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A B S T R A C T   

Two challenges to planning public electric vehicle (EV) charging networks remain in U.S. cities, including un
even productivity of charging stations and inequitable charging access across user groups. The unpredictable EV 
market penetration over the long term further complicates the relevant infrastructure planning. However, the 
extant planning approaches are limited in addressing both challenges simultaneously when considering future 
uncertainties. Therefore, we propose a data-driven anticipatory framework to plan for EV charging station 
allocation near urban amenities based on charging-while-parking behavioral patterns. We focus on two user 
groups, i.e., multi-family and single-family residents. We compare the productivity-equity outcomes of allocation 
scenarios under three planning strategies and four possible ratios between both user groups. The framework 
addresses the incremental charging demands at different market levels for each scenario. An in-depth case study 
of Alachua County, FL, shows that over-emphasizing multi-family charging demands when placing EV charging 
stations may undermine their overall productivity. We then suggest three pathways to balance equitable access 
and optimized productivity for the community based on the comparison of planning scenarios. The proposed 
framework is generalizable to other EV-initiating communities. This study sheds light on future-oriented adap
tive planning for transportation infrastructure during the energy transition.   

1. Introduction 

Promoting equity and inclusion is a critical social-economic goal 
during the national energy transition across the United States (National 
Academies of Sciences, Engineering, and Medicine [NASEM], 2021). 
Particularly, inequities among communities of different dwelling types 
are significant in electric vehicle (EV) market shares and spatial distri
butions of charging stations (Carlton & Sultana, 2022). Multi-family 
housing (MFH), such as apartments or condominiums, serves approxi
mately 43.9 million residents and accounts for 31.1 % of households in 
the U.S. (U.S. Census Bureau, 2021). Yet, even in many EV-friendly 
states, MFH residents only occupy less than 15 % of the current EV 
market share, while single-family housing (SFH) residents take the rest 
(Burk et al., 2020; California Energy Commission, 2021; O’Connor et al. 
2022). In addition to the fact that EVs are less affordable for MFH res
idents (Higueras-Castillo et al., 2021; Ju et al., 2020), the gap in EV 
adoptions between SFH and MFH residents is also attributed to varied 

access to public EV charging stations (EVCSs; Shi et al., 2021; Sierzchula 
et al., 2014). MFH EV users have a higher reliance on public charging 
since they have less access to private chargers than SFH users (Kim et al., 
2022). The insufficient accessibility to public charging has discouraged 
prospective MFH consumers from purchasing EVs (Broadbent et al., 
2021; O’Connor et al., 2022) and further exacerbate the imbalanced EV 
ownership across user groups, polarizing geographical EV penetrations 
and aggravating environmental inequity (Hardman et al., 2021; Hsu & 
Fingerman, 2021). 

Additionally, planners or stakeholders need to leverage the effec
tiveness of EVCS installations, considering the cost remains high 
(LaMonaca & Ryan, 2022). Increasing use-productivity while mini
mizing the required EVCSs is crucial for both public utilities and 
for-profit facilities (Huang et al., 2019). However, an allocation plan 
focused solely on productivity often relies on current data from existing 
EV markets, resulting in EVCSs clustered in areas preferred by existing 
users. The approach inhibits the equitable distribution of charging 
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accessibility in low-penetration neighborhoods. On the other hand, an 
indiscriminate EVCS allocation solely based on geographical equity can 
introduce challenges in the opposite direction. Existing research sug
gests that only public EVCSs in central districts are visited frequently, 
while those in low EV penetration areas may be underused (Bauer et al., 
2021). The uneven utilization of public EVCSs places unnecessary bur
dens and congestion on popular stations while reducing the 
cost-effectiveness of less frequently used ones (Dong et al., 2019). 
Without strategic planning that simultaneously harmonizes both ob
jectives, equity and use-productivity, the goals can potentially conflict 
with each other, which needs to be addressed (Marmaras et al., 2017; 
International Council on Clean Transportation, 2020). 

The extant studies on planning optimal locations for EVCSs have 
pursued objectives beyond maximizing utility, including reducing en
ergy loss and increasing charging coverage, among others (Erbaş et al., 
2018; Guo & Zhao, 2015; Xu et al., 2023). However, existing knowledge 
has yet to provide equitable access to public charging across different 
population groups while simultaneously facilitating the productive 
utility of EVCSs. The EV penetrations among MFH communities are 
presumed to change, making the context of the future EV market and 
charging demands unpredictable (Khan et al., 2022). The two inter
twined nature of the two planning is particularly intriguing given the 
uncertainties involved, which highlights the need for a proactive and 
dynamic allocation method in the planning process. 

To address the knowledge gaps in allocating EVCSs to achieve equity 
and productivity amid the growing EV market, we propose a data-driven 
anticipatory planning framework for EVCSs, which is complemented by 
an in-depth case study. Our spatial allocation relies on the multi-criteria 
decision-making (MCDM) method to determine the suitability of 
candidate locations. To plan for productivity, suitability criteria are 
built upon the estimation of “charging while parking” behaviors (Kang 
et al., 2022; Guerra & Daziano, 2020; Patil et al., 2023). We focus on 
curbsides in urban amenity centers as key locations to enable charging 
activities for both nearby residents and guest visitors from other 
neighborhoods due to their better visibility and accessibility (Yang et al., 
2014; Ge et al., 2021; He et al., 2022a). To plan for equity, we design 
three planning scenarios to incorporate different future-oriented stra
tegies. Each scenario further anticipates distinct proportions of EV 
market share among MFH residents that reflect uncertain future 
changes. We then assess the performances of the three planning strate
gies in a case study in Alachua County, Florida, regarding the two ob
jectives. In light of the finding—that equity and productivity have an 
evolving antithetical relationship—we explore potential pathways to 
achieve co-beneficial planning. This research intends to guide 
use-productive and equitable EVCS planning under the uncertain future 
of energy transition and transportation electrification. 

