Computers, Environment and Urban Systems 99 (2023) 101914

Contents lists available at ScienceDirect
Compurters
ENVIRONMENT

AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/ceus

Check for

Enabling smart curb management with spatiotemporal deep learning e

Haiyan Hao®, Yan Wang "™, Lili Du®, Shigang Chen ¢

 Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, College of Design, Construction and Planning, Univ. of Florida, 1480
Inner Rd., Gainesville, FL. 32611, United States of America

b Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, Univ. of Florida, P.O. Box 115706, Gainesville, FL 32611, United
States of America

¢ Associate Professor, Department of Civil and Coastal Engineering, Univ. of Florida, Gainesville, FL 32611, United States of America

9 Department of Computer & Information of Science & Engineering, Univ. of Florida, Gainesville, FL 32611, United States of America

ARTICLE INFO ABSTRACT

Keywords:

Built environment

Curb management
Graph-based deep learning
Smart cities

Scenario planning

Curb spaces are important assets to cities. They are often used by travelers to switch transportation means,
visitors to access curbside properties, and municipalities to place roadside infrastructure. The promotion of
multi-modal transportation and the emergence of new mobility services have complicated both curb environ-
ments and their management. Consequently, some cities have started to explore new strategies for curb man-
agement, but lacked the anticipation on how different curb regulations and built-environment features may
collectively influence curb-use patterns across user groups. We make a step toward smart curb environment by
proposing a graph-based deep learning approach, i.e., MultiGCN-LSTM, to predict diverse curb uses across time
and space. We used two graph convolution layers and an LSTM layer to capture the spatial, temporal, and se-
mantic dependencies between curb regulations, built-environment semantics, and diverse curb uses. Two place-
specific models were developed separately for a medium-sized college town and a metropolitan in the U.S. The
effectiveness of the proposed models was validated with ablation studies and demonstrated in three scenario
experiments. The research contributes to smart curb management in the face of more diversified and intensified

curb uses with new mobility services and emerging vehicular technologies.

1. Introduction

Cities in developed countries, such as the U.S., have conventionally
reserved plenty of spaces at the curbside to store private vehicles, which
provide conveniences for customers to access roadside businesses and
are essential for urban economic vitality (Biswas, Chandra, & Ghosh,
2017). However, this parking-oriented curb design becomes problematic
in facing increasingly compact and densified urban environments where
lands should be prioritized for human activities rather than storing ve-
hicles (Cervero, Guerra, & Al, 2017). Correspondingly, many cities
promote transit-oriented transportation planning and multi-modal
mobility solutions to reduce citizens' dependencies on automobiles.
The transit-oriented planning prioritizes transportation modes e.g.,
buses and subways, to move more goods and people around the city to
ensure transportation efficiency (Cervero et al., 2017; Roe & Toocheck,
2017). These transit-oriented developments have nourished shared
micro-mobility services, e.g., shared bikes and e-scooters, which provide
first- and last-mile solutions for transit trips (Abduljabbar, Liyanage, &
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Dia, 2021; Zuo, Wei, Chen, & Zhang, 2020). Many cities have also
renovated curb spaces to specify bike lanes to encourage active travel
modes. Meanwhile, the growing popularity of e-commerce and door-to-
door delivery turns transportation services into tradeable commodities,
which also reduces city residents' reliance on private vehicles (Shaheen,
Cohen, Yelchuru, Sarkhili, & Hamilton, 2017).

These transportation planning practices and mobility innovations
have changed the way how city residents travel across the city and use
curb spaces. Curbs, defined as the spaces between roadways and side-
walks (Fig. 1) (Eros, 2019; ITF, 2018), are conventionally used to
separate pedestrian and vehicular traffic and serve as the frontage for
people to switch transportation tools or access curbside commercial
properties (ITF, 2018; Marsden, Docherty, & Dowling, 2020). Now curbs
are also used by mobility service providers to place facilities (e.g., shared
bikes, e-scooters, EV charging stations), ride-hailing clients to wait and
complete the transactions, deliveryman to pick-up and drop-off the
goods among other demands (Jaller, Rodier, Zhang, Lin, & Lewis, 2021).
The more intensified and diversified uses of urban curb spaces require a
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Fig. 1. Illustration of Curb Spaces.

nuanced understanding of curb uses across time and space to better
accommodate different user groups. Failure to achieve this may lead to
negative impacts ranging from space usage conflicts, roadway traffic
congestion, increased environmental emissions, to degraded revenues
for curbside businesses (Jaller et al., 2021; Wang, Hao, & Wang, 2022;
Yu & Bayram, 2021).

To mitigate the undesired consequences, some cities have started to
explore novel strategies for allocating and regulating curb spaces (i.e.,
curb management), such as designating pick-up drop-off (PUDO) zones
and implementing time-variant parking regulations (Butrina, Le Vine,
Henao, Sperling, & Young, 2020; ITF, 2018; Nichols & Dorsett, 2022;
Roe & Toocheck, 2017; Rosenblum, Hudson, & Ben-Joseph, 2020).
However, the decision-making on where and when should these curb
management strategies be adopted is often reactive without systemati-
cally evaluating the spatio-temporal dynamics of diverse curb uses
(Butrina et al., 2020; Zalewski, Buckley, & Weinberger, 2012), which
may yield inconsiderate actions and inconsistent policies.

The systematic evaluation of the diverse curb uses can be chal-
lenging. First, the spatio-temporal distributions of diverse curb uses are
dependent on surrounding built-environment features, such as the
availability of certain mobility facilities (e.g., sidewalks and bus stops)
and the presence of functional properties (e.g., theaters and groceries).
These built-environment semantic features influence the number of
visitors and how they approach and use curbs. Second, the curb use
patterns among different curbs are also spatiotemporally related. For
example, a driver may cruise to nearby curbs when noticing that the
parking spaces are fully occupied. Third, within a curb, the demand for
one type of usage (e.g., private parking) is related to other uses (e.g.,
ride-hailing, shared micro-mobility). Consequently, the curb manage-
ment strategies targeted for a specific curb use and at a particular
location also influence the demands of other curb uses and at nearby
curbs. Though some recent studies proposed simulation-based ap-
proaches to assist curb management (Jaller et al., 2021; Wang et al.,
2022; Yu & Bayram, 2021), they may fall short in capturing the complex
spatial, temporal, and semantic dependencies of diverse curb uses.

