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ARTICLE INFO ABSTRACT

Keywords:

Two challenges to planning public electric vehicle (EV) charging networks remain in U.S. cities, including un-
even productivity of charging stations and inequitable charging access across user groups. The unpredictable EV
market penetration over the long term further complicates the relevant infrastructure planning. However, the
extant planning approaches are limited in addressing both challenges simultaneously when considering future
uncertainties. Therefore, we propose a data-driven anticipatory framework to plan for EV charging station
allocation near urban amenities based on charging-while-parking behavioral patterns. We focus on two user
groups, i.e., multi-family and single-family residents. We compare the productivity-equity outcomes of allocation
scenarios under three planning strategies and four possible ratios between both user groups. The framework
addresses the incremental charging demands at different market levels for each scenario. An in-depth case study
of Alachua County, FL, shows that over-emphasizing multi-family charging demands when placing EV charging
stations may undermine their overall productivity. We then suggest three pathways to balance equitable access
and optimized productivity for the community based on the comparison of planning scenarios. The proposed
framework is generalizable to other EV-initiating communities. This study sheds light on future-oriented adap-
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tive planning for transportation infrastructure during the energy transition.

1. Introduction

Promoting equity and inclusion is a critical social-economic goal
during the national energy transition across the United States (National
Academies of Sciences, Engineering, and Medicine [NASEM], 2021).
Particularly, inequities among communities of different dwelling types
are significant in electric vehicle (EV) market shares and spatial distri-
butions of charging stations (Carlton & Sultana, 2022). Multi-family
housing (MFH), such as apartments or condominiums, serves approxi-
mately 43.9 million residents and accounts for 31.1 % of households in
the U.S. (U.S. Census Bureau, 2021). Yet, even in many EV-friendly
states, MFH residents only occupy less than 15 % of the current EV
market share, while single-family housing (SFH) residents take the rest
(Burk et al., 2020; California Energy Commission, 2021; O’Connor et al.
2022). In addition to the fact that EVs are less affordable for MFH res-
idents (Higueras-Castillo et al., 2021; Ju et al., 2020), the gap in EV
adoptions between SFH and MFH residents is also attributed to varied
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access to public EV charging stations (EVCSs; Shi et al., 2021; Sierzchula
et al., 2014). MFH EV users have a higher reliance on public charging
since they have less access to private chargers than SFH users (Kim et al.,
2022). The insufficient accessibility to public charging has discouraged
prospective MFH consumers from purchasing EVs (Broadbent et al.,
2021; O’Connor et al., 2022) and further exacerbate the imbalanced EV
ownership across user groups, polarizing geographical EV penetrations
and aggravating environmental inequity (Hardman et al., 2021; Hsu &
Fingerman, 2021).

Additionally, planners or stakeholders need to leverage the effec-
tiveness of EVCS installations, considering the cost remains high
(LaMonaca & Ryan, 2022). Increasing use-productivity while mini-
mizing the required EVCSs is crucial for both public utilities and
for-profit facilities (Huang et al., 2019). However, an allocation plan
focused solely on productivity often relies on current data from existing
EV markets, resulting in EVCSs clustered in areas preferred by existing
users. The approach inhibits the equitable distribution of charging
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accessibility in low-penetration neighborhoods. On the other hand, an
indiscriminate EVCS allocation solely based on geographical equity can
introduce challenges in the opposite direction. Existing research sug-
gests that only public EVCSs in central districts are visited frequently,
while those in low EV penetration areas may be underused (Bauer et al.,
2021). The uneven utilization of public EVCSs places unnecessary bur-
dens and congestion on popular stations while reducing the
cost-effectiveness of less frequently used ones (Dong et al., 2019).
Without strategic planning that simultaneously harmonizes both ob-
jectives, equity and use-productivity, the goals can potentially conflict
with each other, which needs to be addressed (Marmaras et al., 2017;
International Council on Clean Transportation, 2020).

The extant studies on planning optimal locations for EVCSs have
pursued objectives beyond maximizing utility, including reducing en-
ergy loss and increasing charging coverage, among others (Erbas et al.,
2018; Guo & Zhao, 2015; Xu et al., 2023). However, existing knowledge
has yet to provide equitable access to public charging across different
population groups while simultaneously facilitating the productive
utility of EVCSs. The EV penetrations among MFH communities are
presumed to change, making the context of the future EV market and
charging demands unpredictable (Khan et al., 2022). The two inter-
twined nature of the two planning is particularly intriguing given the
uncertainties involved, which highlights the need for a proactive and
dynamic allocation method in the planning process.

To address the knowledge gaps in allocating EVCSs to achieve equity
and productivity amid the growing EV market, we propose a data-driven
anticipatory planning framework for EVCSs, which is complemented by
an in-depth case study. Our spatial allocation relies on the multi-criteria
decision-making (MCDM) method to determine the suitability of
candidate locations. To plan for productivity, suitability criteria are
built upon the estimation of “charging while parking” behaviors (Kang
et al., 2022; Guerra & Daziano, 2020; Patil et al., 2023). We focus on
curbsides in urban amenity centers as key locations to enable charging
activities for both nearby residents and guest visitors from other
neighborhoods due to their better visibility and accessibility (Yang et al.,
2014; Ge et al., 2021; He et al., 2022a). To plan for equity, we design
three planning scenarios to incorporate different future-oriented stra-
tegies. Each scenario further anticipates distinct proportions of EV
market share among MFH residents that reflect uncertain future
changes. We then assess the performances of the three planning strate-
gies in a case study in Alachua County, Florida, regarding the two ob-
jectives. In light of the finding—that equity and productivity have an
evolving antithetical relationship—we explore potential pathways to
achieve co-beneficial planning. This research intends to guide
use-productive and equitable EVCS planning under the uncertain future
of energy transition and transportation electrification.