2. Literature review 

Existing planning approaches for sitting EVCSs have been dominated 
by two types of methods: simulation-optimizing methods (e.g., Shi et al., 
2021) and Multi-Criteria Decision-Making (MCDM) methods (e.g., 
Sánchez-Lozano et al., 2013). The former focuses on optimizing EVCS 
allocation for various objectives, while the latter emphasizes the loca
tional context, aligning with the purpose of our study. However, the 
travel-mobility behaviors of EV users have rarely been incorporated in 
the current MCDM-based studies, despite their effectiveness in planning 
for EVCSs with high productivity (Luo et al., 2018). Furthermore, to 
balance long-term equity with productivity, we introduce anticipatory 
planning as a valuable approach, specifically considering the concern for 
future uncertainties. In the following three subsections, we review the 
existing studies and discuss the specific knowledge gaps. 

2.1. Existing studies on EVCS allocation planning methods 

EVCSs planning objectives based on existing simulation-optimization 

approaches, such as the often-used Generic Algorithm (GA), were 
generally directed to increasing the efficiency of EVCSs from perspec
tives of energy, transportation, and installation costs. For example, Xi 
et al. (2013) used a linear integer programming-based simu
lation-optimization model to determine the location and size of EVCSs to 
optimize their utilization. Xie et al. (2018) focused on inter-city long-
range EVCS allocation with a mixed integer programming model with a 
planning objective to maximize cost-effectiveness and address the range 
anxiety of EV users. Huang et al. (2019) proposed a design method to 
minimize the life cycle cost of EVCSs when considering the optimal lo
cations and numbers in high-density cities. The study especially 
considered the building roof solar energy potentials in channeling 
renewable resources for the EVCSs. Xiao et al. (2020) suggested a 
GA-based optimal location model to cut overall charging costs, which 
was particularly advanced in considering vehicle queuing behaviors 
when charging. Pan et al. (2020) demonstrated a public EVCS model 
that attempts to meet the increasing demands in charging while pre
serving EV drivers’ current travel behaviors. A GA-based location opti
mization strategy was used to minimize the government’s costs, which 
included objectives of lowering construction costs, meeting drivers’ 
charging demand, and reducing emissions. While optimization methods 
have been effective in allocating EVCSs based on distinct planning ob
jectives with a macro-level perspective, they often neglect the impor
tance of locational suitability and the local impacts of EVCSs. 

Other studies used MCDM-based EVCS allocation planning ap
proaches to supplement the former method with a focus on local fea
tures. For example, Guo and Zhao (2015) identified optimal locations for 
EVCS using the fuzzy TOPSIS (i.e., Technique for Order of Preference by 
Similarity to Ideal Solution) technique, an MCDM method. They 
considered various aspects of semantic features to determine the suit
ability of candidate locations, including the environment, economy, 
society, electric power system, and transportation system. However, 
their research regarded social-economic and human-center factors less. 
Erbaş et al. (2018) suggested a method that integrated GIS techniques 
and MCDM methods for determining the best locations for EVCSs in 
Ankara, Turkey. This research considered environmental, economic, and 
urbanity factors in determining suitable sites. Guler and Yomralioglu 
(2020) also adopted a GIS-based TOPSIS, which ranked the alternative 
EVCSs locations that were selected based on a suitability analysis of built 
environment attributes. To conclude, the existing MCDM-based EVCS 
allocation approaches rarely considered the total productivity of EVCSs, 
which necessitates the incorporation of charging and traveling behav
iors of EV users into their analyses. 

2.2. EVCS allocation based on people’s travel-mobility patterns 

Charging demands have been found to harmonize with residential 
locations and real-time mobility patterns of EV users (Liu et al., 2022; 
Wang et al., 2022a). Researchers have assessed the extent to which 
EVCSs met charging demands on separate occasions, at home or when 
visiting amenities. A few studies have considered spatial coverage of 
EVCSs by focusing on providing charging access to nearby residents. For 
example, Vazifeh et al. (2019) allocated EVCSs by solving a covering 
problem with dual objectives, to minimize the number of EVCSs and the 
average distance for drivers to the nearest accessible EVCS. 

Additionally, many studies allocated EVCSs based on mobility be
haviors such as origin-destination (O-D) travel features to maximum 
charging coverage for visitors or guests. Efthymiou et al. (2017) used the 
O-D data of conventional automobiles (non-electric vehicles) to forecast 
EV behaviors in the coming years. Based on the simulated behavior, the 
model used charging demand coverage as an optimizer to determine the 
optimal numbers of EVCSs. Kontou et al. (2019) used O-D data to 
investigate the relationship between EVCS spatial charging coverage 
and charging opportunity. The simulation on charging activities sug
gested that charging stations concentrated in a few popular places where 
drivers often stopped could significantly support public charging 
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accessibility. Dong et al. (2019) used point of interest (POI) and traffic 
data to decide on the optimal location for EVCSs, which can maximize 
the extent to which they accommodated the charging demands. Huang 
and Kockelman (2020) investigated allocating EVCSs using O-D data 
that simulated the users’ behaviors with transportation behavior using 
GA optimization. These two aspects, however, have not yet been inte
grated into a holistic framework, which is essential for advancing the 
consideration of equitable EVCS allocation. 

2.3. Scenario planning for equitable EVCS allocation 

Increasing studies have acknowledged that inequitable EV charging 
capacity allocation could exacerbate the existing uneven EV ownership 
among specific user groups (Guo & Kontou, 2021; Sierzchula et al., 
2014). The disparities in accessing EVCSs among socioeconomic groups 
and communities have been examined in different cities and regions 
(Khan et al., 2022; Canepa et al., 2019; Hsu & Fingerman, 2021). For 
example, Roy and Law (2022) considered inequitable access to EVCSs as 
one component of a holistic spatial inequality indicator. This indicator 
encompassed multiple socioeconomic and built-environmental factors, 
allowing them to examine the overlap between projected EVCSs allo
cation and inequity areas. However, only a few new approaches have 
been proposed to address inequity issues, such as the optimization 
model applied by Yi et al. (2022) aimed to mitigate the spatial mis
matches between charging demands and the existing allocation of 
EVCSs. There is a growing demand for future-oriented investigations to 
achieve long-term equitable strategies for the changing context of the EV 
market. 