Thus, to address the research gaps, we propose a spatio-temporal
deep learning approach to assist the planning and management of
curb spaces. Specifically, the research has the following contributions:

e We developed a Multi-Graph Convolutional Neural Network
embedded Long-Short Term Memory (MultiGCN-LSTM) model to
predict spatio-temporal dynamics of diverse uses for localized curb
environments.

The approach couples two GCNs and an LSTM layer to capture the
spatial-, temporal-, and semantic- dependencies of hourly curb uses
across the urban cores. Especially, the semantic GCN takes the sim-
ilarities of built-environment characteristics, such as the presence of
mobility facilities and functional properties, into the modeling pro-
cess that enabled more robust model performance.
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e We showed the model application with data collected from two
distinct cases, i.e., a medium-size college town, i.e., the City of
Gainesville, and a metropolitan, i.e., San Francisco. We also vali-
dated the effectiveness of the model architecture with ablation
studies.

e The approach uses multi-task learning that learns the correlations
between different curb uses and provides an integrated under-
standing of diverse curb uses. We demonstrated the multi-task
learning with data collected for two types of curb uses, i.e., curb-
side parking and docked bike-sharing, from San Francisco.

We also demonstrated the effectiveness of the model by applying it to
predict the changing curb uses under hypothesized treatments in built
environments and curb regulations. The research outcomes inform
smart curb management and contribute to smart and coordinated curbs
proactively adapting to increasing urban mobility challenges.

2. Literature review

We synthesized previous studies that explain spatio-temporal curb
uses from visitors' perspectives and approaches modeling spatio-
temporal dynamics of curb uses. We also reviewed novel curb man-
agement practices that have been experimented in cities.

2.1. Built-environment and regulation factors that influence curb uses
across time and space

Few studies have particularly investigated factors influencing curb
uses, but it is not difficult to find that the diverse curb-use patterns are
largely determined by visitor flows who access curbside properties (e.g.,
restaurants, banks, offices). Visitors may access their curbside locations
with different travel modes (e.g., buses, private cars, micro-mobility)
which can occupy curbs with different spaces and temporal lengths.
Many studies on travel behavior have found that travel mode choices are
influenced by trip distance, travel time, trip purpose (i.e., activity), ac-
tivity duration among other factors (Cheng, Chen, De Vos, Lai, & Witlox,
2019; Gong, Kanamori, & Yamamoto, 2018). Built-environment char-
acteristics including the accessibility to various transportation facilities
(e.g., bus stops), walkability, road density, built-up density, and land use
also influence visitors' travel mode choices (Cheng et al., 2019; Ma,
Zhang, Ding, & Wang, 2018), and thus influence the associated curb uses
in destination curbs.

In addition to travel modes, the temporal distribution of curb uses is
determined by visitors' trip purposes that influence their arrival time
and dwelling durations. These trip purposes can be inferred from the
land use or the type of visited properties (Jaller et al., 2021). For
example, people park for a few minutes to pick up a coffee from the
coffee store and park for more than two hours to watch movies in the-
aters (Gong et al., 2018; Nie et al., 2021). For commercial delivery,
businesses such as supermarkets need more time for loading goods than
convenience stores, while florists may require more frequent deliveries
than other retailers (Allen, Anderson, Browne, & Jones, 2000). These
existing studies indicate the validity of inferring diverse use demands of
curb spaces based on features of surrounding built environment, such as
land use, functional properties, and transportation facilities.

Additionally, the diverse curb uses are also influenced by curb reg-
ulations. For example, previous empirical studies have revealed that
drivers prefer to park at curbs with lower parking rates and would cruise
to those curbs at a cost of extra vehicle miles and walking distances
(Gragera & Albalate, 2016; Pierce & Shoup, 2018). Temporal regula-
tions, e.g., time-limit parking, restrict visits with longer dwell time and
drive visitors to garage parking (Arnott & Rowse, 2013; Gragera &
Albalate, 2016). Particularly, some cities set short time limits for curb-
side parking spaces to encourage frequent turn-over (Mitman, Davis,
Armet, & Knopf, 2018).

All the built-environment factors and curb regulation policies
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reviewed in the above paragraphs can influence the spatio-temporal
patterns of curb uses. However, very few data-driven studies were pro-
posed to relate the diverse curb uses with the varied factors for the
planning and management of urban curbs.

2.2. Existing statistical and machine learning models for predicting curb
uses

Though not focused on curb management, some studies used statis-
tical and machine learning approaches to predict the demands for
different riderships, which influence corresponding curb uses. These
studies vary in the focused riderships, spatio-temporal granularities, and
selected input variables. Table 1 records different modeling approaches
used in recent studies for predicting ridership demands. The majority
predicted the occupancy of on-street parking spaces based on metered
parking transaction records or sensors (e.g., Pu, Li, Ash, Zhu, & Wang,
2017; Zhao et al., 2021). We summarize the objectives of different
studies in Table 1.

The prior research has also compared the performance of different
modeling approaches (e.g., Saharan, Kumar, & Bawa, 2020) concerning
spatial and/or temporal dependencies of curb uses. Generally,
Geographic Weighted Regression (GWR) outperforms common statisti-
cal approaches (e.g., ordinary least square) by considering the spatial
dependencies of variables in modeling the demand for ride-sourcing
trips (Pu et al., 2017). Random Forest (RF) outperforms other machine
learning models (e.g., support vector machine) by using the ensembling
techniques and better modeling the non-linearity (Saharan et al., 2020).

