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A B S T R A C T   

Curb spaces are important assets to cities. They are often used by travelers to switch transportation means, 
visitors to access curbside properties, and municipalities to place roadside infrastructure. The promotion of 
multi-modal transportation and the emergence of new mobility services have complicated both curb environ
ments and their management. Consequently, some cities have started to explore new strategies for curb man
agement, but lacked the anticipation on how different curb regulations and built-environment features may 
collectively influence curb-use patterns across user groups. We make a step toward smart curb environment by 
proposing a graph-based deep learning approach, i.e., MultiGCN-LSTM, to predict diverse curb uses across time 
and space. We used two graph convolution layers and an LSTM layer to capture the spatial, temporal, and se
mantic dependencies between curb regulations, built-environment semantics, and diverse curb uses. Two place- 
specific models were developed separately for a medium-sized college town and a metropolitan in the U.S. The 
effectiveness of the proposed models was validated with ablation studies and demonstrated in three scenario 
experiments. The research contributes to smart curb management in the face of more diversified and intensified 
curb uses with new mobility services and emerging vehicular technologies.   

1. Introduction 

Cities in developed countries, such as the U.S., have conventionally 
reserved plenty of spaces at the curbside to store private vehicles, which 
provide conveniences for customers to access roadside businesses and 
are essential for urban economic vitality (Biswas, Chandra, & Ghosh, 
2017). However, this parking-oriented curb design becomes problematic 
in facing increasingly compact and densified urban environments where 
lands should be prioritized for human activities rather than storing ve
hicles (Cervero, Guerra, & Al, 2017). Correspondingly, many cities 
promote transit-oriented transportation planning and multi-modal 
mobility solutions to reduce citizens' dependencies on automobiles. 
The transit-oriented planning prioritizes transportation modes e.g., 
buses and subways, to move more goods and people around the city to 
ensure transportation efficiency (Cervero et al., 2017; Roe & Toocheck, 
2017). These transit-oriented developments have nourished shared 
micro-mobility services, e.g., shared bikes and e-scooters, which provide 
first- and last-mile solutions for transit trips (Abduljabbar, Liyanage, & 

Dia, 2021; Zuo, Wei, Chen, & Zhang, 2020). Many cities have also 
renovated curb spaces to specify bike lanes to encourage active travel 
modes. Meanwhile, the growing popularity of e-commerce and door-to- 
door delivery turns transportation services into tradeable commodities, 
which also reduces city residents' reliance on private vehicles (Shaheen, 
Cohen, Yelchuru, Sarkhili, & Hamilton, 2017). 

These transportation planning practices and mobility innovations 
have changed the way how city residents travel across the city and use 
curb spaces. Curbs, defined as the spaces between roadways and side
walks (Fig. 1) (Eros, 2019; ITF, 2018), are conventionally used to 
separate pedestrian and vehicular traffic and serve as the frontage for 
people to switch transportation tools or access curbside commercial 
properties (ITF, 2018; Marsden, Docherty, & Dowling, 2020). Now curbs 
are also used by mobility service providers to place facilities (e.g., shared 
bikes, e-scooters, EV charging stations), ride-hailing clients to wait and 
complete the transactions, deliveryman to pick-up and drop-off the 
goods among other demands (Jaller, Rodier, Zhang, Lin, & Lewis, 2021). 
The more intensified and diversified uses of urban curb spaces require a 
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nuanced understanding of curb uses across time and space to better 
accommodate different user groups. Failure to achieve this may lead to 
negative impacts ranging from space usage conflicts, roadway traffic 
congestion, increased environmental emissions, to degraded revenues 
for curbside businesses (Jaller et al., 2021; Wang, Hao, & Wang, 2022; 
Yu & Bayram, 2021). 

To mitigate the undesired consequences, some cities have started to 
explore novel strategies for allocating and regulating curb spaces (i.e., 
curb management), such as designating pick-up drop-off (PUDO) zones 
and implementing time-variant parking regulations (Butrina, Le Vine, 
Henao, Sperling, & Young, 2020; ITF, 2018; Nichols & Dorsett, 2022; 
Roe & Toocheck, 2017; Rosenblum, Hudson, & Ben-Joseph, 2020). 
However, the decision-making on where and when should these curb 
management strategies be adopted is often reactive without systemati
cally evaluating the spatio-temporal dynamics of diverse curb uses 
(Butrina et al., 2020; Zalewski, Buckley, & Weinberger, 2012), which 
may yield inconsiderate actions and inconsistent policies. 

The systematic evaluation of the diverse curb uses can be chal
lenging. First, the spatio-temporal distributions of diverse curb uses are 
dependent on surrounding built-environment features, such as the 
availability of certain mobility facilities (e.g., sidewalks and bus stops) 
and the presence of functional properties (e.g., theaters and groceries). 
These built-environment semantic features influence the number of 
visitors and how they approach and use curbs. Second, the curb use 
patterns among different curbs are also spatiotemporally related. For 
example, a driver may cruise to nearby curbs when noticing that the 
parking spaces are fully occupied. Third, within a curb, the demand for 
one type of usage (e.g., private parking) is related to other uses (e.g., 
ride-hailing, shared micro-mobility). Consequently, the curb manage
ment strategies targeted for a specific curb use and at a particular 
location also influence the demands of other curb uses and at nearby 
curbs. Though some recent studies proposed simulation-based ap
proaches to assist curb management (Jaller et al., 2021; Wang et al., 
2022; Yu & Bayram, 2021), they may fall short in capturing the complex 
spatial, temporal, and semantic dependencies of diverse curb uses. 

