship for COVID-19. Immunity derived
from both prior infection and vaccination has reduced the
susceptible population. Genetic change in the virus has led to
more infectious variants, changing the @ parameter. Increased
availability of pharmaceutical treatments (e.g., Paxlovid) and
prevention (vaccines) may reduce effective disease severity, mer-
iting disinvestment in economically punishing social distancing
measures and other mitigation strategies. Maintaining a close
dialogue between modeling and empirical analyses of disease
as COVID-19 moves toward endemic conditions will support
appropriate long-term biopreparedness.
Study 4: Codesigning an empirical and a modeling study to explain
interest groups’ success in influencing natural resource policy
making and its diverse consequences for sustainable resource
use. Complex dynamics of nature—society systems can be the
reason why the same causal mechanism can lead to qualitatively
different outcomes in similar systems. For example, interest
group participation in natural resource management contributed
to the collapse of the Baltic cod fishery, while it improved
management of Southern Ocean toothfish fisheries (32). How
a mechanism plays out in a particular context can be very
different, making identification and generalization difficult. In
this study, we demonstrate how an empirical approach that traces
the pathway between a cause and an effect in a particular case can
be combined with agent-based modeling to identify mechanisms
that may explain an observed empirical outcome and to assess
their performance in a dynamic social-ecological environment.
Such codesign is particularly useful in contexts where nature—
society interdependencies create complex dynamics for which
little theoretical knowledge exists. In view of these challenges, this
study aimed to identify how, that is through which mechanisms,
and under what conditions, interest group participation in
natural resource policy making can bring about a fishery policy
change toward sustainable resource use.

Process-tracing is used to identify the causal mechanism of
interest group influence, while agent-based modeling extends
it further to account for interactions with the social-ecological
dynamics of a fishery. The strengths of this combination are
the ability of process-tracing to illustrate a detailed temporal
unfolding of a causal process and the ability of ABM to explore
this causal process in a dynamic nature—society system. Through
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analyzing and comparing simulation runs that produce different
outcomes, we can investigate complex nature—society feedbacks
that drives policy change and adaptation.

Process-tracing was used to analyze how environmental interest
groups influenced the 2013 EU Common Fisheries Policy (CFP)
reform (see details in ref. 39). Past studies have pointed to interest
group interactions within the policy process such as lobbying,
providing expert and technical information, building coalitions,
and competing for influence, as parts of causal mechanisms that
link interest group influence to policy change (e.g., refs. 40—42).
While these studies have assessed interest group influence on
policy change across multiple issues, institutional and nature—
society contexts, quantifying the degree of influence is problem-
atic (43), and studies typically focus on identifying influence, not
explaining it.

Insight 4a: Process-tracing suggests that by building belief-
based coalitions environmental interest groups are able to
overcome resource disadvantages, compared to industry interest
groups, and influence policy change according to their prefer-
ences.

The empirical investigation of interest group behavior was
based on interviews and document analysis. It provides an
in-depth understanding of the causal mechanism that links
interest group participation and their influence on policy change,
focusing specifically on the role interest group coalitions played in
the CFP reform process. The aim of process-tracing is to identify

a causal mechanism that links interest group participation in the
reform, their coalition-building activities, and their influence on
policy change. Model design and the empirical investigation mu-
tually influenced each other in the search for causal mechanisms.

The ABM formalizes the empirical causal mechanism un-
covered in process-tracing, in order to test it and analyze
how it performs when interest group activities are linked to a
nature-society system that changes through their actions. Model
simulations show how fishery policy output (e.g., fishing quota,
Fig. 6C) is causally linked to nature-society outcomes (e.g.,
fishery income or state of the fish stock, Fig. 6B). While insight
4a provides us with a detailed and rich account of the causal
mechanism in the CFP reform process, it is difficult to distinguish
which contextual factors matter for outcomes. Without the model
simulations, it is difficult to understand the complex causal
structure that dynamically links policy and the nature—society
system it is intended to govern. The ABM builds on the strengths
of the in-depth empirical causal explanation provided by the
process-tracing. It uses modeling scenarios to further extend and
test the causal explanation.