Lately, an increasing number of studies have employed deep learning
models to predict curb uses. For example, the coupling of Graph Neural
Network (GCN) and Recurrent Neural Network (RNN), such as LSTM
and Gated Recurrent Units (GRU), has been recommended by recent
studies for its advances in modeling the spatio-temporal dependencies
among the input and output variables (Ke, Feng, Zhu, Yang, & Ye, 2021;
Zhao et al., 2021). For example, Yang, Ma, Pi, and Qian (2019) coupled
the GCN and LSTM to predict parking availability with variables
describing the weather and roadway traffic conditions. Zhao et al.
(2021) integrated GCN and LSTM to predict real-time curbside parking
availability. Particularly, the authors used two GCNs to capture the
spatial proximity and semantic similarities of studied blocks. Zhao et al.
(2022) also integrated GCN and LSTM to predict the short-term demands
of bus trips, and geographic weighted regression is used to capture the
dynamic influence of built-environment features.

These approaches contribute to more coordinated curb uses, but they
are not intended for curb management and are focused on a single type
of curb use. Few of them considered both temporal regulations (e.g.
time-limit and meter rates) and spatial features of built environments

Table 1
Approaches for modeling ridership demands.

Approach Studies and Curb Use Type

Logistic /Linear /Poisson Saharan et al. (2020) [parking]; Fabusuyi,

Regression Twumasi-Boakye, Broaddus, Fishelson, and
Hampshire (2020) [commercial delivery].
Geographic Weighted Pu et al. (2017) [parking]; Yu and Peng (2019)

Regression (GWR)
Gaussian Mixture Model
(GMM)
Decision Tree (DT)/ Random
Forest (RF)/ XGBoost

[ride-sourcing]; Ma et al. (2018) [public transit].
Nie et al. (2021) [parking].

Saharan et al. (2020) [parking]; Yang,
Heppenstall, Turner, and Comber (2020) [micro-
mobility]; Ke et al. (2021) [ride-sourcing].
Multiple Perceptron Layer Saharan et al. (2020) [parking]; Yang et al. (2020)

(MPL) [micro-mobility]; Ke et al. (2021) [ride-sourcing].
Long-Short Term Memory Yang et al., (2020) [micro-mobility]

(LSTM)
(Multi)GCN-LSTM Zhao et al. (2021) [parking]; Yang et al. (2019)
[parking]; Ke et al. (2021) [ride-sourcing]; Ma,
Yin, Jin, He, and Zhu (2022) [micro-mobility];
Zhao et al. (2022) [public transit]
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(such as mobility facilities and functional properties). The increasingly
diversified curb uses, however, require urban managers to understand
the relations among different types of curb uses, curb space regulation,
and the surrounding built environment.

2.3. Novel strategies for managing curb space and uses

The increasing and diversified curb uses also sparked cities to explore
novel strategies, including time-variant regulation and flexible curb
uses, to tackle the curb management challenges (Butrina et al., 2020;
ITF, 2018; Roe & Toocheck, 2017; Rosenblum et al., 2020). An early
innovative curb management program is the SFpark launched in the city
of San Francisco from 2011 to 2013. The city adjusts the rates for
curbside parking spaces every few months to pursue a parking occu-
pancy rate of 60-80%, which is considered beneficial for transportation
efficiency and the environment (Millard-Ball, Weinberger, & Hamp-
shire, 2014; Pierce & Shoup, 2018). The city of Seattle defines curb
spaces as “flex zone” and adopted a city-wide prioritization framework
that assigns ranked priorities for different curb uses according to land
use. In New York, the city implemented the Off-Hour Deliveries (OHD)
program to shift truck deliveries from peak periods to off-hours (i.e., 7
pm to 6 am) to reduce traffic congestion and double parking (Holguin-
Veras, Ozbay, Kornhauser, Shorris, & Ukkusuri, 2010).

Despite these significant pilot programs for curb management, there
still present many challenges for managing curb environments. First,
many curb management practices are implemented in an “incremental”
manner (Zalewski et al., 2012), in which cities make ad hoc adjustments
on their extant curb management practices every time confronting new
challenges. Such ad hoc approaches lack systematical evaluation of the
curb issues and ignore the hidden correlations of different curb uses and
across different curbs. Large-scale programs such as SFpark can address
this problem with abundant data collected from practices, but are con-
ducted with a time-consuming trial-and-error process (Pierce & Shoup,
2018) and only consider individual curb use (i.e., parking). A few recent
studies used simulation to examine the impacts of different curb space
allocation and regulation scenarios. For example, Jaller et al. (2021)
integrated macro- and micro-scopic traffic simulation tools to simulate
parking behaviors of private cars, freights, and taxis in three distinct
districts in San Francisco. Yu and Bayram (2021) simulated the in-
teractions between traffic flow and different curb uses, including park-
ing, PUDO, and commercial loading/unloading, to evaluate the effects
of different curb space allocation policies. Recently, Wang et al. (2022)
simulated the impacts of designated PUDO zones on mitigating curb use
competitions under the projected increments of MoD market share.
These simulation-based studies support systematic evaluations of curb
management strategies, but they are often limited in application scope
(e.g., a district or a neighborhood) and made assumptions about drivers'
traveling and parking behaviors.

Given these research challenges, we propose to use MultiGCN-LSTM
to predict the fine-grained spatio-temporal dynamics for different curb
uses.

3. Developing MultiGCN-LSTM deep learning architecture for
predicting curb uses

Though curb spaces are used for various purposes by different curb
user groups. We framed the dynamics of diverse curb uses with a unified
conceptual framework (Fig. 2). The framework models the diverse curb
uses as a dependent variable of the spatio-temporal distribution of curb
regulation and visitation patterns. The visitation patterns are further
determined by nearby mobility facilities and visitors' activities that can
be referred from surrounding functional properties.