Thus, to address the research gaps, we propose a spatio-temporal 
deep learning approach to assist the planning and management of 
curb spaces. Specifically, the research has the following contributions:  

• We developed a Multi-Graph Convolutional Neural Network 
embedded Long-Short Term Memory (MultiGCN-LSTM) model to 
predict spatio-temporal dynamics of diverse uses for localized curb 
environments.  

• The approach couples two GCNs and an LSTM layer to capture the 
spatial-, temporal-, and semantic- dependencies of hourly curb uses 
across the urban cores. Especially, the semantic GCN takes the sim
ilarities of built-environment characteristics, such as the presence of 
mobility facilities and functional properties, into the modeling pro
cess that enabled more robust model performance.  

• We showed the model application with data collected from two 
distinct cases, i.e., a medium-size college town, i.e., the City of 
Gainesville, and a metropolitan, i.e., San Francisco. We also vali
dated the effectiveness of the model architecture with ablation 
studies.  

• The approach uses multi-task learning that learns the correlations 
between different curb uses and provides an integrated under
standing of diverse curb uses. We demonstrated the multi-task 
learning with data collected for two types of curb uses, i.e., curb
side parking and docked bike-sharing, from San Francisco. 

We also demonstrated the effectiveness of the model by applying it to 
predict the changing curb uses under hypothesized treatments in built 
environments and curb regulations. The research outcomes inform 
smart curb management and contribute to smart and coordinated curbs 
proactively adapting to increasing urban mobility challenges. 

2. Literature review 

We synthesized previous studies that explain spatio-temporal curb 
uses from visitors' perspectives and approaches modeling spatio- 
temporal dynamics of curb uses. We also reviewed novel curb man
agement practices that have been experimented in cities. 

2.1. Built-environment and regulation factors that influence curb uses 
across time and space 

Few studies have particularly investigated factors influencing curb 
uses, but it is not difficult to find that the diverse curb-use patterns are 
largely determined by visitor flows who access curbside properties (e.g., 
restaurants, banks, offices). Visitors may access their curbside locations 
with different travel modes (e.g., buses, private cars, micro-mobility) 
which can occupy curbs with different spaces and temporal lengths. 
Many studies on travel behavior have found that travel mode choices are 
influenced by trip distance, travel time, trip purpose (i.e., activity), ac
tivity duration among other factors (Cheng, Chen, De Vos, Lai, & Witlox, 
2019; Gong, Kanamori, & Yamamoto, 2018). Built-environment char
acteristics including the accessibility to various transportation facilities 
(e.g., bus stops), walkability, road density, built-up density, and land use 
also influence visitors' travel mode choices (Cheng et al., 2019; Ma, 
Zhang, Ding, & Wang, 2018), and thus influence the associated curb uses 
in destination curbs. 

In addition to travel modes, the temporal distribution of curb uses is 
determined by visitors' trip purposes that influence their arrival time 
and dwelling durations. These trip purposes can be inferred from the 
land use or the type of visited properties (Jaller et al., 2021). For 
example, people park for a few minutes to pick up a coffee from the 
coffee store and park for more than two hours to watch movies in the
aters (Gong et al., 2018; Nie et al., 2021). For commercial delivery, 
businesses such as supermarkets need more time for loading goods than 
convenience stores, while florists may require more frequent deliveries 
than other retailers (Allen, Anderson, Browne, & Jones, 2000). These 
existing studies indicate the validity of inferring diverse use demands of 
curb spaces based on features of surrounding built environment, such as 
land use, functional properties, and transportation facilities. 

Additionally, the diverse curb uses are also influenced by curb reg
ulations. For example, previous empirical studies have revealed that 
drivers prefer to park at curbs with lower parking rates and would cruise 
to those curbs at a cost of extra vehicle miles and walking distances 
(Gragera & Albalate, 2016; Pierce & Shoup, 2018). Temporal regula
tions, e.g., time-limit parking, restrict visits with longer dwell time and 
drive visitors to garage parking (Arnott & Rowse, 2013; Gragera & 
Albalate, 2016). Particularly, some cities set short time limits for curb
side parking spaces to encourage frequent turn-over (Mitman, Davis, 
Armet, & Knopf, 2018). 

All the built-environment factors and curb regulation policies 

Fig. 1. Illustration of Curb Spaces.  
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reviewed in the above paragraphs can influence the spatio-temporal 
patterns of curb uses. However, very few data-driven studies were pro
posed to relate the diverse curb uses with the varied factors for the 
planning and management of urban curbs. 

2.2. Existing statistical and machine learning models for predicting curb 
uses 

Though not focused on curb management, some studies used statis
tical and machine learning approaches to predict the demands for 
different riderships, which influence corresponding curb uses. These 
studies vary in the focused riderships, spatio-temporal granularities, and 
selected input variables. Table 1 records different modeling approaches 
used in recent studies for predicting ridership demands. The majority 
predicted the occupancy of on-street parking spaces based on metered 
parking transaction records or sensors (e.g., Pu, Li, Ash, Zhu, & Wang, 
2017; Zhao et al., 2021). We summarize the objectives of different 
studies in Table 1. 