To design the ABM, we implement three elements of the
interest group influence mechanism identified in process-tracing:
1) interest groups’ ability to form belief-based coalitions that can
lobby policymakers with higher efficiency; 2) interest groups’
mobilization in coalitions as a response to perceived economic
or ecological “crisis” in the governed system; 3) link between
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Fig. 6. The activation and timing of the tug-of-war causal mechanism determine the type of long-term outcome of the fishery. (A) shows changes in fish stocks
over time in 200 model runs in an experiment in which both types of interest groups are able to build coalitions. (B-E) show results of the run displaying a
balancing dynamic (blue line on A). The dashed line in B and C represents the concern threshold of environmental and industry groups, respectively. The light
blue field in C shows the amount of catch that can be taken out during each respective year to maintain fish stock size. Source: Orach et al. (32).
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interest group resources (funding), their perceived influence,
and their lobbying success (see ref. 32 for details of model
design). The ABM recreates this setting not only to see if
environmental interest group success can be reproduced under
such conditions but also to explore how interest coalition-
building and lobbying in response to perceived changes in the
managed fishery can influence the sustainability of the fishery over
time.

Insight 4b: Stochasticity and timing at which the “tug-of-war”
between competing interest coalitions activates can lead to path
dependencies that generate different system trajectories (Fig. 6A).
When implementing the empirical mechanism of interest group
influence, ABM simulations result in three qualitatively distinct
types of outcomes. These are the fast decline (red line), slow
decline (green line), and balancing (blue line) trends of a fish
population.

Insight 4b sheds light on a feedback mechanism responsible
for the stabilization of the catch quota through consecutive
mobilization of industry and environmental interest coalitions
(Fig. 6 C and D).

This “tug-of-war” mechanism can slow down a collapse of
the fish population or even prevent a collapse if interest groups
engage in it early enough (see Fig. 6B—the tug-of-war shown
in Fig. 6 C and D stabilizes the quota at the level that slows
down fish population decline and maintains it at a relatively
sustainable level further on). Path dependency helps explain
these dynamics, as the initial coalition response by environmental
groups and their lobbying success coincides with a relatively slow
increase in quota and a high fish population, triggering the tug-
of-war early on. Stochastic events play an important role in the
emergence of path dependency, e.g., early presence of coalitional
pressure from environmental groups can prevent quota “spikes”
that are difficult to revert in time to prevent fish population
collapse.

The methods used in this study are complementary: They
serve different purposes while sharing a similar conceptualization
of causality. Both process-tracing and ABM view causality
as generative, i.e., causation involves a mechanism or causal
process that links cause and effect. Here, a causal mechanism
is conceptualized as a set of entities and activities that, by
interacting over time, generate system-level outcomes (13). While
the empirical study identified the coalition-building strategy
as the core part of a mechanism explaining environmental
group success, the ABM shows how the effectiveness of interest
coalitions is dependent on the timing of their formation in
relation to policy and ecological dynamics. The model allows us to
build on the empirical mechanism and generate hypotheses that
link interest group perceptions of change, coalition and policy
dynamics, and long-term outcomes for sustainability of fisheries.
These hypotheses could be further tested in other empirical
contexts, a process that may contribute to building middle-
range theories of policy adaptation that account for micro- and
mesolevel policy dynamics and interest group participation in
fishery governance.

Discussion

Scientists have long recognized the need for multi-method ap-
proaches to analyze complex sustainability problems (44, 45), but
causal studies that integrate empirical and modeling approaches
are still rare.

Greater integration of these complementary approaches would
facilitate theory building and offer insights for governing nature—
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society systems. Models represent researchers’ and practitioners’
understanding of the causal structure of particular phenomena.
They can thus serve to evaluate the quality of different empirical
designs (air quality study), assess the implications of nature—
society interdependencies for empirical estimates of causal effects
(gear restriction study), help identify nature—society interactions
that shape complex system dynamics (COVID study), and
explain the multiple pathways that a causal mechanism may
trigger in dynamic nature—society systems (fishery governance
study). In contrast, empirical studies provide insights about
causal mechanisms, the magnitudes, and directions of causal
relationships, as well as contextual factors that influence these
relationships and mechanisms. They can thus serve to build
models, particularly those that include social dynamics, or
evaluate and improve the quality of existing ones. Below, we
describe four cross-cutting insights and one policy insight that
highlight how integrating the two approaches can enrich causal
understanding and strengthen causal claims. We also discuss ways
forward to address some of the challenges of integrating both
approaches.