Anticipatory and visionary planning is often employed in climate 
change adaptation planning (Birchall et al., 2021; Muiderman et al., 
2020). The scenario-based analysis is an effective tool for examining 
planning strategies in the face of future uncertainties (Muñoz-Erickson 
et al., 2021). To date, this methodology has only been applied in EVCS 
allocation methods to represent uncertainties driven by market changes 
or innovations. For example, Singh et al. (2022) simulated EVCS de
mands and allocation with scenarios representing EV market shares 
ranging from 1 % to 50 % and technological innovations that varied EV 
battery size. The research confirmed the linkages between environ
mental factors and EVCS demands. In an EVCS allocation study, Xie 
et al. (2018) also investigated potential scenarios with different EV 
diffusion stages. Huang et al. (2019) presented a substantial rise in the 
life cycle cost of EVCSs as the required coverage ratio increases. How
ever, the application of this method to target long-term equitable goals 
remains untapped. 

To conclude, current studies on anticipatory planning for equitable 
EVCS allocation encountered multiple gaps. First, existing studies have 
primarily focused on inequitable access to EVCSs from a geographical 
perspective, overlooking the disparities among different user groups. 
Their differences in charging demands require further emphasis on 
adaptive methods. Second, it has been well understood that charging 
demands, both for residents when nearby their homes or guests during 
parking, are critical for guiding human-behavior-oriented EVCS alloca
tion (Liu et al., 2022). However, there has not been an integrated 
framework considering public charging accessibility and demands for 
both occasions. Third, despite various market-growth scenarios being 
studied, there has been a lack of investigation into time-series differ
ences, which would enable an incremental vision of when and where to 
allocate EVCSs. The untapped potential of scenario planning methods 
can be leveraged to investigate the effectiveness of equitable EVCS 
planning strategies from a development perspective. 

3. Developing an anticipatory planning framework for equitable 
and productive EVCS allocation 

To address the knowledge gaps, we propose an anticipatory planning 
framework to allocate EVCSs incrementally under three different 

strategic scenarios. Our framework explicitly addresses productivity and 
equity while allowing adaptation to the changing EV market over the 
long term. Anticipatory planning is a scenario-based method that has 
been increasingly used in assessing adaptive strategies in a wide range of 
uncertain futures (Birchall et al., 2021; Maffei et al., 2020; Quay, 2010). 
The planning framework consists of two modules to allocate EVCS 
incrementally (see Fig. 1). Module 1 uses a Gradient-boosted Tree ma
chine learning model (i.e., XGBoost model) to project the probability of 
owning EVs for each census block group (CBG) in the study area. The 
outcomes feed into Module 2 to select optimal locations for new EVCS 
using an MCDM method. Notably, since the accessibility to EVCSs alters 
EV adoption (Chakraborty et al., 2021), the probability of EV ownership 
of CBGs is re-calculated with Module 1 at different EV penetration levels, 
considering the EVCS allocation from the prior phase. We estimate the 
number of EVCSs demanded at each EV market level using Electric 
Vehicle Infrastructure Projection Tool (Lee et al., 2021). 

To maximize the EVCS use productivity, the allocation is built upon 
the anticipated “charging-while-parking” activities based on the anal
ysis of travel behaviors using “big” POI data (Fig. 2; Dong et al., 2019). 
Given that curbside parking activities often have a sufficiently long 
duration to allow EVs to charge (Wang et al., 2022b), we consider the 
overall charging activities as a function of the total EV visits to sur
rounding POIs. These charging activities occur when users park adjacent 
to their homes (i.e., resident charging) or when parking while visiting 
POIs (i.e., guest charging, Pagany et al., 2019). The use-productivity of 
certain EVCS represents the aggregated charging activities of both types 
(resident charging and guest charging). This is taken into consideration 
when determining the optimal site in Module 2 (Fig. 1). 

To reflect the changing demands in EV charging over the coming 
decades across planning scenarios, we characterize the market pene
tration levels with constant EV adoption increments (e.g., adding 1000 
EVs at each level). In addition to matching the supply with increased 
charging demands, this procedure is designed to avoid conflict with 
existing EVCSs and to ensure the cost-effectiveness of EVCS installations. 

To explore pathways toward equitable access among user groups 
(Taylor, 2004), we develop three scenarios that reflect different equi
table strategies for EVCS allocation (Fig. 1). The Non-Equity strategy is 
the least equity-driven one. It only pays attention to the productivity of 
the EVCSs during the allocation procedure, regardless of equity objec
tives. The Opportunity Equity strategy equally weighs the 
charging-while-parking behaviors among SFH and MFH EV users when 
allocating EVCSs. It considers every EV user ought to have an equivalent 
right to charge at public EVCSs. The Outcome Equity strategy aims to 
provide users of SFH and MFH with equitable access to collective 
charging opportunities that combine at-home and public charging. Most 
MFH users cannot access private charging, so this scenario accounts for 
their higher reliance on public EVCSs. The framework poses heteroge
neous weights on the charging demands among SFH residents, MFH 
residents, and guests when deciding on suitable locations, reflecting the 
differences among the three strategies (Fig. 1). We then measure the 
equitable objective with the EVCS accessibility each scenario generates 
for SFH and MFH EV users. By doing so, we compare the effectiveness of 
the equitable strategies and further suggest win-win plans. 

3.1. Module 1: downscaling EV distribution probability to census block 
group level 

Studies have investigated EV adoption rates mostly at large spatial 
scales, such as countries or states (Javid & Nejat, 2017). Established 
methods have seldom projected EV spatial distribution at a fine spatial 
scale like CBG. Available data on EV ownership or registration numbers 
are mostly at the county level or zip-code level for many U.S. counties. 
However, the spatial units are too large that the demographic patterns 
may be less representative of those in small spatial scales. To anticipate 
fine-grained charging activities, we down-scale the county-wide EV 
ownership to the CBG level by spatially distributing total EV numbers 
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using the XGBoost Regression Tree model (Chen & Guestrin, 2016). 
The proposed model includes five attributes across environmental 

and consumer characteristics as explanatory variables. The EV regis
tration rate (i.e., the number of EVs among all private vehicles) is the 

response variable. We first fit the XGBoost model with the county-level 
data. We make the following assumptions to use the fitted model to 
project the probability of EV adoption per CBG at each market level, 
including (i) environmental attributes (i.e., fuel and electronic prices) 

Fig. 1. An anticipatory scenario planning framework for EVCS allocation.  