The prior research has also compared the performance of different 
modeling approaches (e.g., Saharan, Kumar, & Bawa, 2020) concerning 
spatial and/or temporal dependencies of curb uses. Generally, 
Geographic Weighted Regression (GWR) outperforms common statisti
cal approaches (e.g., ordinary least square) by considering the spatial 
dependencies of variables in modeling the demand for ride-sourcing 
trips (Pu et al., 2017). Random Forest (RF) outperforms other machine 
learning models (e.g., support vector machine) by using the ensembling 
techniques and better modeling the non-linearity (Saharan et al., 2020). 

Lately, an increasing number of studies have employed deep learning 
models to predict curb uses. For example, the coupling of Graph Neural 
Network (GCN) and Recurrent Neural Network (RNN), such as LSTM 
and Gated Recurrent Units (GRU), has been recommended by recent 
studies for its advances in modeling the spatio-temporal dependencies 
among the input and output variables (Ke, Feng, Zhu, Yang, & Ye, 2021; 
Zhao et al., 2021). For example, Yang, Ma, Pi, and Qian (2019) coupled 
the GCN and LSTM to predict parking availability with variables 
describing the weather and roadway traffic conditions. Zhao et al. 
(2021) integrated GCN and LSTM to predict real-time curbside parking 
availability. Particularly, the authors used two GCNs to capture the 
spatial proximity and semantic similarities of studied blocks. Zhao et al. 
(2022) also integrated GCN and LSTM to predict the short-term demands 
of bus trips, and geographic weighted regression is used to capture the 
dynamic influence of built-environment features. 

These approaches contribute to more coordinated curb uses, but they 
are not intended for curb management and are focused on a single type 
of curb use. Few of them considered both temporal regulations (e.g. 
time-limit and meter rates) and spatial features of built environments 

(such as mobility facilities and functional properties). The increasingly 
diversified curb uses, however, require urban managers to understand 
the relations among different types of curb uses, curb space regulation, 
and the surrounding built environment. 

2.3. Novel strategies for managing curb space and uses 

The increasing and diversified curb uses also sparked cities to explore 
novel strategies, including time-variant regulation and flexible curb 
uses, to tackle the curb management challenges (Butrina et al., 2020; 
ITF, 2018; Roe & Toocheck, 2017; Rosenblum et al., 2020). An early 
innovative curb management program is the SFpark launched in the city 
of San Francisco from 2011 to 2013. The city adjusts the rates for 
curbside parking spaces every few months to pursue a parking occu
pancy rate of 60–80%, which is considered beneficial for transportation 
efficiency and the environment (Millard-Ball, Weinberger, & Hamp
shire, 2014; Pierce & Shoup, 2018). The city of Seattle defines curb 
spaces as “flex zone” and adopted a city-wide prioritization framework 
that assigns ranked priorities for different curb uses according to land 
use. In New York, the city implemented the Off-Hour Deliveries (OHD) 
program to shift truck deliveries from peak periods to off-hours (i.e., 7 
pm to 6 am) to reduce traffic congestion and double parking (Holguín- 
Veras, Ozbay, Kornhauser, Shorris, & Ukkusuri, 2010). 

Despite these significant pilot programs for curb management, there 
still present many challenges for managing curb environments. First, 
many curb management practices are implemented in an “incremental” 
manner (Zalewski et al., 2012), in which cities make ad hoc adjustments 
on their extant curb management practices every time confronting new 
challenges. Such ad hoc approaches lack systematical evaluation of the 
curb issues and ignore the hidden correlations of different curb uses and 
across different curbs. Large-scale programs such as SFpark can address 
this problem with abundant data collected from practices, but are con
ducted with a time-consuming trial-and-error process (Pierce & Shoup, 
2018) and only consider individual curb use (i.e., parking). A few recent 
studies used simulation to examine the impacts of different curb space 
allocation and regulation scenarios. For example, Jaller et al. (2021) 
integrated macro- and micro-scopic traffic simulation tools to simulate 
parking behaviors of private cars, freights, and taxis in three distinct 
districts in San Francisco. Yu and Bayram (2021) simulated the in
teractions between traffic flow and different curb uses, including park
ing, PUDO, and commercial loading/unloading, to evaluate the effects 
of different curb space allocation policies. Recently, Wang et al. (2022) 
simulated the impacts of designated PUDO zones on mitigating curb use 
competitions under the projected increments of MoD market share. 
These simulation-based studies support systematic evaluations of curb 
management strategies, but they are often limited in application scope 
(e.g., a district or a neighborhood) and made assumptions about drivers' 
traveling and parking behaviors. 

Given these research challenges, we propose to use MultiGCN-LSTM 
to predict the fine-grained spatio-temporal dynamics for different curb 
uses. 

3. Developing MultiGCN-LSTM deep learning architecture for 
predicting curb uses 

Though curb spaces are used for various purposes by different curb 
user groups. We framed the dynamics of diverse curb uses with a unified 
conceptual framework (Fig. 2). The framework models the diverse curb 
uses as a dependent variable of the spatio-temporal distribution of curb 
regulation and visitation patterns. The visitation patterns are further 
determined by nearby mobility facilities and visitors' activities that can 
be referred from surrounding functional properties. 

The green blocks in Fig. 2 are potential input variables of the model 
while the orange block is the output, i.e., the dynamics of different curb 
uses. We used a state-of-the-art deep learning model, i.e., MultiGCN- 
LSTM, to realize the conceptual model shown in Fig. 2. The LSTM is 

Table 1 
Approaches for modeling ridership demands.  