The green blocks in Fig. 2 are potential input variables of the model
while the orange block is the output, i.e., the dynamics of different curb
uses. We used a state-of-the-art deep learning model, i.e., MultiGCN-
LSTM, to realize the conceptual model shown in Fig. 2. The LSTM is
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Fig. 2. The conceptual framework for modeling diverse curb uses.

suitable for modeling sequential data such as the time series of curbside
parking occupation while the GCNs can process data of networked
structures. The coupled approach enables the model to capture the
spatial-temporal dependencies of diverse curb uses. The following def-
initions are given for the model development.

Definition 1. Spatial graph of curbside parking spaces.

We represent the street layouts as a connected graph, i.e., G, = (V,E,
Ap), where V is the set of nodes and E is the set of edges. The nodes are
the smallest analysis units of the graph, e.g., a curb segment or a street
block. A, € RN is the adjacency matrix, where A, stores the spatial
proximity information between nodes i and j.

Definition 2. Semantic graph of curbside parking spaces.

Similar to the spatial graph, we used a graph, G; = (V,E,Ay), to
represent the semantic proximity among different nodes. The A" stores
the similarity metric between two nodes i and j regarding localized built-

environmental semantics.
Definition 3. Vector representation of functional properties.

We represent the set of functional properties (i.e., Point of Interests
or POIs) within a street block as an L dimension vector p € RL, where L is
the number of categories of functional properties and p; stores the
number of functional properties of category i within the block. If the
analysis unit is the curb segment, curb segments of the same street block
share the same functional property vector.

Definition 4. Input variables.

The input variables X, € RV*I are used to describe the spatio-
temporal variables related to the N nodes at time t, where I is the
number of input features, e.g., meter hourly rates and visitation
volumes.

Definition 5. Output variable.
The output variable, 0, € RN'X, are the predicted k different curb uses

el R e i) N
I
(D Semantic graph , ot ,g, 62 ,g, ------ H ,% :
(2) Spatial graph : 1 1 :
@ MUtiGON-LSTM ! |L'”ef" d |L'”efr 2 !
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Fig. 3. The architecture of the MultiGCN-LSTM model.
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and for N nodes at time t, while the actual curb uses are represented as o,
€ RN#K,

With these definitions, the problem is formulated as learning a model
fto predict the diverse curb uses for the next T' timesteps based on input
variables of before T timesteps (Eq. 1).

f(Gp'-,Gs? [Xt—T+17 -~~7X1D = [/0\,“, --~7/0\t+T’} (€D)]

Fig. 3 shows the structure of the MultiGCN-LSTM model. The input
variables describe the spaito-temporal regulations for different curb
uses, previous curb uses, and visitation flows, which are organized into
matrices for graph convolutions. We used two graph operations to
transform the raw inputs, i.e., the spatial GCN and semantic GCN. Eq. (2)
shows the formula for graph convolution (Kipf & Welling, 2016). The
multiplication of raw inputs and adjacency matrices allows the inte-
gration of localized signals that are spatially or semantically proximate
and learn shared weights, 6, across all nodes. In this study, the spatial
proximity is determined with Eq. (3), where d; ; takes the Manhattan
distance between the centroid of two street blocks i and j when street
blocks are the analysis units. When curb segments are the analysis units,
d;, j is calculated as the distance along the road network. The dgr. rep-
resents the maximum distance that a visitor is willing to walk to their
destinations after parking their vehicles. We used diy, = 400m in this
study.

(X, A) =c (Kxe)

A=DHA+1D ?
0if d,‘:,‘ Z dz/rre
A — di —d\* @
» (M) if dij < dye
thre

The process of determining the adjacency matrix for the semantic
graph, i.e., A, is shown in Fig. 3 and Eq. (4). The A, is determined as the
pair-wise similarities of semantic vectors associated with each analysis
unit, where the semantic vector is the concatenation of the mobility
facility vector and the embedding of the functional property vector. For
the mobility facility vector, we counted the presence and/or capacity of
nearby mobility facilities (e.g., bus stops or parking garages). We used
the vector representation of functional properties described in Defini-
tion 3. As there can be dozens of property categories and a street block
may only include a few of them, we used a trainable embedding layer to
project the long and sparse functional property vectors into dense em-
beddings. The scaling layer then applies element-wise multiplication for
s; with a learnable vector vs. The purpose of this step is to increase or
decrease the variances of different semantic features. The semantic
similarity between two nodes is calculated as the inverse of the
Euclidean distance between s; and s; (Eq. 4). In this way, semantic fea-
tures with higher variances have more influence on determining A;. The
addition of 1 in the denominator converts the similarity metric into the
range of 0 to 1 (Eq. 4).

’

Si = Smabil[[}"@embEd(Spmperlv)
S =8 Ovg

- L @

(llsi = sl +1)

The two transformed matrices are concatenated with the raw input
matrices and sent to the LSTM layer for modeling the temporal de-
pendencies (Fig. 3). The LSTM layer learns both the long-term and short-
term sequential patterns with three gates, i.e., input gate i, forget gate f,
and output gate o, to control the writing, retaining, and discarding of
inputs and previous information. The long- and short-term memories are

i
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stored with two state variables, i.e., cell state ¢ and hidden state h. When
the LSTM is applied with the data collected for time ¢, the cell state c; is
updated with forget gate f removing unuseful information from its
previous cell state c;_; and the input gate adding information from new
inputs x;. The hidden state h; is computed with the output gate to select
useful information from the cell state c, for output. This process is per-
formed recursively with the new inputs. Eq. (5) shows the formula for
LSTM gates and states.

iy = o(Wieb, ] + by)
fi=o(Wplxi, hia] + by)
0r = 0(Wo:lxi, i) +b,) ©

Ct :f;GCr—l + i,@tanh(WL.[x,, hz—l] + ha )
hy = o,(Otanh(c,)

4. Case description and data collection

We developed two MultiGCN-LSTM models with data collected from
two case studies, i.e., the urban core of San Francisco, CA, and the City of
Gainesville, FL, respectively (Fig. 3). San Francisco (SF) is a metropol-
itan that has implemented multiple pilot programs to respond to
emerging mobility challenges. The city has also experienced a rapid
expansion of new mobility services in the past decade and is nominated
as one of the best cities for living without a car (LawnStarter, 2021).
Gainesville (GNV) is a med-size college town where the Univerity of
Florida (UF) locates. The community increasingly adopts multiple smart
mobility solutions including shared e-scooters, autonomous vehicle
shuttles, and EVs (City of Gainesville, 2020). The use of these two
distinct cases can demonstrate the applicability of our approach to
different cities.