Cross-Cutting Insight 1: Modeling can Improve Empirical
Designs and Reduce Uncertainty in Empirical Estimates. In
causal inference studies, scientists’ decisions about empirical
designs and estimation procedures (e.g., where or when to
measure outcomes) should be guided by assumptions about
potential interdependencies among the natural and social ele-
ments of the system. Given the dynamic nature of nature-society
systems, these assumptions may be best articulated by models.
For example, models allow scientists to quantify, for a specific
empirical design, what divergence they can expect between the
true and the estimated effect in a system, thus helping scientists
determine whether the estimated effect is likely to be an upper
or a lower bound on the true effect size (air quality and gear
restriction studies). Modeling also sheds light on what effect size
scientists can expect in a particular context or with a particular
design, which helps scientists determine how much data they
will need to achieve a target level of statistical power. Modeling
also highlights that the timing and type of data collection can
be critical for causal inference because of the underlying complex
dynamics (COVID study). Importantly, because modeling allows
scientists to vary the degree of interdependencies and consider
implications for empirical designs, it can help empiricists to assess
when the additional costs of formally addressing interdepen-
dencies with more data or more sophisticated designs may be
warranted.

Cross-Cutting Insight 2: Modeling Elucidates Unexpected Out-
comes and Helps to Judge the Importance of Contextual Factors
and Complex Dynamics. Modeling can identify qualitative out-
comes and causal pathways that are either unexpected or beyond
the scope of the original empirical analysis. The gear restriction
in Study 2 was expected to increase stocks in the regulated
zone but not in the unregulated zone. Yet, the model revealed
that when the preintervention fishery was highly exploited, the
restriction could increase the stock in the unregulated zone
as well. This potential effect could not have been anticipated
without modeling, and it directly informs the analysis and
interpretation of the empirical results. The air pollution and the
gear restriction studies show how models can inform scientists
about where to expect different outcomes when the same
intervention is applied across contexts and what contextual
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features generate this heterogeneity. For COVID transmission,
the bidirectional causality between mitigation behavior and the
spread of disease is typically beyond the scope of empirical anal-
ysis, but modeling that includes that bidirectional relationship
can explain the estimated positive associations between disease
and mitigation behaviors we observe. The agent-based model
of fishery governance reveals that stochasticity and the timing
and conjunction of events can lead to path dependencies that
generate qualitatively different outcomes in a dynamic nature—
society system. Modeling indicated the importance of additional
mechanisms, such as a tug-of-war process, for stabilizing the fish
population. These two studies show how modeling can inform
scientists about where to expect variation within a single case and
what complex dynamics generates this heterogeneity. Guided
by these expectations about contextual factors and dynamic
patterns, scientists can better determine which variables and
interactions, among myriad potential ones, should be the focus
of data collection and which hypotheses or causal mechanisms
should be the focus of analysis and testing.

Cross-cutting Insight 3: Integrating Empirical Approaches with
Modeling Improves Causal Explanations in Absence of Prior
Causal Knowledge about Complex Nature-Society Interdepen-
dencies. Integrating empirical and modeling approaches is par-
ticularly relevant when there is little a priori causal understanding
of the system, few theories or models to build on, and a lack
of data. These contexts are common in complex nature—society
systems. The empirical approach can inform model development
with insights about potential causal factors and mechanisms
as well as relevant contextual details, particularly regarding
human behavior, social interactions, institutions, and nature—
society interdependencies. Vice versa, modeling can help focus
empirical analyses on the complex interactions between causal
factors or mechanisms, interactions that can then be further
explored and refined through future modeling. Integration
creates opportunities to account for human adaptation, which
contributes to complex dynamics but is inherently difficult to
include in both empirical and modeling studies. The COVID and
fisheries governance studies are examples of the early iterations
of this form of integration.