Approach Studies and Curb Use Type 

Logistic /Linear /Poisson 
Regression 

Saharan et al. (2020) [parking]; Fabusuyi, 
Twumasi-Boakye, Broaddus, Fishelson, and 
Hampshire (2020) [commercial delivery]. 

Geographic Weighted 
Regression (GWR) 

Pu et al. (2017) [parking]; Yu and Peng (2019) 
[ride-sourcing]; Ma et al. (2018) [public transit]. 

Gaussian Mixture Model 
(GMM) 

Nie et al. (2021) [parking]. 

Decision Tree (DT)/ Random 
Forest (RF)/ XGBoost 

Saharan et al. (2020) [parking]; Yang, 
Heppenstall, Turner, and Comber (2020) [micro- 
mobility]; Ke et al. (2021) [ride-sourcing]. 

Multiple Perceptron Layer 
(MPL) 

Saharan et al. (2020) [parking]; Yang et al. (2020) 
[micro-mobility]; Ke et al. (2021) [ride-sourcing]. 

Long-Short Term Memory 
(LSTM) 

Yang et al., (2020) [micro-mobility] 

(Multi)GCN-LSTM Zhao et al. (2021) [parking]; Yang et al. (2019) 
[parking]; Ke et al. (2021) [ride-sourcing]; Ma, 
Yin, Jin, He, and Zhu (2022) [micro-mobility];  
Zhao et al. (2022) [public transit]  
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suitable for modeling sequential data such as the time series of curbside 
parking occupation while the GCNs can process data of networked 
structures. The coupled approach enables the model to capture the 
spatial-temporal dependencies of diverse curb uses. The following def
initions are given for the model development. 

Definition 1. Spatial graph of curbside parking spaces. 

We represent the street layouts as a connected graph, i.e., Gp = (V,E, 
Ap), where V is the set of nodes and E is the set of edges. The nodes are 
the smallest analysis units of the graph, e.g., a curb segment or a street 
block. Ap ∈ ℝN×N is the adjacency matrix, where Ap

i,j stores the spatial 
proximity information between nodes i and j. 

Definition 2. Semantic graph of curbside parking spaces. 

Similar to the spatial graph, we used a graph, Gs = (V,E,As), to 
represent the semantic proximity among different nodes. The As

i,j stores 
the similarity metric between two nodes i and j regarding localized built- 

environmental semantics. 

Definition 3. Vector representation of functional properties. 

We represent the set of functional properties (i.e., Point of Interests 
or POIs) within a street block as an L dimension vector p ∈ ℝL, where L is 
the number of categories of functional properties and pi stores the 
number of functional properties of category i within the block. If the 
analysis unit is the curb segment, curb segments of the same street block 
share the same functional property vector. 

Definition 4. Input variables. 

The input variables Xt ∈ ℝN×I are used to describe the spatio- 
temporal variables related to the N nodes at time t, where I is the 
number of input features, e.g., meter hourly rates and visitation 
volumes. 

Definition 5. Output variable. 
The output variable, ̂ot ∈ ℝN*k, are the predicted k different curb uses 

Fig. 2. The conceptual framework for modeling diverse curb uses.  

Fig. 3. The architecture of the MultiGCN-LSTM model.  

H. Hao et al.                                                                                                                                                                                                                                     



Computers, Environment and Urban Systems 99 (2023) 101914

5

and for N nodes at time t, while the actual curb uses are represented as ot 
∈ ℝN*k. 

With these definitions, the problem is formulated as learning a model 
f to predict the diverse curb uses for the next T′ timesteps based on input 
variables of before T timesteps (Eq. 1). 

f
(
Gp; Gs; [Xt−T+1, …, Xt]

)
= [ôt+1, …, ôt+T ′ ] (1) 

Fig. 3 shows the structure of the MultiGCN-LSTM model. The input 
variables describe the spaito-temporal regulations for different curb 
uses, previous curb uses, and visitation flows, which are organized into 
matrices for graph convolutions. We used two graph operations to 
transform the raw inputs, i.e., the spatial GCN and semantic GCN. Eq. (2) 
shows the formula for graph convolution (Kipf & Welling, 2016). The 
multiplication of raw inputs and adjacency matrices allows the inte
gration of localized signals that are spatially or semantically proximate 
and learn shared weights, θ, across all nodes. In this study, the spatial 
proximity is determined with Eq. (3), where di, j takes the Manhattan 
distance between the centroid of two street blocks i and j when street 
blocks are the analysis units. When curb segments are the analysis units, 
di, j is calculated as the distance along the road network. The dthre rep
resents the maximum distance that a visitor is willing to walk to their 
destinations after parking their vehicles. We used dthre = 400m in this 
study. 

gθ(X, A) = σ
(

ÃXθ
)

Ã = D−1
2(A + I)D−1/2 (2)  

Ap
i,j =

⎧
⎪⎨

⎪⎩

0 if di,j ≥ dthre
(

dthre − di,j

dthre

)α

if di,j < dthre
(3) 