2. Literature review

Existing planning approaches for sitting EVCSs have been dominated
by two types of methods: simulation-optimizing methods (e.g., Shi et al.,
2021) and Multi-Criteria Decision-Making (MCDM) methods (e.g.,
Sanchez-Lozano et al., 2013). The former focuses on optimizing EVCS
allocation for various objectives, while the latter emphasizes the loca-
tional context, aligning with the purpose of our study. However, the
travel-mobility behaviors of EV users have rarely been incorporated in
the current MCDM-based studies, despite their effectiveness in planning
for EVCSs with high productivity (Luo et al., 2018). Furthermore, to
balance long-term equity with productivity, we introduce anticipatory
planning as a valuable approach, specifically considering the concern for
future uncertainties. In the following three subsections, we review the
existing studies and discuss the specific knowledge gaps.

2.1. Existing studies on EVCS allocation planning methods

EVCSs planning objectives based on existing simulation-optimization
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approaches, such as the often-used Generic Algorithm (GA), were
generally directed to increasing the efficiency of EVCSs from perspec-
tives of energy, transportation, and installation costs. For example, Xi
et al. (2013) used a linear integer programming-based simu-
lation-optimization model to determine the location and size of EVCSs to
optimize their utilization. Xie et al. (2018) focused on inter-city long--
range EVCS allocation with a mixed integer programming model with a
planning objective to maximize cost-effectiveness and address the range
anxiety of EV users. Huang et al. (2019) proposed a design method to
minimize the life cycle cost of EVCSs when considering the optimal lo-
cations and numbers in high-density cities. The study especially
considered the building roof solar energy potentials in channeling
renewable resources for the EVCSs. Xiao et al. (2020) suggested a
GA-based optimal location model to cut overall charging costs, which
was particularly advanced in considering vehicle queuing behaviors
when charging. Pan et al. (2020) demonstrated a public EVCS model
that attempts to meet the increasing demands in charging while pre-
serving EV drivers’ current travel behaviors. A GA-based location opti-
mization strategy was used to minimize the government’s costs, which
included objectives of lowering construction costs, meeting drivers’
charging demand, and reducing emissions. While optimization methods
have been effective in allocating EVCSs based on distinct planning ob-
jectives with a macro-level perspective, they often neglect the impor-
tance of locational suitability and the local impacts of EVCSs.

Other studies used MCDM-based EVCS allocation planning ap-
proaches to supplement the former method with a focus on local fea-
tures. For example, Guo and Zhao (2015) identified optimal locations for
EVCS using the fuzzy TOPSIS (i.e., Technique for Order of Preference by
Similarity to Ideal Solution) technique, an MCDM method. They
considered various aspects of semantic features to determine the suit-
ability of candidate locations, including the environment, economy,
society, electric power system, and transportation system. However,
their research regarded social-economic and human-center factors less.
Erbas et al. (2018) suggested a method that integrated GIS techniques
and MCDM methods for determining the best locations for EVCSs in
Ankara, Turkey. This research considered environmental, economic, and
urbanity factors in determining suitable sites. Guler and Yomralioglu
(2020) also adopted a GIS-based TOPSIS, which ranked the alternative
EVCSs locations that were selected based on a suitability analysis of built
environment attributes. To conclude, the existing MCDM-based EVCS
allocation approaches rarely considered the total productivity of EVCSs,
which necessitates the incorporation of charging and traveling behav-
iors of EV users into their analyses.

2.2. EVCS allocation based on people’s travel-mobility patterns

Charging demands have been found to harmonize with residential
locations and real-time mobility patterns of EV users (Liu et al., 2022;
Wang et al., 2022a). Researchers have assessed the extent to which
EVCSs met charging demands on separate occasions, at home or when
visiting amenities. A few studies have considered spatial coverage of
EVCSs by focusing on providing charging access to nearby residents. For
example, Vazifeh et al. (2019) allocated EVCSs by solving a covering
problem with dual objectives, to minimize the number of EVCSs and the
average distance for drivers to the nearest accessible EVCS.

Additionally, many studies allocated EVCSs based on mobility be-
haviors such as origin-destination (O-D) travel features to maximum
charging coverage for visitors or guests. Efthymiou et al. (2017) used the
0-D data of conventional automobiles (non-electric vehicles) to forecast
EV behaviors in the coming years. Based on the simulated behavior, the
model used charging demand coverage as an optimizer to determine the
optimal numbers of EVCSs. Kontou et al. (2019) used O-D data to
investigate the relationship between EVCS spatial charging coverage
and charging opportunity. The simulation on charging activities sug-
gested that charging stations concentrated in a few popular places where
drivers often stopped could significantly support public charging
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accessibility. Dong et al. (2019) used point of interest (POI) and traffic
data to decide on the optimal location for EVCSs, which can maximize
the extent to which they accommodated the charging demands. Huang
and Kockelman (2020) investigated allocating EVCSs using O-D data
that simulated the users’ behaviors with transportation behavior using
GA optimization. These two aspects, however, have not yet been inte-
grated into a holistic framework, which is essential for advancing the
consideration of equitable EVCS allocation.

2.3. Scenario planning for equitable EVCS allocation

Increasing studies have acknowledged that inequitable EV charging
capacity allocation could exacerbate the existing uneven EV ownership
among specific user groups (Guo & Kontou, 2021; Sierzchula et al.,
2014). The disparities in accessing EVCSs among socioeconomic groups
and communities have been examined in different cities and regions
(Khan et al., 2022; Canepa et al., 2019; Hsu & Fingerman, 2021). For
example, Roy and Law (2022) considered inequitable access to EVCSs as
one component of a holistic spatial inequality indicator. This indicator
encompassed multiple socioeconomic and built-environmental factors,
allowing them to examine the overlap between projected EVCSs allo-
cation and inequity areas. However, only a few new approaches have
been proposed to address inequity issues, such as the optimization
model applied by Yi et al. (2022) aimed to mitigate the spatial mis-
matches between charging demands and the existing allocation of
EVCSs. There is a growing demand for future-oriented investigations to
achieve long-term equitable strategies for the changing context of the EV
market.