Fig. 2. Two types of charging-while-parking behaviors for different purposes.  

Z. Guo and Y. Wang                                                                                                                                                                                                                           



Sustainable Cities and Society 99 (2023) 104962

5

are constant across different EV market penetration levels (Zhuge et al., 
2020); (ii) consumer characteristics (i.e., household and housing type, 
income level, vehicle availability) are distinct across CBGs but constant 
through market penetration levels (Chen et al., 2020); (iii) the charging 
accessibility of each CBG will change subject to the allocated EVCS at 
each market penetration level; and (iv) the correlations between 
explanatory variables and the response variable remain homogeneous 
across counties. 

The model predicts the probability (PEV|i) of owning an EV for any 
residents in CBGi. For each level of the EV market, the EV counts in CBG 
are calculated by a function of the anticipated EV number (# TotalEV) 
using Eq. (1): 

NumberEVi = Number TotalEV × PEV|i

/
∑N

i=1
PEV|i (1)  

N represents the total number of CBGs in the county. As it remains un
clear how the compound incentives (e.g., financial subsidies, technology 
advancement) change the EV market share among MFH and SFH users, 
we introduce a parameter, Ratio, to quantify the extent to which the 
MFH EV market has changed, calculated by Eq. (2). 

Ratio = PEV|SFH,i
/

PEV|MFH,i (2) 

PEV|SFH,i and PEV|MFH,i represent the probability of owning an EV for 
SFH households and MFH households in CBGi, respectively. Four Ratios 
that produce different scenarios are employed to distinguish the share of 
MFH users in the EV market and mirror different EV incentives as
sumptions (Slowik & Lutsey, 2017), as shown in Table 1. We start from 
the current status (i.e., business-as-usual scenario, BAU) with a low EV 
penetration among MFH residents. For example, the probability of 
owning an EV for SHF residents (PEV|SFH,i) in Florida’s EV market is about 
three times of that for MFH residents, denoting as Ratio ∼ 3. Then we 
include three levels of incentives (i.e., moderate, aggressive, and 
extreme) that lead to scenarios in which MFH residents have higher EV 
ownership than they do at present. The most optimistic scenario is Ratio 
= 1, which assumes that an MFH resident has the same probability of 
owning an EV as an SFH resident. 

Finally, we calculate the probability of EV adoption of SFH (PEV|SFH,i) 
and MFH (PEV|MFH,i) consumers separately in each CBG under the four 
assumed MFH EV market shares using the designated Ratios with Eq. (3) 
and Eq. (4). 

PEV|SFH,i = PEV|i × SFH% × RatioSFH (3)  

PEV|MFH,i = PEV|i × MFH% × RatioMFH (4) 

SFH% and MFH% represent the percentage of SFH and MFH resi
dents among all households in the CBG, respectively. The CBG-level EV 
adoption probability estimation is repeated for each EV market level. 
The output is fed into the EVCS allocation process discussed in Session 
3.2 to estimate the resident and guest charging productivities. 

3.2. Module 2: allocating EVCS on curbsides in urban amenity centers 

3.2.1. Identify candidate curbside for locating EVCSs 
Public curbsides and street spaces are highly competitive when 

serving multiple uses, necessitating in-depth understanding prior to 
planning for an extra function (Hao et al., 2023; Noland et al., 2022). To 
identify the candidate curbsides for placing EVCSs, we first extract the 
road map from public-available datasets of Open Street Map (Open
StreetMap, 2015). Then, we exclude roads unsuitable for curbside fa
cilities (e.g., major roads, connective roads, and non-drive routes) and 
divide the remaining roads into segments at intersections. Locating 
EVCSs at centers of urban amenities (i.e., POIs), where drivers often visit 
and park, is typically effective in providing charging access to guests and 
visitors (Efthymiou et al., 2017; Kontou et al., 2019). We identify ag
glomerations of POIs using a density-based clustering tool and define the 
adjacent areas within a radius of 0.25 miles (estimated 5-min of walking 
distance) as the boundaries. We consider the curbsides of road segments 
that intersect with the adjacent areas of POI clusters as candidate loca
tions to place EVCSs. 

3.2.2. Multi-criteria-based incremental allocation with strategic scenarios 
We adopt the Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS) method to determine the locations of EVCS 
among the candidate curbsides identified in Section 3.2.1. TOPSIS is an 
MCDM approach used to determine the best alternative among a set of 
options (Erbaş et al., 2018). It allows for the consideration of the mul
tiple attributes in complex curbside environments and has been suc
cessfully applied in previous research on EV allocation (Guo & Zhao, 
2015; Zhang et al., 2022). 

The TOPSIS model takes a variety of curbside attributes as input and 
identifies the optimal site for the next EVCS based on these attributes. In 
the allocation process, we first construct an evaluation matrix with the 
attributes of all candidate curbsides. A weighting vector (denoted as W) 
is introduced to assign weights to the attributes in the decision matrix. 
The model then identifies ideal solutions based on all input criteria. The 
guiding principle for selecting the optimal alternative is to choose the 
curbside with the shortest Euclidean distance from the ideal solution and 
the greatest distance from the negative ideal solution. The curbside 
identified as the optimal solution is considered the suitable location for 
the new EVCS. 

We construct the three strategic scenarios using two important pa
rameters in the TOPSIS process (Table 2): the reliance parameters and a 
weighting matrix (i.e., W). The reliance parameters represent the ratio 
of charging activities by EV user groups relying on public EVCSs. RSFH 
and RMFH indicate the reliance parameter for SFH and MFH users, 
respectively. For the Outcome Equity scenario, we use the entropy 
weighing method that evaluates the importance of each variable ac
cording to the amount of information (Li et al., 2011), while also 
adopting heterogeneous reliance parameters for SFH and MFH residents. 
For the Opportunity Equity scenario, both weights of attributes and 
reliance parameters are set indifferently to value SFH residents, MFH 
residents, and guests’ demands equally. The Productivity (Non-Equity) 
scenario sets the weight of both SFH (WSFH) and MFH (WMFH) residential 
charging activities as 0, so they are excluded from the optimization 
objectives. Table 2 shows a sample set of parameters for three scenarios. 