The process of determining the adjacency matrix for the semantic 
graph, i.e., As, is shown in Fig. 3 and Eq. (4). The As is determined as the 
pair-wise similarities of semantic vectors associated with each analysis 
unit, where the semantic vector is the concatenation of the mobility 
facility vector and the embedding of the functional property vector. For 
the mobility facility vector, we counted the presence and/or capacity of 
nearby mobility facilities (e.g., bus stops or parking garages). We used 
the vector representation of functional properties described in Defini
tion 3. As there can be dozens of property categories and a street block 
may only include a few of them, we used a trainable embedding layer to 
project the long and sparse functional property vectors into dense em
beddings. The scaling layer then applies element-wise multiplication for 
si with a learnable vector vs. The purpose of this step is to increase or 
decrease the variances of different semantic features. The semantic 
similarity between two nodes is calculated as the inverse of the 
Euclidean distance between si and sj (Eq. 4). In this way, semantic fea
tures with higher variances have more influence on determining As. The 
addition of 1 in the denominator converts the similarity metric into the 
range of 0 to 1 (Eq. 4). 

si
′

= smobility⨁embed
(
sproperty

)

si = si ⊙ vs  

As
i,j =

1
(⃦

⃦si − sj
⃦
⃦2

2 + 1
) (4) 

The two transformed matrices are concatenated with the raw input 
matrices and sent to the LSTM layer for modeling the temporal de
pendencies (Fig. 3). The LSTM layer learns both the long-term and short- 
term sequential patterns with three gates, i.e., input gate i, forget gate f, 
and output gate o, to control the writing, retaining, and discarding of 
inputs and previous information. The long- and short-term memories are 

stored with two state variables, i.e., cell state c and hidden state h. When 
the LSTM is applied with the data collected for time t, the cell state ct is 
updated with forget gate f removing unuseful information from its 
previous cell state ct−1 and the input gate adding information from new 
inputs xt. The hidden state ht is computed with the output gate to select 
useful information from the cell state ct for output. This process is per
formed recursively with the new inputs. Eq. (5) shows the formula for 
LSTM gates and states. 

it = σ(Wi⋅[xt, ht−1] + bi )

ft = σ
(
Wf ⋅[xt, ht−1] + bf

)

ot = σ(Wo⋅[xt, ht−1] + bo )

ct = ft⨀ct−1 + it⨀tanh(Wc[xt, ht−1] + bc )

ht = ot⨀tanh(ct)

(5)  

4. Case description and data collection 

We developed two MultiGCN-LSTM models with data collected from 
two case studies, i.e., the urban core of San Francisco, CA, and the City of 
Gainesville, FL, respectively (Fig. 3). San Francisco (SF) is a metropol
itan that has implemented multiple pilot programs to respond to 
emerging mobility challenges. The city has also experienced a rapid 
expansion of new mobility services in the past decade and is nominated 
as one of the best cities for living without a car (LawnStarter, 2021). 
Gainesville (GNV) is a med-size college town where the Univerity of 
Florida (UF) locates. The community increasingly adopts multiple smart 
mobility solutions including shared e-scooters, autonomous vehicle 
shuttles, and EVs (City of Gainesville, 2020). The use of these two 
distinct cases can demonstrate the applicability of our approach to 
different cities. 

We considered two specific curb uses, i.e., curbside parking and 
docked bike-sharing for the SF case, and only curbside parking for the 
GNV case due to data availability. We collected data corresponding to 
the green blocks of the proposed conceptual framework (Fig. 3), 
including curb uses, regulations, and surrounding mobility facilities and 
functional properties, for the two study cases. Table 2 and Fig. 4 present 
the type and distribution of the collected data. The following paragraphs 
describe the data collection and processing steps. 

Table 2 
The various curbside mobility infrastructure in the studied regions.  

Data Category Data Case Description 

Number and 
function 
of curb spaces 

On-street parking SF 18,448  parking meters in 
833 street blocks 

GNV 314  parking meters at 42 
curb segments 

Bike-share stations SF 85 stations with 2193 spaces 
for docked (e)-bikes 

Car-share stations SF 50 spots 
Curb temporal 

regulation 
Meter rates SF, 

GNV 
Meter regulation policy 

Meter time-limits SF, 
GNV 

Meter regulation policy 

Visitor volume Visitor volume GNV Hourly foot traffic associated 
with each POI 

Nearby mobility 
facilities 

Bus stops SF 519 bus stops 
GNV 56 bus stops 

Off-street parking 
lots/garages 

SF 12 public parking lots/ 
garages 

GNV 10 public parking lots/ 
garages 

Bike racks SF 1176 bike racks 
GNV 94 bike racks 

Ped/auto 
accessibility 

Sidewalk GNV Block-level sidewalk 
coverage 

Property location POI location SF, 
GNV 

Spatial coordinates 

Property type POI categories SF 9302 POIs in 130 categories 
GNV 93 POIs in 30 categories  
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4.1. Curb use data 

To some extent, the curb uses of shared micro-mobilities (e.g., bikes 
and e-scooters) and curbside parking are dependent, e.g., the increasing 
adoption of micro-mobilities can reduce city residents' reliances on 
private vehicles by providing alternative transportation means for short- 
distance trips and offering first/last-mile connections to transit passen
gers. We collected data for two types of curb uses, i.e., curbside parking 
and (e-)bike-sharing, for the SF case. Specifically, we used the metered 
parking transaction records to refer to the curbside parking occupations 
(DataSF, 2022a). Each transaction record consists of the start time and 
end time for a parking session and a meter ID indicating the specific 
parking space. We also collected the bike-sharing data from Bay Wheel 
(Lyft, 2022), which dominates the market share of shared (e-)bikes in 
San Francisco (SF Environment, 2022). The company publishes the trip 
data every month. Each trip record includes the start and end time and 
the station ID of the origin and destination for docked (e-)bikes (Lyft, 
2022). For dockless bikes, the spatial coordinates of the origin and 
destination are provided in a much coarser resolution for privacy pro
tection, which can not be mapped in street blocks and were hence not 
used in this study. 