We considered two specific curb uses, i.e., curbside parking and
docked bike-sharing for the SF case, and only curbside parking for the
GNV case due to data availability. We collected data corresponding to
the green blocks of the proposed conceptual framework (Fig. 3),
including curb uses, regulations, and surrounding mobility facilities and
functional properties, for the two study cases. Table 2 and Fig. 4 present
the type and distribution of the collected data. The following paragraphs
describe the data collection and processing steps.

Table 2
The various curbside mobility infrastructure in the studied regions.

Data Category Data Case Description

18,448 parking meters in
833 street blocks

314 parking meters at 42
curb segments

85 stations with 2193 spaces
for docked (e)-bikes

Number and
function
of curb spaces GNV

On-street parking SF

Bike-share stations SF

Car-share stations SF 50 spots
Curb temporal Meter rates SF, Meter regulation policy
regulation GNV
Meter time-limits SF, Meter regulation policy
GNV
Visitor volume Visitor volume GNV Hourly foot traffic associated
with each POI
Nearby mobility Bus stops SF 519 bus stops
facilities GNV 56 bus stops
Off-street parking SF 12 public parking lots/
lots/garages garages
GNV 10 public parking lots/
garages
Bike racks SF 1176 bike racks

GNV 94 bike racks

Ped/auto Sidewalk GNV Block-level sidewalk
accessibility coverage
Property location POI location SF, Spatial coordinates
GNV
Property type POI categories SF 9302 POIs in 130 categories

GNV 93 POIs in 30 categories
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Fig. 4. The study region and the spatial distribution of mobility facilities in San Francisco (a) and (b) and Gainesville (c) and (d).

4.1. Curb use data

To some extent, the curb uses of shared micro-mobilities (e.g., bikes
and e-scooters) and curbside parking are dependent, e.g., the increasing
adoption of micro-mobilities can reduce city residents' reliances on
private vehicles by providing alternative transportation means for short-
distance trips and offering first/last-mile connections to transit passen-
gers. We collected data for two types of curb uses, i.e., curbside parking
and (e-)bike-sharing, for the SF case. Specifically, we used the metered
parking transaction records to refer to the curbside parking occupations
(DataSF, 2022a). Each transaction record consists of the start time and
end time for a parking session and a meter ID indicating the specific
parking space. We also collected the bike-sharing data from Bay Wheel
(Lyft, 2022), which dominates the market share of shared (e-)bikes in
San Francisco (SF Environment, 2022). The company publishes the trip
data every month. Each trip record includes the start and end time and
the station ID of the origin and destination for docked (e-)bikes (Lyft,
2022). For dockless bikes, the spatial coordinates of the origin and
destination are provided in a much coarser resolution for privacy pro-
tection, which can not be mapped in street blocks and were hence not
used in this study.

We collected one-year data from December, 1st, 2020 to December,
1st, 2021. We only used the data between 7:00 AM and 6:00 PM from
Monday to Saturday, which has more intensive curb uses. We also
aggregated the data for curb uses in street blocks by hours. As the
shared-mobility systems frequently rebalance the (e-)bikes distributed
in different stations, we only counted the number of (e-)bikes arriving at
the destination block. For curbside parking, we counted both the arrival
and departure of the parked vehicles. The final datasets used for the SF
case include the curb-use patterns for 833 street blocks and 3432
operation hours.

For the GNV case, we collected the metered curbside parking data
from the City of Gainesville's Transportation office. We used one-year
meter transaction records from March 2019 to February 2020. Most
meters charge for parking during weekdays from 9:00 AM to 5:00 PM
with some meters operating for longer periods. We truncated the longer-
period data to the normal work time and aggregated parking transaction
records in curb segments and by hours. The final dataset includes the
parking occupations for 42 curbside parking sites and 2349 weekday
working hours.

4.2. Curb regulation data

San Francisco adopts time-variant regulations, including the pricing
and time limit, for metered parking spaces (DataSF, 2022b). We
matched the dynamic regulations for different curbside parking meters
and aggregated them in street blocks and hourly bins. The pricing for
shared mobilities is mainly determined by the traveling distances and
membership subscriptions that do not relate to the curb use at the
destination curbs. Hence, we did not include the pricing regulations for
shared mobilities in our model. For the GNV case, though spatial dis-
parities exist for the rates and time limits of different curbside parking
spaces, the rates and time limits for individual meters are time-invariant.

4.3. Block semantic Data - curbside facilities

We collected the geo-spatial data of curbside facilities for the two
cities from cities' open data portals (DataSF, 2022a.; DataGNV, 2022),
including locations of bus stops, public bike racks, off-street public
parking lots/garages, sidewalks, car-share stations among others
(Fig. 4). We aggregate these mobility facilities into block levels.
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4.4. Block semantic data — functional properties

The visiting pattern of a block, including arrival time and stay du-
rations, is influenced by visitors' activities that can be inferred from the
types of functional properties located within the block. We refer to the
POI data collected by SafeGraph for the location and category of func-
tional properties (SafeGraph, 2020). Each record includes a unique ID
indicating a specific POI, together with its spatial coordinates and cat-
egories (Table 2).