Overall, 12 incremental EVCS allocation plans are produced, 

Table 1 
Scenario assumptions for four MFH EV market structures.  

EV market 
scenario 

Ratio 
(RatioSFH : RatioMFH) 

Market context 
description 

Incentive 
assumption 

BAU 
(Ratio 
~3) 

1.56:0.51 MFH EV market share 
remains the same as 
current 

None 

Ratio ¼ 2 2:1 MFH EV market share 
increases by minor steps 

Moderate 
incentive 

Ratio ¼ 1.5 1.5:1 MFH EV market share 
increases significantly 

Aggressive 
incentive 

Ratio ¼ 1 1:1 The share of MFH EV 
boosts to the same level 
as SFH EV 

Extreme 
incentive  

Table 2 
Scenario parameters.  

Scenarios Reliance parameter 
RSFH : RMFH 

Weighting vector [WVisit , WSFH,

WMFH, WNet , WRoad] 

Productivity 0.2 : 0.6 [0.6, 0.0, 0.0, 0.2, 0.2] 
Opportunity 

equity 
0.4 : 0.4 [0.2, 0.2, 0.2, 0.2, 0.2] 

Outcome equity 0.2 : 0.6 Entropy-based weighed  
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considering three planning strategic scenarios across four MFH EV 
market share scenarios, which are defined in Section 3.1 (Fig. 3). 

Three dimensions of characteristics for each curbside j are consid
ered in the TOPSIS model to determine their EVCS suitability: the 
anticipated productivity, the competition among other chargers, and the 
situations of the streets. The first dimension, the anticipated produc
tivity of the EVCS usage (denoted as Prodj), represents charging activ
ities that potentially occur at the curbside. Both guests and residents 
may contribute to the collective productivity of curbside j, which is 
calculated by Eq. (5). 

Prodj = ProdSFH|j + ProdMFH|j + ProdGuest|j (5) 

The productivity conducted by SFH residents (denoted as ProdSFH|j), 
MFH residents (denoted as ProdMFH|j), and guests (denoted as ProdGuest|j ) 
are calculated separately with Eq. 6, Eq. 7, and Eq. 8: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ProdSFH|j = RSFH

∑

i
HHSFH|i × PEV|SFH,i i ∈ Nj (6)

ProdMFH|j = RMFH

∑

i
HHMFH|i × PEV|MFH,i i ∈ Nj (7)

ProdGuest|j = Visitj

∑N

i=1

(
Pi × PEV,i

)
where Pi = Visitij

/
Visitj, N = 160 (8)

where Nj are the adjacent census blocks of curbside j; i indicates the ith 
CBG in the study area; Visitj represents the total visits to amenities 
nearby j; Visitij indicates the number of visits originated from CBG i. 

The second dimension reflects the competition of the EVCS network 
(denoted as Networkj), which is calculated by Eq. (9). and Eq. (10): 

Networkj = NetCBG|j + Netblock|j (9)  

Netblock|j =

{
1; when Blockj ∈ B

0; otherwise (10)  

where NetCBG|j represents the number of EVCS in the same CBG of the 
evaluated curbside j; Blockj means the census block of the curbside j; B 
includes a set of blocks that are adjacent to allocated EVCS. The 
framework regards existing EVCSs as constraints to the placement of 
new ones to avoid overlaps and maximize spatial coverages of EVCS 
service areas. Thus, the Networkj is minimized in the evaluation matrix. 
We plan to prevent two EVCS in the same or nearby census blocks, so 
curbsides that have Netblock|j as 1 is excluded from the candidate EVCS 
locations. 

Lastly, the framework intents to minimize the negative externality of 
EVCS installation to mainline traffic. The street condition is concluded in 

Roadj which is calculated with Eq. (11): 

Roadj =
1
3

[
nor

(
AADTj

)
+ nor

(
MaxSpeedj

)
+ nor

(
Busj

)]
(11)  

where (x) = x−minx
maxx−minx 

; AADTj is the annual average daily traffic of the 
road where curbside j is located; MaxSpeedj represents the maximum 
speed limit of the road; Busj is a binary variable that encodes whether 
there are bus stations on the road segment, with 1 indicating the exis
tence of a bus station and 0 indicating otherwise. 

The attributes of curbsides and spatial units discussed above build up 
the evaluation matrix for the TOPSIS model and are updated after each 
new EVCS is allocated. Under each level of the EV market, this process 
continues until the EVCS target is met. 

4. Case study of Alachua county in the state of Florida, United 
States 

4.1. Case description 

The state of Florida has the second-largest EV market among all 
states in the U.S., owning 93,221 EVs on road by 2021 (Florida 
Department of Highway Safety and Motor Vehicles [FLHSMV], 2022). 
Given the policy incentives and market growth across the state, an 
increasing EV adoption rate is expected (Higueras-Castillo et al., 2021). 
Particularly, Alachua County is selected as our study area because its 
core urban area, the City of Gainesville, is the first city in the state that 
has pushed the zoning reform to end single-family zoning recently 
(Spauster, 2022). Such advances allow more land for MFH in the future. 
Meanwhile, the local EV market is at a beginning level: among the 257, 
985 private vehicles registered in Alachua County by March 2022, only 
1066 private vehicles are electric ones, which include 716 battery EVs 
and 350 plug-in EVs (FLHSMV, 2022). The low penetration of EVs makes 
the county a suitable testbed to examine the future increasing EV market 
and EVCS allocation for EV-initiating MFH communities. We defined the 
ten anticipated EV market levels of Alachua County with an increment of 
1000 at each level, ranging from 1000 EVs to a maximum number of 10, 
000. These thresholds of EV market levels represented a near-to-medium 
future when the EV market share increased to around 5 % of the total 
private vehicles in the area. We estimated the EV ownership probability 
of CBGs corresponding to different market levels. 