We collected one-year data from December, 1st, 2020 to December, 
1st, 2021. We only used the data between 7:00 AM and 6:00 PM from 
Monday to Saturday, which has more intensive curb uses. We also 
aggregated the data for curb uses in street blocks by hours. As the 
shared-mobility systems frequently rebalance the (e-)bikes distributed 
in different stations, we only counted the number of (e-)bikes arriving at 
the destination block. For curbside parking, we counted both the arrival 
and departure of the parked vehicles. The final datasets used for the SF 
case include the curb-use patterns for 833 street blocks and 3432 
operation hours. 

For the GNV case, we collected the metered curbside parking data 
from the City of Gainesville's Transportation office. We used one-year 
meter transaction records from March 2019 to February 2020. Most 
meters charge for parking during weekdays from 9:00 AM to 5:00 PM 
with some meters operating for longer periods. We truncated the longer- 
period data to the normal work time and aggregated parking transaction 
records in curb segments and by hours. The final dataset includes the 
parking occupations for 42 curbside parking sites and 2349 weekday 
working hours. 

4.2. Curb regulation data 

San Francisco adopts time-variant regulations, including the pricing 
and time limit, for metered parking spaces (DataSF, 2022b). We 
matched the dynamic regulations for different curbside parking meters 
and aggregated them in street blocks and hourly bins. The pricing for 
shared mobilities is mainly determined by the traveling distances and 
membership subscriptions that do not relate to the curb use at the 
destination curbs. Hence, we did not include the pricing regulations for 
shared mobilities in our model. For the GNV case, though spatial dis
parities exist for the rates and time limits of different curbside parking 
spaces, the rates and time limits for individual meters are time-invariant. 

4.3. Block semantic Data - curbside facilities 

We collected the geo-spatial data of curbside facilities for the two 
cities from cities' open data portals (DataSF, 2022a.; DataGNV, 2022), 
including locations of bus stops, public bike racks, off-street public 
parking lots/garages, sidewalks, car-share stations among others 
(Fig. 4). We aggregate these mobility facilities into block levels. 

Fig. 4. The study region and the spatial distribution of mobility facilities in San Francisco (a) and (b) and Gainesville (c) and (d).  

H. Hao et al.                                                                                                                                                                                                                                     



Computers, Environment and Urban Systems 99 (2023) 101914

7

4.4. Block semantic data – functional properties 

The visiting pattern of a block, including arrival time and stay du
rations, is influenced by visitors' activities that can be inferred from the 
types of functional properties located within the block. We refer to the 
POI data collected by SafeGraph for the location and category of func
tional properties (SafeGraph, 2020). Each record includes a unique ID 
indicating a specific POI, together with its spatial coordinates and cat
egories (Table 2). 

4.5. Visitation flow data 

We collected the foot traffic data for the study regions for the GNV 
case from the SafeGraph platform (SafeGraph, 2022). The data includes 
the hourly visitation flows for different POIs. We aggregate the visita
tions to street blocks through the unique POI ID shared by the foot traffic 
data and geospatial data. We did not obtain the foot traffic data for the 
SF case. 

Other spatio-temporal variables, e.g., weather conditions, also in
fluence activity frequencies and curb uses. However, those variables are 
not considered in the designing and regulation of curb spaces, e.g., the 
meter rate does not vary by weather conditions, and thus are excluded in 
this study. 

5. Model development and validation 

We developed two place-specific models for the two study cases with 
PyTorch (Paszke et al., 2019). We used the Adam optimizer for model 
parameter learning, mean square error (MSE) loss for the loss reduction, 
and ReLU for the activation function. We set the time length for the 
LSTM layer to be 12 and the hidden nodes for different layers to be 16. 
As we collected one-year data for both cases, we used the first-11- 
months data for model training while the data of the last month for 
validation. We trained the two models for 100 epochs with a stepped 
learning rate starting from 0.02 and halves every 25 epochs. We stored 
the model parameters corresponding to the epochs yielding the lowest 
losses in the validation sets for further ablation studies and scenario 
experiments. This combination of hyperparameters was obtained with 
the trial-and-error process. “Ablation” is a technique rooted in 
neuroscience for understanding the role of nervous systems in control
ling animals' behaviors with surgical removal of nerve tissues. When 
applied in neural networks, it is used to investigate the effectiveness of 
network layers by removing corresponding layers in model predictions 
with a controlled setting (Meyes, Lu, de Puiseau, & Meisen, 2019). We 
also used ablation studies to validate the two place-specific models 
developed for the study cases. Specifically, we repetitively removed the 
parameters corresponding to the spatial GCN, temporal GCN, and LSTM 
layers in the model with PyTorch's pruning function. The performances 
of the original and “pruned” models, evaluated with Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE), are listed in Table 3 and 
Table 4. The results suggest that both the spatial and semantic GCNs 
(shown in Fig. 3) contribute to higher prediction accuracy of the models. 
The removal of semantic GCN leads to more performance reduction 

compared to spatial GCN for both study cases, suggesting the importance 
of the built-environment semantics in determining curb uses. 