4.5. Visitation flow data

We collected the foot traffic data for the study regions for the GNV
case from the SafeGraph platform (SafeGraph, 2022). The data includes
the hourly visitation flows for different POIs. We aggregate the visita-
tions to street blocks through the unique POI ID shared by the foot traffic
data and geospatial data. We did not obtain the foot traffic data for the
SF case.

Other spatio-temporal variables, e.g., weather conditions, also in-
fluence activity frequencies and curb uses. However, those variables are
not considered in the designing and regulation of curb spaces, e.g., the
meter rate does not vary by weather conditions, and thus are excluded in
this study.

5. Model development and validation

We developed two place-specific models for the two study cases with
PyTorch (Paszke et al., 2019). We used the Adam optimizer for model
parameter learning, mean square error (MSE) loss for the loss reduction,
and ReLU for the activation function. We set the time length for the
LSTM layer to be 12 and the hidden nodes for different layers to be 16.
As we collected one-year data for both cases, we used the first-11-
months data for model training while the data of the last month for
validation. We trained the two models for 100 epochs with a stepped
learning rate starting from 0.02 and halves every 25 epochs. We stored
the model parameters corresponding to the epochs yielding the lowest
losses in the validation sets for further ablation studies and scenario
experiments. This combination of hyperparameters was obtained with
the trial-and-error process. “Ablation” is a technique rooted in
neuroscience for understanding the role of nervous systems in control-
ling animals' behaviors with surgical removal of nerve tissues. When
applied in neural networks, it is used to investigate the effectiveness of
network layers by removing corresponding layers in model predictions
with a controlled setting (Meyes, Lu, de Puiseau, & Meisen, 2019). We
also used ablation studies to validate the two place-specific models
developed for the study cases. Specifically, we repetitively removed the
parameters corresponding to the spatial GCN, temporal GCN, and LSTM
layers in the model with PyTorch's pruning function. The performances
of the original and “pruned” models, evaluated with Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE), are listed in Table 3 and
Table 4. The results suggest that both the spatial and semantic GCNs
(shown in Fig. 3) contribute to higher prediction accuracy of the models.
The removal of semantic GCN leads to more performance reduction

Table 3
Model Performance Statistics in Validation Set, San Francisco.
Model Curbside meter Docked bike-
parking sharing

RMSE MAE RMSE MAE

MultiGCN-LSTM (propsoed) 2.2021  1.2367 0.4558  0.1021

Pruned model: removing embedding 2.2280 1.2496 0.4788  0.1099
layer

Pruned model: removing spatial GCN 2.2273  1.2537 0.4653  0.1040

Pruned model: removing semantic GCN 7.7035 6.3488 1.7778 1.5759

Pruned model: removed LSTM 7.4745  4.2270  0.6561  0.7537
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Table 4
Model Performance Statistics in Validation Set, Gainesville.

Model Curbside meter parking
RMSE MAE
MultiGCN-LSTM (propsoed) 1.1672 0.7587
Pruned model: removing spatial GCN 1.2010 0.8031
Pruned model: removing semantic GCN 1.4525 0.8815
Pruned model: removed LSTM 4.9642 2.8787

compared to spatial GCN for both study cases, suggesting the importance
of the built-environment semantics in determining curb uses.

We show the spatial distribution of the actual and predicted curb-use
conditions, averaged to daytime hours across the validation set, for a few
example hourly periods in Fig. 5 and Fig. 6. Both figures showed that the
proposed MultiGCN-LSTM model can capture the spatio-temporal dy-
namics of curb uses for the two study cases.

5.1. The influence of built-environment variables

One novelty of our research methodology is to include a learnable
scaling layer (Fig. 3) to automatically increase and decrease the vari-
ances of different semantic variables. Semantic variables associated with
higher variances have more determining influences on semantic adja-
cency matrice (Eq. 4), and consequently exert more influences on the
prediction of curb-use conditions. Fig. 7 shows the relative importance
of semantic variables considered in the two cases, where the relative
importance is computed as the standard variances of the semantic var-
iable after being projected by the scaling layer.

As there are relatively few POI categories in Gainesville, we only
considered the four major categories (shown in Fig. 7a) with all others
grouped as the “Other POI” category. For San Francisco, we used an
embedding layer to project the 130 POI categories into 6-d dense vari-
ables that are denoted as “POI_dense_0” to “POI_dense_5” in Fig. 7(b).
According to Fig. 7, the number of surrounding bus stops is the most
influential built-environment factor for determining the curbside park-
ing occupancy in Gainesville, followed by functional properties,
including Restaurants and other Eating places and Religious Organizations,
and the availability of nearby parking garages. For San Francisco, the
different types of functional properties also played an important role in
determining curb uses. Curbside transportation facilities including the
number of docked bike-sharing spaces and meters also showed higher
influences in predicting the curb-use patterns, possibly because the two
types of curb uses are the response variables.

5.2. Demonstrative scenario experiments

We included three curb use scenarios that were tested by the two
MultiGCN-LSTM models developed for SF and GNV in the Supple-
mentary Information (SI) document. This section summarizes the key
steps and findings of the scenario experiments.

In each scenario, we modified input variables to reflect certain
changes in curb regulation or surrounding built environments and use
the model to predict the curb-use patterns under hypothesized treat-
ments. We showed that the developed models can predict the general
scale of improvements for different treatments as well as associated
spatial effects. Specifically, we compared how two localized treatments,
i.e., designating PUDO zones and constructing a parking tower in the
adjacent street block, can mitigate the shortage of curbside parking in
street block #3031 in GNV. The results showed that both treatments are
contributive, but constructing a new parking tower in an adjacent street
block is more effective, leading to 20-50% reduction in curbside parking
occupancy, compared to 15% reduction caused by designated PUDO
zones (Fig. SI-2 & SI-3). Both treatments not only change the curb-use
patterns at “treated” curbs but also spill over the effects to surround-
ing curbs (Fig. SI-2 & SI-3).
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Fig. 5. The spatio-temporal distribution of actual and predicted curb uses in San Francisco.