4.2. Allocating curbside EVCS with place-specific data 

To define the adjacent areas of urban amenity centers, we located 
4280 amenity POIs in Alachua County from Safegraph Place data. The 
average monthly visits to the selected amenities were retrieved for one 
year during May 2021 and May 2022. With the clustering method (in 
Section 3.2.1), we identified 54 urban amenities centers and subse
quently determined potential curbsides to allocate EVCS accordingly 
(Fig. 4). 

We trained the XGBoost model with the explanatory variables of 67 
counties in Florida from 2017 to 2021. The model was applied to CBGs 
in Alachua County to project their EV ownership probability. Table 3 
concludes the statistics of explanatory variables. To take existing public 
EVCS under consideration, we extracted their geodata from the Alter
native Fueling Station Locator (Alternative Fuels Data Center, 2022) and 
excluded those that were reported to be removed based on EVCS review 
websites (e.g., PlugShare). Forty-two existing EVCSs were included for 
our further analysis. 

According to the survey in the Florida EV Roadmap report (2020), 
60 % of MFH EV charging activities take place at public EVCS, while this 
number is as low as 20 % for SFH EVs. The reliance parameters for 
Outcome Equity strategy scenarios were then determined based on the 
current situation, where RSFH = 0.2 and RMFH = 0.6. Opportunity Eq
uity strategy defined RSFH = RMFH = 0.4 to disregard heterogeneous Fig. 3. Constructing Strategic Scenarios for EVCS Planning.  
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reliance. We finally generated EVCS allocation plans under three stra
tegic scenarios based on rankings of candidate curbsides in the study 
area with the TOPSIS model according to these semantic parameters. 
Fig. 5 shows the results under the assumption of moderate incentive on 
MFH EV uptake (i.e., Ratio = 2). 

4.3. Comparative analysis of case study results 

4.3.1. Comparing the productivity of EVCS across strategic scenarios 
Our case study of Alachua County demonstrates that the proposed 

planning framework effectively assesses different planning strategies 
that result in various performances across equity and productivity ob
jectives. Fig. 6 shows the origins of productivity for the allocated EVCSs 
in strategic scenarios, which reveal that the three strategies serve 
distinct user groups as designed. In all scenarios, most of the anticipated 
EVCS productivity is attributed to guest charging activities. The per
centage of productivity conducted during visiting activity could main
tain a level above 80 % under the most productivity-targeted scenario. 
However, the percentage of residential charging activity would increase 
with the expanding installation of EVCSs under all strategies. The Pro
ductivity (Non-Equity) strategy shows the slightest improvement, from 
3 % to 18 %. This indicates an insufficient supply of charging capacity 
for residential charging among SFH and MFH users. The Opportunity 
Equity scenario shows the highest support for the charging demand of 
SFH residents. Under the broader adoption of EVs, residential charging 
among SFH users is predicted to increase from less than 1 % to 25 %, 

while for MFH users, residential charging only reaches 13 %. In com
parison, the Outcome Equity strategy successfully generates a large 
portion of MFH charging activity as anticipated, increasing from 9 % to 
37 % of the total charging activity. 

The use-productivity of the three scenarios varies in response to the 
distinct origins. Specifically, the Productivity (Non-Equity) scenario and 
Opportunity Equity scenario yield comparable total charging pro
ductivities, while the Outcome Equity plans generate significantly lower 
productivity (Fig. 7). For example, in the current context of the EV 
market (BAU scenario), Outcome Equity plans result in approximately 
25 % less productivity compared to other plans. We thus cautiously 
conclude that the emphasis on local MFH charging activity is related to 
decreased overall use productivity in the current landscape of Alachua 
County. 

However, the results also imply the two following ways to plan for 
equitable EVCS distribution while maximizing productivity. First, the 
Opportunity Equity strategy is the most efficient to achieve equitable 
accessibility in an expanding market in this case. This strategy increases 
productivity slower than the Non-Equity strategy but eventually reaches 
a comparable level when the EV number approaches 10,000. Second, the 
increase in MFH EV market share, from low ownership at present (i.e., 
“BAU” scenarios) to higher ownership (i.e., 1X scenario, See Fig. 7), 
mitigates the gaps between the Outcome Equity plans and Productivity 
plans. Under the Outcome Equity plans, the total productivity of EVCSs 
exhibits an increase when MFH residents have an equal likelihood of 
owning EVs as SFH residents (i.e., Ratio equals 1). This increase is 

Fig. 4. Locating candidate curbsides for installing EVCS.  
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approximately 1.43 times greater than what is observed under the Non- 
Equity strategy. 

4.3.2. Comparing equitable access to EVCS across three planning strategies 
We measure EVCSs accessibility for each CBG from residential- and 

guest-charging perspectives. The prior indicates spatial proximity to 
EVCSs from SFH and MFH residents, while the latter accounts for 
chances to access EVCSs during guests’ visits to amenities. In our case, 
residential accessibility is calculated by the share of households that 
have been covered by EVCS service areas (i.e., within 5-min walking 
distance). Guest charging accessibility is calculated by the percentage 
chances of visits that originated from each CBG to amenity centers 
adjacent to EVCSs. Access to EVCSs during parking for different pur
poses as residents or guests is equally important. They supplement 
EVCSs service coverage of each other and contribute optimal charging 
accessibility to the entire community and all groups of EV users. Fig. 8 
maps the spatial distribution of EVCSs accessibility from both lenses 
under the three scenarios. The three strategies alter the geographical 
distribution of residential charging access more visibly than guest 
charging access. 

We aggregated resident charging accessibility and guest charging 
accessibility of public EVCS plans to compare the performance of 
different strategic scenarios (Fig. 9). The Outcome Equity scenario 
demonstrates the most extensive residential charging access for MFH 
residents, exceeding 70 % coverage with the wide EV adoption. On the 
contrary, the Productivity strategy generates around half of the resident 
charging access as the Outcome Equity strategy does. Under all strategic 
scenarios, SFH EV users have less access to EVCSs adjacent to their 
homes, with the Opportunity Equity strategy offering the best charging 
coverage reaching over 20 %. One reason for such divergent residential 
charging accessibility between SFH and MFH is the local land use 
pattern (Orsi, 2021). The higher-density residential communities tend to 
locate in the areas adjacent to amenity centers, while SFH clusters are 
often remote from them (Dong, 2020). The guest charging accessibility 
only varies by different strategies with no confirmed distinctions 

between user groups, except for the Outcome Equity scenario. This 
scenario provides higher guest charging access for MFH residents than 
SFH residents, yet the coverage percentage is the lowest among the three 
scenarios. 