Anticipatory and visionary planning is often employed in climate
change adaptation planning (Birchall et al., 2021; Muiderman et al.,
2020). The scenario-based analysis is an effective tool for examining
planning strategies in the face of future uncertainties (Munoz-Erickson
et al., 2021). To date, this methodology has only been applied in EVCS
allocation methods to represent uncertainties driven by market changes
or innovations. For example, Singh et al. (2022) simulated EVCS de-
mands and allocation with scenarios representing EV market shares
ranging from 1 % to 50 % and technological innovations that varied EV
battery size. The research confirmed the linkages between environ-
mental factors and EVCS demands. In an EVCS allocation study, Xie
et al. (2018) also investigated potential scenarios with different EV
diffusion stages. Huang et al. (2019) presented a substantial rise in the
life cycle cost of EVCSs as the required coverage ratio increases. How-
ever, the application of this method to target long-term equitable goals
remains untapped.

To conclude, current studies on anticipatory planning for equitable
EVCS allocation encountered multiple gaps. First, existing studies have
primarily focused on inequitable access to EVCSs from a geographical
perspective, overlooking the disparities among different user groups.
Their differences in charging demands require further emphasis on
adaptive methods. Second, it has been well understood that charging
demands, both for residents when nearby their homes or guests during
parking, are critical for guiding human-behavior-oriented EVCS alloca-
tion (Liu et al.,, 2022). However, there has not been an integrated
framework considering public charging accessibility and demands for
both occasions. Third, despite various market-growth scenarios being
studied, there has been a lack of investigation into time-series differ-
ences, which would enable an incremental vision of when and where to
allocate EVCSs. The untapped potential of scenario planning methods
can be leveraged to investigate the effectiveness of equitable EVCS
planning strategies from a development perspective.

3. Developing an anticipatory planning framework for equitable
and productive EVCS allocation

To address the knowledge gaps, we propose an anticipatory planning
framework to allocate EVCSs incrementally under three different
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strategic scenarios. Our framework explicitly addresses productivity and
equity while allowing adaptation to the changing EV market over the
long term. Anticipatory planning is a scenario-based method that has
been increasingly used in assessing adaptive strategies in a wide range of
uncertain futures (Birchall et al., 2021; Maffei et al., 2020; Quay, 2010).
The planning framework consists of two modules to allocate EVCS
incrementally (see Fig. 1). Module 1 uses a Gradient-boosted Tree ma-
chine learning model (i.e., XGBoost model) to project the probability of
owning EVs for each census block group (CBG) in the study area. The
outcomes feed into Module 2 to select optimal locations for new EVCS
using an MCDM method. Notably, since the accessibility to EVCSs alters
EV adoption (Chakraborty et al., 2021), the probability of EV ownership
of CBGs is re-calculated with Module 1 at different EV penetration levels,
considering the EVCS allocation from the prior phase. We estimate the
number of EVCSs demanded at each EV market level using Electric
Vehicle Infrastructure Projection Tool (Lee et al., 2021).

To maximize the EVCS use productivity, the allocation is built upon
the anticipated “charging-while-parking” activities based on the anal-
ysis of travel behaviors using “big” POI data (Fig. 2; Dong et al., 2019).
Given that curbside parking activities often have a sufficiently long
duration to allow EVs to charge (Wang et al., 2022b), we consider the
overall charging activities as a function of the total EV visits to sur-
rounding POIs. These charging activities occur when users park adjacent
to their homes (i.e., resident charging) or when parking while visiting
POIs (i.e., guest charging, Pagany et al., 2019). The use-productivity of
certain EVCS represents the aggregated charging activities of both types
(resident charging and guest charging). This is taken into consideration
when determining the optimal site in Module 2 (Fig. 1).

To reflect the changing demands in EV charging over the coming
decades across planning scenarios, we characterize the market pene-
tration levels with constant EV adoption increments (e.g., adding 1000
EVs at each level). In addition to matching the supply with increased
charging demands, this procedure is designed to avoid conflict with
existing EVCSs and to ensure the cost-effectiveness of EVCS installations.

To explore pathways toward equitable access among user groups
(Taylor, 2004), we develop three scenarios that reflect different equi-
table strategies for EVCS allocation (Fig. 1). The Non-Equity strategy is
the least equity-driven one. It only pays attention to the productivity of
the EVCSs during the allocation procedure, regardless of equity objec-
tives. The Opportunity Equity strategy equally weighs the
charging-while-parking behaviors among SFH and MFH EV users when
allocating EVCSs. It considers every EV user ought to have an equivalent
right to charge at public EVCSs. The Outcome Equity strategy aims to
provide users of SFH and MFH with equitable access to collective
charging opportunities that combine at-home and public charging. Most
MFH users cannot access private charging, so this scenario accounts for
their higher reliance on public EVCSs. The framework poses heteroge-
neous weights on the charging demands among SFH residents, MFH
residents, and guests when deciding on suitable locations, reflecting the
differences among the three strategies (Fig. 1). We then measure the
equitable objective with the EVCS accessibility each scenario generates
for SFH and MFH EV users. By doing so, we compare the effectiveness of
the equitable strategies and further suggest win-win plans.