We show the spatial distribution of the actual and predicted curb-use 
conditions, averaged to daytime hours across the validation set, for a few 
example hourly periods in Fig. 5 and Fig. 6. Both figures showed that the 
proposed MultiGCN-LSTM model can capture the spatio-temporal dy
namics of curb uses for the two study cases. 

5.1. The influence of built-environment variables 

One novelty of our research methodology is to include a learnable 
scaling layer (Fig. 3) to automatically increase and decrease the vari
ances of different semantic variables. Semantic variables associated with 
higher variances have more determining influences on semantic adja
cency matrice (Eq. 4), and consequently exert more influences on the 
prediction of curb-use conditions. Fig. 7 shows the relative importance 
of semantic variables considered in the two cases, where the relative 
importance is computed as the standard variances of the semantic var
iable after being projected by the scaling layer. 

As there are relatively few POI categories in Gainesville, we only 
considered the four major categories (shown in Fig. 7a) with all others 
grouped as the “Other POI” category. For San Francisco, we used an 
embedding layer to project the 130 POI categories into 6-d dense vari
ables that are denoted as “POI_dense_0” to “POI_dense_5” in Fig. 7(b). 
According to Fig. 7, the number of surrounding bus stops is the most 
influential built-environment factor for determining the curbside park
ing occupancy in Gainesville, followed by functional properties, 
including Restaurants and other Eating places and Religious Organizations, 
and the availability of nearby parking garages. For San Francisco, the 
different types of functional properties also played an important role in 
determining curb uses. Curbside transportation facilities including the 
number of docked bike-sharing spaces and meters also showed higher 
influences in predicting the curb-use patterns, possibly because the two 
types of curb uses are the response variables. 

5.2. Demonstrative scenario experiments 

We included three curb use scenarios that were tested by the two 
MultiGCN-LSTM models developed for SF and GNV in the Supple
mentary Information (SI) document. This section summarizes the key 
steps and findings of the scenario experiments. 

In each scenario, we modified input variables to reflect certain 
changes in curb regulation or surrounding built environments and use 
the model to predict the curb-use patterns under hypothesized treat
ments. We showed that the developed models can predict the general 
scale of improvements for different treatments as well as associated 
spatial effects. Specifically, we compared how two localized treatments, 
i.e., designating PUDO zones and constructing a parking tower in the 
adjacent street block, can mitigate the shortage of curbside parking in 
street block #3031 in GNV. The results showed that both treatments are 
contributive, but constructing a new parking tower in an adjacent street 
block is more effective, leading to 20–50% reduction in curbside parking 
occupancy, compared to 15% reduction caused by designated PUDO 
zones (Fig. SI-2 & SI-3). Both treatments not only change the curb-use 
patterns at “treated” curbs but also spill over the effects to surround
ing curbs (Fig. SI-2 & SI-3). 

Table 3 
Model Performance Statistics in Validation Set, San Francisco.  

Model Curbside meter 
parking 

Docked bike- 
sharing 

RMSE MAE RMSE MAE 

MultiGCN-LSTM (propsoed) 2.2021 1.2367 0.4558 0.1021 
Pruned model: removing embedding 

layer 
2.2280 1.2496 0.4788 0.1099 

Pruned model: removing spatial GCN 2.2273 1.2537 0.4653 0.1040 
Pruned model: removing semantic GCN 7.7035 6.3488 1.7778 1.5759 
Pruned model: removed LSTM 7.4745 4.2270 0.6561 0.7537  

Table 4 
Model Performance Statistics in Validation Set, Gainesville.  

Model Curbside meter parking 

RMSE MAE 

MultiGCN-LSTM (propsoed) 1.1672 0.7587 
Pruned model: removing spatial GCN 1.2010 0.8031 
Pruned model: removing semantic GCN 1.4525 0.8815 
Pruned model: removed LSTM 4.9642 2.8787  
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We also compared the distribution of predicted curbside parking 
occupancy under static (hypothetical scenario) and dynamic meter 
pricing regulations in SF. The results showed that the implementation of 
dynamic meter pricing can produce more evenly distributed curbside 
parking occupations across the urban core of SF (Fig. SI-4). We used hot 
spot maps to show the differences between the predicted curbside 
parking occupancy under the two pricing scenarios. The results revealed 
that drivers tend to cruise from commercial and official centers to re
gions with more residential and mixed-use developments under the 
dynamic parking pricing scenario (Fig. SI-5 and Table SI-1), which 
conforms with the SFpark program's objective (Pierce & Shoup, 2018). 

These demonstrative scenario experiments shed light on the usages 
of the developed model framework in examining the effects of different 
curb management strategies and built-environment improvements on 
curb use patterns. Notably, the results obtained from demonstrative 
cases are with context-specific assumptions, which a robust validation is 
required when applied to other scenarios and contexts. 