4.3.3. Place-specific EVCS planning strategies for productive and equity 
The case study demonstrates that our proposed planning framework 

effectively ensures use-productive and equitable EVCSs allocation. 
Suggested plans under all scenarios contribute to significant improve
ments in public EVCSs productivity and charging accessibility for MFH 
residents. This is even true under the Non-Equity strategy, which only 
aims at maximum productivity. However, the comparison of strategic 
scenario planning outcomes further suggests a deviation between MFH 
access to EVCSs and overall productivity, which amplifies with the EV 
market penetration levels. To be specific, if planners take the high 
reliance of MFH residents on public EVCSs under consideration (i.e., 
Outcome Equity strategy), the allocated plan will not achieve maximum 
productivity of EVCSs. 

The research findings suggest three local adaptive pathways toward 
a more productive and equitable future of charging capacity distribu
tion. First, local planners should choose the most suitable allocation 
strategy to balance the two goals. In our case study, the county can start 
with the Opportunity Equity strategy since it prioritizes existing EV 
owners who utilize charging stations the most, as opposed to the 
Outcome Equity strategy. Allocation plans in this scenario ensure EVCSs 
serve both SFH and MFH residents, allowing for a co-benefit of pro
ductivity and equity. Meanwhile, the adaptive pathways extend beyond 
the strategic EVCS allocation, as the deviation between the two objec
tives stems from the contexts of the local EV market and land use (Orsi, 
2021). We suggest facilitating the MFH EV market through subsidies or 
incentives for innovations to make EV purchases as affordable for pro
spective MFH users as for SFH users. Equity-aimed strategies can be 
more productive in a context with increased EV penetration among MFH 
residents. In addition, the final adaptive pathway suggests reforming 
local land use patterns and advocating mixed-used developments. 
Allocated EVCSs partially fail to serve MFH residential charging while 
simultaneously ensuring the frequency of guest visits due to some MFH 
communities being located far from urban amenities. Thus, mixed land 
use that bands MFH use with amenity centers may also mitigate the 
deviation and promote co-beneficial plans. 

5. Discussion 

5.1. Findings and implications 

The existing EVCS planning approaches have not fully addressed the 
issues of equity and use-productivity, especially through a future- 
oriented lens. We proposed an anticipatory planning framework for 
curbside EVCS allocation in urban amenity centers to address inequi
table charging accessibility and uneven utilization. Our case study of 
Alachua County, FL, further suggests incremental and adaptive planning 
for when and where to place curbside EVCSs across three equitable 
strategies. The comparison among different strategic scenarios divulges 
the trade-off between equity and productivity objectives that amplify as 
the EV market expands. Equity-aimed strategies are effective in dimin
ishing charging accessibility gaps between user groups and planning for 
increasing charging demand from MFH EV users. However, local plan
ners should balance the two objectives when MFH EV penetration is low. 

This EVCS allocation framework contributes to methodologies of 
adaptive planning in the face of disruptive technologies. We utilize 
anticipatory planning methods, such as scenario-based analysis, to 
explore plausible future contexts of the EV market and allocation stra
tegies. Anticipatory planning techniques allow for the investigation of 
adaptive pathways to address the challenges of uncertainty (Birchall 
et al., 2021). However, applications of such methods in infrastructure 
planning for emerging urban technologies are rare (Borozan et al., 

Table 3 
XGBoost-based EV distribution projection model variables at the CBG level.  

Variables (N = 160) Mean Median Std. 
Dev. 

Min Max 

Numbers of Households 742.388 637.5 399.272 32 2659 
Housing types      
Single family households 

share 
56.65 % 64.47 

% 
34.50 % 0.00 

% 
100.00 
% 

Mobile Households Share 34.95 % 17.54 
% 

37.06 % 0.00 
% 

100.00 
% 

Multi-family Households 
Share 

8.40 % 0.00 % 15.50 % 0.00 
% 

83.96 % 

Vehicle availability      
% of HH with 1 vehicle 37.01 % 35.25 

% 
14.52 % 7.78 

% 
100.00 
% 

% of HH with 2 or more 
vehicle 

42.94 % 41.61 
% 

19.99 % 0.00 
% 

92.22 % 

Household income      
< 50k 44.47 % 44.70 

% 
20.11 % 1.00 

% 
100.00 
% 

50–100k 23.24 % 21.37 
% 

12.65 % 0.00 
% 

66.93 % 

> 100k 18.43 % 13.88 
% 

17.06 % 0.00 
% 

71.33 % 

EVCS accessibility      
Numbers of EVCS 1.73 0.00 3.60 0 19 
EVCS per single-family 

household 
0.049 0.000 0.319 0.000 3.800 

EVCS per multi-family 
household 

0.013 0.000 0.064 0.000 0.704 

Share of SFH access to 
EVCS 

35.63 % 0.00 % 48.04 % 0 % 100 % 

Share of MFH access to 
EVCS 

35.00 % 0.00 % 47.85 % 0 % 100 %  
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2022). 
Static EVCS planning, which only considers existing charging de

mands, may fall short in meeting the unanticipated demands that arise 
in the evolving EV market, particularly among historically underrepre
sented user groups (Kang et al., 2022). In contrast, our strategic sce
narios anticipate uncertainties and propose adaptive EVCS allocation 
plans to accommodate the expanding EV market among MFH occupants 
(Burk et al., 2020). 

Our research is innovative in optimizing equitable charging access 
for MFH residents by considering their reliance on public EV charging. 

Despite the growing attention given to MFH EV adoption and charging 
capacity (Ge et al., 2021), there is a lack of solid investigations into their 
specific behaviors and demands in the unpredictable EV market. We 
address this gap by establishing the allocation framework on the holistic 
understanding of human-centered parameters that capture the charging 
and travel behaviors of MFH users. The heterogeneous public charging 
reliance among user groups is further used to construct three strategic 
scenarios that shed light on the pathways toward the equitable goal. 