We also compared the distribution of predicted curbside parking
occupancy under static (hypothetical scenario) and dynamic meter
pricing regulations in SF. The results showed that the implementation of
dynamic meter pricing can produce more evenly distributed curbside
parking occupations across the urban core of SF (Fig. SI-4). We used hot
spot maps to show the differences between the predicted curbside
parking occupancy under the two pricing scenarios. The results revealed
that drivers tend to cruise from commercial and official centers to re-
gions with more residential and mixed-use developments under the
dynamic parking pricing scenario (Fig. SI-5 and Table SI-1), which
conforms with the SFpark program's objective (Pierce & Shoup, 2018).

These demonstrative scenario experiments shed light on the usages
of the developed model framework in examining the effects of different
curb management strategies and built-environment improvements on
curb use patterns. Notably, the results obtained from demonstrative
cases are with context-specific assumptions, which a robust validation is
required when applied to other scenarios and contexts.

6. Discussion

In this study, we proposed to use a state-of-the-art deep learning
model, i.e., MultiGCN-LSTM, to predict the hourly demands for two curb
uses (i.e., curbside parking and docked bike-sharing) at both street block
and curb scales. The method is applied for two distinct study cases, i.e.,
the City of San Francisco, CA and Gainesville, FL that face different curb
management challenges with different planned or implemented strate-
gies. We evaluated the model against the curb use data collected from
the two cases with ablation studies. We also tested the model with
scenario experiments and showed that the method can quantitatively
compare the effectiveness of different curb management strategies,

predict the spatial spillover effects of localized treatments, and under-
stand the changing curb-use conditions under city-wide regulations.

Recognized the challenges brought by the increasing curb activities,
many cities have explored different curb management strategies and
planned for various repurposing and renovation projects for curb spaces
(Butrina et al., 2020; Diehl, Ranjbari, & Goodchild, 2021; ITF, 2018;
Rosenblum et al., 2020). Particularly, some cities characterized their
urban curb spaces as “flex zone” with dynamic regulations to prioritize
different curb uses at different times (ITF, 2018). All these movements
suggest more dynamic and uncertain curb environments, and a nuanced
knowledge to relate the dynamic curb uses with local context is needed.
Our proposed model contributes to curb management by predicting fine-
grained curb-use conditions. The inclusion of semantic GCN considers
the relation between the diverse curb uses and surrounding built envi-
ronment features. For example, we showed that the presence of certain
functional properties (e.g., Restaurants and Religious Organizations)
and mobility facilities (e.g., bus stops) played an important role in
influencing the on-street parking occupation in Gainesville. The use of
multi-task learning also enables the predictions for diverse curb uses and
gives a more integrated image of curb uses at different curbs, which
helps coordinate different curb user groups.

Many cities have adopted the “incremental model” for curb man-
agement that makes adjustments to their extant curb management
practices every time confronting new challenges (Butrina et al., 2020;
Zalewski et al., 2012). This ad hoc planning approach can not address
curb management problems systematically and may cause further issues,
for example, meeting the needs of certain types of curb uses but missing
others or solving the problem at one curb but burdening nearby ones.
Our proposed model informs curb management practices by connecting
curbs across a community and accounting for different types of curb uses