6. Discussion 

In this study, we proposed to use a state-of-the-art deep learning 
model, i.e., MultiGCN-LSTM, to predict the hourly demands for two curb 
uses (i.e., curbside parking and docked bike-sharing) at both street block 
and curb scales. The method is applied for two distinct study cases, i.e., 
the City of San Francisco, CA and Gainesville, FL that face different curb 
management challenges with different planned or implemented strate
gies. We evaluated the model against the curb use data collected from 
the two cases with ablation studies. We also tested the model with 
scenario experiments and showed that the method can quantitatively 
compare the effectiveness of different curb management strategies, 

predict the spatial spillover effects of localized treatments, and under
stand the changing curb-use conditions under city-wide regulations. 

Recognized the challenges brought by the increasing curb activities, 
many cities have explored different curb management strategies and 
planned for various repurposing and renovation projects for curb spaces 
(Butrina et al., 2020; Diehl, Ranjbari, & Goodchild, 2021; ITF, 2018; 
Rosenblum et al., 2020). Particularly, some cities characterized their 
urban curb spaces as “flex zone” with dynamic regulations to prioritize 
different curb uses at different times (ITF, 2018). All these movements 
suggest more dynamic and uncertain curb environments, and a nuanced 
knowledge to relate the dynamic curb uses with local context is needed. 
Our proposed model contributes to curb management by predicting fine- 
grained curb-use conditions. The inclusion of semantic GCN considers 
the relation between the diverse curb uses and surrounding built envi
ronment features. For example, we showed that the presence of certain 
functional properties (e.g., Restaurants and Religious Organizations) 
and mobility facilities (e.g., bus stops) played an important role in 
influencing the on-street parking occupation in Gainesville. The use of 
multi-task learning also enables the predictions for diverse curb uses and 
gives a more integrated image of curb uses at different curbs, which 
helps coordinate different curb user groups. 

Many cities have adopted the “incremental model” for curb man
agement that makes adjustments to their extant curb management 
practices every time confronting new challenges (Butrina et al., 2020; 
Zalewski et al., 2012). This ad hoc planning approach can not address 
curb management problems systematically and may cause further issues, 
for example, meeting the needs of certain types of curb uses but missing 
others or solving the problem at one curb but burdening nearby ones. 
Our proposed model informs curb management practices by connecting 
curbs across a community and accounting for different types of curb uses 

Fig. 5. The spatio-temporal distribution of actual and predicted curb uses in San Francisco.  

H. Hao et al.                                                                                                                                                                                                                                     



Computers, Environment and Urban Systems 99 (2023) 101914

9

to avoid incremental approaches in the planning and management of 
curb spaces. 

Our calibrated deep learning model captures the spatial, temporal, 
and semantic dependencies among different curbs across distinct types 
of uses. We used scenario experiments to demonstrate that the inclusion 
of these complex and inherent dependencies allows models to make 
reasonable predictions when tested in unseen scenarios, e.g., localized 
built-environment changes and city-wide regulations. Such integration 
of deep learning models and scenario experiments suggests a potential 
avenue of scenario planning, which uses deep learning models to cap
ture complex urban systems across different planning and management 

scenarios (Chakraborty & McMillan, 2015). 
The proposed study has a few limitations that can be addressed in 

future studies. One limitation is the method validation. Though we have 
evaluated the model with ablation studies and performed scenario ex
periments, we were not able to compare the outcomes of model pre
dictions with empirical observations obtained before and after a local or 
city-wide curb treatment. However, deep learning models allow us to 
anticipate distinct effects with different treatments before real de
ployments. In the future, we will calibrate models with the continuously 
collected real-world curb use data with the deployment of different 
treatments. Secondly, though we claimed the model can predict the 

Fig. 6. The spatio-temporal distribution of actual and predicted curbside parking occupation in Gainesville.  

Fig. 7. The relative importance of semantic variables for two study cases.  
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diverse curb uses, we only experimented with two specific curb uses, i.e., 
curbside parking and docked bike-sharing, due to data availability. 
However, the model framework is flexible to include other curb-use 
data, e.g., EV charging, commercial loading, and the PUDO of shared 
AVs after further calibration. The proposed model would burst more 
usefulness when these curb uses are included due to the advantages of 
multi-task learning. We noticed that there are several efforts made by 
private and public sectors to digitalize the curb spaces and standardize 
curb data (Diehl et al., 2021), which supports future studies for data- 
driven curb management research. However, these efforts are mostly 
made for the supply side, i.e., what types of curb uses are permitted and 
how many spaces are provided (Jaller et al., 2021). Future studies may 
also consider monitoring the dynamic and diverse curb uses from the 
demand side, e.g., with advanced video analysis techniques. In addition, 
many other built-environment variables influencing curb uses are not 
considered in this research. For example, some cities have administered 
programs to grade the multimodal level of service for urban streets 
(Dowling et al., 2008). Such data can be included in the composition of 
the semantic graph in the developed MultiGCN-LSTM model. 

7. Conclusion 

The burgeoning disruptive urban technologies and new mobility 
services have rapidly changed the way how people live and move in 
cities. However, the planning and development of cities' physical built 
environments, e.g., curb spaces, happen at a much slower rate that does 
not contend with city residents' changing behaviors. The presented 
research suggests that cities can better accommodate their residents 
with effective and flexible management practices developed upon the 
dynamic interactions between population behaviors and urban built 
environments. Such spatiotemporal relations and fine-grained curb uses 
can be modeled and predicted with deep learning with satisfactory 
performance. Such data-based tools are beneficial for urban planners 
and transportation engineers by supporting more agile and adaptive 
management of urban assets in responding to various emerging urban 
challenges while surviving and prospering in the unpredictable future. 
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