3.1. Module 1: downscaling EV distribution probability to census block
group level

Studies have investigated EV adoption rates mostly at large spatial
scales, such as countries or states (Javid & Nejat, 2017). Established
methods have seldom projected EV spatial distribution at a fine spatial
scale like CBG. Available data on EV ownership or registration numbers
are mostly at the county level or zip-code level for many U.S. counties.
However, the spatial units are too large that the demographic patterns
may be less representative of those in small spatial scales. To anticipate
fine-grained charging activities, we down-scale the county-wide EV
ownership to the CBG level by spatially distributing total EV numbers



Z. Guo and Y. Wang

Determine study scenario settings |:> Scenario-based EVCS allocation

Module 1: Input:
Optimization Goals Distribute CBG variables /(_ -1

I EV user v |
! } Project EV distribution among CBGs |

Productive Equitable with XGBoost Model Update:
v EVCs

*._ equity 4o Bquity s Equity . Module 2: Input: :
Allocate Curbside attributes /“E [
EVCS 2 i |

Balance - ~ Output: accessibility
e EV adoption probability for CBGs

- . i |

Sustainable Cities and Society 99 (2023) 104962

Non- \’\" Opportunity \"-" Outcome ‘.‘ 1

Maximum Place curbside EVCS at optimal site

AUl (N [N R Update:
EVCS Equal user | Equal charging | determined by TOPSIS model Eﬁcg ¢
productivity || °PPOTtUnitY capacity

<< &

|Parameters | |Objective | |Scenarios|

|

Rt Rpgen No I

SFH-MFH Public charging reliance differences === — - |
Weirnty Witrn Output: |

Residential charging demands public EVCS |- —i— — = EVCS allocation under market levels |
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Fig. 1. An anticipatory scenario planning framework for EVCS allocation.
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Fig. 2. Two types of charging-while-parking behaviors for different purposes.

response variable. We first fit the XGBoost model with the county-level
data. We make the following assumptions to use the fitted model to
project the probability of EV adoption per CBG at each market level,
including (i) environmental attributes (i.e., fuel and electronic prices)
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are constant across different EV market penetration levels (Zhuge et al.,
2020); (ii) consumer characteristics (i.e., household and housing type,
income level, vehicle availability) are distinct across CBGs but constant
through market penetration levels (Chen et al., 2020); (iii) the charging
accessibility of each CBG will change subject to the allocated EVCS at
each market penetration level; and (iv) the correlations between
explanatory variables and the response variable remain homogeneous
across counties.

The model predicts the probability (Pgy;) of owning an EV for any
residents in CBG;. For each level of the EV market, the EV counts in CBG
are calculated by a function of the anticipated EV number (# TotalEV)
using Eq. (1):

N
Numbergy, = Number roqpy X PEVi/ZPEV[ (€H)
=1

N represents the total number of CBGs in the county. As it remains un-
clear how the compound incentives (e.g., financial subsidies, technology
advancement) change the EV market share among MFH and SFH users,
we introduce a parameter, Ratio, to quantify the extent to which the
MFH EV market has changed, calculated by Eq. (2).

Ratio = Pgy|sru.i / Pryimrni @

Pryiseu; and Pgyjvry; represent the probability of owning an EV for
SFH households and MFH households in CBG;, respectively. Four Ratios
that produce different scenarios are employed to distinguish the share of
MFH users in the EV market and mirror different EV incentives as-
sumptions (Slowik & Lutsey, 2017), as shown in Table 1. We start from
the current status (i.e., business-as-usual scenario, BAU) with a low EV
penetration among MFH residents. For example, the probability of
owning an EV for SHF residents (Pgy|srx ) in Florida’s EV market is about
three times of that for MFH residents, denoting as Ratio ~ 3. Then we
include three levels of incentives (i.e., moderate, aggressive, and
extreme) that lead to scenarios in which MFH residents have higher EV
ownership than they do at present. The most optimistic scenario is Ratio
=1, which assumes that an MFH resident has the same probability of
owning an EV as an SFH resident.

Finally, we calculate the probability of EV adoption of SFH (Pgy;sgz,i)
and MFH (Pgyvr,;) consumers separately in each CBG under the four
assumed MFH EV market shares using the designated Ratios with Eq. (3)
and Eq. (4).

Peyiseui = Pevii X SFH% X Ratiosey 3

Pryivrr,; = Pevii X MFH% X Ratioyrpy )

SFH% and MFH% represent the percentage of SFH and MFH resi-
dents among all households in the CBG, respectively. The CBG-level EV
adoption probability estimation is repeated for each EV market level.
The output is fed into the EVCS allocation process discussed in Session
3.2 to estimate the resident and guest charging productivities.

Table 1
Scenario assumptions for four MFH EV market structures.
EV market Ratio Market context Incentive
scenario (Ratiogry : Ratioyry) description assumption
BAU 1.56:0.51 MFH EV market share None
(Ratio remains the same as
~3) current
Ratio = 2 2:1 MFH EV market share Moderate
increases by minor steps incentive
Ratio=1.5 1.5:1 MFH EV market share Aggressive
increases significantly incentive
Ratio =1 1:1 The share of MFH EV Extreme

boosts to the same level incentive

as SFH EV
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3.2. Module 2: allocating EVCS on curbsides in urban amenity centers

3.2.1. Identify candidate curbside for locating EVCSs

Public curbsides and street spaces are highly competitive when
serving multiple uses, necessitating in-depth understanding prior to
planning for an extra function (Hao et al., 2023; Noland et al., 2022). To
identify the candidate curbsides for placing EVCSs, we first extract the
road map from public-available datasets of Open Street Map (Open-
StreetMap, 2015). Then, we exclude roads unsuitable for curbside fa-
cilities (e.g., major roads, connective roads, and non-drive routes) and
divide the remaining roads into segments at intersections. Locating
EVCSs at centers of urban amenities (i.e., POIs), where drivers often visit
and park, is typically effective in providing charging access to guests and
visitors (Efthymiou et al., 2017; Kontou et al., 2019). We identify ag-
glomerations of POIs using a density-based clustering tool and define the
adjacent areas within a radius of 0.25 miles (estimated 5-min of walking
distance) as the boundaries. We consider the curbsides of road segments
that intersect with the adjacent areas of POI clusters as candidate loca-
tions to place EVCSs.

3.2.2. Multi-criteria-based incremental allocation with strategic scenarios

We adopt the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) method to determine the locations of EVCS
among the candidate curbsides identified in Section 3.2.1. TOPSIS is an
MCDM approach used to determine the best alternative among a set of
options (Erbas et al., 2018). It allows for the consideration of the mul-
tiple attributes in complex curbside environments and has been suc-
cessfully applied in previous research on EV allocation (Guo & Zhao,
2015; Zhang et al., 2022).