Cross-cutting Insight 4: Integrating Empirical Approaches
with Modeling Facilitates the Development of Middle-Range
Theories. Integration is useful for causal explanation—i.e., to
identify the mechanisms and processes that explain observed
empirical patterns—with the aim to build middle-range theories
(10). Middle-range theories, or contextualized generalizations
(46), are particularly relevant for complex nature—society systems
whose context-dependence and complex dynamics make highly
abstract theories less useful (47). For example, the combina-
tion of qualitative process tracing and agent-based modeling
in the fisheries management study facilitated the integration
of contextual empirical knowledge into middle-range theory
building. The codesign of the empirical study and the model
supported the development and testing of a mechanism-based
explanation because it focused the empirical study on the micro-
and meso-level interactions that explain interest group success.
The model, which formalized these interactions and simulated
their interplay with system level dynamics, could then be used
to test whether these interactions generate the same outcome in
the virtual world, and to further investigate the working of the
mechanism in a dynamic nature—society context. The integration
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of empirical and modeling approaches can thus help to generate
causal explanations and support generalizing from case studies
[Fisheries management Study 4, (10)] or demonstrate when new

theoretical models are needed (COVID Study).

Policy Implication Insight: Integrating Empirical Approaches
with Modeling can Help Improve Governance in the Presence
of Complex Nature-Society Interdependencies and Dynamics.
Governance of nature—society systems is fundamentally about
choosing among potential actions that will affect the natural
and social components of these systems and their interactions.
A better understanding of causality in contexts in which
interdependencies and dynamics are the rule rather than the
exception contributes to making such choices. The integration of
empirical and modeling approaches provides such understanding,
which is often difficult to gain from one approach alone.
Our four studies demonstrate that integration can ultimately
provide more accurate measurements of the magnitude of
a policy effect, indicate when and how the timing of an
intervention or policy evaluation matters, and help to anticipate
potential unexpected outcomes. By providing policymakers with
a better understanding of the interacting mechanisms that
generate a problem or contribute to a solution, integration
can help policymakers to design more “complexity-aware”
interventions.

Ways Forward. Independent of the scientific and policy benefits
from integration, engagement in multi-method scientific collab-
orations facilitates thinking across domains and breaks down
disciplinary and methodological silos, which have long been
identified as important barriers to understanding and governing
complex nature—society systems.

While the benefits of integration are multiple, bringing
methods from different traditions into dialogue is costly, and
scientists need guidance about when and to what degree integra-
tion is most valuable. Our experience in producing this article
highlighted several challenges, and pointed to some possible
ways to overcome them. For example, integration requires that
team members have the skill to navigate different ideas about
causation, different technical terms, concepts, and methods and
a willingness to communicate about them in unfamiliar ways.
Successful collaborations will occur in teams whose members
succeed in learning how members from other traditions think and
analyze nature—society systems. Building and maintaining such
teams needs sustained effort and commitment that goes beyond
regular projects. Such learning can also take place in dedicated
workshops, summer schools, and institutes, and be supported
by tools for interdisciplinary collaboration (48, 49). Collective
change will also be necessary. To establish the groundwork for
broader integrative collaborations in sustainability science and
provide guidance for cross-community collaborations, scientists
will need to make more efforts to clarify and communicate
the basic assumptions that underlie different epistemological
traditions. More transparency about assumptions and the process
of integration, supported by, e.g., protocols such as (50) or
“behind the scenes” descriptions, will enable other scientists to
learn from how teams have tackled these challenges. Another
step would be that journals encourage registered reports of
integrated designs (i.e., ref. 51) to reduce the risk that researchers
will invest substantial resources only to have trouble finding
a suitable publication outlet. Finally, efforts are needed to
ensure that professional incentives, norms, publication and
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review structures, and funding schemes in academic and research
organizations support, rather than discourage, integrative
collaborations.

Data, Materials, and Software Availability. There are no data underlying
this work.
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