In addition, the allocation framework considers the charging activ
ities of both residents and guests when locating optimal sites for EVCSs 

Fig. 5. EVCS allocation on curbsides of amenity centers across three strategic scenarios.  

Fig. 6. Productivity origins from different user groups (a) Non-Equity scenario; (b) Opportunity Equity scenario; and (c) Outcome Equity scenario.  
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Fig. 7. Overall EVCS productivity of 12 plans under the three scenarios.  

Fig. 8. Mapping EVCSs accessibility of residential charging and guest charging at the CBG level across scenarios.  
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and evaluating charging accessibility. Existing studies have focused 
either on stop-based charging opportunities (Dong et al., 2019; Kontou 
et al., 2019) or home charging, which the latter skewed to the demands 
of SFH residents. Our research eliminates potential bias and guarantees 
an equitable prerequisite for infrastructure planning. The designed 
method effectively captures the emerging MFH EV charging demands 
since it is sensitive to EV adoption changes across spatial areas. 

Our study is among the first to apply a few cutting-edge strategies to 
pursue productive EVCS allocation while catering to various user 
groups. First, we focus on curbsides in urban amenity centers to take 
advantage of the high visibility, ubiquity, and accessibility of curbside 
spaces to increase EVCS usage (Yang et al., 2014). Existing studies on 
blocks or road segments still focused on off-street charging (Yu et al., 
2022). This research explores the potential of allocation plans to boost 
the productivity of both charging stations and curb spaces, which fills 
the knowledge gaps in curbside EVCSs to keep up with the increasingly 
diversified uses of curbsides (Diehl et al., 2021). Second, our incre
mental procedure is novel as it reflects the EV adoption raises caused by 
better charging accessibility across the allocation process. While other 
EVCS allocation studies only acknowledge charging accessibility as a 
critical predictor of EV adoption (Globisch et al., 2019; Hsu & Finger
man, 2021), our framework reflects this relationship with the design of a 
recurrent procedure. This ensures the productivity of every additional 
EVCS dynamically and possibly facilitates EV uptake, especially among 
MFH users. 

5.2. Limitations and future work 

Undeniably, our study has limitations in three aspects, which in turn 
open up future research opportunities. The first aspect pertains to the 
scope of our study. While our study focused on curbsides, we have not 
discussed how other curb uses (e.g., pick-up and drop-offs, and short- 
term parking) would be affected by EV charging (Noland et al., 2022; 
Wang et al., 2022a). Future studies may need to coordinate EVCSs with 
other curb uses to achieve sustainability and safety goals. Our method 
also did not consider contextual factors, such as transportation and en
ergy system, in the analysis of curbside EVCS suitability. Future research 
should couple the road networks to fully consider traffic flow and 
integrate power systems to pre-assess the energy capacity, especially in 
low-income MFH communities. 

Second, we lacked fine-scaled EV adoption data to predict the future 
EV market for each CBG. We have strategically downscaled county-level 
data to form a dataset at the CBG level, which is deemed sufficient for 
our specific case study. Further application of our method can take 
advantage of available CBG-level EV data collected by surveys and 
sensors. 

Additionally, our TOPSIS method disregarded residents’ character
istics that may alter their attitudes toward EV adoption and their de
mands for public charging (Canepa et al., 2019; Guerra & Daziano, 
2020), such as the presence of dedicated parking spaces for MFH resi
dents. This may bias the prediction of EV distribution among neigh
borhoods. Instead, we estimated the EV adoption of CBGs based on their 
demographic patterns, such as income and the number of vehicles (He 
et al., 2022b). Future studies may acquire detailed profiles of neigh
borhoods to deepen the understanding of the MFH charging dilemma. 

Furthermore, our study has not accounted for the intricacies of more 
complex EVCS market scenarios. We assumed EVCSs as public facilities 
that provide essential services. However, in practice, there are various 
types of EVCSs that differ in their business models and services, leading 
to a complicated equity problem. For instance, some EVCSs may seek 
profit, while others may provide exclusive services for EVs of specific 
brands. Future studies could explore the impact of such differences on 
social equity if the required data becomes available. Nonetheless, our 
proposed method can still be applied to specific charging networks by 
isolating EVCSs of certain types from the larger group, as equity and 
productivity remain common goals. 

Lastly, we primarily focused on stationary EVCSs, which have been 
prevalent in most U.S. cities. As innovative EV charging technologies 
emerge (e.g., rapid, mobile, and wireless charging), future-oriented 
planning can be more proactive and adaptive to new scenarios arising 
from these innovations. However, our incremental planning paradigm 
provides the flexibility for integrating diversified charging options. 

6. Conclusion 

This study proposed an anticipatory EVCS planning framework to 
optimize objectives of use-productivity and equity when allocating 
EVCSs on urban curbsides. In the case study, we compared three equi
table strategies with scenario analysis, including Productivity (Non- 
Equity), Opportunity Equity, and Outcome Equity strategies. We have 

Fig. 9. Aggregated EVCSs accessibility for (a) residents; (b) guests and visitors.  
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observed an evolving relationship between the two objectives. As the 
local EV market expands, there is a projected increase in the conflict 
between equitable charging access and overall productivity. To address 
this, we suggest that the strategic allocation of EVCSs should be 
accompanied by EV market incentives or mixed-used urban MFH 
development planning. The novel anticipatory planning framework can 
be generalizable to other EV-initiating cities or isolated EV charging 
networks. It is also adaptable to EVCS allocation in built environments 
other than curbside areas. The framework provides a valuable reference 
for local planners to balance the two objectives through practical 
scenario-based planning. In light of the uncertain EV market, particu
larly with the potential increase of MFH EV users, EVCS planning re
quires additional future-oriented strategies. The anticipatory planning 
approach empowers local communities to proactively plan for and adapt 
to uncertain challenges brought by the energy transition, all while 
ensuring that social equity goals are met. In the long run, the profit
ability of the anticipatory EVCS plans could incentive public EVCS in
vestments and accelerate transportation electrification. 
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