The TOPSIS model takes a variety of curbside attributes as input and
identifies the optimal site for the next EVCS based on these attributes. In
the allocation process, we first construct an evaluation matrix with the
attributes of all candidate curbsides. A weighting vector (denoted as W)
is introduced to assign weights to the attributes in the decision matrix.
The model then identifies ideal solutions based on all input criteria. The
guiding principle for selecting the optimal alternative is to choose the
curbside with the shortest Euclidean distance from the ideal solution and
the greatest distance from the negative ideal solution. The curbside
identified as the optimal solution is considered the suitable location for
the new EVCS.

We construct the three strategic scenarios using two important pa-
rameters in the TOPSIS process (Table 2): the reliance parameters and a
weighting matrix (i.e., W). The reliance parameters represent the ratio
of charging activities by EV user groups relying on public EVCSs. Rspy
and Rypy indicate the reliance parameter for SFH and MFH users,
respectively. For the Outcome Equity scenario, we use the entropy
weighing method that evaluates the importance of each variable ac-
cording to the amount of information (Li et al., 2011), while also
adopting heterogeneous reliance parameters for SFH and MFH residents.
For the Opportunity Equity scenario, both weights of attributes and
reliance parameters are set indifferently to value SFH residents, MFH
residents, and guests’ demands equally. The Productivity (Non-Equity)
scenario sets the weight of both SFH (Wsgy) and MFH (W) residential
charging activities as 0, so they are excluded from the optimization
objectives. Table 2 shows a sample set of parameters for three scenarios.

Overall, 12 incremental EVCS allocation plans are produced,

Table 2
Scenario parameters.

Scenarios Reliance parameter Weighting vector [Wvyisie, Wsrn,
RSFH B RMFH WMFH7 WNe[a WRoad]
Productivity 0.2:0.6 [0.6, 0.0, 0.0, 0.2, 0.2]
Opportunity 0.4:0.4 [0.2, 0.2, 0.2, 0.2, 0.2]
equity
Outcome equity 0.2:0.6 Entropy-based weighed
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considering three planning strategic scenarios across four MFH EV
market share scenarios, which are defined in Section 3.1 (Fig. 3).

Three dimensions of characteristics for each curbside j are consid-
ered in the TOPSIS model to determine their EVCS suitability: the
anticipated productivity, the competition among other chargers, and the
situations of the streets. The first dimension, the anticipated produc-
tivity of the EVCS usage (denoted as Prod;), represents charging activ-
ities that potentially occur at the curbside. Both guests and residents
may contribute to the collective productivity of curbside j, which is
calculated by Eq. (5).

Prod; = Prodsgp); + Prodyrn|j + Prodgues; 5)

The productivity conducted by SFH residents (denoted as Prodsgy),
MFH residents (denoted as Prodyg;), and guests (denoted as Prodgyes: )
are calculated separately with Eq. 6, Eq. 7, and Eq. 8:

Prodsgy) = RSFHZHHSFH\I' X Peyisrni i €N; o (6)

Prodyrn) = RMFHZHHMFH\i X Peyirn,i i € N; o (7)

N
Prodgues; = Visit; Y (P;  Ppy,) where P, = Visity [ Visit;, N =160 (8)
i=1

where N;j are the adjacent census blocks of curbside j; i indicates the ith
CBG in the study area; Visit; represents the total visits to amenities
nearby j; Visit; indicates the number of visits originated from CBG i.
The second dimension reflects the competition of the EVCS network
(denoted as Network;), which is calculated by Eq. (9). and Eq. (10):

Network; = Netcpg|j + Netyiocnj (©)]

Netr 1 — 1; when Block; € B
blocklj = 0; otherwise

where Netcpg); represents the number of EVCS in the same CBG of the
evaluated curbside j; Block; means the census block of the curbside j; B
includes a set of blocks that are adjacent to allocated EVCS. The
framework regards existing EVCSs as constraints to the placement of
new ones to avoid overlaps and maximize spatial coverages of EVCS
service areas. Thus, the Network; is minimized in the evaluation matrix.
We plan to prevent two EVCS in the same or nearby census blocks, so
curbsides that have Nety,j as 1 is excluded from the candidate EVCS
locations.

Lastly, the framework intents to minimize the negative externality of
EVCS installation to mainline traffic. The street condition is concluded in

(10)

Market Expansion Level

Ten levels of
EV market —
(1000 EV)

unity Equity

. .Scenarios” D
MFHEV uptake .~ ,'
(Ratio) change

Outcome Equity

Equitable
strategies

Fig. 3. Constructing Strategic Scenarios for EVCS Planning.
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Road; which is calculated with Eq. (11):

1
Road; = 3 [nor(AADT;) + nor(MaxSpeed;) + nor(Bus;) ] 11)
where (x) = ﬁ ; AADT; is the annual average daily traffic of the

road where curbside j is located; MaxSpeed; represents the maximum
speed limit of the road; Bus; is a binary variable that encodes whether
there are bus stations on the road segment, with 1 indicating the exis-
tence of a bus station and 0 indicating otherwise.

The attributes of curbsides and spatial units discussed above build up
the evaluation matrix for the TOPSIS model and are updated after each
new EVCS is allocated. Under each level of the EV market, this process
continues until the EVCS target is met.

4. Case study of Alachua county in the state of Florida, United
States

4.1. Case description

The state of Florida has the second-largest EV market among all
states in the U.S., owning 93,221 EVs on road by 2021 (Florida
Department of Highway Safety and Motor Vehicles [FLHSMV], 2022).
Given the policy incentives and market growth across the state, an
increasing EV adoption rate is expected (Higueras-Castillo et al., 2021).
Particularly, Alachua County is selected as our study area because its
core urban area, the City of Gainesville, is the first city in the state that
has pushed the zoning reform to end single-family zoning recently
(Spauster, 2022). Such advances allow more land for MFH in the future.
Meanwhile, the local EV market is at a beginning level: among the 257,
985 private vehicles registered in Alachua County by March 2022, only
1066 private vehicles are electric ones, which include 716 battery EVs
and 350 plug-in EVs (FLHSMV, 2022). The low penetration of EVs makes
the county a suitable testbed to examine the future increasing EV market
and EVCS allocation for EV-initiating MFH communities. We defined the
ten anticipated EV market levels of Alachua County with an increment of
1000 at each level, ranging from 1000 EVs to a maximum number of 10,
000. These thresholds of EV market levels represented a near-to-medium
future when the EV market share increased to around 5 % of the total
private vehicles in the area. We estimated the EV ownership probability
of CBGs corresponding to different market levels.