H. Hao et al.

Computers, Environment and Urban Systems 99 (2023) 101914

U BU[RL;E T[T
S NW 7th Ave | B4 . NW 7th Ave [l B
= =4 B Y - S B
ol NW 5th Ave 2 ~uf i & ‘\ ol NW 5th Ave 2 ol ff & ‘\
a s || Z 2 2.l
hi NW 3rd Ave s hif NW 3rd Ave s
® 0o 00 08 0872 _ 98%%PPle o 5 0 08 o8 = . 0 f0P
ve {xro—e o o o oo Galns§wlleg Eje (x-o—e o o o oo Gamg.svulleg E
Legend ° o © ° i o Legend ° o © ° |2 o
9:00 AM & 9:00 AM »
® 10=5 SW 4th Ave -] E ®, 05 SW 4th Ave - S
0 6-10 Sourcengsn HERE, Garmln‘ USGS, 0 6-10 Sources: Esn, HERE, Garmlrf USGS,
0o 11-15 Intermap, INC#EMENTP NRCan, Esri | © 11-15 Intermap, INC#EMENTP NRCan, Esri
0 16-20 S Japan, METI, Esri China (Hong Kong), 0 16-20 S Japan, METI, Esri China (Hong Kong),
o oo L 02E0S 92*M  Esri Korea, Esti (Thailand), NGCC, (¢) | @ >20 ?_._.022,._0‘_._._._|51 K™ Esri Korea, Esri (Thailand), NGCC, (c)
T[T THEDONE
iy NW 7th Ave 9 ! - NW 7th Ave - a
ol @ SllE: ool & SialE:
NW 5th Ave | o | NW 5th Ave g |
3 s |2 a = ks
hi NW 3rd Ave s hi NW 3rd Ave i'
°® o 00 03 08 g = L S fPle o 0 0 08 03 g = 8| S8 AP
we=={ 26} e o o 0@ Galm.a.svalle: £ ve— 2} e o o 0@ Gamt.a.swlle: E
Legend o o (-] (-] [ Legend o o [} (5} o
1:00 PM 7 1: 00 PM I
® 10-5 SW 4th Ave ~E ® 0-5 SW 4th Ave ~:
o 6-10 Sources::Esri.HERE Garmm- USGS, 0 6-10 Sources::Esri,HERE Garmm- USGS,
o 11-15 Intermap, INCF!EMENTP NRCan, Esri | © 11-15 Intermap, INCF!EMENTP NRCan, Esri
0 16-20 S Japan, MET]I, Esri China (Hong Kong), 0 16-20 S Japan, MET]I, Esri China (Hong Kong),
o -o 02505 M Esri Korea, Esri (Thailand), NGCC, () | @ »20 ¢ °‘2.§ 0 o v+ "™ EsriKorea, Esri (Thailand), NGCC, (c)
T N
= o NW7th Ave - i: ﬁ ey o NW7th Ave o i: ﬁ
ol » = - ool 7] = -
NW 5th Ave | 2 ;‘ w NW Sth Ave ' 2 ;‘ w
g g e - =2
NW 3rd Ave s NW 3rd Ave i.
® o 00 08 .g; . 9908%PPle o o 0 0§ .g? _ L8 SoapP
vo—{2-o6o—e e o o 0@ Galnt.a.swlleg ENe—{Xfo—e e o o oo Galnt.a.swlleg E
Legend o g o o Legend ° o © ° )
5:00 PM » 5:00 PM 7
© 0.5 SW 4th Ave < e O SW 4th Ave <
0 6-10 SourcesEsri HERE, 98I‘mlﬂ' USGS, 0 &-10 SourcesEsri HERE, __Garmln‘ USGS,
O 11-15 Intermap INCREMENTP NRCan, Esri | © 11-15 Intermap, INCREMENTP NRCan, Esri
0 16-20 0255 e = Japan, METI, Esri China (Hong Kong), 0 16-20, 025 e = Japan, MET]I, Esri China (Hong Kong),
® 20 ¢ = . gl Esri Korea, Esri (Thailand), NGCC, (c) ® >20 = Esri Korea, Esri (Thailand), NGCC, (c)
(a) Actual (b) Prediction
Fig. 6. The spatio-temporal distribution of actual and predicted curbside parking occupation in Gainesville.
Relative Importance of Built-Environmetn Factors Relative Importance of Built-Environment Factors
(Gainesville) (San Francisco)
0.50 0.45 2.00
0.40 150 103 155 447 17
0.30 1.00 137 136
0.20 0.07 014 0.19 o6 0.50 .
0.10 c 0 00
@ [ §0.00 000 0.07 016 0.00 000 B 0. 00
0.00 —— 0.01 °° '
o
'@@ oQ% (‘,{f" 2 (3 = . Q"@} L}‘OQ @ & (/
R ) ‘;—'}- z(b Q/@Q" @Qo 'b(\(? ‘&r—, & o & Q;S’ & ‘_)Q’b L)Q'b Q@(’ "Q,/ e / q,
O EEN: K\ & & RN & & o & . \(\% @ & & be,(‘ é\"’ & K e , ©
& & L& E @ L L & ] F X L@ & (TS é“’ &
SO R R FTFLFE S Qo W F
S & & QR <&@ & & o) RN g FOEF RS-
& & N N N\ 3 A S\ ) Q O
™ O ) K o(@ Q' 50 & & NG Q@ g
P & & Q@\O ro <
< N N«
¥ ©
()
N
&

Fig. 7. The relative importance of semantic variables for two study cases.

to avoid incremental approaches in the planning and management of
curb spaces.

Our calibrated deep learning model captures the spatial, temporal,
and semantic dependencies among different curbs across distinct types
of uses. We used scenario experiments to demonstrate that the inclusion
of these complex and inherent dependencies allows models to make
reasonable predictions when tested in unseen scenarios, e.g., localized
built-environment changes and city-wide regulations. Such integration
of deep learning models and scenario experiments suggests a potential
avenue of scenario planning, which uses deep learning models to cap-
ture complex urban systems across different planning and management

scenarios (Chakraborty & McMillan, 2015).

The proposed study has a few limitations that can be addressed in
future studies. One limitation is the method validation. Though we have
evaluated the model with ablation studies and performed scenario ex-
periments, we were not able to compare the outcomes of model pre-
dictions with empirical observations obtained before and after a local or
city-wide curb treatment. However, deep learning models allow us to
anticipate distinct effects with different treatments before real de-
ployments. In the future, we will calibrate models with the continuously
collected real-world curb use data with the deployment of different
treatments. Secondly, though we claimed the model can predict the
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diverse curb uses, we only experimented with two specific curb uses, i.e.,
curbside parking and docked bike-sharing, due to data availability.
However, the model framework is flexible to include other curb-use
data, e.g., EV charging, commercial loading, and the PUDO of shared
AVs after further calibration. The proposed model would burst more
usefulness when these curb uses are included due to the advantages of
multi-task learning. We noticed that there are several efforts made by
private and public sectors to digitalize the curb spaces and standardize
curb data (Diehl et al., 2021), which supports future studies for data-
driven curb management research. However, these efforts are mostly
made for the supply side, i.e., what types of curb uses are permitted and
how many spaces are provided (Jaller et al., 2021). Future studies may
also consider monitoring the dynamic and diverse curb uses from the
demand side, e.g., with advanced video analysis techniques. In addition,
many other built-environment variables influencing curb uses are not
considered in this research. For example, some cities have administered
programs to grade the multimodal level of service for urban streets
(Dowling et al., 2008). Such data can be included in the composition of
the semantic graph in the developed MultiGCN-LSTM model.

7. Conclusion

The burgeoning disruptive urban technologies and new mobility
services have rapidly changed the way how people live and move in
cities. However, the planning and development of cities' physical built
environments, e.g., curb spaces, happen at a much slower rate that does
not contend with city residents' changing behaviors. The presented
research suggests that cities can better accommodate their residents
with effective and flexible management practices developed upon the
dynamic interactions between population behaviors and urban built
environments. Such spatiotemporal relations and fine-grained curb uses
can be modeled and predicted with deep learning with satisfactory
performance. Such data-based tools are beneficial for urban planners
and transportation engineers by supporting more agile and adaptive
management of urban assets in responding to various emerging urban
challenges while surviving and prospering in the unpredictable future.
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