4.2. Allocating curbside EVCS with place-specific data

To define the adjacent areas of urban amenity centers, we located
4280 amenity POIs in Alachua County from Safegraph Place data. The
average monthly visits to the selected amenities were retrieved for one
year during May 2021 and May 2022. With the clustering method (in
Section 3.2.1), we identified 54 urban amenities centers and subse-
quently determined potential curbsides to allocate EVCS accordingly
(Fig. 4).

We trained the XGBoost model with the explanatory variables of 67
counties in Florida from 2017 to 2021. The model was applied to CBGs
in Alachua County to project their EV ownership probability. Table 3
concludes the statistics of explanatory variables. To take existing public
EVCS under consideration, we extracted their geodata from the Alter-
native Fueling Station Locator (Alternative Fuels Data Center, 2022) and
excluded those that were reported to be removed based on EVCS review
websites (e.g., PlugShare). Forty-two existing EVCSs were included for
our further analysis.

According to the survey in the Florida EV Roadmap report (2020),
60 % of MFH EV charging activities take place at public EVCS, while this
number is as low as 20 % for SFH EVs. The reliance parameters for
Outcome Equity strategy scenarios were then determined based on the
current situation, where Rggy = 0.2 and Rypy = 0.6. Opportunity Eq-
uity strategy defined Rggy = Ry = 0.4 to disregard heterogeneous
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reliance. We finally generated EVCS allocation plans under three stra-
tegic scenarios based on rankings of candidate curbsides in the study
area with the TOPSIS model according to these semantic parameters.
Fig. 5 shows the results under the assumption of moderate incentive on
MFH EV uptake (i.e., Ratio = 2).

4.3. Comparative analysis of case study results

4.3.1. Comparing the productivity of EVCS across strategic scenarios

Our case study of Alachua County demonstrates that the proposed
planning framework effectively assesses different planning strategies
that result in various performances across equity and productivity ob-
jectives. Fig. 6 shows the origins of productivity for the allocated EVCSs
in strategic scenarios, which reveal that the three strategies serve
distinct user groups as designed. In all scenarios, most of the anticipated
EVCS productivity is attributed to guest charging activities. The per-
centage of productivity conducted during visiting activity could main-
tain a level above 80 % under the most productivity-targeted scenario.
However, the percentage of residential charging activity would increase
with the expanding installation of EVCSs under all strategies. The Pro-
ductivity (Non-Equity) strategy shows the slightest improvement, from
3 % to 18 %. This indicates an insufficient supply of charging capacity
for residential charging among SFH and MFH users. The Opportunity
Equity scenario shows the highest support for the charging demand of
SFH residents. Under the broader adoption of EVs, residential charging
among SFH users is predicted to increase from less than 1 % to 25 %,

while for MFH users, residential charging only reaches 13 %. In com-
parison, the Outcome Equity strategy successfully generates a large
portion of MFH charging activity as anticipated, increasing from 9 % to
37 % of the total charging activity.

The use-productivity of the three scenarios varies in response to the
distinct origins. Specifically, the Productivity (Non-Equity) scenario and
Opportunity Equity scenario yield comparable total charging pro-
ductivities, while the Outcome Equity plans generate significantly lower
productivity (Fig. 7). For example, in the current context of the EV
market (BAU scenario), Outcome Equity plans result in approximately
25 % less productivity compared to other plans. We thus cautiously
conclude that the emphasis on local MFH charging activity is related to
decreased overall use productivity in the current landscape of Alachua
County.

However, the results also imply the two following ways to plan for
equitable EVCS distribution while maximizing productivity. First, the
Opportunity Equity strategy is the most efficient to achieve equitable
accessibility in an expanding market in this case. This strategy increases
productivity slower than the Non-Equity strategy but eventually reaches
a comparable level when the EV number approaches 10,000. Second, the
increase in MFH EV market share, from low ownership at present (i.e.,
“BAU” scenarios) to higher ownership (i.e., 1X scenario, See Fig. 7),
mitigates the gaps between the Outcome Equity plans and Productivity
plans. Under the Outcome Equity plans, the total productivity of EVCSs
exhibits an increase when MFH residents have an equal likelihood of
owning EVs as SFH residents (i.e., Ratio equals 1). This increase is



Z. Guo and Y. Wang

Table 3
XGBoost-based EV distribution projection model variables at the CBG level.
Variables (N = 160) Mean Median Std. Min Max
Dev.

Numbers of Households
Housing types

742.388 637.5 399.272 32 2659

Single family households 56.65%  64.47 34.50 % 0.00 100.00
share % % %

Mobile Households Share 3495% 17.54 37.06 % 0.00 100.00

% % %

Multi-family Households 8.40 % 0.00 % 15.50 % 0.00 83.96 %
Share %

Vehicle availability

% of HH with 1 vehicle 37.01%  35.25 14.52 % 7.78 100.00

% % %

% of HH with 2 or more 42.94%  41.61 19.99 % 0.00 92.22 %
vehicle % %
Household income
< 50k 44.47%  44.70 20.11 % 1.00 100.00
% % %
50-100k 23.24%  21.37 12.65 % 0.00 66.93 %
% %
> 100k 1843 %  13.88 17.06 % 0.00 71.33 %
% %
EVCS accessibility
Numbers of EVCS 1.73 0.00 3.60 0 19
EVCS per single-family 0.049 0.000 0.319 0.000 3.800
household
EVCS per multi-family 0.013 0.000 0.064 0.000 0.704
household
Share of SFH access to 35.63%  0.00 % 48.04 % 0% 100 %
EVCS
Share of MFH access to 35.00%  0.00 % 47.85 % 0% 100 %
EVCS

approximately 1.43 times greater than what is observed under the Non-
Equity strategy.

4.3.2. Comparing equitable access to EVCS across three planning strategies

We measure EVCSs accessibility for each CBG from residential- and
guest-charging perspectives. The prior indicates spatial proximity to
EVCSs from SFH and MFH residents, while the latter accounts for
chances to access EVCSs during guests’ visits to amenities. In our case,
residential accessibility is calculated by the share of households that
have been covered by EVCS service areas (i.e., within 5-min walking
distance). Guest charging accessibility is calculated by the percentage
chances of visits that originated from each CBG to amenity centers
adjacent to EVCSs. Access to EVCSs during parking for different pur-
poses as residents or guests is equally important. They supplement
EVCSs service coverage of each other and contribute optimal charging
accessibility to the entire community and all groups of EV users. Fig. 8
maps the spatial distribution of EVCSs accessibility from both lenses
under the three scenarios. The three strategies alter the geographical
distribution of residential charging access more visibly than guest
charging access.

We aggregated resident charging accessibility and guest charging
accessibility of public EVCS plans to compare the performance of
different strategic scenarios (Fig. 9). The Outcome Equity scenario
demonstrates the most extensive residential charging access for MFH
residents, exceeding 70 % coverage with the wide EV adoption. On the
contrary, the Productivity strategy generates around half of the resident
charging access as the Outcome Equity strategy does. Under all strategic
scenarios, SFH EV users have less access to EVCSs adjacent to their
homes, with the Opportunity Equity strategy offering the best charging
coverage reaching over 20 %. One reason for such divergent residential
charging accessibility between SFH and MFH is the local land use
pattern (Orsi, 2021). The higher-density residential communities tend to
locate in the areas adjacent to amenity centers, while SFH clusters are
often remote from them (Dong, 2020). The guest charging accessibility
only varies by different strategies with no confirmed distinctions

Sustainable Cities and Society 99 (2023) 104962

between user groups, except for the Outcome Equity scenario. This
scenario provides higher guest charging access for MFH residents than
SFH residents, yet the coverage percentage is the lowest among the three
scenarios.

4.3.3. Place-specific EVCS planning strategies for productive and equity

The case study demonstrates that our proposed planning framework
effectively ensures use-productive and equitable EVCSs allocation.
Suggested plans under all scenarios contribute to significant improve-
ments in public EVCSs productivity and charging accessibility for MFH
residents. This is even true under the Non-Equity strategy, which only
aims at maximum productivity. However, the comparison of strategic
scenario planning outcomes further suggests a deviation between MFH
access to EVCSs and overall productivity, which amplifies with the EV
market penetration levels. To be specific, if planners take the high
reliance of MFH residents on public EVCSs under consideration (i.e.,
Outcome Equity strategy), the allocated plan will not achieve maximum
productivity of EVCSs.

The research findings suggest three local adaptive pathways toward
a more productive and equitable future of charging capacity distribu-
tion. First, local planners should choose the most suitable allocation
strategy to balance the two goals. In our case study, the county can start
with the Opportunity Equity strategy since it prioritizes existing EV
owners who utilize charging stations the most, as opposed to the
Outcome Equity strategy. Allocation plans in this scenario ensure EVCSs
serve both SFH and MFH residents, allowing for a co-benefit of pro-
ductivity and equity. Meanwhile, the adaptive pathways extend beyond
the strategic EVCS allocation, as the deviation between the two objec-
tives stems from the contexts of the local EV market and land use (Orsi,
2021). We suggest facilitating the MFH EV market through subsidies or
incentives for innovations to make EV purchases as affordable for pro-
spective MFH users as for SFH users. Equity-aimed strategies can be
more productive in a context with increased EV penetration among MFH
residents. In addition, the final adaptive pathway suggests reforming
local land use patterns and advocating mixed-used developments.
Allocated EVCSs partially fail to serve MFH residential charging while
simultaneously ensuring the frequency of guest visits due to some MFH
communities being located far from urban amenities. Thus, mixed land
use that bands MFH use with amenity centers may also mitigate the
deviation and promote co-beneficial plans.

5. Discussion
5.1. Findings and implications

The existing EVCS planning approaches have not fully addressed the
issues of equity and use-productivity, especially through a future-
oriented lens. We proposed an anticipatory planning framework for
curbside EVCS allocation in urban amenity centers to address inequi-
table charging accessibility and uneven utilization. Our case study of
Alachua County, FL, further suggests incremental and adaptive planning
for when and where to place curbside EVCSs across three equitable
strategies. The comparison among different strategic scenarios divulges
the trade-off between equity and productivity objectives that amplify as
the EV market expands. Equity-aimed strategies are effective in dimin-
ishing charging accessibility gaps between user groups and planning for
increasing charging demand from MFH EV users. However, local plan-
ners should balance the two objectives when MFH EV penetration is low.

This EVCS allocation framework contributes to methodologies of
adaptive planning in the face of disruptive technologies. We utilize
anticipatory planning methods, such as scenario-based analysis, to
explore plausible future contexts of the EV market and allocation stra-
tegies. Anticipatory planning techniques allow for the investigation of
adaptive pathways to address the challenges of uncertainty (Birchall
et al., 2021). However, applications of such methods in infrastructure
planning for emerging urban technologies are rare (Borozan et al.,
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2022).

Static EVCS planning, which only considers existing charging de-
mands, may fall short in meeting the unanticipated demands that arise
in the evolving EV market, particularly among historically underrepre-
sented user groups (Kang et al., 2022). In contrast, our strategic sce-
narios anticipate uncertainties and propose adaptive EVCS allocation
plans to accommodate the expanding EV market among MFH occupants
(Burk et al., 2020).

Our research is innovative in optimizing equitable charging access
for MFH residents by considering their reliance on public EV charging.

Share of productivity (%)
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40
Share of productivity (%)
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nario; (b) Opportunity Equity scenario; and (c) Outcome Equity scenario.

Despite the growing attention given to MFH EV adoption and charging
capacity (Ge et al., 2021), there is a lack of solid investigations into their
specific behaviors and demands in the unpredictable EV market. We
address this gap by establishing the allocation framework on the holistic
understanding of human-centered parameters that capture the charging
and travel behaviors of MFH users. The heterogeneous public charging
reliance among user groups is further used to construct three strategic
scenarios that shed light on the pathways toward the equitable goal.
In addition, the allocation framework considers the charging activ-
ities of both residents and guests when locating optimal sites for EVCSs
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and evaluating charging accessibility. Existing studies have focused
either on stop-based charging opportunities (Dong et al., 2019; Kontou
et al., 2019) or home charging, which the latter skewed to the demands
of SFH residents. Our research eliminates potential bias and guarantees
an equitable prerequisite for infrastructure planning. The designed
method effectively captures the emerging MFH EV charging demands
since it is sensitive to EV adoption changes across spatial areas.

Our study is among the first to apply a few cutting-edge strategies to
pursue productive EVCS allocation while catering to various user
groups. First, we focus on curbsides in urban amenity centers to take
advantage of the high visibility, ubiquity, and accessibility of curbside
spaces to increase EVCS usage (Yang et al., 2014). Existing studies on
blocks or road segments still focused on off-street charging (Yu et al.,
2022). This research explores the potential of allocation plans to boost
the productivity of both charging stations and curb spaces, which fills
the knowledge gaps in curbside EVCSs to keep up with the increasingly
diversified uses of curbsides (Diehl et al., 2021). Second, our incre-
mental procedure is novel as it reflects the EV adoption raises caused by
better charging accessibility across the allocation process. While other
EVCS allocation studies only acknowledge charging accessibility as a
critical predictor of EV adoption (Globisch et al., 2019; Hsu & Finger-
man, 2021), our framework reflects this relationship with the design of a
recurrent procedure. This ensures the productivity of every additional
EVCS dynamically and possibly facilitates EV uptake, especially among
MFH users.

5.2. Limitations and future work

Undeniably, our study has limitations in three aspects, which in turn
open up future research opportunities. The first aspect pertains to the
scope of our study. While our study focused on curbsides, we have not
discussed how other curb uses (e.g., pick-up and drop-offs, and short-
term parking) would be affected by EV charging (Noland et al., 2022;
Wang et al., 2022a). Future studies may need to coordinate EVCSs with
other curb uses to achieve sustainability and safety goals. Our method
also did not consider contextual factors, such as transportation and en-
ergy system, in the analysis of curbside EVCS suitability. Future research
should couple the road networks to fully consider traffic flow and
integrate power systems to pre-assess the energy capacity, especially in
low-income MFH communities.

11

Second, we lacked fine-scaled EV adoption data to predict the future
EV market for each CBG. We have strategically downscaled county-level
data to form a dataset at the CBG level, which is deemed sufficient for
our specific case study. Further application of our method can take
advantage of available CBG-level EV data collected by surveys and
Sensors.

Additionally, our TOPSIS method disregarded residents’ character-
istics that may alter their attitudes toward EV adoption and their de-
mands for public charging (Canepa et al., 2019; Guerra & Daziano,
2020), such as the presence of dedicated parking spaces for MFH resi-
dents. This may bias the prediction of EV distribution among neigh-
borhoods. Instead, we estimated the EV adoption of CBGs based on their
demographic patterns, such as income and the number of vehicles (He
et al., 2022b). Future studies may acquire detailed profiles of neigh-
borhoods to deepen the understanding of the MFH charging dilemma.

Furthermore, our study has not accounted for the intricacies of more
complex EVCS market scenarios. We assumed EVCSs as public facilities
that provide essential services. However, in practice, there are various
types of EVCSs that differ in their business models and services, leading
to a complicated equity problem. For instance, some EVCSs may seek
profit, while others may provide exclusive services for EVs of specific
brands. Future studies could explore the impact of such differences on
social equity if the required data becomes available. Nonetheless, our
proposed method can still be applied to specific charging networks by
isolating EVCSs of certain types from the larger group, as equity and
productivity remain common goals.

Lastly, we primarily focused on stationary EVCSs, which have been
prevalent in most U.S. cities. As innovative EV charging technologies
emerge (e.g., rapid, mobile, and wireless charging), future-oriented
planning can be more proactive and adaptive to new scenarios arising
from these innovations. However, our incremental planning paradigm
provides the flexibility for integrating diversified charging options.

6. Conclusion

This study proposed an anticipatory EVCS planning framework to
optimize objectives of use-productivity and equity when allocating
EVCSs on urban curbsides. In the case study, we compared three equi-
table strategies with scenario analysis, including Productivity (Non-
Equity), Opportunity Equity, and Outcome Equity strategies. We have
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observed an evolving relationship between the two objectives. As the
local EV market expands, there is a projected increase in the conflict
between equitable charging access and overall productivity. To address
this, we suggest that the strategic allocation of EVCSs should be
accompanied by EV market incentives or mixed-used urban MFH
development planning. The novel anticipatory planning framework can
be generalizable to other EV-initiating cities or isolated EV charging
networks. It is also adaptable to EVCS allocation in built environments
other than curbside areas. The framework provides a valuable reference
for local planners to balance the two objectives through practical
scenario-based planning. In light of the uncertain EV market, particu-
larly with the potential increase of MFH EV users, EVCS planning re-
quires additional future-oriented strategies. The anticipatory planning
approach empowers local communities to proactively plan for and adapt
to uncertain challenges brought by the energy transition, all while
ensuring that social equity goals are met. In the long run, the profit-
ability of the anticipatory EVCS plans could incentive public EVCS in-
vestments and accelerate transportation electrification.
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